小学四年级奥数 巧求面积(二)

合集下载

小学四年级奥数(举一反三)教材

小学四年级奥数(举一反三)教材

目录◆第一讲找规律(一) (2)◆第二讲找规律(二) (5)◆第三讲长方形和正方形(一) (8)◆第四讲长方形和正方形(二) (11)◆第五讲算式谜(一) (14)◆第六讲算式谜(二) (17)◆第七讲植树问题(一) (19)◆第八讲植树问题(二) (22)◆能力测试(一) (25)◆第九讲和差问题(一) (28)◆第十讲和倍问题(一) (31)◆第十一讲和倍问题(二) (33)◆第十二讲差倍问题 (35)◆第十三讲年龄问题(一) (38)◆第十四讲年龄问题(二) (41)◆第十五讲还原问题(一) (43)◆第十六讲还原问题(二) (45)◆能力测试(二) (48)◆第17讲周期问题(一) (2)◆第18讲周期问题(二) (7)◆第19讲假设问题(一) (12)◆第20讲假设问题(二) (16)◆第21讲计数问题(一) (17)◆第22讲计数问题(二) (19)◆第23讲容斥问题(一) (23)◆第24讲容斥问题(二) (26)◆能力测试(一) (26)◆第25讲行程问题(一) (28)◆第26讲行程问题(二) (31)◆第27讲平均数问题 (35)◆第28讲推理问题(一) (37)◆第29讲推理问题(二) (39)◆第30讲巧算(一) (40)◆第31讲巧算(二) (45)◆第32讲巧算(二) (45)◆第33讲巧算(三) (45)◆第34讲等量代换 (45)◆第35讲拼拼算算 (45)◆能力测试(二) (63)第一讲找规律(一)事物的发展中有规律的,只有认为观察事物,找到事物发展变化的规律,才能深入地了解和掌握它,从而找到解决问题的方法和途径。

在数学竞赛中,常常出现按规律填数的题目,找规律的方法是根据已知数的前后(可上下)之间的联系,找出其中的规律,求得相应的数。

例题与方法例1. 请找出下列各组数排列的规律,并根据规律在括号里填上适当的数。

(1)1,5,9,13,( ),21,25。

(2)3,6,12,24,( ),96,192。

四年级几何巧求周长与面积学生版

四年级几何巧求周长与面积学生版

知识要点巧求周长【例 1】 如图所示,在一个大长方形的右上角挖去一个小长方形。

如果大长方形的长是7厘米,宽是5厘米。

小长方形的长是5厘米,宽是3厘米。

那么该图形的周长是多少厘米?3575巧求周长与面积巧求周长长方形周长公式:长方形周长=(长+宽)2⨯,记作:C 长方形()2a b =+⨯; 正方形周长公式:正方形周长=边长4⨯,记作:C 正方形4a =⨯; 巧求周长时,常用到“平移线段法”和“标向法”。

巧求面积长方形面积公式:长方形面积=长⨯宽,记作:S 长方形a b =⨯; 正方形面积公式:正方形面积=边长⨯边长,记作:S 正方形2a a a =⨯=; 巧求面积时,常用到“割补法”(将图形平移、对称、旋转)。

【例 2】如图所示,这个多边形任意相邻的两条边都互相垂直。

请根据图中所给出的数,求出这个多边形的周长。

(单位:分米)【例 3】如图所示,这个多边形任意相邻的两条边都互相垂直。

请根据图中所给出的数,求出这个多边形的周长。

(单位:厘米)68【例 4】如图所示,将3个边长为8厘米的正方形叠放在一起。

后一个正方形的顶点恰好落在前一个正方形的正中心。

那么它们覆盖住的图形周长是多少厘米?【例 5】(2010年3月14日第八届小学“希望杯”全国数学邀请赛四年级第1试第9题)将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图中的图形外轮廓(图中粗线条)的周长为_______厘米。

【例 6】 如图是由10个边长为4厘米的小正方形组成.每个小正方形的顶点恰在另一个正方形的中心,且边相互平行,求这个图形的周长。

【例 7】 如图所示,从一个大正方形的边上挖去一个正方形得到一个多边形。

大长方形的长是6厘米,宽是4厘米,正方形的边长是2厘米。

这个图形的周长是多少厘米?462【例 8】 如图所示,四个长方形组成了一个多边形,如果图中所标数值的单位都是厘米,那么这个多边形的周长是多少厘米?836512【例 9】 如图,某人从点A 走到点B 所走的路程是多少?【例 10】如图,把长为2厘米、宽为1厘米的6个长方形摆成3层。

小学数学四年级奥数基础教程目录

小学数学四年级奥数基础教程目录

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

小学奥数模块教程四年级杯赛备战讲义——巧求面积

小学奥数模块教程四年级杯赛备战讲义——巧求面积

上课日期: 上课时间: 教师姓名:知识点一:格点面积 一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.二、 三角形格点问题1、定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2、公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.知识点二:图形剪拼巧求面积知识框架毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12LS N =+-.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.(1)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.(2)反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.(3)将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.(1)如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.(2)图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.(3)如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.(4)如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.一、解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。

沪教版小学四年级奥数02

沪教版小学四年级奥数02

第3讲高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

四年级下册数学试题-奥数专题讲练:第五讲 巧求周长和面积 竞赛篇(解析版)全国通用 (2)

四年级下册数学试题-奥数专题讲练:第五讲 巧求周长和面积 竞赛篇(解析版)全国通用 (2)

第五讲巧求周长和面积编写说明“巧求周长和面积”的相关内容我们在寒假小4第四讲给予过一定的讲解. 本讲我们主要在原有知识的基础上进行提高巩固,同时加入一些新的知识,帮助我们更好的过渡到五年级几何部分的学习. 对于一些非常典型的例题,我们采用“重复加强”的学习方法,帮助孩子们牢固掌握. 奥数的题目虽然很多,但一些经典题目,常常会以原题形式出现在各个中学入学测试题中,希望我们的孩子能戒骄戒躁,温故而后知新,清晰彻底的掌握理解自己学习过题目.你还记得吗【复习1】右图中是一个方形螺线.已知两相邻平行线之间的距离均为l厘米,求螺线的总长度.分析:如下图所示,将原图形转化为3个边长分别为3、5、7厘米的正方形和中间一个三边图形.所以螺线的总长度为:(3+5+7)×4+1×3=63 cm .【复习2】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示。

如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?分析:我们可以让静止的瓷砖动起来,把对角线上的(101+1)÷2=51块黑瓷砖,通过向上或向右平移处理,移到两条边上(如图2)。

在这一转化过程中瓷砖的位置发生了变化,但数量没有变,此时白色瓷砖组成一个正方形。

(101+1)÷2=51(大正方形的边长),51-1=50(白色瓷砖组成正方形的边长),50×50=2500(块),所以白色瓷砖共用了2500块。

【复习3】有10张长3厘米,宽2厘米的纸片,将它们按照右图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?分析:每多盖一张,遮住的面积增加2×1,所以这10张纸片所盖住的桌面的面积是3×2+2×1×9=24cm2.【复习4】有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间相互叠合(如右图),已知露在外面部分中,红色面积是20,黄色面积是12,绿色面积是8,那么正方形盒的底面积是多少?分析:黄色纸片露出部分与绿色纸片露出部分面积不同,把黄色纸片向左移动,在这个移动过程中,黄色纸片露出部分减少的面积等于绿色纸片纸片露出部分增加的面积,它们露出的面积和不变,所以图2中黄色露出部分面积为10,绿色面积也为10。

高斯小学奥数四年级下册含答案第05讲_割补法巧算面积

高斯小学奥数四年级下册含答案第05讲_割补法巧算面积

第五讲割补法巧算面积在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢? 练习1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法.例题2如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢?1 223 453 2 4341249 DG如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积.例题3如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯? 练习3如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米?例题4如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米?「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一样的,你能求出大正三角形的面积吗?D图2如图,把两个同样大小的正方形分别分成55⨯和33⨯的方格表.图1阴影部分的面积是162,请问图2中阴影部分的面积是多少?例题4中的阴影部分都是同样形状的花图形,我们不能直接看出花图形和大正三角形的面积之间有什么倍数关系,但是借助一块块小正三角形,我们把花图形和大正三角形之间联系起来,看看它们各自占了多少个小正三角形.找到面积之间的联系,是解决类似问题的钥匙.有些图形看起来没有分割成一些相同的小图形,实际上不过是将分割线隐藏起来或者只出现了其中的一部分,需要我们自己进行分割. 例题5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A 的面积是36平方厘米,那么正方形B 的面积是多少平方厘米?「分析」乍一看上去和例题2有些相似,我们能不能求出大等腰直角三角形的面积呢?它的面积和正方形A 、B 之间有什么关系呢? 例题6如图所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)「分析」这个四边形并不规则,直接求面积似乎有些困难.我们已经知道了其中的三个角,其中有直角也有45°角.你能从这两种“特殊角”发现图形的特点吗?图1课堂内外毕式定理据说毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不仅仅是欣赏瓷砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇……于是再以两块瓷砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.这就是著名的毕式定理:在任何一个直角三角形中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的这个故事都是后人辗转传播的.可以说真伪难辨.这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,更普遍地则称为勾股定理.中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.作业1. 下图中的数字分别表示对应线段的长度,图中多边形的面积是多少?2. 如下图所示,在正方形ABCD 内部有梯形EHGF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 、BF 、DG 都等于2厘米.则梯形EHGF 的面积是多少平方厘米?3. 如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连.图中阴影部分的面积总和是多少?4. 下图中空白部分的面积是100,那么阴影正方形的面积是多少?5. 如图所示,正六边形ABCDEF 的面积是36.阴影正六边形的面积是多少?D G324 34 1242 3 33 3第五讲 割补法巧算面积1. 例题1答案:32平方厘米详解:对这个图形进行简单分割后,分别求面积再相加. 32243632⨯+⨯+⨯=平方厘米.也可对图形进行添补.(如右图)2.例题2答案:16平方厘米详解:正方形面积是36平方厘米,三角形AEH 、FCG 的面积是2平方厘米,三角形EBF 、GDH 的面积是8平方厘米.长方形EFGH 的面积是36228216-⨯-⨯=平方厘米.3. 例题3答案:50平方厘米详解:首先可把小正方形中间的阴影部分添补到相对应的空白处,中间小正方形的面积等于四个角上的阴影三角形的面积和.可连接正方形对边的中点,也可以把四个三角形向中间对折都可以说明阴影部分的面积是正方形面积的一半,即为1010250⨯÷=平方厘米. 4. 例题4答案:27平方厘米详解:图1中大三角形被分成9块,阴影部分面积占3块,面积是48平方分米,那么每个小三角面积是16平方分米,大三角形面积是169144⨯=平方分米. 图2中大三角形被分成了16块,那么每个小三角形的面积是144169÷=平方分米,阴影部分面积是9327⨯=平方分米. 5. 例题5答案:32平方厘米详解:对图形进行如左图的分割,通过第一个图,我们知道等腰直角三角形的面积8平方厘米,正方形B 的面1 2 2 3 4 5 1 22 3 45积是32平方厘米.6. 例题6答案:20平方厘米详解:如图所示,把原图添补成一个大的等腰直角三角形.需要将多余的小直角三角形去掉才是原图.大等腰直角三角形的底是7厘米,高是7厘米,所以面积是77224.5⨯÷=平方厘米;小等腰直角三角形的底是3厘米,高是3厘米,所以面积是332 4.5⨯÷=平方厘米.所以四边形的面积是24.5 4.520-=平方厘米.7. 练习1答案:78平方厘米详解:492331278⨯+⨯+⨯=平方厘米.8. 练习2答案:10平方厘米详解:正方形面积是36平方厘米,三角形AEF 的面积是2平方厘米,三角形BEC 、DFC 的面积都是12平方厘米.三角形EFC 的面积是362121210---=平方厘米.9. 练习3答案:5简答:大正三角形被分成12块,阴影部分占6块,占总个数的一半,面积为5平方厘米.10. 练习4答案:1503 243 4124 9简答:图1中大正方形被分成25块,阴影部分面积占18块,面积是162,那么每个小正方形面积是9,大正方形面积是259225⨯=.图2中大正方形被分成了9块,那么每个小正方形的面积是225925÷=,阴影部分面积是256150⨯=.11. 作业1答案:84简答:()312433332284⨯+⨯+++⨯⨯=平方厘米.12. 作业2答案:18简答:首先求出大正方形的面积,再求出各个角上的小三角形的边长和面积.然后把大正方形的面积减去四个小三角形的面积就得梯形的面积. 13. 作业3答案:6简答:将右上两个阴影三角形切下来添到左侧空白处,使其拼成一个大的三角形.阴影面积是平行四边形面积的一半.所以阴影部分的面积是6. 14. 作业4答案:80简答:对三角形进行分割,能知道每个小三角形的面积是100520÷=,阴影正方形的面积是80.15. 作业5答案:9简答:把大六边形划分为24个小正三角形,其中阴影部分可以分成6个小正三角形,所以大六边形是阴影部分面积的4倍,正六边形面积是36,阴影部分的面积是3649÷=.。

小学小学四年级的奥数题练习及含答案解析

小学小学四年级的奥数题练习及含答案解析

四年级奥数题:兼顾规划(一)【试题】 1、烧水泡茶时,洗水壶要用 1 分钟,烧开水要用 10 分钟,洗茶壶要用 2 分钟,洗茶杯用 2 分钟,拿茶叶要用 1 分钟,如何安排才能尽早喝上茶。

【剖析】:先洗水壶而后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。

共需要1+10=11 分钟。

【试题】 2、有 137 吨货物要从甲地运往乙地,大卡车的载重量是5 吨,小卡车的载重量是 2 吨,大卡车与小卡车每车次的耗油量分别是10 公升和 5 公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【剖析】:依题意,大卡车每吨耗油量为10÷5=2( 公升 );小卡车每吨耗油量为5÷2=2.5( 公升) 。

为了节俭汽油应尽量选派大卡车运货,又因为137=5×27+2,所以,最优调运方案是:选派 27 车次大卡车及 1 车次小卡车即可将货物所有运完,且这时耗油量最少,只要用油10×27+5 ×1=275(公升 )【试题】 3、用一只平底锅烙饼,锅上只好放两个饼,烙熟饼的一面需要2 分钟,两面共需 4 分钟,此刻需要烙熟三个饼,最少需要几分钟?【剖析】:一般的做法是先同时烙两张饼,需要4 分钟,以后再烙第三张饼,还要用4分钟,共需 8 分钟,但我们注意到,在独自烙第三张饼的时候,此外一个烙饼的地点是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们能够先烙第一、二两张饼的第一面, 2 分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。

两分钟后,第一张和第三张饼也烙好了,整个过程用了 6 分钟。

四年级奥数题:兼顾规划问题(二)【试题】 4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3 分钟,乙洗抹布需要 2 分钟,丙用桶接水需要1 分钟,丁洗衣服需要10 分钟,如何安排四人的用水次序,才能使他们所花的总时间最少,并求出这个总时间。

(完整word版)小学奥数模块教程四年级杯赛备战讲义——巧求面积

(完整word版)小学奥数模块教程四年级杯赛备战讲义——巧求面积

上课日期: 上课时间: 教师姓名:知识点一:格点面积 一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.二、 三角形格点问题1、定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2、公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.知识点二:图形剪拼巧求面积知识框架毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12LS N =+-.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.(1)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.(2)反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.(3)将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.(1)如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.(2)图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.(3)如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.(4)如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.一、解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。

四年级奥数竞赛4.巧求面积(上)答案

四年级奥数竞赛4.巧求面积(上)答案

2011秋季学而思奥数测试题答案第1题 (本题10分)(★★)有一列数:l,2,4,7,1l,16,22,29,37,问这列数第15个数是多少?1.A 1052.B 1063.C 1104.D 104正确率:有69%的网校学员答对了该题知识点:数列正确答案:B试题讲解:第2题 (本题10分)1.A 6012.B 600C 5993.4.D 602正确率:有50%的网校学员答对了该题知识点:数列计算正确答案:A试题讲解:第3题 (本题10分)1.A 1252.B 1303.C 1004.D 98正确率:有85%的网校学员答对了该题知识点:数列计算正确答案:C试题讲解:第4题 (本题10分)1.A 452.B 603.C 284.D 50正确率:有73%的网校学员答对了该题知识点:数列计算正确答案:D试题讲解:第5题 (本题10分)(★★★)在1~300这三百个自然数中,所有能被4整除的数的和是多少?1.A 114002.B 114403.C 112404.D 12400正确率:有70%的网校学员答对了该题知识点:数列求和正确答案:A试题讲解:第6题 (本题10分)(★★★★)56个互不相同的非零自然数之和为2800,问最少有多少个偶数?1.A 32.B 53.C 44.D 6正确率:有65%的网校学员答对了该题知识点:数列正确答案:C试题讲解:===================================================================== 第1题 (本题10分)A 49501.2.B 50503.C 5051D 60504.正确率:有100%的网校学员答对了该题知识点:数列求和正确答案:B试题讲解:第2题 (本题10分)A 20130211.2.B 20140243.C 20150284.D 2016033正确率:有100%的网校学员答对了该题知识点:数列求和正确答案:C试题讲解:第3题 (本题10分)1.A 50472.B 5050C 101003.4.D 10094正确率:有100%的网校学员答对了该题知识点:数列求和正确答案:A试题讲解:第4题 (本题10分)1.A 48932.B 49003.C 48914.D 4901正确率:有100%的网校学员答对了该题知识点:平方差公式正确答案:C试题讲解:第5题 (本题10分)1.A 125262.B 125273.C 125284.D 12529正确率:有80%的网校学员答对了该题知识点:平方和公式正确答案:D试题讲解:第6题 (本题10分)1.A 3382802.B 3383203.C 3383504.D 338380正确率:有60%的网校学员答对了该题知识点:平方和公式正确答案:B试题讲解:第1题 (本题10分)桌子上放着40根火柴,甲、乙二人轮流每次取走根。

四年级奥数难题第二讲 巧求面积

四年级奥数难题第二讲 巧求面积

第二讲 巧求面积1.有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米? 此题,10×10=100平方米,周长相差40米,边长相差10米。

如图,(3)为小试验田,则(1)的面积是100平方米,这是关键点。

40÷4=10,10×10=100,220-100=120,120÷2=60,60÷10=6,6×6=36或者用方程组,平方差公式。

2.在图中,平行四边形ABCD 的边BC 长10厘米,直角三角形ECB 的直角边EC 长8厘米。

已知阴影部分的总面积比三角形EFG 的面积大10平方厘米,求平行四边形ABCD 的面积。

都补上梯形EGCB 后,阴影就变成了“平行四边形ABCD ”,三角形EFG 就变成了“三角形EBC ”。

根据差不变性质,这2部分的面积差还是10平方厘米,而三角形EBC 是个直角三角形面积可求(二个直角边已知)。

10×8÷2=40,40+10=50。

3. 如图所示,从一个直角三角形中剪去一个面积为15cm 2的长方形后剩余部分是两个直角三角形。

已知AD 长为3cm ,求CE 长是多少?如图做辅助线,构成一个大长方形ABCG 。

由对称知道,三角形AGC 和三角形ABC 相等,4和2面积相等,所以6和5 因为6的面积15cm 2,宽=AD ==5cm ,CE =5cm 。

4.如图,ABCD 是7×4的长方形,形,求△BCO 与△EFO 的面积差。

B5. 图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心。

如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?如图虚线,在一个圆内作一个正方形,此正方形与中间的正方形大小是相等的。

在虚线的正方形内空白的2个花瓣,正好可以用“圆和虚线正方形之间2个阴影”补上,凑成一个正好的正方形。

(北京市)小学四年级寒假奥数班讲义

(北京市)小学四年级寒假奥数班讲义

小学四年级奥数目录第一讲图形的计数(一)第二讲图形的计数(二)第三讲速算与巧算(一)第四讲速算与巧算(二)第五讲和差倍问题第六讲还原问题第七讲年龄问题第八讲盈亏问题第九讲最佳方案第十讲平均数问题第十一讲长方形、正方形的周长和面积第十二讲综合测试第一讲图形的计数(一)一.知识点回顾1.弄清图形中所包含的基本图形,图形的特征和变化规律。

2.从各图中所包含基本图形的个数多少出发,依次数出它们的个数,并求出它们的和。

3.被分成几个部分的图形,可以先从各部分的基本图形出发,数出所含图形的个数,再求各部分的总和,做到不重复、不遗漏,正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯。

二.典型例题例1. 数出下面图中有多少条线段。

思路导航:要正确解答这类问题,需要我们按照一定的顺序来数,做到不重复,不遗漏。

从图中可以看出,从A点出发的不同线段有3条:AB、AC、AD;从B点出发的不同线段有2条:BC、BD;从C点出发的不同线段有1条:CD。

因此,图中共有3+2+1=6条线段。

数线段的规律:线段上有n个点(包括两个端点),n个点把这条线段共分成线段总数为:1+2+3+…+(n-1)。

解:这条线段有4个点,所以线段的总和为1+2+3=6(条)答:图中的线段有6条。

练一练:数出下列图中有多少条线段。

(2)例2.数出下面图中有多少个角。

思路导航:在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个)数角的规律:数角的方法和数线段的方法类似,图中共有几条射线组成若干个角,角的总个数为1+2+3+…+(n-1)。

四年级《巧求面积》奥数教案

四年级《巧求面积》奥数教案

师:今天的知识,都比较有挑战性。

消磨光你们的耐心了吗?生:没有。

师:看来大家意志都很坚定嘛。

那我们接着看一下更难理解的例题四吧。

给你们两分钟时间读题,然后跟同桌之间讨论讨论,思考一下如何解决这个问题。

师:想好了吗?生:想好了。

师:那哪组派个代表来说说自己的发现。

生1:长方形游泳池的面积是50乘以25等于1250平方米。

师:对吗?生:对。

师:没错,因为由题意我们可以知道游泳池的长和宽分别是50米和25米。

所以就很容易求出游泳池的面积。

师:那还有那个小组愿意说说自己的成果?生2:可以把白瓷砖的部分分成4个小长方形。

师:那可以怎么分呢?生:横着分也可以,竖着分也可以。

师:很好,那我们就先横着分。

【课件演示分割动画。

】师:这样的话,我们可以发现红色的这两个长方形面积怎么求?生2:50乘以2。

师:这样求出来的是几个小长方形的面积?生2:一个。

师:所以要再……生2:乘以2 。

师:没错,请坐。

这样我们就求出了红色的两个小长方形的面积,还剩两个小长方形呢。

怎么办?生:25加上4在乘以2。

师:为什么25要加上4?生:因为这两个长方形的两头都比游泳池的宽长2米,就是总共长4米了。

师:听懂了吗?生:听懂了。

师:没错,解释得非常到位。

【课件演示竖向的两个长方形的面积求解过程。

】师:刚刚我们是纵向的分割白瓷砖,先在我们还可以……生:横向的分割。

师:没错,现在请你们自己写在课堂练习本上吧。

【教师下台巡视。

然后讲解解题过程。

】师:我们刚刚了解两种分割方法,如果我们不分割的话,该怎么求?生:用大的减去小的。

师:大的指什么?小的指什么?生:大的指白瓷砖包括游泳池的面积。

师:这个大的长宽分别是多少?生:50加4和25加4。

师:没错,所以我们就可以求出大的长方形面积是1566平方米。

师:那刚刚说的小的面积是指什么?生:是指游泳池的面积。

【课件演示方法三的解题动画。

】师:没错,所以,我们只要把大的面积减去小的面积,就可以得到白色瓷砖的面积了。

四年级上册奥数讲义-第十一讲 割补法巧算面积-冀教版

四年级上册奥数讲义-第十一讲  割补法巧算面积-冀教版

四年级第十一讲割补法巧算面积◆温故知新:1. 用割补法把不规则图形变成规则图形计算面积。

2.正方形、等腰直角三角形、等边三角形、正六边形等已知图形分割成小块,与所求图形面积相联系。

◆练一练1、在图中,五个小正方形的边长都是2厘米,求三角形的面积。

ABC2、图中小正方形和大正方形的边长分别是4厘米和6厘米。

阴影部分的面积是多少平方厘米?◆例题展示例题1图中的数字分别表示对应线段的长度,试求这个多边形的面积。

(单位:厘米)练习1如图所示,在正方形内部有一个长方形。

已知正方形的边ABCD EFGH ABCD 长是6厘米,图中线段都等于2厘米。

求长方形的面积。

、EFGHAE AH例题2如图所示,大正方形的边长为10厘米。

连接大正方形的各边中点得到一个小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连。

请问:图中阴影部分的面积总和等于多少平方厘米?练习2如图所示,大正方形的边长为10厘米。

连接大正方形的各边中点得到一个小正方形,再连接大正方形的两条对角线。

请问:图中阴影部分的面积总和等于多少平方厘米?例题3如图所示,正六边形ABCDEF的面积是6平方厘米,M是AB中点,N是CD 中点,P是EF中点。

请问三角形MNP的面积是多少平方厘米?练习3 如图所示,正六边形ABCDEF的面积是36平方厘米,M、N、P、Q、R、S分别是AB、BC、CD、DE、EF、FA的中点。

请问:阴影正六边形MNPQRS的面积是多少平方厘米?例题4 如图,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分点。

已知图a中阴影部分的面积是294平方分米。

请问:图b中阴影部分的面积是多少平方分米?练习4如图,把两个同样大小的正方形分别分成5×5和6×6的方格表。

其中“G”形阴影部分的面积是558,请问“S”形阴影部分的面积是多少?◆拓展提高拓展1如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A 的面积是36平方厘米,那么正方形B的面积是多少平方厘米?练习1如图,在两个相同的等腰直角三角形中各作一个正方形,如果三角形A的面积是16平方厘米,那么三角形B的面积是多少平方厘米?拓展2 如图所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(图中3和7的单位是厘米)练习2 如图,在等腰梯形ABCD中,角B是60度,线段AB、AD、CD长度相等。

(完整版)四年级奥数小学数学培优第1讲巧算面积

(完整版)四年级奥数小学数学培优第1讲巧算面积

第1讲巧算面积方法和技巧:解答比较复杂的关于长方形,正方形的周长和面积的计算问题时,不能生搬硬套公式,需要运用移位,合并,分解,转化等解题技巧。

因此,敏锐的观察力和灵活的思维在解题中至关重要。

例1:下图①是一块长方形草地,长方形长255米,宽105米,中间有两条道路,一条是长方形的,一条是平行四边形的。

问有草部分的面积是多少?做一做1:如下图所示,一块长方形草地,长100米,宽80米,中间有条宽4米的道路,求草地(阴影部分)的面积。

例2:求右图的面积。

(单位:厘米)做一做2:计算下列图形的面积。

(单位:厘米)例3:如右图,一块菜地长18米,宽10米,菜地中间留了宽2米的路,把菜地平均分成四小块,每一小块的面积是多少?做一做3:如下图,一条白底的正方形手帕,它的边长是18厘米,手帕上横竖有两道红条(图中的阴影部分),红条的宽都是2厘米。

问这条手帕白色部分的面积是多少?例4:右图是用5个相同的小长方形拼成的一个大长方形,大长方形的周长是44厘米,求大长方形的面积。

做一做4:有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如下图)的周长是29厘米,求这个大长方形的面积。

例5:一个正方形的花坛,四周有1米宽的水泥路(如右图①),如果水泥路的总面积是12平方米,问中间花坛的面积是多少平方米?做一做5:如下图,有一个正方形水池(图中阴影部分),在它的周围修一个宽是8米的草地,草地的面积为480平方米。

求水池的边长。

例6:小玲用边长10cm的正方形材料制作一副七巧板,并拼成了一只“小猫”。

这只“小猫”尾巴的面积是多少平方厘米?做一做6:求下图阴影部分的面积。

(单位:厘米)巩固练习:1、求下面图形的面积。

(单位:厘米)2、如下图,有一大一小的两个正方形,对应边之间的距离都是1厘米,如果夹在两个正方形之间部分的面积为12平方厘米。

问那么大正方形面积是多少平方厘米?3、如图,将四条长为16厘米,宽为2厘米的矩形纸条垂直相交平放桌上,桌面被盖住的面积是多少?4、如下图,用十个相同的小长方形拼成一个大长方形。

小学四年级奥数竞赛班作业第18讲:巧求面积(一)

小学四年级奥数竞赛班作业第18讲:巧求面积(一)

巧求面积练习题一.夯实基础:1. 如图是学校操场一角,请计算它的面积(单位:米)2. 一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?3. 一块长方形纸片,在长边剪去5cm ,宽边剪去2cm 后(如图),得到的正方形面积比原长方形面积少231cm .求原长方形纸片的面积.4. 一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积?30203040525. 如图所示,把一个正方形各边中点顺次相连,可得一个新的较小的正方形;把这个小正方形的各边中点顺次相连,又可以得到一个新的更小一些的正方形……如此依次连下去,一直连到第三个新正方形为止。

如果图中阴影的面积等于1,那么图中最大的正方形面积等于多少?二. 拓展提高:6. 甲、乙、丙三个正方形,它们的边长分别是6、8、10厘米,乙的一个顶点在甲的中心上,丙的一个顶点在乙的中心上.这三个正方形的覆盖面积是多少平方厘米?7. 如图,四边形ABCD 的周长是60厘米,点M 到各边的距离都是4.5厘米,这个四边形的面积是 平方厘米.8. 有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积?1086丙乙甲9. 有大、小两个长方形(如图),对应边的距离均为1cm ,已知两个长方形之间部分的面积是216cm ,且小长方形的长是宽的2倍,求大长方形的面积.10. 空白处每个方格都是边长为4厘米的正方形,黑条的宽度为2厘米,求阴影部分的面积和周长。

11. 如图,一块正方形地砖,上面印有四周对称的花纹,正中心红色小正方形面积是8,四块绿色等腰直角三角形均相同,面积总和是36,那么图中阴影部分的面积是多少?三.超常挑战:12. 下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.13. 两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.四.杯赛演练:14. (2008年第七届”小机灵杯”数学竞赛决赛)如图是由5个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是8,那么最大的正方形的边长是 .15. (2008年全国小学生”我爱数学夏令营”数学竞赛)如图,边长为 10的正方形中有一等宽的十字,其面积(阴影部分)为36,则十字中央的小正方形面积为 .16. (武汉明心奥数挑战赛)如图所示,四个相叠的正方形,边长分别是5、7、9、11.问灰色区与黑色区的面积的差是多少?FBA第6题第2题1017.(第四届《小数报》数学竞赛决赛试题)有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米.小正方形的面积是多少平方厘米?18.(第五届”祖冲之杯”数学邀请赛)如右图所示,在长方形ABCD中,放入六个形状大小相同的长方形(尺寸如图),图中阴影部分的面积是__________.B答案:1. 这是一个不规则图形,怎样使它能转化为我们熟悉的基本图形呢?可以在图中添上一条辅助线,把多边形切割成上下两个长方形或左右两个长方形;也可以把多边形补充完整,成为一个长方形;图一 图二 图三方法一:如图一,3040203040120014002600⨯+⨯+=+=()(平方米) 方法二:如图二,203040203060020002600⨯+⨯+=+=()(平方米) 方法三:如图三,40302030303035009002600+⨯+-⨯=-=()()(平方米)2. (方法一)如图,铁板面积比原来减少的面积就是阴影部分的面积,阴影部分的面积是用原长方形 的面积减去空白部分的面积.即: 1512(152)(122)⨯--⨯-180130=-=50(平方分米).(方法二)也可把阴影部分分割成两个长方形,求两个长方形的面积.3. 通过对图形进行分割,可以发现C 的长与宽分别是5cm 和2cm ,则它的面积是5210⨯=(2cm ),那么A B +的面积是311021-=(2cm ),如给B 移到A 的旁边,则知正方形的边长:(cm ),正方形的面积是339⨯=(2cm ),原长方形的面积是31940+=(2cm ).4. 第一个正方形的面积是2020400⨯=(平方厘米),第二个正方形的面积如图,实际上是第一个正方形面积的一半.依次类推,第五个正方形的面积为:400222225÷÷÷÷=(平方厘米).5. 最小的正方形面积等于2,每往外扩一层,面积就会增加一倍。

小学四年级奥数 巧求面积(二)

小学四年级奥数 巧求面积(二)

巧求面积(下)(★★★)(★★★)一条白色的正方形手帕,它的边长是18 厘米,手帕上横竖各用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示。

如果铺满这块地面共用101 块黑色瓷砖,那么白色瓷砖用了多少块?有二道黑条,黑条宽都是2 厘米,这条手帕白色部分的面积是多少?(★★★★★) (★★★)有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒如图,大正方形的边长为10 厘米。

连接大正方形的各边中点内,它们之间相互叠合(如图),已知露在外面部分中,红色面得小正方形,将小正方形每边三等分,再将三等分点与大正方积是20,黄色面积是12,绿色面积是8,那么正方形盒的底形的中心和一个顶点相连,那么图中阴影部分的面积总和等于面积是多少?多少平方厘米?1(★★★) (★★★)如图所示,外侧大正方形的边长是10cm,在里面画两条对角右图中甲的面积比乙的面积大________平方厘米。

线、一个圆、两个正方形,阴影的总面积为26cm2,最小的正方形的边长为多少厘米?(★★★★) (★★★★★)如图,ABCD是7×4的长方形,DEFG是10×2的长方形,求如图,E,F,G都是正方形ABCD三条边的中点,△OEG比△BCO与△EFO的面积差。

△ODF大10 平方厘米,那么梯形OGCF的面积是多少平方厘米?2本讲总结:答案常用方法:【例1】196(平方厘米)一、平移【例2】2500(块)二、对称【例3】45三、旋转【例4】50(平方厘米)四、差不变【例5】2思想:【例6】8一、化零为整【例7】3二、化不规则为规则【例8】153。

四年级巧求面积奥数题

四年级巧求面积奥数题

四年级巧求面积奥数题一、例题1. 题目一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?2. 解析(1)根据“宽不变,长增加6米,面积增加54平方米”,由长方形面积公式S = 长×宽,可得宽为54÷6 = 9米。

(2)再根据“长不变,宽减少3米,面积减少36平方米”,可得长为36÷3 = 12米。

(3)所以原来长方形的面积为12×9 = 108平方米。

3. 题目如图,大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形面积大96平方厘米。

小正方形的面积是多少?(这里假设小正方形边长为a厘米,大正方形边长为a + 4厘米)4. 解析(1)大正方形面积为(a + 4)^2平方厘米,小正方形面积为a^2平方厘米。

(2)已知大正方形面积比小正方形面积大96平方厘米,则可列出等式(a + 4)^2-a^2=96。

(3)展开式子得到a^2+8a + 16 a^2=96,化简后为8a+16 = 96。

(4)先计算8a=96 16 = 80,解得a = 10。

(5)所以小正方形面积为a^2=10^2=100平方厘米。

5. 题目有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米;如果使宽为60米,长不变,那么它的面积比原来增加2720平方米。

原来的长和宽各是多少米?6. 解析(1)由“宽改成50米,长不变,面积减少680平方米”,可得长为680÷(原来的宽 50)。

(2)由“宽为60米,长不变,面积比原来增加2720平方米”,可得长为2720÷(60 原来的宽)。

(3)因为长不变,所以680÷(原来的宽 50)=2720÷(60 原来的宽)。

(4)设原来的宽为x米,则(680)/(x 50)=(2720)/(60 x)。

四年级《巧求面积》奥数课件

四年级《巧求面积》奥数课件

2厘米
一个长方形,如果宽不变,长增加2厘米,那么 它的面积增加10平方厘米;如果长不变,宽减少3厘 米,那么它的面积减少18平方厘米。这个长方形原来 的面积是多少平方厘米?
原来的宽:
3
10 ÷ 2= 5(厘米)

原来的长:

18 ÷ 3= 6(厘米)
原来的面积:
5 × 6 = 30(平方厘米)
答:这个长方形原来的面积是30平方厘米。
游泳池的面积:
50 × 25 = 1250(平方米)
50
白瓷地砖的面积:
25
2 方法一:
2
2×50×2 + 2×(2+25+2)×2
= 316(平方米)
下图为一个长50米,宽25米的标准游泳池。它 的四周铺设了宽2米的白瓷砖(阴影部分)。求游泳 池面积和白瓷地砖面积各是多少?
游泳池的面积:
50 × 25 = 1250(平方米)
一个正方形的周长是80分米,它的面积是多少平方分米?
正方形的边长: 80 ÷ 4 = 20(分米) 正方形的面积: 20 × 20 = 400(平方分米) 答:它的面积是400平方分米。
学校操场原来是一个长50米,宽40米的长方形,扩
建后,长和宽各增加了30米,现在长方形操场的面积是
多少平方米?
长方形的周长 =(长+宽)× 2 长+宽 = 长方形的周长 ÷ 2
= 22 ÷ 2 = 11
一个长方形的周长是22厘米,如果它的长和宽 都是整数厘米,那么这个长方形的面积(单位:平 方厘米)有多少种可能值?最大、最小各是多少?
①长10厘米,宽1厘米, 面积是10×1=10平方厘米; ②长9厘米,宽2厘米, 面积是9×2=18平方厘米; ③长8厘米,宽3厘米, 面积是8×3=24平方厘米; ④长7厘米,宽4厘米, 面积是7×4=28平方厘米; ⑤长6厘米,宽5厘米, 面积是6×5=30平方厘米;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧求面积(下)
(★★★) 一条白色的正方形手帕,它的边长是 18 厘米,手帕上横竖各 有二道黑条,黑条宽都是 2 厘米,这条手帕白色部分的面积是 多少?
(★★★) 用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色 的,其它地方铺白色的,如图所示。如果铺满这块地面共用 101 块黑色瓷砖,那么白色瓷砖用了多少块?
(★★★★★) 有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒 内,它们之间相互叠合(如图),已知露在外面部分中,红色面 积是 20,黄色面积是 12,绿色面积是 8,那么正方形盒的底 面积是多少?
(★★★) 如图,大正方形的边长为 10 厘米。连接大正方形的各边中点 得小正方形,将小正方形每边三等分,再将三等分点与大正方 形的中心和一个顶点相连,那么图中阴影部分的面积总和等于 多少平方厘米?
答案3Biblioteka (★★★★★) 如图,E,F,G 都是正方形 ABCD 三条边的中点,△OEG 比 △ODF 大 10 平方厘米,那么梯形 OGCF 的面积是多少平方厘 米?
2
本讲总结: 常用方法: 一、平移 二、对称 三、旋转 四、差不变 思想: 一、化零为整 二、化不规则为规则
【例 1】196(平方厘米) 【例 2】2500(块) 【例 3】45 【例 4】50(平方厘米) 【例 5】2 【例 6】8 【例 7】3 【例 8】15
1
(★★★ ) 如图所示,外侧大正方形的边长是 10cm,在里面画两条对角 线、一个圆、两个正方形,阴影的总面积为 26cm2,最小的正 方形的边长为多少厘米?
(★★★ ) 右图中甲的面积比乙的面积大________平方厘米。
(★★★★) 如图,ABCD 是 7×4 的长方形,DEFG 是 10×2 的长方形,求 △BCO 与△EFO 的面积差。
相关文档
最新文档