《统计学》抽样与抽样估计

合集下载

统计学(抽样估计)

统计学(抽样估计)
2
第四章第一节
二、抽样调查的特点
➢按随机原则抽取调查单位; ➢要抽取足够多的调查单位;
基本原则
➢可从数量上推断总体
基本目的及任务
➢要运用概率估计的方法
➢抽样调查中所产生的抽样误差可以事先计算
并加以控制。
科学性体现
3
第四章第一节
三、抽样调查的使用范围 ➢ 有些事情在测量或实验时有破坏性,不可能进行
1、用样本标准差替代总体标准差。大样本情况下,可 以直接用样本标准差S代表代表总体标准差;在小样
本的情况下,则采用样本修正标准差 S *来代替。
S* (xi x)2 n 1 S n n 1
2、用以前(近期)的总体标准差或同类地区的总体标 准差来代表所研究的标准差。若同时有多个可供参 考的数值时,应选择其中最大者。对于成数P,应选 最接近0.5的比率。
up
P(1 P)(重复) n
up
P(1 n
p)
(
N N
n 1
)或up
ux
σ 2 (N n)或 n N1
ux
σ 2 (1 n )(不重复) nN
P(1 P) (1 n )(不重复)
n
N
26
第四章第三节
注意:在上述公式中, 或 P(1 P)总体标准差,但
是实际中这两个数据却是未知的。计算抽样平均误 差时通常采用以下替代方法。
进行检验,来判断这种假设的真伪,以决定取舍
4
第四章第一节 四、抽样估计的一般步骤 1、设计抽样方案 2、抽取样本单位 3、搜集样本资料 4、整理样本资料 5、推断总体指标
5
第四章第二节 第二节 调样调查的基本概念及理论依据 一、全及总体和抽样总体(教材没有) ➢ 全及总体-简称总体(N):研究对象的全 体 (唯一确定) ✓ 变量总体 :各单位可用数量标志计量 A 有限总体:变量值有限 B 无限总体:变量值无限,分为可列或连续 ✓ 属性总体 :各单位用品质标志描述

统计学之抽样与抽样分布

统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差

有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体

称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。

统计学 第三章抽样与抽样分布

统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取

统计学 第 6 章 抽样与参数估计

统计学  第 6 章   抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。

统计学抽样与抽样分布

统计学抽样与抽样分布
查费用
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。

统计学原理 抽样估计

统计学原理 抽样估计

(三)样本容量和样本个数
n
N样本代表性高
(四)抽样方法
1、重复抽样(回置抽样)
n
抽一个单位——登记结果——重新放回——样本需要单位
特点:N 不变,每一个单位有均等抽中的机会。
如,设总体有A、B、C、D4个商店,重复抽样随机抽取
2个商店组成样本。则共有 4 4 =16 样本
AA AB AC AD N N N N… = Nn
设:Q —— 表示不具有某种属性的单位数所占的比重。
P——表示总体中具有某种属性标志的单位数在总体
中所占的比重。
产品产量
N = N1 + N0
不具有某种属性
具有某种属性 合格产品 N1
不合格产品
N Q= 0 N 成数方差 = P Q =P(1-P)
P =
N P + Q = 1 Q = 1- P
例如: 某厂生产的电子元件 1000件中有50件不合格,则
DA DB DC
三、抽样误差
(一)抽样误差 (随机误差) P121 x - X
调查误差——调查过程中由于观察、登记、测量、计算上 系统偏差 引起的。 预防、杜绝 登记误差 抽样误差——样本结构与总体结构发生差异引起的误差, 加以控制。 影响抽样误差的因素 P121
标志值的变异程度
样本的单位数
抽样的方法 抽样调查的组织方式
4、抽样推断的误差可以事先计算并加以控制
二、抽样推断中常用概念 (一)全及总体和样本 P12
1、全及总体(母体、总体) N 一次性调查中全及总体唯一确定的 2、样本(子样) n
n1
n3
一次性调查中样本不是唯一的,可变的。 n2

例: 研究某市工业企业的生产经营情况,则该市所有 工业企业 1000家就构成全及总体(母体、总体),若以 1%抽样调查,那么抽选的 10 家工业企业则称为抽样总体 (样本、子样)

统计学第六章抽样和抽样分布

统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断

统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。

本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。

首先,我们来理解抽样的概念。

在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。

总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。

通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。

接下来,让我们了解抽样的方法。

常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。

每种抽样方法都有其特点和适用范围。

简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。

系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。

分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。

整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。

选择合适的抽样方法可以更好地保证样本的代表性和可靠性。

抽样之后,我们需要了解抽样分布的概念。

在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。

常见的抽样分布包括正态分布、t分布和F分布等。

其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。

t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。

F分布常用于分析方差比较和回归模型中的显著性分析。

抽样分布的重要性在于它可以帮助我们进行推断。

根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。

参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。

假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。

通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。

在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。

《统计学》第9章 抽样与抽样分布

《统计学》第9章 抽样与抽样分布

二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi

x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1

统计学课件05第5章抽样与参数估计

统计学课件05第5章抽样与参数估计

反映样本数据的集中趋势和平均水平。
样本方差
定义
样本方差是每个样本数据与样本均值差的平方和的平均值,即 $s^2 = frac{1}{n} sum_{i=1}^{n} (x_i - overline{x})^2$。
计算方法
先计算每个样本数据与样本均值的差,然后将差平方,最后求和平 均。
作用
反映样本数据的离散程度和波动情况。
样本量的确定
根据调查目的和精度要求确定样 本量:精度要求越高,需要的样
本量越大。
根据总体规模和抽样方法确定样 本量:总体规模越大,需要的样 本量越大;分层或整群抽样较简 单随机抽样需要的样本量更大。
根据调查资源确定样本量:资源 有限时,需要在满足调查目的和 精度要求的前提下,合理确定样
本量。
02 参数估计
大数定律的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布函数F(x),则对于任意正实数ε,有 lim(n->∞)P(|X1+X2+...+Xn/n-E(X))/ε)=0,其中E(X)是随机变量X的期望值。
大数定律的实例
在抛硬币实验中,随着实验次数的增加,正面朝上的频率将趋近于0.5。
中心极限定理
中心极限定理定义
中心极限定理是指在大量独立同分布的随机变量中,不论 这些随机变量的分布是什么,它们的平均值的分布总是趋 近于正态分布。
中心极限定理的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布 函数F(x),则对于任意实数x,有lim(n->∞)P(∑Xi≤x)=∫(∞->x)F(t)dt。
样本分布的性质
无偏性
如果样本统计量的数学期 望等于总体参数,则该统 计量是无偏的。

徐国祥《统计学》(第2版)配套题库【章节题库】第7章~第9章 【圣才出品】

徐国祥《统计学》(第2版)配套题库【章节题库】第7章~第9章 【圣才出品】
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 7 章 抽样和抽样分布
一、单项选择题 1.进行抽样推断时,必须遵循的基本原则是( )。 A.准确性原则 B.标准化原则 C.随机性原则 D.可靠性原则 【答案】C 【解析】抽样推断是指按照随机的原则从调查总体中抽取一部分样本单位进行观察,并 以样本指标对总体指标做出具有一定可靠性的估计和推断,从而达到对调查总体的认识的一 种统计方法。
2 / 65
圣才电子书 十万种考研考证电子书、题库视频学习平台

5.一般说来,使样本单位在总体中分布最不均匀的抽样组织方式是( )。 A.简单随机抽样 B.分层抽样 C.等距抽样 D.整群抽样 【答案】D
6.下列关于样本平均数和总体平均数的说法,正确的是( )。 A.前者是一个确定值,后者是随机变量 B.前者是随机变量,后者是一个确定值 C.两者都是随机变量 D.两者都是确定值 【答案】B
A.类型抽样 B.等距抽样 C.整群抽样 D.多阶段抽样 【答案】A 【解析】类型抽样即分类抽样或分层抽样,它是指先将总体按主要标志进行分组,再按
4 / 65
圣才电子书 十万种考研考证电子书、题库视频学习平台

随机原则从各组中抽取样本单位的一种抽样组织形式。
10.通常所说的大样本是指样本容量( )。 A.大于等于 30 B.小于 30 C.大于 10 D.在 10~20 之间 【答案】A
2.抽样调查中,无法避免和消除的是( )。 A.登记误差 B.系统性误差 C.测量工具误差 D.随机误差 【答案】D 【解析】随机误差是指遵守了随机原则,但可能抽到不同的样本而产生的误差。随机误 差在抽样调查中是不可避免的,是偶然的代表性误差。这种误差的大小可以计算并加以控制。

统计学第九章抽样与抽样估计

统计学第九章抽样与抽样估计

第九章抽样与抽样估计一、单项选择题1、抽样极限误差是指抽样指标和总体指标之间(D)。

A.抽样误差的平均数B.抽样误差的标准差C.抽样误差的可靠程度D.抽样误差的最大可能范围2、样本平均数和总体平均数(B)。

解析:样本平均数是以总体平均数为中心,在其范围内变动(P213)A.前者是一个确定值,B.前者是随机变量,后者是随机变量后者是一个确定值C.两者都是随机变量D.两者都是确定值3、某场要对某批产品进行抽样调查,一直以往的产品合格率分别为90%,93%,95%,要求误差范围小于5%,可靠性为95.45%,则必要样本容量应为(B)。

A.144B.105C.76D.1094、在总体方差不变的条件下,样本单位数增加3倍,则抽样误差(C)。

A.缩小1/2B.为原来的3/√3C.为原来的1/3D.为原来的2/35、在其他条件不变的前提下,若要求误差范围缩小1/3,则样本容量(B)。

A.增加9倍B.增加8倍C.为原来的2.25倍D.增加2.25倍6、抽样误差是指(C)。

解析:这题考的是抽样误差的定义(P213)A.在抽查过程中由于观察、测量等差错所引起的误差B.在调查中违反随机原则出现的系统误差C.随机抽样而产生的代表性误差D.人为原因所造成的误差7、在一定的抽样平均误差条件下(A)。

A.扩大极限误差范围,可以提高推断的可靠程度B.扩大极限误差范围,会降低推断的可靠程度C.缩小极限误差范围,可以提高推断的可靠程度D.缩小极限误差范围,不改变推断的可靠程度8、抽样平均误差是(B)。

解析:这题考的是抽样平均误差的定义(P214)A.总体的标准差B.样本的标准差C.抽样指标的标准差D.抽样误差的平均差9、对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式(D)。

A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样10、先将总体各单位按主要标志分组,再从各组中随机抽取一定单位组成样本,这种抽样形式被称为(C)解析:这题考的是抽样调查的几种不同的方式的定义(P211)。

统计学计算公式抽样估计

统计学计算公式抽样估计

统计学计算公式抽样估计在统计学中,抽样估计是一种用样本数据来估计总体参数的方法。

通过对样本数据进行分析和计算,可以得到对总体参数的估计值。

抽样估计是统计学中非常重要的一个概念,它可以帮助我们更好地了解总体特征,并且可以用来进行决策和预测。

在本文中,我们将介绍一些常见的统计学计算公式,以及如何利用这些公式进行抽样估计。

一、样本均值的抽样估计。

在统计学中,样本均值是对总体均值的估计。

样本均值的计算公式为:\[\bar{x} = \frac{\sum_{i=1}^{n}x_i}{n}\]其中,\(\bar{x}\)表示样本均值,\(x_i\)表示第i个样本数据,n表示样本容量。

通过计算样本均值,我们可以得到对总体均值的估计值。

通常情况下,样本容量越大,样本均值对总体均值的估计越准确。

二、样本方差的抽样估计。

样本方差是对总体方差的估计。

样本方差的计算公式为:\[s^2 = \frac{\sum_{i=1}^{n}(x_i \bar{x})^2}{n-1}\]其中,\(s^2\)表示样本方差,\(x_i\)表示第i个样本数据,\(\bar{x}\)表示样本均值,n表示样本容量。

样本方差可以帮助我们了解样本数据的离散程度,通过样本方差的计算,我们可以得到对总体方差的估计值。

三、总体比例的抽样估计。

在一些情况下,我们需要对总体比例进行估计。

总体比例的计算公式为:\[p = \frac{x}{n}\]其中,p表示总体比例,x表示总体中满足某一条件的个体数,n表示总体容量。

通过对总体中的个体进行抽样,我们可以得到对总体比例的估计值。

四、抽样误差的计算。

在进行抽样估计时,我们需要考虑抽样误差。

抽样误差是指样本估计值与总体参数之间的差异。

抽样误差的计算公式为:\[E = \frac{Z \times \sigma}{\sqrt{n}}\]其中,E表示抽样误差,Z表示置信水平对应的Z值,\(\sigma\)表示总体标准差,n表示样本容量。

统计学之抽样与抽样分布

统计学之抽样与抽样分布
a. n/N > 30 b. N/n < 0.05 c. n/N < 0.05 d. n/N > 0.05
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值

统计学第8版第十章

统计学第8版第十章

统计学第8版第十章第八版的《统计学》是一本经典的教材,其中的第十章讨论了抽样分布和估计。

本章的内容非常重要,它为我们理解统计学的核心概念和方法奠定了基础。

在统计学中,抽样分布是指从总体中抽取多个样本,并计算出样本统计量的分布情况。

这里的样本统计量可以是样本均值、样本比例等。

通过研究抽样分布,我们可以了解到样本统计量的变异性和分布形态,从而进行合理的估计和推断。

在抽样分布的讨论中,我们首先需要明确总体的分布情况。

对于大样本情况,根据中心极限定理,样本均值的抽样分布近似服从正态分布。

而对于小样本情况,我们需要运用t分布来进行估计。

这些分布特性在实际应用中非常重要,它们为我们提供了可靠的估计方法和推断依据。

在进行估计时,我们通常使用点估计和区间估计两种方法。

点估计是通过样本数据计算出一个单一的数值作为总体参数的估计值,比如样本均值作为总体均值的估计值。

而区间估计则是给出一个区间,该区间内的值有一定的概率包含了总体参数的真实值。

这两种方法各有优缺点,在实际应用中需要根据具体情况进行选择。

除了估计,我们还需要对估计结果的精度进行评估。

这就引入了估计的标准误差和置信水平的概念。

标准误差是估计值的变异程度的度量,它越小表示估计结果越精确。

而置信水平则是对估计结果的可信程度的度量,一般常用的置信水平有95%和99%。

通过标准误差和置信水平的概念,我们可以对估计结果进行合理的解释和评估。

本章还介绍了假设检验的基本原理和步骤。

假设检验是一种用于判断总体参数是否符合某个特定假设的统计方法。

在进行假设检验时,我们首先需要提出一个原假设和一个备择假设。

然后,通过计算样本数据的统计量,比较其与理论值的差异,来判断原假设是否成立。

假设检验方法的使用可以帮助我们做出科学的决策,避免主观臆断和盲目行动。

总的来说,第十章的内容是统计学中非常重要的一部分。

通过学习抽样分布和估计的基本原理和方法,我们可以更好地理解和运用统计学的知识。

统计学中的抽样分布理论

统计学中的抽样分布理论

统计学中的抽样分布理论统计学是一门深奥而又广泛应用的学科,其中抽样分布理论是其中一个重要支柱。

本文将从抽样、样本统计量和抽样分布三个方面进行论述,以便更好的理解其理论和应用。

一、抽样与样本统计量统计学的基本任务之一是推断总体特征。

但由于总体数据规模庞大,难以全面观察和分析,因此我们通常采用小样本的方式来代表总体。

这就是抽样的概念。

抽样是指从总体中随机抽取一部分数据,用这一部分数据代表总体,以此估计总体的特征。

常用的抽样包括简单随机抽样、分层抽样、整群抽样等。

在抽样中,一个样本统计量的重要性凸显出来,因为它可以帮助我们更好的估计总体的特征。

比如,一个数据集的均值和标准差就是两个重要的样本统计量。

二、抽样分布抽样分布是指在所有可能的样本中,某个样本统计量的分布情况。

这里需要区分参数(population)和统计量(sample statistic)之间的关系。

参数是总体参数,是我们想要研究的总体特征,比如总体均值、总体方差等。

统计量是在样本中计算出来的数值,比如样本均值、样本方差等。

样本统计量是对总体参数的估计,不同的样本统计量可能对总体参数的估计存在一定的差异。

抽样分布不同于总体分布。

总体分布是指总体中所有变量的分布,而抽样分布是指在所有可能的样本中,某个样本统计量的分布。

抽样分布是一个特殊的概率分布,其形状和参数取决于总体分布和样本大小。

这是因为在计算样本统计量时,会受到样本数量和样本变异的影响。

在实际使用中,我们通过抽样分布来推断总体参数。

具体方法是:首先,通过采样方法得到一个样本,计算该样本统计量的值。

然后,通过数学公式推算样本统计量的抽样分布,从而得到一个概率区间。

若该样本统计量恰好位于这个区间内,则认为该样本统计量的估计值与总体参数的差异可以用统计学上的概率来表示。

这个概率就是所谓的显著性水平(signicance level)。

三、中心极限定理中心极限定理是抽样分布理论中最为重要的定理之一。

李金昌《统计学》(最新版)精品课件第四章 抽样估计

李金昌《统计学》(最新版)精品课件第四章 抽样估计

Statistics
二、常用的抽样分布定理
(一)样本均值的抽样分布定理
1.正态分布的再生定理 如果某样本的n个个体完全随机地来自数学期望为 X 、方差 为S 2 的正态总体,则不论样本容量n多大,样本均值服从数学期 ( N n) S 2 S2 望为 X 、方差为 V ( x ) (重复抽样时)或 V ( x ) (有 Nn n 限总体且不重复抽样时)的正态分布。标准化统计量 z x X V (x ) 则服从数学期望为0、方差为1的标准正态分布。此即为正态分布 的再生定理。 2.中心极限定理 对于任一具有平均数 X 和方差 S 2的有限总体,当样本容量n 足够大时(例如 n 30或 n 50 ),样本均值 x的分布也趋于服从 正态分布,其数学期望和方差与再生定理的相同。此即为中心极 限定理。
Statistics
3.分布定理 当正态总体的方差未知且n较小,或任一方差为 S 2的总体但n 较小,则样本均值 x 的分布服从自由度为n-1的t分布。分布曲线 与正态分布相近,其中数学期望相同。
Statistics
(二)样本成数的抽样分布定理
1.二项分布定理 N 从一个数学期望为p、方差为 N 1 PQ 的是非变量(0-1分布) n1 总体中随机重复地抽取容量为n的样本,那么样本中含有 个某类 变量值的概率为:
反映样本分布特征的样本统计量的值(即样本统计值)是可 知的。但是由于抽样的随机性,样本统计值不是惟一确定的,因 此样本统计量是随机变量,其值随样本不同而不同。 抽样估计,就是要以可知但非惟一的样本统计值去估计惟一 却未知的总体参数的值。
Statistics
(三)抽样分布及其特征
1.抽样分布的概念及影响因素 一般意义上说,抽样分布就是样本统计量的概率分布,它由 样本统计量的所有可能取值和与之对应的概率所组成。如果说样 本分布是关于样本观测值的分布,那么抽样分布则是关于样本统 计值的分布,而样本统计值是由样本观测值计算而来的。 实际的抽样分布形成取决于以下五个因素: 总体分布; 样本容量; 抽样方法; 抽样组织形式; 估计量构造

统计学第六章 抽样估计

统计学第六章 抽样估计

(2)通过试访问进行估计 通过试访问的方法,先获得少数一部分样 本的误差数据,然后根据这些数据去计算最终 所需要的样本量,然后再将所需要的样本量完 成。
(3)序贯抽样方法 所谓序贯抽样,是指依次抽取样本,每抽 取一次,进行一次误差计算,直至达到所需要 的精度。
一般做序贯抽样时,会有一张图,如黑板 上图所示。
案例:
假定欲估计喜欢某产品的居民比例在95% 置信度水平下,要求绝对误差小于5%,求样 本量。
本题解法:
但是,如果是相对误差,已知P
五、其他抽样组织形式
1、分层抽样(Stratified Sampling) 2、整群抽样(Cluster Sampling) 3、多阶段抽样(Multi-stage Sampling) 4、设计效应(deff)
序贯抽样的方式操作比较简单,但不适用 于经济调查,一般运用于质量检验中。
(4)成数估计时,使用最大值判断 绝对误差与相对误差 有时候绝对误差很小,但相对误差会很大。
对于绝对误差: 当成数是P时,其标准差为 在成数估计的条件下,方差的最大值为 0.25,因此可以使用最大的方差作为推断最大 样本量的基础。
1、样本平均数的分布
从一个总体中抽出一部分单位,构成一个 样本,可计算出一个样本平均数。
无数次抽选的结果,将会产生无数个样本 平均数,这些样本平均数具有自己的分布形式。
根据大数定理,当样本量超过30时,样本 平均数的分布为正态分布。
2、分布特征
在有放回条件下,简单随机抽样的误差计 算公式如下:
3、多阶段抽样(Multi-stage Sampling)
多阶段抽样的误差计算取决于各阶段的 抽样方式,以最简单的二阶段抽样为例,如 果每一阶段的抽选都是简单随机抽样,一阶 单位的规模相同,则有下列公式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)样本平均数的平均数等于总体平均数
(3)样本平均数的方差等于总体方差除以样本
容量n
2 x
2
n
(4)n越大,样本平均数越趋近于正态分布
例:样本均值的抽样分布
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为X1=1、X2=2、X3=3 、X4=4 。 总体的均值、方差及分布如下
x
=1.96×1=1.96(千克)
置信下限为58-1.96=57.04,
置信上限为58+1.96=59.96
故所求置信区间为(57.04,59.96)千克。
(2) 总体方差σ2未知时
由于 T x 1-α,有 s / n
~t(n-1),对于给定的置信度
P{t/2sx/ nt/2}1
P { x t/2
差也愈大。
单位数必须增大到4倍。
➢ 抽样单位数的多少。
在其他条件不变的情况下,抽样单位数愈多,抽样 误差愈小;抽样单位数愈少,抽样误差愈大。
➢ 抽样的方法。
在其他条件不变的情况下,重复抽样的抽样误差大 于不重复抽样。
➢ 抽样的组织形式。
例、从某校1000名学生中简单随机抽取50名学生,称得平均体重为50千克, 若已知总体标准差为10千克,计算重复抽样及不重复抽样下抽样平均误 差。
第九章 抽样与抽样估计
第1节 抽样与抽样分布
一、有关抽样的基本概念
总体(Population) 研究对象的全体称为总体
样本(子样)(Sample) 从总体中抽取一部分个体进行试验或观察,这种从总体
中抽取个体的行为称为抽样。而从总体中抽样所得的一部分 个体叫样本 总体参数(Population parameter)
1,4
2
2,1
2,2
2,3
2,4
3
3,1
3,2
3,3
3,4
4
4,1
4,2
4,3
4,4
计算出各样本的均值,如下表。并给出样本均值的抽
样分布
16个样本的均值
第一个 观察值
第二个观察值 1 2 3 4
1 1.0 1.5 2.0 2.5
2 1.5 2.0 2.5 3.0
3 2.0 2.5 3.0 3.5
4 2.5 3.0 3.5 4.0
分层抽样:也称分类抽样或类型抽样,它是按某个 主要标志对总体各单位进行分类,然后从各层中按 随机原则分别抽取一定数目的单位构成样本。
整群抽样:也称丛聚抽样或集团抽样。它是将总体 分为若干部分(每一部分称为一个群),然后按随机 原则从中一群一群地抽选,对抽中群内的所有单位 进行全面调查。
系统抽样也称机械抽样。它是先将总体单位按一定 顺序排队,计算出抽样间隔(或抽样距离),然后 按固定的顺序和间隔抽取样本单位。
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
样本均值的抽样分布
样本均值的分布与总体分布的比较
总体分布
.3
.2
.1 0
1
234
= 2.5
σ2 =1.25
.3 P ( X ) 抽样分布
.2
.1
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
解:重复抽样条件下,
V ( x ) 2 10 2 2
n 50
x
n
2 1.41
不重复抽样条件下,
2
V(x)
Nn1021005001.9
n N1 5010010
x 1.91.38
在样本量相同的情况下,不重复抽样的平均误差要小于重复抽 样的平均误差。
第3节 总体平均数和总体比例的估计
抽样估计必须包括三要素:
s n x t/2
s} 1 n
s
置信下限 x t/2(n1) n
x t/2置(n信上1)限sn
在大样本下,总体均值的置信区间为
(xt/2(n 1 )
sn,xt/2(n 1 )
s) n
例:某保险公司投保人年龄设某保险公司投保人年龄呈正态分布, 现从中抽取10人,其年龄分别为:32,50,40,24,33,44,45, 48,44,47岁。试以95%的置信水平估计该保险公司投保人的平均
抽样误差:
登记性误差
登记性误差是指在调查和汇总过程中由 于观察、测量、登记、计算等方法的差 错或被调查者提供虚假资料而造成的误 差。任何一种统计调查都可能产生登记 性误差。

系统性误差是指由于非随机因素引起的样 本代表性不足而产生的误差,表现为样本 估计量的值系统偏低或偏高。。

系统性误差
代表性误差
1)估计值 2)估计值的误差范围 3)概率保证程度(置信度)
一、点估计(Point estimate)
点估计也称定值估计,常用点估计方法有矩估计,极大似然 估计。
样本均值是总体均值的点估计量,样本方差s2是总体方差σ2 的点估计量,样本比例p是总体比例P的点估计量。
优良估计量的标准: 无偏性
P(1P) n
总体比例的置信区间为
P (1P )
P (1P )
(pz/2
n ,pz/2
) n
小样本条件下,不作介绍。
例:总体比例的区间估计
【例】某城市想 要估计下岗职工 中女性所占的比 例,随机抽取了 100 个 下 岗 职 工 , 其 中 65 人 为 女 性职工。试以 95% 的 置 信 水 平 估计该城市下岗 职工中女性比例 的置信区间
X 2.5
X2
1.250.625 2
大数定律及中心极限定理
不重复抽样:
(1)总体是正态分布,样本必然是正态分布
(2)样本平均数的平均数等于总体平均数
(3)样本平均数的方差等于总体方差除以样本
容量n
x2
2
n
Nn N1
(4)n越大,样本平均数越趋近于正态分布
抽样平均误差 (1)均值 重复抽样:
x
它是样本指标可允许变动的上限或下限与总体指标 之差的绝对值。
即:
X
x
pP p
落在总体均值某一区间内的样本
X
x- 3 x- 2 x-
x X+ X+2 X+ 3
68.27%的样本
95.45% 的样本 99.73% 的样本
大数定律及中心极限定理
重复抽样:
(1)总体是正态分布,样本必然是正态分布
描述总体分布特征的数值 样本统计量(Sample statistic)
抽样方法
重置抽样(重复抽样)(Sampling with replacement) 要从总体N个单位中随机抽取一个容量为n的样本,
每次从总体中抽取一个单位,把顺序号登记下来之后, 重新放回参加下一次抽选,连续反复抽取n次组成所 要求容量的样本。 不重置抽样(不重复抽样)(Sampling without replacement)
有效性
一致性
区间估计就是根据样本求出总体未知参数的估计区间,并使其可 靠程度达到预定要求。
(1) 总体方差σ2已知时
由于 有
z x : N(0,1) / n
,所以对于给定的置信度1-α,
P {z 2
x/nz2}1

Px z/2
1
n
可见,极限误差的计算公式为
x
z/2
nz/2x
则总体均值的置信区间为 (xx,xx)
要从总体N个单位中随机抽取一个容量为n的样本, 每 次从总体中抽取一个单位,被抽中的单位不再放 回参加下一次抽选,连续进行次便组成样本。 不重复抽样所得样本对总体的代表性较大,抽样误 差较小,所以实践中通常采用不重复抽样。
抽样的组织方式
简单随机抽样:从总体中抽取样本最常用的方法。 从容量为N的总体中进行抽样,如果容量为n 的每个 可能样本被抽到的可能性相等,则称容量为n的样本 为简单随机样本。
总体分布
.3
.2
.1 0
1
234
均值和方差
N
Xi
X i1 2.5 N
N
(Xi X)2
2 i1
1.25
N
现从总体中抽取n=2的简单随机样本,在重复抽样
条件下,共有4*4=16个样本。所有样本的结果为
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1
1,2
1,3
所以该保险公司投保人的平均年龄的置信区间为(34.7,46.7)岁。
总体比例的区间估计
在大样本条件下,若np>5,n(1-p)> 5,则样本比例趋 近于正态分布。
对于给定置信度,有
P { p z /2
P ( 1 n P ) P p z /2
P ( 1 P )} 1 n
xz/2 pz/2
第5节 样本容量的确定
在重复抽样下,
x
z/ 2
n
所以,必要抽样单位数
p z/2
P(1P) n
n
z
2
/
2
2
2
x
n z2/ 2P(1 P) 2p
在不重复抽样下,必要抽样单位数
n
Nz2/ 2 2
N2 x
z2/ 22
n
Nz2/2P(1P) N2p z2/2P(1P)
例:某市进行职工家庭生活费抽样调查,已知职工家庭平均每 人每月生活费收入的标准差为110元,允许误差范围10元,概率 把握程度95%,试确定应抽选的户数。 解:
例:从某大学学生中随机抽取100名调查体重情况。经称量和计 算,得到平均体重为58千克。根据过去的资料知道大学生体重 的标准差是10千克。在95%的置信水平下,求该大学学生平均体
相关文档
最新文档