电路实验内容

合集下载

电路实验.doc

电路实验.doc

电路实验实验一 基本电工仪表的使用及测量误差的计算一、实验目的1. 熟悉实验台上各类电源及各类测量仪表的布局和使用方法。

2. 掌握指针式电压表、电流表内阻的测量方法。

3. 熟悉电工仪表测量误差的计算方法。

二、原理说明1. 为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的工作状态。

这就要求电压表的内阻为无穷大;电流表的内阻为零。

而实际使用的指针式电工仪表都不能满足上述要求。

因此,当测量仪表一旦接入电路,就会改变电路原有的工作状态,这就导致仪表的读数值与电路原有的实际值$之间出现误差。

这种测量误差值的大小与仪表本身内阻值的大小密切相关。

只要测出仪表的内阻,即可计算出由其产生的测量误差。

以下介绍几种测量指针式仪表内阻的方法。

2. 用“分流法”测量电流表的内阻如图1-1所示。

A 为被测内阻(R A )的直流电流 表。

测量时先断开开关S ,调节电流源的输出电流I 使A 表指针满偏转。

然后合上开关S ,并保持I 值不 变,调节电阻箱R B 的阻值,使电流表的指针指在1/2 满偏转位置,此时有I A =I S =I/2∴ R A =R B ∥R 1 可调电流源 R 1为固定电阻器之值,R B 可由电阻箱的刻度盘上读得。

图 1-13. 用分压法测量电压表的内阻。

如图1-2所示。

V 为被测内阻(R V )的电压表。

测量时先将开关S 闭合,调节直流稳压电源的 输出电压,使电压表V 的指针为满偏转。

然后 断开开关S ,调节R B 使电压表V 的指示值减半。

此时有:R V =R B +R 1电压表的灵敏度为:S =R V /U (Ω/V) 。

式中U 为电压表满偏时的电压值。

可调稳压源 图 1-2 4. 仪表内阻引入的测量误差(通常称之为方法误差, 而仪表本身结构引起的误差称为仪表基本误差)的计算。

R 1 (1)以图1-3所示电路为例,R 1上的电压为 U R1=─── 。

R 1+R 2 现用一内阻为R V 的电压表来测量U R1值,当R V 与R 1并联后,R V R 1R AB =───,以此来替代上式中的R 1,则得R V +R 1vR V R 1 图 1-3────R V +R 1 -R 2 1R 2UU'R1=────── U 。

电路课实验报告总结(3篇)

电路课实验报告总结(3篇)

第1篇一、实验背景电路课是一门理论与实践相结合的课程,通过实验可以加深对电路理论知识的理解,提高动手能力和解决问题的能力。

本实验报告总结了我在电路课中所完成的几个实验,包括基本放大电路、差分放大电路、稳压电路等,并对实验过程、实验结果及心得体会进行了总结。

二、实验内容及过程1. 基本放大电路实验(1)实验目的:掌握放大电路直流工作点的调整与测量方法,研究交流放大器的工作情况,加深对其工作原理的理解。

(2)实验过程:搭建基本放大电路,调整电路参数,测量静态工作点,分析电路性能。

(3)实验结果:通过实验,掌握了放大电路直流工作点的调整方法,分析了电路的增益、带宽、输入输出阻抗等性能指标。

2. 差分放大电路实验(1)实验目的:提高对差分放大电路性能及特点的理解,学习其性能指标测试方法。

(2)实验过程:搭建差分放大电路,调整电路参数,测量差模电压放大倍数、共模电压放大倍数、共模抑制比等性能指标。

(3)实验结果:通过实验,了解了差分放大电路的工作原理,掌握了性能指标测试方法,分析了电路的共模抑制能力、温度稳定性等特性。

3. 稳压电路实验(1)实验目的:学习稳压电路的设计原理,提高对稳压电路性能指标的理解。

(2)实验过程:搭建稳压电路,调整电路参数,测量输出电压、输出电流、纹波电压等性能指标。

(3)实验结果:通过实验,掌握了稳压电路的设计方法,分析了电路的稳压精度、负载调节范围、温度稳定性等特性。

三、实验心得体会1. 理论与实践相结合:电路课实验使我深刻体会到理论知识与实践操作的重要性。

只有将理论知识应用于实际操作中,才能更好地理解电路原理,提高动手能力。

2. 分析问题、解决问题的能力:在实验过程中,遇到各种问题,通过查阅资料、分析电路原理,最终找到解决问题的方法。

这使我更加自信地面对实际问题。

3. 团队合作:实验过程中,与同学互相帮助、共同讨论,提高了团队协作能力。

在今后的学习和工作中,这种团队合作精神将使我受益匪浅。

电路实验实验内容提要

电路实验实验内容提要

电路元件伏安特性的测绘实验目的1. 学会识别常用电路元件的方法。

2. 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法。

3. 掌握实验装置上直流电工仪表和设备的使用方法。

原理说明任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

实验设备实验内容1. 测定线性电阻器的伏安特性2.测定半导体二极管的伏安特性3.测定稳压二极管的伏安特性思考题1. 线性电阻与非线性电阻的概念是什么?电阻器与二极管的伏安特性有何区别?2. 设某器件伏安特性曲线的函数式为I=f(U),试问在逐点绘制曲线时,其坐标变量应如何放置?3. 稳压二极管与普通二极管有何区别,其用途如何?实验目的验证基尔霍夫定律的正确性,从而加深对基尔霍夫定律的理解。

实验内容和步骤1、在储存板上取出相应的电阻元件盒和电流插座元件盒,在九孔实验板上按照图8-1联接好电路,E1、E2电源按表8-1要求调整。

图12、检查电路连接无误后,翻开稳压电源开关,观察E1和E2电流表有无异常现象。

无异常后,按实验步骤用数字电流表插入电流插座,分别测量各支路电流。

3、分别读出三个电流表数值I1、I2、I3,记入表8-1。

4、用电压表分别测量三个电阻上的电压U AB、U BD、I CB记入表8-1。

5、以上实验步骤按表8-1中E1、E2条件重复测量,并将测量数据记入表8-1。

表8-1实验报告1、根据图1先计算各支路电流I1、I2、I3,与电流表读数比拟,核对在节点B是否∑I入=∑I出,验证第一定律的正确性。

2、根据回路电压定律,对回路BADB和回路BCDB进展计算,并与实测量比拟,验证第二定律的正确性,即∑IR=∑E。

3、上述验证中假设有误差,试分析误差产生的原因。

实验目的1、通过实验验证戴维南定理,加深对等效电路概念的理解。

2、学习用补偿法测量开路电压。

电路实验报告例子

电路实验报告例子

实验一:直流电路基本定律验证一、实验目的1.加深对基尔霍夫定律的理解;2.掌握电路分析方法,提高电路分析能力;3.熟悉实验仪器及设备的使用。

二、实验原理基尔霍夫定律是电路分析的基本定律,包括基尔霍夫电流定律和基尔霍夫电压定律。

基尔霍夫电流定律指出,在任何时刻,流入一个节点的电流之和等于流出该节点的电流之和。

基尔霍夫电压定律指出,在任意闭合回路中,各段电压之和等于电源电动势之和。

三、实验设备1.直流稳压电源;2.万用表;3.电阻箱;4.电感器;5.电容器;6.电路实验箱;7.连接线。

四、实验步骤1.搭建电路,按照实验电路图连接电阻、电感、电容器等元件;2.测量各元件的参数,如电阻值、电感值、电容值等;3.根据基尔霍夫定律,计算电路中各节点的电压和各支路的电流;4.与实验测量值进行对比,分析误差原因。

五、实验数据及处理1.实验电路图:(此处插入实验电路图)2.实验数据:(此处插入实验数据表格,包括电阻值、电感值、电容值、节点电压、支路电流等)3.数据处理:(此处插入数据处理结果,如计算各节点电压、支路电流等)六、实验结果与分析1.实验结果:根据实验数据,计算得出电路中各节点电压和各支路电流,与理论计算值进行对比,分析误差原因。

2.误差分析:(此处分析实验误差,如测量误差、搭建电路误差等)七、实验结论1.通过本次实验,加深了对基尔霍夫定律的理解;2.掌握了电路分析方法,提高了电路分析能力;3.熟悉了实验仪器及设备的使用。

实验二:交流电路基本定律验证一、实验目的1.加深对欧姆定律、基尔霍夫定律在交流电路中的应用理解;2.掌握交流电路的分析方法,提高电路分析能力;3.熟悉实验仪器及设备的使用。

二、实验原理交流电路分析的基本定律包括欧姆定律、基尔霍夫定律、功率定律等。

欧姆定律在交流电路中可以表示为:I = V/Z,其中I为电流,V为电压,Z为阻抗。

基尔霍夫定律在交流电路中的应用与直流电路相同。

功率定律在交流电路中可以表示为:P = V^2/R,其中P为功率,V为电压,R为电阻。

电路实验资料

电路实验资料

电路实验
实验目的
本实验旨在帮助学生加深对电路原理的理解,掌握基本电路的搭建和测量方法,培养学生的动手能力和实验技能。

实验器材
1.电源:直流电源、交流电源
2.电阻:不同阻值的电阻器
3.电容:不同容值的电容器
4.电感:不同电感值的电感器
5.示波器:用于观察电路波形
6.万用表:用于测量电路元件参数
实验内容
实验一:串联电路的搭建与测量
1.将几个电阻串联连接起来,接入直流电源,测量总电阻值。

2.测量每个电阻的电压和电流值,分析串联电路中各元件的关系。

实验二:并联电路的搭建与测量
1.将几个电阻并联连接起来,接入直流电源,测量总电阻值。

2.测量每个电阻的电压和电流值,分析并联电路中各元件的关系。

实验三:RC 串联电路的时序响应研究
1.搭建RC串联电路,接入脉冲信号源,通过示波器观察电压波形。

2.调节不同的电容和电阻数值,分析不同参数对电路响应的影响。

实验四:RL 并联电路的频率响应研究
1.搭建RL并联电路,接入正弦信号源,通过示波器观察电压波形。

2.调节不同的电感和电阻数值,分析不同频率对电路响应的影响。

实验总结
通过本次电路实验,我们深入理解了串联电路和并联电路的特点及其应用,掌
握了基本的电路搭建方法和测量技巧。

同时,通过对RC串联电路和RL并联电路
的研究,加深了对电路时序响应和频率响应的认识,为今后的电路设计和分析奠定了基础。

参考资料
1.《电路原理与技术》
2.《电路分析基础》
3.《电路实验指导书》。

分析电路实验报告总结(3篇)

分析电路实验报告总结(3篇)

第1篇一、实验背景在本次实验中,我们主要学习了电路分析的基本原理和方法,通过实际操作和数据分析,掌握了电路中各种元件的特性和电路的运行规律。

本实验旨在提高我们对电路原理的理解,培养实际操作能力,并加深对电路分析方法的认识。

二、实验目的1. 理解电路的基本组成和基本定律;2. 掌握电路分析的基本方法,包括基尔霍夫定律、欧姆定律等;3. 熟悉常用电路元件的特性和应用;4. 提高实际操作能力和问题解决能力。

三、实验内容1. 基尔霍夫定律实验:通过实验验证基尔霍夫定律的正确性,加深对节点电压、回路电流等概念的理解。

2. 欧姆定律实验:通过实验验证欧姆定律的正确性,掌握电阻、电流、电压之间的关系。

3. 电路元件特性实验:观察和分析电阻、电容、电感等元件的特性和应用。

4. 电路分析方法实验:通过实际电路分析,掌握电路分析方法,如节点电压法、回路电流法等。

四、实验步骤1. 准备实验仪器和电路元件,确保实验环境安全。

2. 根据实验要求搭建电路,连接相关元件。

3. 对电路进行初步测试,确保电路连接正确。

4. 根据实验要求,分别进行基尔霍夫定律、欧姆定律、电路元件特性、电路分析方法等实验。

5. 记录实验数据,进行分析和处理。

6. 对实验结果进行总结,撰写实验报告。

五、实验结果与分析1. 基尔霍夫定律实验:实验结果显示,基尔霍夫定律在本次实验中得到了验证,节点电压和回路电流的计算结果与理论值基本一致。

2. 欧姆定律实验:实验结果显示,欧姆定律在本次实验中得到了验证,电阻、电流、电压之间的关系符合理论公式。

3. 电路元件特性实验:实验结果显示,电阻、电容、电感等元件的特性和应用得到了充分验证,为后续电路设计提供了理论依据。

4. 电路分析方法实验:实验结果显示,节点电压法、回路电流法等电路分析方法在本次实验中得到了有效应用,提高了电路分析效率。

六、实验总结1. 通过本次实验,我们对电路分析的基本原理和方法有了更深入的理解。

电路实验实验报告

电路实验实验报告

一、实验目的1. 加深对电路基本原理的理解和掌握;2. 熟悉常用电子仪器的操作方法;3. 培养实际操作能力和实验报告撰写能力。

二、实验原理本实验主要研究电路的基本原理,包括串联电路、并联电路、电阻分压电路、电容滤波电路等。

三、实验内容及步骤1. 串联电路实验(1)搭建串联电路实验电路,包括电源、电阻、开关等元件。

(2)用万用表测量各电阻的阻值,记录数据。

(3)闭合开关,用万用表测量电路中的电流和总电压,记录数据。

(4)计算电流和电压的比值,验证欧姆定律。

2. 并联电路实验(1)搭建并联电路实验电路,包括电源、电阻、开关等元件。

(2)用万用表测量各电阻的阻值,记录数据。

(3)闭合开关,用万用表测量电路中的电流和总电压,记录数据。

(4)计算电流的分配比例,验证并联电路的电流分配规律。

3. 电阻分压电路实验(1)搭建电阻分压电路实验电路,包括电源、电阻、开关等元件。

(2)用万用表测量各电阻的阻值,记录数据。

(3)闭合开关,用万用表测量电路中的电流和各电阻上的电压,记录数据。

(4)计算电压的分配比例,验证电阻分压电路的电压分配规律。

4. 电容滤波电路实验(1)搭建电容滤波电路实验电路,包括电源、电阻、电容、开关等元件。

(2)用万用表测量电容的电容值,记录数据。

(3)闭合开关,用万用表测量电路中的电流和电容两端的电压,记录数据。

(4)分析电容滤波电路的滤波效果。

四、实验结果与分析1. 串联电路实验结果分析实验结果显示,电流与电压的比值符合欧姆定律,验证了串联电路的基本原理。

2. 并联电路实验结果分析实验结果显示,电流的分配比例符合并联电路的电流分配规律,验证了并联电路的基本原理。

3. 电阻分压电路实验结果分析实验结果显示,电压的分配比例符合电阻分压电路的电压分配规律,验证了电阻分压电路的基本原理。

4. 电容滤波电路实验结果分析实验结果显示,电容滤波电路对高频信号的滤波效果较好,验证了电容滤波电路的基本原理。

电路理论实验报告册(3篇)

电路理论实验报告册(3篇)

第1篇一、实验目的1. 通过实验,加深对电路基本概念和原理的理解。

2. 掌握电路实验的基本方法和技能。

3. 培养分析和解决实际电路问题的能力。

二、实验内容本实验报告册共分为以下八个实验部分:实验一:电路元件伏安特性测试实验二:基尔霍夫定律验证实验三:电路的叠加原理与齐次性验证实验四:受控源特性研究实验五:交流电路的研究实验六:三相电路电压、电流的测量实验七:三相电路功率的测量实验八:RC移相电路实验三、实验原理1. 电路元件伏安特性测试:通过测量电阻、电容、电感等元件的电压和电流,绘制伏安特性曲线,分析元件的特性。

2. 基尔霍夫定律验证:利用基尔霍夫电流定律和电压定律,验证电路节点处电流和电压的关系。

3. 电路的叠加原理与齐次性验证:验证电路的叠加原理和齐次性,即在电路中某一支路电流为零时,其他支路电流也为零。

4. 受控源特性研究:研究受控源(电压控制电流源、电流控制电流源、电压控制电压源、电流控制电压源)的特性,分析其控制作用。

5. 交流电路的研究:研究交流电路中电压、电流的相位关系,分析电路的阻抗、导纳、功率因数等参数。

6. 三相电路电压、电流的测量:测量三相电路中电压、电流的有效值和相位,分析三相电路的特点。

7. 三相电路功率的测量:测量三相电路的功率,分析三相电路的功率分配。

8. RC移相电路实验:研究RC移相电路的特性,分析电路的相位移动和幅值变化。

四、实验步骤1. 实验一:电路元件伏安特性测试(1)搭建实验电路,连接电路元件。

(2)调节信号源,测量电路元件的电压和电流。

(3)记录数据,绘制伏安特性曲线。

2. 实验二:基尔霍夫定律验证(1)搭建实验电路,连接电路元件。

(2)测量电路节点处的电流和电压。

(3)验证基尔霍夫电流定律和电压定律。

3. 实验三:电路的叠加原理与齐次性验证(1)搭建实验电路,连接电路元件。

(2)断开某一支路,测量其他支路电流。

(3)验证电路的叠加原理和齐次性。

4. 实验四:受控源特性研究(1)搭建实验电路,连接受控源。

电路电子实验报告总结与反思

电路电子实验报告总结与反思

电路电子实验报告总结与反思一、实验内容本次实验主要涉及电路电子领域的相关知识,包括电路的设计、实验仪器的使用和数据处理等。

具体实验内容如下:1. 了解并掌握基本电路元件的特性和工作原理;2. 设计并组装电路板,实现特定功能;3. 使用万用表和示波器测量电路参数;4. 记录实验数据并进行数据处理;5. 分析实验结果,总结实验思考。

二、实验过程在本次实验中,我选择了一个简单的放大电路作为实验对象。

首先,我仔细研究了相关的理论知识,包括放大电路的分类、基本原理和电路设计方法等。

然后,根据实验要求,我设计了一个适合放大特定信号的电路。

接下来,我按照设计要求组装了电路板,并连接上相应的电源和信号源。

在实验过程中,我使用了万用表测量了电路中各个元件的电压和电流,并使用示波器观察了电路中信号的波形变化。

在实验过程中,我还出现了一些问题。

例如,我没有正确设置示波器的刻度,导致观察到的信号波形不清晰。

此外,我还发现电路中的一个元件连接错误,导致电路无法正常工作。

幸运的是,经过反复检查和排除,我成功解决了这些问题,并取得了满意的实验效果。

三、实验结果与数据分析通过本次实验,我成功实现了一个放大电路,并观察到了输入信号和输出信号的波形变化。

通过测量和数据处理,我得到了一些实验结果。

首先,我测量了电路中各个元件的电压和电流。

根据测量结果,我发现电路中的元件工作正常,并且符合设计要求。

此外,我还观察到输入信号和输出信号的幅度比例,发现输出信号的幅度确实得到了一定程度的放大。

然后,我对实验数据进行了进一步的分析。

通过对比不同输入信号的输出波形,我发现输入信号的频率对于输出的影响较大。

当输入信号的频率较小时,输出信号的形态基本保持不变。

但当输入信号的频率增大时,输出信号的波形发生了明显的改变。

综上所述,通过本次实验,我掌握了电子电路实验的基本方法和技巧,并成功设计和实现了一个放大电路。

实验结果符合预期,进一步验证了电路设计的正确性。

电路基础实验

电路基础实验

电路基础实验引言电路是电子技术的基础,而电路基础实验则是学习电路理论的必备环节。

通过实践操作电路,我们可以更好地理解电路原理,掌握电路分析和设计的方法。

本文将介绍几个常见的电路基础实验,帮助读者入门电子技术领域。

实验一:串联电路实验目的通过构建串联电路,了解串联电路的特性和基本原理。

实验材料•电阻器•电池•电压表•电流表•连接导线实验步骤1.将一个电阻器和一个电池串联连接,在电路中间连接一个电压表,用来测量电压。

2.将一个电流表与电阻器并联连接,用来测量电流。

3.打开电源,记录电压表和电流表的读数。

4.改变电阻器的阻值,再次记录电压表和电流表的读数。

5.绘制电压-电流曲线图,并分析实验结果。

实验结果与分析通过实验,我们可以得到串联电路中电压和电流之间是成正比关系的。

当电阻器的阻值增大时,电流减小,电压增大;当电阻器的阻值减小时,电流增大,电压减小。

这是因为串联电路中电流在各个元件中是相同的,而电压在各个元件上之和等于电源电压。

实验二:并联电路实验目的通过构建并联电路,了解并联电路的特性和基本原理。

实验材料•电阻器•电池•电压表•电流表•连接导线实验步骤1.将两个电阻器并联连接,并将它们与一个电池串联连接,在并联电路两端连接一个电压表,用来测量电压。

2.将两个电流表分别与电阻器并联连接,用来测量电流。

3.打开电源,记录电压表和电流表的读数。

4.改变电阻器的阻值,再次记录电压表和电流表的读数。

5.绘制电压-电流曲线图,并分析实验结果。

实验结果与分析通过实验,我们可以得到并联电路中电压和电流之间是成反比关系的。

当电阻器的阻值增大时,电流减小,电压不变;当电阻器的阻值减小时,电流增大,电压不变。

这是因为并联电路中电流在各个元件中之和等于电源电流,而电压在各个元件上是相同的。

实验三:电路的欧姆定律实验目的通过测量电阻器的电压和电流,验证欧姆定律的准确性。

实验材料•电阻器•电池•电压表•电流表•连接导线实验步骤1.将一个电阻器与一个电池串联连接,在电路中间连接一个电压表,用来测量电压。

电路实验(附答案)讲解

电路实验(附答案)讲解

实验一、基尔霍夫定律的验证一、实验目的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。

2、进一步学会使用电压表、电流表。

二、实验原理基尔霍夫定律是电路的基本定律。

1)基尔霍夫电流定律:对电路中任意节点,流入、流出该节点的代数和为零。

即∑I=02)基尔霍夫电压定律:在电路中任一闭合回路,电压降的代数和为零。

即∑U=0三、实验设备序号名称型号与规格数量备注DG04 直流稳压电源挂件 1 DG05 叠加定理挂件 1 D31 直流数字电压表、电流表挂件1四、实验内容实验线路如图2-1所示图 2-11、实验前先任意设定三条支路的电流参考方向,2、按原理的要求,分别将两路直流稳压电源接入电路。

3、将电流插头的两端接至直流数字毫安表的“+,-”两端。

4、将电流插头分别插入三条支路的三个电流插座中,记录电流值于下表。

5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。

五、实训注意事项1. 同实训六的注意1,但需用到电流插座。

附录:1. 本实训线路系多个实训通用,本次实训中不使用电流插头和插座。

实训挂箱上的k3应拨向330Ω侧,D和D’用导线连接起来,三个故障按键均不得按下。

2.所有需要测量的电压值,均以电压表测量的读数为准。

U1、U2也需测量,不应取电源本身的显示值。

3. 用指针式电压表或电流表测量电压或电流时,如果仪表指针反偏,则必须调换仪表极性,重新测量。

此时指针正偏,可读得电压或电流值。

若用数显电压表或电流表测量,则可直接读出电压或电流值。

但应注意:所读得的电压或电流值的正确正、负号应根据设定的电流方向来判断。

六、基尔霍夫定律的计算值:I1 + I2 = I3 (1)根据基尔霍夫定律列出方程(510+510)I1 +510 I3=6 (2)(1000+330)I3+510 I3=12 (3)解得:I1 =0.00193A I2 =0.0059A I3 =0.00792AUFA=0.98V UBA=5.99V UAD=4.04V UDE=0.98VUDC=1.98V七、实验结论数据中绝大部分相对误差较小,基尔霍夫定律是正确的实验二叠加原理实验报告一、实验目的验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

电路分析实验报告

电路分析实验报告

电路分析实验报告引言:电路分析是电子工程领域中的基础实验之一,通过对电路的分析,可以了解电流、电压、功耗等相关参数,从而更好地设计电子产品。

本篇实验报告将介绍我们在电路分析实验中的实验过程、结果和分析。

实验步骤:实验一:串联电路的分析我们首先构建了一个串联电路,该电路由一串电阻构成。

我们使用万用表和电流表测量电阻的阻值和电流的大小。

通过改变电阻的值,我们记录了不同电阻下电流的变化情况,并绘制了相应的电流-电阻关系图。

通过观察图表,我们发现电流和电阻成反比关系。

这一实验结果与基本的欧姆定律相一致。

实验二:并联电路的分析接下来,我们构建了一个并联电路,该电路由多个电阻并联而成。

通过测量并记录电流和电压的值,我们计算了电路的总电阻。

实验结果显示,并联电路的总电阻小于其中任意一个电阻。

这进一步验证了并联电路的特性,即总电阻为电阻的倒数之和。

实验三:交流电路的分析在这个实验中,我们关注的是交流电路的分析。

我们通过感应电阻和电容器构建了一个RLC电路,使用示波器测量了电压信号的幅值和相位。

我们观察到电容的阻抗与频率成反比关系,而电感的阻抗与频率成正比关系。

这些现象进一步揭示了交流电路中的频率依赖性。

实验四:直流电路的分析在最后一个实验中,我们关注的是直流电路的分析。

通过构建一个带有电池、电阻和LED的电路,我们探讨了电流在电路中的流动情况以及LED的亮度与电流的关系。

实验结果显示,当电流增大时,LED的亮度也随之增大。

这为我们设计和控制LED电路提供了重要的依据。

实验结果与分析:通过实验,我们成功地分析了不同类型的电路,并获得了相关的实验数据。

我们得出了串联电路中电流与电阻关系的结论,验证了并联电路的总电阻计算方法,观察到了交流电路中频率依赖性的现象,以及直流电路中电流和LED亮度之间的关系。

这些实验结果对我们深入了解和应用电路分析方法具有重要意义。

结论:通过这次电路分析的实验,我们学习了电路的基本原理和分析方法。

初中物理实验

初中物理实验

初中物理实验物理实验是初中物理教育的重要环节之一,通过实验,学生可以亲自观察、操作、验证物理现象,提高他们的实践能力和科学素养。

本文将介绍几个适合初中物理实验的实验项目,并对其进行详细的实验步骤和结果分析。

实验一:简单电路实验实验目的:了解电路的基本概念,掌握电路中的电流、电压和电阻的关系。

实验步骤:1. 准备材料:电池、导线、电灯泡、开关等。

2. 将电池的正极和电灯泡的一端通过导线连接起来。

3. 将电池的负极和电灯泡的另一端通过导线连接起来。

4. 打开开关,观察电灯泡是否亮起。

5. 关闭开关,观察电灯泡是否熄灭。

实验结果分析:当电路闭合时,电流可以顺利通过导线和电灯泡,使电灯泡发光;当电路断开时,电流无法通过导线和电灯泡,电灯泡则不发光。

这说明电流需要闭合回路才能流动,否则电流无法通过。

同时,关闭开关后,电灯泡立即熄灭,说明电流的通断是由开关控制的。

实验二:运动学实验实验目的:通过对物体运动的实验观察,研究物体的运动规律。

实验步骤:1. 准备材料:直线轨道、小车、计时器等。

2. 将小车置于直线轨道上,并将计时器启动。

3. 记录小车在相同时间内经过不同位置的数据。

4. 改变小车的起始位置,重复实验步骤2和3。

5. 根据实验数据绘制小车位置与时间的图形。

实验结果分析:根据实验数据绘制的图形可以发现,小车的位置随着时间的推移而发生变化。

如果小车匀速运动,则位置与时间呈线性关系;如果小车加速度运动,则位置与时间呈二次函数关系。

通过分析图形,可以得到物体运动的速度和加速度等运动学参数。

实验三:声学实验实验目的:通过实验观察和测量,研究声音的产生和传播规律。

实验步骤:1. 准备材料:音叉、共振管、麦克风等。

2. 打击音叉,产生声音。

3. 将音叉靠近共振管的一端,观察共振管内的声音变化。

4. 将麦克风靠近共振管的一端,使用声音测量软件测量声音的频率。

5. 改变共振管的长度或音叉的频率,重复实验步骤3和4。

6. 记录实验数据,并进行分析。

电路实验(附答案)

电路实验(附答案)

电路实验(附答案)实验⼀、基尔霍夫定律的验证⼀、实验⽬的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。

2、进⼀步学会使⽤电压表、电流表。

⼆、实验原理基尔霍夫定律是电路的基本定律。

1)基尔霍夫电流定律:对电路中任意节点,流⼊、流出该节点的代数和为零。

即∑I=02)基尔霍夫电压定律:在电路中任⼀闭合回路,电压降的代数和为零。

即∑U=0三、实验设备四、实验内容实验线路如图2-1所⽰图 2-11、实验前先任意设定三条⽀路的电流参考⽅向,2、按原理的要求,分别将两路直流稳压电源接⼊电路。

3、将电流插头的两端接⾄直流数字毫安表的“+,-”两端。

4、将电流插头分别插⼊三条⽀路的三个电流插座中,记录电流值于下表。

5、⽤直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。

五、实训注意事项1. 同实训六的注意1,但需⽤到电流插座。

附录:1. 本实训线路系多个实训通⽤,本次实训中不使⽤电流插头和插座。

实训挂箱上的k3应拨向330Ω侧,D和D’⽤导线连接起来,三个故障按键均不得按下。

2.所有需要测量的电压值,均以电压表测量的读数为准。

U1、U2也需测量,不应取电源本⾝的显⽰值。

3. ⽤指针式电压表或电流表测量电压或电流时,如果仪表指针反偏,则必须调换仪表极性,重新测量。

此时指针正偏,可读得电压或电流值。

若⽤数显电压表或电流表测量,则可直接读出电压或电流值。

但应注意:所读得的电压或电流值的正确正、负号应根据设定的电流⽅向来判断。

六、基尔霍夫定律的计算值:I1 + I2 = I3 (1)根据基尔霍夫定律列出⽅程(510+510)I1 +510 I3=6 (2)(1000+330)I3+510 I3=12 (3)解得:I1 =0.00193A I2 =0.0059A I3 =0.00792AUFA=0.98V UBA=5.99V UAD=4.04V UDE=0.98VUDC=1.98V七、实验结论数据中绝⼤部分相对误差较⼩,基尔霍夫定律是正确的实验⼆叠加原理实验报告⼀、实验⽬的验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

电路实验报告(8篇)

电路实验报告(8篇)

电路实验报告(8篇)电路实验报告(8篇)电路实验报告1一、实验题目利用类实现阶梯型电阻电路计算二、实验目的利用类改造试验三种构造的计算程序,实现类的封装。

通过这种改造理解类实现数据和功能封装的作用,掌握类的设计与编程。

三、实验原理程序要求用户输入的电势差和电阻总数,并且验证数据的有效性:电势差必须大于0,电阻总数必须大于0小于等于100的偶数。

再要求用户输入每个电阻的电阻值,并且验证电阻值的有效性:必须大于零。

此功能是由类CLadderNetwork的InputParameter ()函数实现的。

且该函数对输入的数据进行临界判断,若所输入数据不满足要求,要重新输入,直到满足要求为止。

本实验构造了两个类,一个CResistance类,封装了电阻的属性和操作,和一个CLadderNetwork类,封装了阶梯型电阻电路的属性和操作。

用户输入的电势差、电阻总数、电阻值,并赋给CladderNetwork的数据,此功能是由类CLadderNetwork的InputParameter 函数实现的。

输出用户输入的电势差、电阻总数、电阻值,以便检查,,此功能是由类CLadderNetwork的PrintEveryPart()函数实现的。

根据用户输入的电势差、电阻总数、电阻值换算出每个电阻上的电压和电流。

此功能是由类CLadderNetwork的Calculate ()函数实现的。

最后输出每个电阻上的电压和电流,此功能是由类CLadderNetwork 的PrintResult()函数实现的'。

此程序很好的体现了面向对象编程的技术:封装性:类的方法和属性都集成在了对象当中。

继承性:可以继承使用已经封装好的类,也可以直接引用。

多态性:本实验未使用到多态性。

安全性:对重要数据不能直接操作,保证数据的安全性。

以下是各个类的说明:class CResistance //电阻类private:double voltage;double resistance;double current;public:void InitParameter(); //初始化数据void SetResist(double r); //设置resistance的值void SetCur(double cur); //设置current的值void SetVol(double vol); //设置voltage的值void CalculateCurrent(); //由电阻的电压和电阻求电流double GetResist(){return resistance;} //获得resistance的值保证数据的安全性double GetCur(){return current;} //获得current的值double GetVol(){return voltage;} //获得voltage的值class CResistance //电阻类{private:CResistance resists[MAX_NUM]; //电阻数组int num;double srcPotential;public:void InitParameter(); //初始化数据void InputParameter(); //输入数据void Calculate(); //计算void PrintEveryPart(); //显示输入的数据以便检查void PrintResult(); //显示结果四、实验结果程序开始界面:错误输入-1(不能小于0)错误输入0 (不能为0)输入正确数据3输入错误数据-1输入错误数据0输入正确数据4同样给电阻输入数据也必须是正数现在一次输入2,2,1,1得到正确结果。

电路分析实验报告(含实验数据)

电路分析实验报告(含实验数据)

电路分析实验报告(含实验数据)目录实验一常用电子仪器使用 ..................................................................................... 错误!未定义书签。

1 万用表........................................................................................................... 错误!未定义书签。

2 WYK-303B3直流稳压稳流电源 ............................................................... 错误!未定义书签。

3 DF1641A 函数发生器............................................................................... 错误!未定义书签。

4 YB4320F 示波器 (1)实验二叠加原理 (2)1 实验目的....................................................................................................... 错误!未定义书签。

2 实验设备..................................................................................................... 错误!未定义书签。

3 实验原理..................................................................................................... 错误!未定义书签。

电路分析实验报告(含实验数据)

电路分析实验报告(含实验数据)

电路分析实验报告(含实验数据)实验目的:1. 熟悉调节电路、晶体管放大电路、集成运算放大电路的基本原理。

3. 学会使用万用表和示波器等仪器对电路进行测量和分析。

实验原理:一、调节电路:调节电路是一种使电压稳定在一定值的电路,是电源电压稳定的基础。

在实际电路中,电源电压有时波动较大,会影响整个电路的工作。

为此,需要一种使电源电压变化不会影响整个电路的电路——调节电路。

调节电路分两种类型:线性调节电路和开关型调节电路。

线性调节电路是一种将电源电压变化转化为小于1/1000的电压波动的电路,且输出电流几乎不随载荷变化而变化;开关型调节电路是一种将电源电压变化转化为开关动作,使输出电压不随电源电压的变化而变化。

在本实验中,我们主要研究线性调节电路。

二、晶体管放大电路:晶体管放大电路是一种利用半导体器件进行信号放大的电路。

晶体管放大电路可以帮助改变电路的功率、增益、输出阻抗和频率响应等。

由于晶体管具有节约能源、低功率损耗、易于集成等优点,因此在电子电路中得到了广泛应用。

三、集成运算放大电路:集成运算放大电路是一种关键的信号处理电路,它可与其他电路一起组合使用,以构成各种电子系统。

集成运算放大电路内部由多个晶体管和电容等元件构成,具有高精度、高稳定性、高增益和低噪声等优点。

实验过程:1. 调节电路实验调节电路的组成:桥式整流器、滤波器和稳压器。

桥式整流器的作用:将交流电转化为直流电。

滤波器的作用:平滑直流输出电流,减少涟波输出。

稳压器的作用:保持输出电压稳定不变。

实验步骤:1)连接电路,调整电平,打开电源开关,调节电位器使输出电压为10V,并记录。

2)逐渐增大负载电流,记录随负载电流的输出电压、直流电阻和电源电流。

实验数据:载荷电流/I 输出电压/V 电源电流/A 直流电阻/Ω0 10.03 0.034 00.5 9.93 0.034 17.811 9.89 0.035 21.041.5 9.85 0.035 23.382 9.81 0.036 25.322.5 9.78 0.036 26.993 9.74 0.037 28.55晶体管放大电路的组成:二极管滤波器、交流耦合放大器和输出级。

电路实验报告(9篇)

电路实验报告(9篇)

电路实验报告(9篇)电路试验报告1一、试验仪器及材料1、信号发生器2、示波器二、试验电路三、试验内容及结果分析1、VCC=12v,VM=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输2、VCC=9V,VM=4、5V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输3、VCC=6V,VM=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输出波形最大且不失真。

(以下输入输出值均为有效值)四、试验小结功率放大电路特点:在电源电压确定的状况下,以输出尽可能大的不失真的信号功率和具有尽可能高的转换效率为组成原则,功放管常工作在尽限应用状态。

电路试验报告2一、试验目的1、更好的理解、稳固和把握汽车全车线路组成及工作原理等有关内容。

2、稳固和加强课堂所学学问,培育实践技能和动手力量,提高分析问题和解决问题的力量和技术创新力量。

二、试验设备全车线路试验台4台三、试验设备组成全车电线束,仪表盘,各种开关、前后灯光分电路、点火线圈、发动机电脑、传感器、继电器、中心线路板、节气组件、电源、收放机、保险等。

四、组成原理汽车总线路的组成:汽车电器与电子设备总线路,包括电源系统、起动系统、点火系统、照明和信号装置、仪表和显示装置、帮助电器设备等电器设备,以及电子燃油喷射系统、防抱死制动系统、安全气囊系统等电子掌握系统。

随着汽车技术的进展,汽车电器设备和电子掌握系统的应用日益增多。

五、试验方法与步骤1、汽车线路的特点:汽车电路具有单线、直流、低压和并联等根本特点。

(1)汽车电路通常采纳单线制和负搭铁,汽车电路的单线制.通常是指汽车电器设备的正极用导线连接(又称为火线),负极与车架或车身金属局部连接,与车架或车身连接的导线又称为搭铁线。

蓄电池负极搭铁的汽车电路,称为负搭铁。

现代汽车普遍采纳负搭铁。

同一汽车的全部电器搭铁极性是全都的。

对于某些电器设备,为了保证其工作的牢靠性,提高灵敏度,仍旧采纳双线制连接方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2-7测量线性电阻伏安特性的电路
(1)按图2-7联接电路,Ra是一个三端变阻器,通过改变滑动端位置就能改变负载电阻R上的电压大小。测定R=100Ω时的伏安特性并将测量结果填入表2-4。
表2-4用逐点法测量线性电阻R=100Ω伏安特性表
名称
单位
数据
V
V
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
3.实验仪器设备
电路实验箱、数字万用表。
4.实验内容与步骤
1)测定所用电压控制电压源的转移特性
按图2-13接线,调节U1,测量U2,将测量结果填入表2-11。
图2-13电压控制电压源的转移特性测试电路
表2-11电压控制电压源的测试数据
U1(V)
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
U2(V)
图2-8测量二极管伏安特性的电路
表2-6用逐点法测量二极管伏安特性表
名称
单位
数据
V
V
0.30
0.50
0.55
0.60
0.65
0.70
0.75
I
mA
V/I
Ω
4.总结报告要求
(1)在坐标纸上画出R=R1=100Ω、R=R2=1000Ω时及二极管D的伏安特性曲线。
(2)如果已知一个线性电阻的阻值R,能否画出它的伏安特性曲线?
(3)设计图2-11中ab端口的等效电路,接入负载电阻与RH相同。改变负载电阻,由0调至10KΩ,测量不同数值的负载电阻所对应的Ua’b’、I’H,将测量结果记入表2-10②。
表2-10戴维南定理实验数据
实验
RH(Ω)
0
150
100
250
300
320
350
400
500
1k
2k
5k
10k

Uab(V)
0.9
1.0

100k
10k
1k
实验箱中的电阻组合成三端变阻器R0时,参考表2-8方案。
表2-8三端变阻器R0组接方式
R1/R0
组接方式
分压器引出线
0
1k+2k+2k+(10k//10k)
取全部电阻
0.1
1k+2k+2k+(10k//10k)
活动端从1k与2k接点处引出
0.2
2k+1k+2k+(10k//10k)
按图2-6联接电路,E=5V,负载电阻R=R1=100Ω和R=R2=1000Ω时,试估算电路中电流I的大小,选择合适的电流表和电压表的量程,并将测量结果填入表2-3。
表2-3欧姆定律验证数据表
名称
单位
数据
负载电阻R
Ω
R=R1=100Ω
R=R2=1000Ω
电压表读数V
V
电流表读数I
mA
计算值V/I
Ω
2)伏安特性的测定
3)分压器的技术要求
(1)要求调压特性比较均匀。调压特性即Ufz-R1的曲线,若这条曲线接近直线就是调压特性均匀。因此,不希望变阻器在某些位置上移动一点儿,负载电压变化的太多或太少。
(2)变阻器要经济耐用。不要使通过变阻器的电流超过其允许的最大电流,以免烧坏。
(3)对电源所取电流比ቤተ መጻሕፍቲ ባይዱ小。使不经过负载的电流越小越好。
2.预习要求及实验说明
1)受控源:即非独立电源,其电压源的电压,电流源的电流不是独立的,是受另一电压或电流的控制。
(a) (b)
(c) (d)
图2-12四种受控源
(a)电压控制电压源;(b)电压控制电流源;(c)电流控制电压源;(d)电流控制电流源
2)受控源分类
(1)电压控制电压源(VCVS),如图2-12(a)所示,其特性为: ,其中: 称为转移电压比(即电压放大倍数)。
(3)对比线性电阻和非线性电阻的伏安特性曲线,它们有什么特点?
(4)非线性电阻是否可以用一个电阻值来表示它的伏安特性?为什么说对非线性电阻欧姆定律不适用?
实验二
1.实验目的
(1)研究变阻器的调压特性、学习分析和处理实验数据的方法。
(2)掌握计算变阻器分压时的容量。
2.预习要求及实验说明
三端变阻器的应用:作为调整负载上电压之用,通常有两种联结方法。
3.实验内容与步骤
1)测量电容、电感、电阻分别在交、直流电路中的电流
(1)按图2-16接线,将R=10kΩ、L=200mH、C=4µF分别接入直流电路中,U=10V,测量电路中的电流,将结果填入表2-13中。
图2-16电阻、电感和电容在直流电路中的实验电路
(2)按图2-17接线,将R=10kΩ、L=200mH、C=4µF分别接入交流电路中,U=17V,测量电路中的电流,将测量的结果填入表2-13中。
活动端从1k与2k接点处引出
0.7
(10k//10k)+2k+1k+2k
活动端从2k与1k接点处引出
0.8
(10k//10k)+2k+1k+2k
活动端从1k与2k接点处引出
0.9
(10k//10k)+2k+2k+1k
活动端从2k与1k接点处引出
1.0
(10k//10k)+2k+2k+1k
活动端接电源负端
图2-17电阻、电感和电容在交流电路中的实验电路
表2-13电阻、电感和电容在电路中的测试数据
项目
直流U=10V
交流U=16.5V
IR(mA)
IL(mA)
IC(mA)
2)研究R、L、C在交流电路中元件上的电流和电压有效值之间的关系
(1)按图2-18接线,调节信号发生器f=50Hz,电压U分别为1V、2V、3V、4V,测量电路中的电流,记入表2-14。
2.预习要求及实验说明
1)微分电路
图2-27微分电路
微分电路图如图2-27所示。
(2-8)
当电路的时间常数τ=RC很小, >> 时,输入电压usr近似等于电容电压uc,
(2-9)
将(2-9)带入(2-8)则
(2-10)
所以当τ很小时,输出电压USC近似与输入电压USr对时间的导数成正比,所以称图2-27为“微分电路”。微分电路在脉冲技术中有广泛的应用。
实验三
1.实验目的
(1)验证戴维南定理,并用实验方法测定等效电势和等效电阻。
(2)了解最大功率传输条件。
2.预习要求及实验说明
(1)熟练掌握戴维南定理的内容。
(2)计算图2-11中R1=R3=100Ω、R2=270Ω时,含源—端口网络的等效电势、内阻和短路电流。将计算结果填入表2-9。
(3)计算图2-11中负载RH为多大时,RH上才能从网络得到最大功率?
图2-18电阻、电感和电容在交流电路中的特性实验电路
表2-14电阻、电感和电容在交流电路中电流和电压关系的测试数据
3.实验仪器设备
电路实验箱、万用表。
4.实验任务
研究R0=10kΩ、Rfz分别为∞、1kΩ、10kΩ、100kΩ时分压器的调压特性。学生自行设计实验线路及实验步骤。实验数据计入表2-7。
表2-7测量三端变阻器调压特性表
R1/R0
Ufz(v)
Rfz(Ω)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
(2)电压控制电流源(VCCS),如图2-12(b)所示,其特性为: ,其中: 称为转移电导。
(3)电流控制电压源(CCVS),如图2-12(c)所示,其特性为: ,其中: 称为转移电阻。
(4)电流控制电流源(CCCS),如图2-12(d)所示,其特性为: ,其中: 称为转移电流比(即电流放大倍数)。
μ
△μ
注:△μ= ,若△μ>2%,即超出线性范围。
2)研究含有受控源的线性电路分析方法
(1)将受控源接入电路,如图2-14所示。
图2-14含有受控源的线性电路图2-15等效电路
(2)用表2-12中列出的三种方法计算出表中各值。并用实验方法验证。
表2-12含有受控源的线性电路实验数据
应用方法
计算及测量项目
5.总结报告
(1)画出R0=10kΩ,在不同负载情况下的三端变阻器的调压特性曲线。
(2)根据所得曲线说明通常选用分压变阻器的R0数值为什么约在1/10Rfz与Rfz数值之间?若R0太小有什么坏处?
(3)已知:电源电压U0=1V,R0=10kΩ。Rfz分别为1000Ω/1W;500Ω/(1/8)W;10kΩ/1W。Rfz用哪一个?为什么?
6.注意事项
作调压特性曲线时应遵循:
(1)坐标选择。建议Ufz/U0、R1/R0为X与Y坐标,这样所得曲线不受U0、R0具体数值的限制,且两个变量都在0至1之间变化。
(2)选择适当的比例尺,本实验作图建议用16开坐标纸。
(3)曲线应标明坐标轴代表的量、数值、单位、曲线的名称、实验中的常量、实验组别、姓名、日期等。
图2-11戴维南定理实验电路
表2-9含源—端口网络的等效等效电路数据
名称
计算值
实测值
Uabk(V)
Ihd(mA)
R(Ω)
3.实验仪器设备
直流电流表、数字万用表、电路实验箱。
4.实验内容和步骤
(1)用实验方法测量Uabk、Ihd、R0学生自行设计实验线路及实验步骤。实验数据计入表2-9。
(2)按图2-11接线,改变负载电阻RH由0调至10kΩ,测量RH为不同数值时所对应的Uab、IH,记入表2-10①。
相关文档
最新文档