桥梁结构物

桥梁结构物
桥梁结构物

桥梁桩基抗震动力特性分析验算

桥梁桩基抗震动力特性分析验算 摘要:模拟地震作用下,桥梁的桩土相互作用机理,从而对桩基进行抗震分析与抗震验算。应用有限单元程序MIDAS/Civil与XTRACT软件分别建立有限元模型及桩基的弯矩与曲率关系,模拟地震作用时,桩基的动力特性反应,并检验是否满足设计与规范要求。 关键词:桥梁桩基抗震动力特性 桩基础在公路、铁路和城市桥梁工程建设中被普遍采用。其抗震性能作为桥梁整体结构抗震中最重要的一项,对提高结构抗震性能,减轻震害有着重要的影响。对桩基动态特性进行分析时,考虑桩土相互作用,根据m法对桩基土弹簧进行模拟,得出地震力作用下桩基础的水平力、弯矩以及剪力。另外根据桩基的实际尺寸、配筋以及实际受力等状态拟定出桩基的弯矩与曲率关系图,计算出构件的承载值。从而与地震作用下的荷载对照,对桩基抗震进行精确的分析与验算。 1、工程概述 巢湖市跨后河河口大桥上部结构为(42.5+69.48+42.5)m变截面连续梁,由中间单箱双室梁及两侧单箱单室梁组成。支座采用GXP盆式支座,下部结构桥墩和桩基础采用C30混凝土,普通钢筋采用R235和HRB335钢筋。1号、2号墩桩基长35m,直径1.3m。地基土层从上之下有,粉质粘土层,细砂层,卵石层、漂卵石层以及强分化千枚岩层。 2、有限元模型分析与验算 2.1 结构抗震模型前处理 全桥的各构件共有1700个单元,1703个节点构成。盆式橡胶支座考虑初始刚度影响,依据规范《公路桥梁抗震细则JTG B02-01-2008》6.3.7条计算和取值,采用弹性连接模拟。桩土相互作用用土弹簧模拟,忽略阻尼和刚度特性的影响。根据地基土层特性,通过“m”法计算桩基节点弹性支撑的顺桥向刚度与横桥向刚度。 巢湖市地震基本烈度为Ⅶ度,地震反谱特征周期为0.35s,地震动峰值加速度值为0.10g,模态叠加时采用CQC法。建立地震反应谱曲线E1、E2,对结构进行反应谱分析。 2.2结构抗震模型后处理 (1)荷载标准:永久作用包括自重与二期恒载,偶然作用包括7度烈度E1和E2地震作用下加速度反应谱。荷载组合如下:

桥梁结构设计的优化

桥梁结构设计的优化 公路建设的发展为我国的经济创造了丰富的物质保障,桥梁是公路建设中最主要的一个部分,但是最近几年桥梁的安全事故频频发生,桥梁结构设计的优化问题已经受到人们的广泛关注。文章对现如今桥梁结构设计的现状进行了分析,阐述了设计中需要注意的几个问题,指出了桥梁结构设计优化的主要研究方向,希望能对我国的桥梁工程起到一定的参考价值。 标签:桥梁设计;结构设计;耐久性 桥梁结构设计的基本要求是要保证安全性、适用性以及经济性,不仅要求设计者要具备丰富的理论知识,还要具一定的工程经验,如果有经验上的偏差就会严重影响设计的准确性。桥梁结构设计要坚持因地制宜的基本原则,要充分结合建设单位公布的桥梁设计方案,积极学习国外的先进技术,引进一些新设备、新材料,严格依照施工设计的总则、荷载以及每种材料技术条件要求等施工设计标准,采取适当的设计方法,能最大限度地规避主管因素对桥梁结构设计造成的影响。 1 我国桥梁结构设计现状分析 桥梁结构的设计覆盖范围非常广,属于一种比较复杂的系统工程,只有将理论知识充分的融入进去才能有效的预防主观经验因素给设计带来的不利影响,在桥梁结构的设计中会出现很多问题,其中最主要的问题分为下面几种:(1)桥梁结构设计中考虑强度的因素要多于耐久性;(2)设计时重视强度的极限状态,而忽视使用的极限状态,然而桥梁结构属于整个生命周期里最为重要的使用性能表现;(3)桥梁结构设计中过于重视结构建造而忽视结构维护。 在实际的桥梁施工中,对桥梁的耐久性只是处于表面设计,一方面缺少明确的使用要求,另一方面还缺少专门关于耐久性的设计,这些问题是导致桥梁事故发生的主要因素,这些因素同桥梁结构设计的要求相背离,也不能满足当前桥梁结构设计在经济性方面的要求。 目前我国桥梁结构设计理论与构造体系不够完善,桥梁的设计特别是桥梁施工和安全的问题上还有很多需要改善的地方。结构设计的第一要务便是选择一套经济、适用的结构设计方案,然后对方案及连接方面进行设计,并选出施工规范允许的安全系数和指标来确保结构的安全性。 2 桥梁结构设计中需要注意的问题 2.1 桥梁结构的耐久性 目前我国在桥梁的结构设计方面已经取得了一定的成绩,但是这些研究都是针对材料和统计的,对结构设计的耐久性研究还是较为薄弱,因为在桥梁的使用

城市桥梁技术状况评估方法研究

龙源期刊网 https://www.360docs.net/doc/1915624545.html, 城市桥梁技术状况评估方法研究 作者:迟恩先 来源:《科技风》2018年第27期 摘要:为准确、全面的进行城市桥梁技术状况评估,本文对《城市桥梁养护技术规范CJJ99-2003》规定的评估方法进行了分析,并结合《公路桥梁技术状况评定标准》(JTG/T H21-2011)对城市桥梁技术状况评估方法提出了几点改进意见,以供城市桥梁检测人员参考。 关键词:城市桥梁;技术状况;评估方法 1 概述 近几年,由于国民经济大发展,交通运输业也随着高速发展,超载超限时有发生,致使桥梁的技术状况下降很快,但是由于长期“重建、轻养”思想的影响下,城市桥梁没有进行及时的检测评估,养护工作也严重滞后,致使城市桥梁坍塌事故时有发生,其中有建于60、70年代的城市桥梁,也有一些是仅建成十几年的大型桥梁,给人民的生命财产造成极大的影响。为了加强城市桥梁的养护工作,保障城市桥梁的完好和安全运行,我国建设部颁布行业标准《城市桥梁养护技术规范》(CJJ99-2003),但本规范运行至今已有十多年,城市桥梁的结构形式应用广泛,《城市桥梁养护技术规范》中的个别规定已不能完全适应城市桥梁技术状况的评估体系,笔者根据工作中遇到的实际问题结合《城市桥梁养护技术规范》中的桥梁技术状况评估方法进行了分析,并提出了一些意见,仅供参考。 2 《城市桥梁养护技术规范》中的桥梁技术状况评估方法 2.1 评估方法原理 城市桥梁技术状况评估分为Ⅰ类养护城市桥梁评估和Ⅱ~Ⅴ类养护城市桥梁评估。 ①Ⅰ类养护城市桥梁评估按主要构件是否损坏,是否影响结构安全划分为合格和不合格两种标准。 ②Ⅱ~Ⅴ类养护城市桥梁采用先分部再综合的方法进行评估,按分层加权法计算桥梁的BCI值来进行评价,分为A、B、C、D、E五个等级。首先按底层构件缺陷及扣分的标准对检查构件进行评分,中层部件的评定在底层评分的基础上,按規定构件权重计算部件的加权平均值,然后根据桥梁结构组成部分的权重计算桥梁的综合评分结果,得到桥梁状态指数(BCI 值)。桥梁技术状况评定结果比较客观。 2.2 《城市桥梁养护技术规范》评估方法的不足

桥梁专业设计技术规定 第八章 桥梁震动及抗震

8 桥梁振动及抗震 8.1结构抗震体系 8.1.1结构应具有合理的地震作用传力途径和明确的计算简图。结构除了具有必要的承载能力以外,还应具有良好的变形能力和耗能能力,以保证结构的延性性能。 8.1.2结构的质量和刚度应均匀分布,避免因质量和刚度突变而造成地震时结构各部分相对变形过大。对于质量和刚度变化较大的部位,应采取有效措施予以加强。 8.1.3结构基础应建造在坚硬的地基上,尽可能避开活断层及地质条件不好的地基。当结构必须建造在软土地基或可能液化的地基上时,应对地基进行处理。 8.1.4上部结构应尽量采取连续的形式。当上部结构与下部结构之间的支座允许上部结构平动时,必须保证支承面宽度并采取相应的限位措施,防止落梁的发生。 8.1.5确定墩柱的截面尺寸时应避免墩柱的轴压比(墩柱所承受的轴向压力与抗压极限承载力之比)过大,以保证墩柱截面的延性性能。 8.1.6对于多跨连续结构,各中墩柱的截面尺寸和高度应使各柱的纵桥向刚度和横桥向刚度基本相同。跨径相差较大时,应考虑上部结构质量对横桥向频率的影响。对于地面高差较大的地形,可通过下挖地面来调整墩柱的高度。 8.1.7对于大跨度桥梁,应结合桥位处的地质条件和地震动特性等具体情况,对各种结构体系进行分析研究,选择抗震性能较好的结构体系。 8.2地震反应计算 8.2.1工程设计项目应按《地震安全性评价管理条例》(国务院令第323号)及各地方相应管理办法,要求业主对相应区域进行地震危险性分析,

并根据地震危险性分析进行结构的地震反应计算。在桥梁建设中尽量避开具有危险性的活动地震断层。活动性地震断层附近桥梁的地震反应计算要特别注意地面位移对结构的影响。按“条例”不需进行地震安全性评价的一般性工程,应按照《中国地震动参数区划图》(GB18306-xx)规定的设防要求进行抗震设防。 8.2.2应根据工程的重要性等级、场地的地质条件和地震烈度、结构的自振特性等情况,按照规范用反应谱方法进行结构的地震反应计算。对于大跨度桥梁,还应进行时程反应分析,并考虑地震动的空间不均匀性。 8.2.3对于地震作用的计算,应按公路桥梁相关规范执行,城市桥梁应根据道路等级和桥梁的重要性,按表8.1进行重要性系数修正。 表8.1 城市桥梁重要性修正系数Ci 考虑地震引起的位移,避免结构因位移过大而导致非强度破坏。 8.2.5对大跨度桥梁进行地震反应计算时,由于高阶振型的影响较大,必须计算足够多的振型。 8.2.6采用减震措施设计时,应结合具体桥型进行动力时程分析。 8.3构件抗震设计和抗震构造措施 8.3.1 应搜集桥位处地震基本烈度、地质构造、地震活动情况、工程地质及水文地质条件,并根据地震基本烈度及桥梁重要性等级采取相应的

可靠度桥梁结构优化设计

可靠度的桥梁结构优化设计 摘要:基于可靠度的桥梁结构优化设计将桥梁结构作为一个整体研究,而且能够考虑和处理桥梁结构设计中的随机不确定性因素,较传统的结构优化设计更为合理。阐述了基于可靠度的桥梁结构优化设计基本思想以及发展方向。 关键词:可靠度;桥梁结构;优化;设计 abstract: based on the reliability of bridge structure optimization design will bridge structure as a whole study, but also to consider and deal with the design of bridge structure stochastic uncertainty, a traditional structure optimization design is more reasonable. the paper based on reliability of bridge structure optimization design basic ideas and development direction. keywords: reliability; bridge structure; optimization; design 中图分类号:s611文献标识码:a 文章编号: 1引言 桥梁结构设计的基本原则是安全、适用和经济。传统的桥梁结构设计主要是采用定值设计的方法,既不能描述和处理桥梁结构中客观存在的各种不确定性因素,也不能定量地分析计算安全、适用及经济的各项指标,更无法科学地协调它们之间的矛盾,使它们达

基于桥梁结构动力特性评估的有限元仿真研究

基于桥梁结构动力特性评估的有限元仿真研究摘要:以坐落在俄罗斯符拉迪沃斯托克市人行天桥为例,利用笔算和有限元建模的方法对人行天桥进行动力特性计算,对比结果发现以笔算的形式已经无法满足对结构较复杂的中型桥梁的设计 要求,所以在设计较为复杂的中型桥梁时采用有限元仿真的方法是重要的和非常有效手段之一,其建模与分析方法对设计人员具有一定的参考价值。 关键词:有限元模型;动力参数;自振周期;共振 abstract: based on footbridge constructed in vladivostok of russia, the dynamic characteristics of footbridge are studied in this paper. the dynamic characteristics are studied by method of written calculation and finite –element model. compared the results written calculation in from has been unable to meet the design of requirement for the structures of more complex. so construction finite –element model is effective and important method. the result of this paper has certain theoretical meaning and application value in engineering practice. key words:finite-element model;dynamic characteristics;period of vibrate;period of vibrate;resonance

桥梁结构健康监测

桥梁结构健康监测

目录 1. 桥梁结构健康监测的概念 0 2. 桥梁结构健康监测系统 0 2.1. 监测内容 0 2.2. 数据传输 (1) 2.3. 数据分析处理和控制 (2) 2.4. 大型桥梁结构健康监测系统 (2) 2.5. 桥梁结构健康监测的现状与发展方向 (3) 3. 桥梁结构健康监测系统的意义 (4) 3.1. 桥梁结构健康监测系统的主要作用包括: (4) 3.2. 桥梁健康监测意义 (4) 4. 现有桥梁结构监测系统存在的问题 (5) 5. 结语 (6)

桥梁结构健康监测 1.桥梁结构健康监测的概念 交通是社会的经济命脉,桥梁是交通的咽喉,交通不畅会制约社会的经济发展,所以保障桥梁的功能性、耐久性,尤其是安全性至关重要。为保证桥梁安全运行、避免严重事故发生,对桥梁结构进行健康监测应运而生,桥梁结构健康监测是以科学的监测理论与方法为基础,采用各种适宜的检验、检测手段获取数据,为桥梁结构设计方法、计算假定、结构模型分析提供验证;对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发和累计损伤发生位置与程度,并对发生后果的可能性进行判断与预测。通过对桥梁结构健康状态的监测与评估,为桥梁在各种气候、交通条件下和桥梁运营状况异常时发出预警信号,为桥梁维护、维修与管理措施提供依据,并通过及时采取措施达到防止桥梁坍塌、局部破坏,保障和延长桥梁的使用寿命的目的。 2.桥梁结构健康监测系统 2.1.监测内容 数据采集与测量的内容主要为:变形(沉降、位移、倾斜)、应力、动力特性、温度、外观检测等。 1)变形监测 采取适宜的测量手段,对桥梁主体结构关键部位的沉降、位移、倾斜量进行监测。常用监测变形的方法有:导线测量法、几何水准测量法、GPS测定三维位移量法、自动极坐标实时差分测量法和自动全站仪三维坐标非接触量测等。 2)应力监测 桥梁运营状态中主体结构的应力变化是由于主体结构的外部条件和内部状态变化引起

桥梁抗风与抗震

桥梁抗风与抗震 1.桥梁抗震 1.1桥梁的震害及破坏机理 调查与分析桥梁的震害及其破坏机理是建立正确的抗震设计方法,采取有效抗震措施的科学依据。 国内外学者对桥梁震害的调查研究结果表明,桥梁震害主要表现为: (1)上部结构的破坏:桥梁上部结构本身遭受震害而被毁坏的情形不多,一般都是由于桥梁结构的其他部位的毁坏而引起的。如落梁,一种是由于弹性设计理论采用毛截面刚度,这样就会低估横向地震作用和位移。导致活动节点处所设置的支座长度明显不足以及相邻梁体之间因横向距离不足而引起的相互冲击,造成落梁及相邻结构的撞击破坏;另外一种是由于地基土的作用造成大的地震位移,这种桥梁震害主要发生在建在软土或者可能液化的地基土上的桥梁上。软土通常会使结构的振动反应放大,使得落梁的可能性增加。 (2)支座连接部位的破坏:这中破坏比较常见,由于连接部位的破坏会引起力传递方式的变化,从而对结构其他部位的抗震产生影响,进一步加重震害。这种破坏是抗震设计中最关注的问题之一。 (3)下部结构和基础的破坏:下部结构和基础的严重破坏是引起桥梁倒塌,并在震后难以修复使用的主要原因。除了地基毁坏的情况,桥梁墩台和基础的震害是由于受到较大的水平地震力,瞬时反复振动在相对薄弱的截面产生破坏而引起的,从大量震害实例来看,比较高柔的桥墩多为弯曲破坏,矮粗的桥墩多为剪切型破坏,介于两者之间的为混合型。地基破坏主要表现为砂土液化,地基失效,基础沉降和不均匀沉降破坏及由于其上承载力和稳定性不够,导致地面产生大变形,地层发生水平滑移,下沉,断裂。 (4)桥台沉陷,当地震加速度作用时,由于桥台填土与桥台是不完全固结的,桥台填土的纵向土压力增大,桥梁与桥台之间的冲撞会产生相当大的被动土压力,造成桥台有向桥跨方向移动的趋势。由于桥面的支撑作用,桥台将发生以桥台顶端为支点的竖向旋转,导致基础破坏。如果桥台基础在液化土上,又将引起桥台垂直沉陷,最终导致桥梁破坏。 以上所介绍桥梁的几种破坏形式是相互影响的,不同的地质条件和不同的抗震措施所造成的破坏程度和类型往往是不同的。这就要求我们在桥梁设计中尤其是不规则桥梁和大跨度桥梁,必须从整体分析桥梁的抗震性能。 1.2抗震分析理论

桥梁结构体系及其优化与创新

桥梁结构体系及其优化与创新 摘要:随着我国交通事业的迅速发展,桥梁结构体系也越来越复杂,因此对结 构体系的优化问题得到了许多研究者的关注。本文主要针对桥梁结构体系的基本 概念、优化和创新的方法进行阐述,为设计和施工人员提供合理的优化思路与方法,为以后桥梁体系的优化和创新工作奠定基础。 关键词:桥梁;结构体系;优化;创新;发展;. 1 桥梁结构体系 1.1 桥梁结构体型的定义 桥梁结构体系主要是指某一桥梁在功能、外观和受力方式等方面的状态情况。桥梁结构体系中分为三方面概述,第一方面指的是结构的功能,桥梁结构的主要 功能是为人和车辆等提供跨越河流、山谷的一种跨越建筑物。第二方面代表着桥 梁结构的形式,根据结构类型,可分为四种基本体系:梁桥、拱桥、斜拉桥和悬 索桥等形式。第三方面与桥梁结构的力学方面相关,代表为结构的受力状态,它 包括结构中荷载的传递方式使其达到一种平衡的状态,属于结构体系和核心部分。 对于相同桥型的桥梁体系,受力形态不同,其最主要的影响因素可归纳为三 个点:一、桥梁结构体系在约束状况影响,如结构支座处的沉降脱空等;二、结 构内部荷载传递方式的影响,比如桥梁在墩梁处是支座连接还是固接,都会导致 桥梁结构体系传力和受力的不同;三、结构构件之间承受荷载力的分配比例影响,如拱桥中刚拱柔梁和刚拱刚梁在承受荷载时,不同构件所受力的大小不同。 1.2 评判桥梁体系优劣的标准 我们首先应该对桥梁的跨径范围进行合理的评估和设计。每种桥梁体系都不 能违背它的极限标准,梁式桥不可能做成几百年米一跨的,这显然是不符合实际 的猜想;同样,对于悬索桥而言,除了是满足景观的需求以外,也不可能修建的 跨度只有几十米 此外,在选择桥梁体系时必须考虑项目当地的环境总况。它对应结构受力形 态的第一点:外界对结构体系的约束。比如:有些地基处主要是软土地质,不利 于承受水平推力,因此我们应该合理选取无推力拱体系,而在地基承载力很强的 情况下,又应该选取有推力拱体系。 由于结构刚度越大,承受分配荷载也越多,所以合理分配结构构件刚度十分 重要。这对应于结构受力形态的第三点:主要构件间的受力分配。较为优秀的结 构体系既有合理的构件刚度分配,又满足结构受力和稳定的基本要求。总的来说,没有一个固定的标准来评判桥梁体系的优劣,但在确定桥梁体系时仍需要多方面 因素进行考虑。 2 桥梁结构体系的研究、优化与创新 2.1 桥梁结构体系的研究 在桥梁结构体系的研究目的就是为了对一个完整结构的受力状态和特性有所 掌握,并对其进行优化处理,根据工程的需求进行改进,更好的实施。 桥梁结构体系的综合力学特性就是对各种桥梁形态进行力学分析,研究其适 用范围,为桥型的选择提供数据支撑,国内外研究者对此进行了大量的研究,并 得到了丰硕的成果。针对同一种桥梁类型的不同受力体系进行对比分析,得出各 个体系之间的受力共性和差异,因地制宜地选择最优的受力体系进行实施,桥梁 结构受力的状态可以从参数、新型桥梁体系受力性能和新材料的影响等方面进行

三跨连续梁桥动力特性分析

三跨连续梁桥动力特性分析 第一章在桥梁设计中,动力特性的研究尤为重要。对动力特性进行分析与研究最主要的原因是为了避免共振。本文通过比较惯性矩变化导致的刚度分配变化和跨径布置对多跨变截面连续梁桥自振特性的影响,并运用有限元软件对三跨连续梁桥进行动力特性分析,得出三跨连续梁桥的自振频率的变化规律,从而为冲击系数的合理取值提供依据。 1.1多跨连续梁桥的跨径布置 连续梁桥分为等截面连续梁桥和变截面连续梁桥。 等截面连续梁桥可以选用等跨布置和不等跨径布置两种布置方式。等跨布置的跨径大小主要取决于分孔是否经济和施工技术条件等。当桥梁按照等跨径布置会使标准跨径较大时,为了减少边跨的正弯矩,将边跨跨径取小于中跨的结构布置,即不等跨布置,一般边跨与中跨跨长之比在0. 6-0. 8之间,边跨与中跨跨长之比简称边中跨比。 当连续梁桥主跨的跨径接近或者大于70m时,若主梁仍然釆用等截面的布置方式,在恒载和活载作用时,将会出现主梁支点截面的负弯矩比跨中截面的正弯矩大很多。为了使受力更加合理和建造更加经济,此时,釆用变截面连续梁桥的设计,不仅更加经济,也使受力更加符合要求,高度变化和内力变化基本相适应。对于跨径,变截面连续梁桥立面一般采用不等跨径布置。对于三跨以上的连续梁桥,除边跨之外,其余中间跨一般采用等跨径布置以方便施工。对于多于两跨的连续梁桥,其跨径比一般为0. 6-0. 8左右。当釆用箱形截面的三跨连续梁桥时, 该比值甚至可减少至0. 5-0.7,当接近0.618时,桥跨变化会显得平顺、流畅, 较为美观。此时,连续箱梁的梁高宜采用变高度设汁,其底曲线采用折线(釆用折线形截面布置可使构造简单、施工方便)、二次抛物线和介于折线与二次抛物线之间的1. 5-1. 8次抛物线的设计形式,从而使底曲线变化规律与连续梁弯矩变化规律基本接近。 1.2分析动力特性的原因 所谓动力特性是指自振周期(自振频率)、振型、阻尼比三个主要方面。分析与研究动力特性的首要原因是为了了解自振频率及振型以在桥梁设计时避开共振。历

桥梁动力分析

模拟环境对塔玛悬索桥动力特性的影响 摘要 为了达到结构健康监测的目的,结构在环境因素的影响下,去理解、模拟和补充环境变化对结构动力特性的影响是极其重要的。本文中,已经研究了从英国塔玛悬索桥中测得的加速度值,这些加速度值是用数据激励随机子空间系统识别方法处理的,并且用温度和风载对结构自振频率的影响进行了环境变量的模拟。本文应用了两种方法:1)基于有效识别环境效应所致的线性变化规律的主因子分析法(PCA) ;2)元模型法,这是一种通过多项式函数的组合变化来确定系统输入输出关系的纯数学方法。研究发现在所有环境因素中温度是影响桥梁自振频率最关键的因素。 引言 环境因素对土木结构自振频率的影响是导致结构健康监测技术只能应用于实验室而不能在实际工程结构中得到应用的主要原因。在实验室发展起来的损伤检测技术往往无法在具有实验室相同条件的现场发挥作用;作为衡量破坏敏感性的特征参数也通常对工作环境引起的结构动力反应变化很敏感,而这种情况在实验室是不会出现的。这一方面的研究在过去的几年中得到了很大的关注,处理这个问题的方法在Sohn的关于工作环境对结构健康监测的影响一文中有很好的阐述。 本文研究了环境因素对塔玛悬索桥自振频率的影响,尤其是温度和风速的影响。以前主要集中在温度变化对桥梁模态频率相关性的研究上,事实上,温度被认为是环境因素中对模态特性影响最主要的因素。进一步的研究已经转移到了风载对大跨度桥梁的影响。尤其是发现了日本的白鸟(Hakucho)悬索桥的自振频率随着风速的增加而降低,在此过程中没有考虑温度的影响。在文献[6]中对大跨悬索桥的重型车辆荷载的影响进行了研究,发现车辆荷载对大跨度桥梁的自振频率影响很小或者没有。 在本项研究中诸如交通荷载和湿度等环境因素被忽略,认为本论文所讨论的桥梁不会受到交通荷载的影响,由于桥址的原因,也认为湿度不作为考虑的因素。这篇文章的目的主要是确定促使所观察到的引起桥面日常自由振动的主要因素。 塔玛悬索桥 塔玛大桥(如图1)是一座跨度为643m的大跨度悬索桥,它跨越塔玛河,将康沃尔郡(Wornwall)的索尔塔什(Saltash)市与德文郡(Devon)的普利茅斯(Plymouth)连接在一起。自1961年建成后它成为两个地区的一个至关重要的交通纽带。这座桥具有对称几何形状的常规设计,主跨为335m,两个边跨为114m。钢筋混凝土主塔高达73m,采用沉井基础并直达岩面。主缆直径为350mm,每根主缆由31根钢丝捻成,并设置间距为9.1m的垂直钢索。加劲桁架为5.5米厚,由焊接的空腹箱梁组成。在2001年,按照欧盟指示对这座桥进行了加强和扩宽。尤其是采用了18根直径为100mm的预应力钢索对原来的悬索体系进行了补强,原来复合型的主桥面板被一个三车道的正交各向异性钢板代替,在桁架的每侧加上了单车道悬臂梁。 现在对塔玛悬索桥布置了几种监测系统。2007年菲尔德大学(the University of Sheffield)的振动工程科开始监测桥面板和缆索的动力响应。这个监测系统包括8个缆索

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

直桥与弯桥动力特性对比分析

文章编号:100926825(2009)2620311202 直桥与弯桥动力特性对比分析 收稿日期:2009204230 作者简介:梅志军(19772),男,工程师,中国瑞林工程技术有限公司,广东深圳 518032 李 爽(19782),女,工程师,中国瑞林工程技术有限公司,广东深圳 518032吴 浪(19812),男,硕士,工程师,华东交通大学理工学院,江西南昌 330001 梅志军 李爽 吴浪 摘 要:针对直桥与弯桥的动力力学性能,采用大型通用有限元软件ANSYS 分别对直线桥,连续弯桥,墩梁固结弯桥建立空间模型,并对其进行模态振型,频率分析,阐述了直、弯桥在动力力学性能上的差异,指出弯桥整体性不如直线桥好。关键词:直桥,弯桥,动力特性,模态振型中图分类号:U441文献标识码:A 0 引言 近年来随着高等级公路的修建,由于城市立交桥建设的需 要,曲线梁桥成为现代交通工程中的一种重要桥型。在公路及城市道路的立体交叉工程中,曲线梁桥是实现各方向交通连接的必要手段。由于弯桥设计比直线桥设计复杂[1],在弯桥设计时通常用折线桥来代替弯桥的设计,即弯桥的设计有一定的近似性[2]。文章就直、弯桥的动力力学性能[3]进行对比分析,为弯桥设计提供一定参考依据。 1 直、弯桥动力计算分析 采用大型通用有限元分析软件ANSYS [5]分别对直线桥、连 续弯桥、墩梁固结弯桥建立空间模型,并对其进行模态振型、频率分析。 1.1 直线桥分析 1)文中采用一上部结构为(18+3×22+18)m 的五跨连续箱 梁桥,两个车道,桥宽为8.5m ,下部结构为柱式墩台的直线桥为计算模型。其计算模型见图1。 2)直桥模态振型分析。由直桥的各阶模态振型可以得出,直桥的各阶振型均为整体模态振型(见图2~图5)。说明直桥一般不会发生局部失稳的现象。 1.2 小半径连续弯桥动力分析 1)为与前面直线桥的结果进行对比分析,文中弯桥采用一位于R =75m 的平曲线中,上部结构为(18+3×22+18)m 的五跨 连续箱梁桥,两个车道,桥宽为8.5m ,下部结构为柱式墩台为计算模型。其几何模型见图6。 1)使用插入式振捣器,移动间距控制在振捣器作用半径的1.5倍以内,与侧模保持50mm ~100mm 的距离;插入下层混凝土50mm ~100mm 。 2)振捣器振捣遵循“快插慢拔”的原则,每一处振动完毕后要边振动边徐徐提出振动棒;要避免振动棒碰撞模板、钢筋及其他预埋件。 3)许多技术规范对混凝土搅拌、浇筑和振捣所花费的时间都有一定的时间限制,但在实际的箱梁混凝土施工的所有工序中,是没有固定的时限的,因为确切的时间取决于混凝土硬化的程度,而硬化的速度又取决于混凝土拌和的稠度、温度及是否用了缓凝剂。 5.2 振动是否密实的判别方法 1)混凝土停止下沉,不再冒出气泡,表面呈现平坦、泛浆。 2)有时声音会成为有效的参考因素。当插入振动棒时,通常 声音频率会降低,而当声音变得稳定时,则表明混凝土中没有滞留空气。 6 混凝土的养护 混凝土浇筑完成后,立即覆盖清洁的塑料薄膜,初凝后撤去薄膜,用浸湿的破麻布覆盖,经常洒水养护。普通混凝土洒水养护不能少于7d ,掺加早强剂的混凝土洒水养护不能少于14d 。 7 结语 在大跨度预应力高强度早强混凝土施工中,配合比的选择、混凝土振捣技术是整个箱梁施工最关键的技术,涉及的环节较多,每个环节控制的好坏都直接影响到内在和外在质量。通过实践证明,混凝土施工后,5d 强度达到90%,28d 强度达到125%,满足设计要求,预应力张拉完成后,没有局部裂缝、起拱、压坏的现象。总之,上塘高架路大跨度预应力高强度早强混凝土施工不论在工期控制、内外观质量、经济效益上都取得了较好的效果。参考文献:[1] 王兵屯.浅析混凝土质量控制[J ].山西建筑,2008,34(5): 2442245. Prestressed high strength and early strength concrete quality control of the large span bridge YANG De 2jun Abstract :The author mainly introduces the construction technology and quality control measures of the large span bridge prestressed high strength and early strength concrete quality control on links of preparation ,grouting ,vibrating and maintenance ,points out that the pre 2stressed high strength and early strength concrete gets better effect on the project control ,internal and external appearance quality and econom 2ical benefit ,thus accumulating experiences for similar project. K ey w ords :large span bridge ,prestressed high strength and early strength concrete ,construction ,quality ,control ? 113? 第35卷第26期2009年9月 山西建筑SHANXI ARCHITECTURE Vol.35No.26Sep. 2009

桥梁抗震体系

桥梁抗震体系 内容摘要:在桥梁设计中,现行的通常做法是仅对桥粱进行简单抗震设防,桥粱结构设计工程师应努力掌握更多的结构抗震知识,提高抗震设防意识。本文分析了桥梁的震害特征和原因,阐述了桥梁抗震设计的具体原则和方法。 关键词:抗震设计;桥梁;地基与基础 一.概述 我国是世界上地震活动最为强烈的国家之一,今年5月份的四川汶川大地震造成了令人触目惊心的损失,作为结构设计工程师,必须充分认识到自己的职责所在,尽可能得利用自己掌握的专业知识,合理提高结构物的抗震能力。尽量减少地震带来的灾害。 二.桥梁的震害及特征 对国内外震害的调查表明,在过去的地震中,有许多桥梁遭受了不同程度的破坏,其主要震害有以下几点。 1.桥台震害 桥台的震害主要表现为桥台与路基一起向河心滑移,导致桩柱式桥台的桩柱倾斜、折断和开裂:霞力式桥台胸墙开裂,台体移动、下沉和转动;桥头引道沉降,翼墙损坏、开裂,施工缝错工、开裂以及因与主梁相撞而损坏。桥台的滑移与倾斜会进一步使主梁受压破坏,甚至使主梁坍毁。 2.桥墩震害 桥墩震害主要表现为桥墩沉降、倾斜、移位,墩身开裂、剪断,受压缘混凝土崩溃。钢筋裸露屈曲,桥墩与基础连接处开裂、折断等。 3.支座震害 在地震力的作用下,由于支座设计没有充分考虑抗震的要求,构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等.并由此导致结构力f专递形式的变化,进而对结构的其他部位产生不利的影响。 4.梁的震害

桥梁最严重的震害现象是主梁坠落。落梁主要是由于桥台、桥墩倾斜、倒塌,支座破坏.梁体碰撞,相邻墩间发生过大相对位移等引起的。 5.地基与基础震害 地基与基础的严重破坏是导致桥梁倒塌。并在震后难以修复使用的蕈要原因。地基破坏主要是指因砂土液化、不均匀沉降及稳定性不够等因数导致的地层水平滑移、下沉、断裂。基础的破坏与地基的破坏紧密相关,地基破坏一般都会导致基础的破坏,主要表现为移位、倾斜、下沉、折断和屈曲失稳。 6.另外桥梁结构的震害还表现在:结构构。造及连接不当所造成的破坏、桥台台后填土位移过大造成的桥台沉降或斜度过大而造成墩台承受过大的扭矩引起的破坏。 三.桥梁的震害原因 国内外学者对桥梁震害的调查研究结果表明,现在桥梁的破坏大多沿顺桥向和横桥向发生,而顺桥向震害尤其严重,分析其破坏原因主要表现在以下几个方面: 1.地震位移造成的粱式桥梁上部活动节点处因盖梁宽度设置不足导致落梁或粱体相互碰撞引起的破坏。而对拱式结构则主要表现在拱上建筑和腹拱的破坏,拱圈在拱顶、拱脚产生的破损裂缝,甚至整个隆起变形。 2.地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大。当采用排架桩基础时,则使桩基的承载力降低,从而造成与地震反应无关的过大的竖向和横向位移,而简支粱桥对此尤为明显。另外,由于地基软弱,地震时当部分地基液化失效后引起了结构物的整体倾斜.下沉等严重变形,进而导致结构物的破坏,震害较重。 3.支座破坏,在地震力的作用下,由于支座设计没有克分考虑抗震要求。构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等,并由此导致结构力的传递形式的变化,进而对结构的其他部位产生不利的影响。 4.软弱的下部结构破坏。即由于桥梁下部结构不足以抵抗其自身的惯性力和支座传递的主梁的地震力,导致结构下部的开裂、变形和失效,甚至倾覆,并

桥梁抗风抗震复习资料

第一讲 1、《中华人民共和国防震减灾法》的主要内容是什么? 答:主要内容包括:1.《防震减灾法》的立法目的2.《防震减灾法》的调整对象及适用范围3.防震减灾工作方针4.对各级人民政府的基本要求。5.政府各部门在防震减灾工作中的职责6.单位和个人的义务7.群测群防工作8.依靠科学进步提高防震减灾工作水平9.提高政府领导防震减灾工作能力10.提升地震监测能力和社会服务职能11.提高建设工程的抗震设防水平12.提高社会的非工程性地震预防能力13.及时完善地震应急救援等相关规定。 2、地震引起的地表破坏现象有哪几种? 答:1.地表断裂 2.滑坡 3.砂土液化 4.软土震陷 3、工程结构主要有哪些震害现象? 答:建筑结构软弱层机制破坏、钢筋混凝土柱压弯破坏和剪切破坏、梁柱节点破坏、框架填充墙剪切破坏、桥梁结构落梁、整体或部分倒塌、钢筋混凝土桥墩压弯破坏和剪切破坏、桥梁碰撞、节点破坏、现代斜拉桥震害现象等。 4、近年来结构震害的主要经验教训是什么? 答:⑴结构抗震设防应采用性能设计原则。即在综合考虑工程造价、结构遭遇地震作用水平、结构的重要性、耐久性和修复费用等因素下,定义结构允许的损坏程度(性能)。 ⑵结构抗震设计应同时考虑强度和延性,尤其注重提高结构整体及延性构件的延性能力。 ⑶重视采用减隔震的设计技术,以提高结构的抗震性能。 ⑷对体系复杂的结构,强调进行空间非线性动力时程分析的必要性。 ⑸对桥梁结构,应重视支座的作用及其设计,同时开发更有效的防落梁装置。 ⑹充分认识到按早期规范设计的旧结构的地震易损性,认识到对重要的旧结构进行抗震加固的紧迫性和必要性。 ⑺充分认识到城市生命线工程遭受地震破坏可能导致的严重社会后果,认识到保证城市生命线工程抗震安全性的意义。 ⑻充分认识到,地震区的一切新建工程都都必须严格按照国家颁布的抗震设计规范进行设防,为此而增加一些基建投资是值得的和必要的。 第二讲 1、构造地震的成因是什么? 答:构造地震主要是由于断层的错动而造成的。自板块构造学说提出后,人们已广泛接受这样的观点:断层错动是由全球性的大规模板块构造运动所造成的。可以说,板块构造运动是构造地震发生的宏观背景,而断层错动则是构造地震发生的局部机制。 2、什么是地震动的特性及其三要素? 答:特性:地震动是以运动方式出现。地震动是迅速变化的随机振动,地震动的这一特点,导致了抗震设计对地震作用峰值的关注。地震动对结构的作用效应与结构的动力特性和变形反应有关。地震动具有更大的不确定性,这使得抗震设计不能完全依靠强度安全储备。 三要素:地震动的幅值(最大振幅或叫峰值)、频谱(波形)和持续时间(简称持时), 3、什么是地震安全性评价? 答:地震安全性评价是指对具体建设工程场址及其周围地区的地震地质条件、地

桥梁结构检测与鉴定

桥梁结构检测与鉴定

桥梁结构检测与鉴定 学号: 姓名: 专业: 20年月日

桥梁结构检测与鉴定 一、桥梁结果检测与鉴定概述 1.1我国公路桥梁现状 截至2008年底,我国共有公路桥梁59万座,其中混凝土结构桥梁占90%以上,已成为世界在用桥梁的大国。但随时间的增长,桥梁耐久性、安全性降低,我国公路路网有3万余座危桥急需加固改造,桥梁维修加固与养护管理面临诸多的世界性难题,是国内外桥梁界研究的热点。而在我国公路桥梁中大部分主要分布在技术标准低、通行能力差的县乡公路上,设计荷载标准大多为汽—13、拖—60或汽—15、挂—80,其中还有相当一部分桥梁的荷载标准仅为汽—10,履带—50,甚至低于汽车—10级。桥梁长期在自然环境(大气腐蚀、温度、湿度变化)和使用环境(荷载作用与频率的增加、材料与结构的疲劳)的作用下,总会逐渐产生损坏现象,这是一个不可逆转的过程。我国早期建造的桥梁大量使用钢筋混凝土结构,这些桥梁现已运营20~40年,大多混凝土桥梁将步入老化期,这些桥梁处于一种带病、超负荷工作状态。桥梁承载能力低、通行能力差是我国公路路网通行能力低的一个重要影响因素。如何对桥梁实际状态做出评估,确切评定其承载能力,以便采用科学合理的经济适用方法进行加固、加宽等的技术改造,改善其适应度,提高公路路网通行能力,这是我国公路管养部门今后相当长的一段时期内所面临的一大紧迫任务。 1.2保证桥梁运营安全的对策 开展桥梁检测、评定与维修加固,是保证桥梁安全服役,保证路网畅通的重要举措。多年来国内很多专家学者在这一技术领域开展了比较系统的研究,主要技术内容围绕:1、桥梁状况与使用功能评价;2、耐久性状况与承载能力评定;3、维修加固;4、试验检测技术及其关键设备 二、桥梁检测工作程序及项目 目前桥梁养护管理制度下,我国桥梁检查的分类按照检查的范围、深度、方式和检查结果的用途等的不同,大致可归纳为下列三类:1、经常检查(巡视检查、日常检查);2、定期检查;3、特殊检查。

地震对桥梁各部结构的破坏

土木1103班谢立忠111120107(06) 地震对桥梁的影响 一、地震对桥梁的危害 桥台的震害 桥台是桥梁两侧岸边的支撑部分,一般是在岸边的原域填土上,用钢筋混凝土修建三角形或矩形的支台。因为桥台的路基高且三面临空,振动大,桥台和下面土的刚度不同,又相互作用,土体本身在地震中会产生液化、震陷破坏。 桥墩震害 桥墩是支撑桥身的主要构件,其震害主要包括桥墩的断裂、剪断和裂缝,其次还有桩柱因埋入深度不够等原因遭受破坏。 落梁震害 落梁是桥梁最严重的震害现象。地震时梁与桩柱发生位移,两岸桥台往河心滑移,引起岸坡滑移破坏。对于钢筋混凝土梁式桥,地震时该桥活动支座上的梁均从支座上脱落,固定支座钢板焊接缝均被破坏,桥墩压碎。 不良基础导致桥梁破坏 地震中大部分桥梁倒塌都是由于地基失效和砂土液化造成的,砂土液化通常指饱和粉细砂,在地震作用下失去抗剪能力,变为流动状态。地基失去承载力,使得位于上部土层的桥墩倾斜、滑移。 支座破坏 支座在桥梁结构中是一个非常重要的部分。桥梁的桥身并不是直接架放在桥墩上,必须安装防落梁支座,用来防止地震时位移过大而造成落梁。支座破坏是桥梁上部结构中最常见的一种破坏现象,相邻梁互相碰撞或梁的纵、横向位移,大多数都是以支座破坏为前导,强震时支座受到很大剪力和变形,这是桥梁上部就会脱离支座,产生落梁现象。 二、桥梁防震措施 隔震支座法 隔震支座法是在抗震应用的较为广泛的方法。这种方法是通过增加结构的柔性和阻尼来减小桥梁的地震反应的。采用减、隔震支座在梁体与墩、台的连接处,通过设计或是应用新材料来实现结构柔性和阻尼的增加。可以有效的减小墩、台所受的水平地震力,从根本上减小了地震的影响,提高了桥梁的抗震性能。 利用桥墩延性 桥墩的延性是抗震设计中可以加以利用的特点。由于桥墩自身是具有延性

相关文档
最新文档