人教版八年级数学下册期末复习压轴题练习(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(人教版)八年级数学下册期末复习压轴题练习(一)

一 、选择题

1、若

13

+a 表示一个整数,则整数a 可以值有( )A .1个 B .2个 C.3D.4个 2、如图,在Y ABCD 中,已知5cm AD =,3cm AB =,AE 平分BAD ∠交BC 边于点E ,

则EC 等于( ) A.1cm B.2cm C.3cm D.4cm

3.若A (a ,b )、B (a -1,c )是函数x

y 1

-

=的图象上的两点,且a <0,则b 与c 的大小关系为( )A .b <c B .b >c C .b=c D .无法判断

4.如图,已知点A 是函数y=x 与y=x

4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( ) A .2 B .2 C .22 D .4

5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .2

6.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )

A .23

B .26

C .3

D .6

7.1x ,2x ,……,10x 的平均数为a ,11x ,12x ,……,50x 的平均数为b ,则1x ,2x ,……,50x 的

平均数为( )A .b a + B .

2b a + C .65b a + D .5

4b

a + 8.如图,梯形ABCD 中,AD ∥BC ,AD =CD ,BC =AC ,∠BAD =100°,则∠D =( )

A .140°

B .130°

C .110°

D .100°

A

B O

y

x

A

B

C

D

E

A B

C

D A

B

C

E

D

O

9.如图,在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶点,构造平行四边形,下列各

点中不能..

作为平行四边形顶点坐标的是 ( ) A 、(4,1) B 、(-3,1) C 、(-2,1) D 、(2,-1)

10.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( )

A .①②③

B .②③④

C .①③④

D .①②③④ 二、填空题

11.边长为7,24,25的△ABC 内有一点P 到三边距离相等,则这个距离为

12.如图,直线y=-x+b 与双曲线y=-x

1(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2= 13. 如图,在梯形ABCD 中,AB CD ∥,90DCB ∠=°,25AB =cm ,24BC =cm ,将该梯形折叠,点A 恰好与点D 重合,BE 为折痕,那么梯形ABCD 的面积为 .

14.已知直角坐标系中,四边形OABC 是矩形,点A (10,0),点C (0,4),点D 是

OA 的中点,点P 是BC 边上的一个动点,当△POD 是等腰三角形时,

点P 的坐标为_________.

15、如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______.

16、梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B 直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值 。 三、解答题

17.如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF .

(1)判断四边形ADEF 的形状,并证明你的结论;

(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形?

18.如图,四边形ABCD 中,AB ∥CD ,AC 平分 ∠BAD ,CE//AD 交AB 于E .

(1)求证:四边形AECD 是菱形;

(2)若点E 是AB 的中点,试判断△ABC 的形状,并说明理由.

19. 如图,一次函数b kx y +=的图像与反比例函数x

a

y =

的图像交于A 、B 两点,与x 轴交于点C ,与y A B

O x

y

D

A B

M

N

C

B

C

D

A

E

P F D C B

E

A

A

F

E

D

C

B

y

O

A B C

D

P

x

轴交于点D,已知OA= 5 ,点B的坐标为)

,

2

1

(m,过点A作AH⊥x轴,垂足为H,有AH=

1

2

HO ,(1)求反比例函数和一次函数的解析式;

(2)求△AOB的面积。

20.如图,反比例函数

k

y

x

=的图象与直线y x m

=+在第一象限交于点62

P(,),A B

、为直线上的两点,点A的横坐标为2,点B的横坐标为3.D C

、为反比例函数图象上的两点,且AD BC

、平行于y轴.(1)直接写出k m

,的值;

(2)求梯形ABCD的面积.

21.如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于D,交AB

于E,点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,求该反比例函数解析式?

22.如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=

x

2于点D,过D作两坐标轴的垂线DC、DE,连接OD.

(1)求证:AD平分∠CDE;

(2)对任意的实数b(b≠0),求证AD·BD为定值;

(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,

相关文档
最新文档