集合的概念及其运算

合集下载

第一讲 集合的概念和运算

第一讲 集合的概念和运算


解析:对于新定义题,关键是读懂题目, 弄清概念的含义,准确运用。 ∵n=4, ∴ Sn {1, 2,3, 4}, ,则X可取 ,{1}, {2}, {3},
{4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {2,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}.不是偶子集有{1},
A B 0,1,2,4,16
则a的值为( A. 0 答案:D. B. 1
) C. 2 D. 4
a4 解析:抓住并集中的元素,由此知 a 2 16 2
a 4 或 ,∴选D。 a 16
变式题:含有三个实数的集合可表示为{a,b,lg(ab)},也可 表示为{|a|,b,0},则 a 2015 b2015 的值等于 。
7.特别提醒的几点:
①.注意区分几种常见集合
研究一个集合,首先要看集合中的代表元素,然 后再看元素的限制条件,当集合用描述法表示时,注 意弄清其元素表示的意义是什么.
集合 {x|f(x)=0} {x|f(x)>0} {x|y=f(x)} {y|y=f(x)} {(x,y)|y=f(x)}
集合的意义 方程f(x)=0的解源自 不等式f(x)>0的解集 函数y=f(x)的定义域 函数y=f(x)的值域 函数y=f(x)图象上的点集

无序性

5.集合中元素和集合、集合与集合的关系: ⑴元素和集合的关系:若元素a 是集合A的元素, A”。 记作:a A ,否则“a
⑵集合与集合的关系:包含和不包含关系。包含关系又 分为真包含和相等关系。符号为“ ”,“=”, ”,“ “ ”,“ ” .

特别提醒:规定空集是 空集是

集合的概念和运算

集合的概念和运算

集合的概念和运算集合是数学中重要的基本概念,它可以理解为元素的组合。

在数学中,元素可以是数字、字母、单词等等。

本文将介绍集合的概念、集合的表示方法以及集合的运算。

一、集合的概念集合是由元素构成的,通常用大写字母表示。

假设A是一个集合,x是A的元素,我们可以表示为x∈A,表示x属于A。

相反地,如果x不属于A,我们可以表示为x∉A。

集合可以有有限个或者无限个元素。

如果集合A中的元素个数有限,并且可以一一列举出来,我们称之为有限集。

如果集合A中的元素个数是无穷的,我们称之为无限集。

二、集合的表示方法1. 列举法:我们可以直接将集合中的元素一一列举出来。

例如,集合A = {1, 2, 3}表示A是一个包含元素1、2、3的集合。

2. 描述法:我们可以使用一个条件来描述集合中的元素。

例如,集合B = {x | x是自然数,且x < 5}表示B是一个包含小于5的自然数的集合。

三、集合的运算1. 交集:给定两个集合A和B,它们的交集(记作A∩B)是包含同时属于A和B的所有元素的新集合。

例如,A = {1, 2, 3},B = {2, 3, 4},则A∩B = {2, 3}。

2. 并集:给定两个集合A和B,它们的并集(记作A∪B)是包含属于A或者属于B的所有元素的新集合。

例如,A = {1, 2, 3},B = {2, 3, 4},则A∪B = {1, 2, 3, 4}。

3. 差集:给定两个集合A和B,它们的差集(记作A-B)是包含属于A但不属于B的所有元素的新集合。

例如,A = {1, 2, 3},B = {2, 3, 4},则A-B = {1}。

4. 互斥集:给定两个集合A和B,如果它们的交集为空集,则称它们为互斥集。

例如,A = {1, 2},B = {3, 4},则A∩B = ∅。

5. 补集:给定一个普通集合U和它的一个子集合A,A相对于U的补集(记作A'或者A^c)是包含U中所有不属于A的元素的集合。

第一章 集合的概念及运算(集合论讲义)

第一章 集合的概念及运算(集合论讲义)
(4) 分配律 A ∪ (B ∩ C) = ( A ∪ B) ∩ ( A ∪ C) , A ∩ (B ∪ C) = ( A ∩ B) ∪ ( A ∩ C)
(5) 德·摩根律 A ∪ B = A ∩ B , A ∩ B = A ∪ B
A − (B ∪ C) = (A − B) ∩ (A − C) , A − (B ∩ C) = (A − B) ∪ (A − C)
4
|
A1
|=
⎢ 250 ⎥ ⎢⎣ 2 ⎥⎦
=
125
,|
A2
|=
⎢ 250 ⎢⎣ 3
⎥ ⎥⎦
=
83
,|
A3
|=
⎢ 250 ⎥ ⎢⎣ 5 ⎥⎦
=
50
,|
A4
|=
⎢ ⎢⎣
250 ⎥ 7 ⎥⎦
=
35

|
A1

A2
|=
⎢ ⎢⎣
250 ⎥ 2× 3⎥⎦
=
41
,|
A1

A3
|=
⎢ 250 ⎥ ⎢⎣2× 5⎥⎦
=
(6) 吸收律 A ∪ ( A ∩ B) = A , A ∩ ( A ∪ B) = A (7) 零律 A ∪ E = E , A ∩ ∅ = ∅ (8) 同一律 A ∪ ∅ = A , A ∩ E = A (9) 排中律 A ∪ A = E
5
(10) 矛盾律 A ∩ A = ∅ (11) 全补律 ∅ = E , E = ∅ (12) 双重否定律 A = A (13) 补交转换律 A − B = A ∩ B
3
还可以将交,并运算推广到集族上。
∪ 定义 2.3 设 A 为一个集族,称由 A 中全体集合的元素组成的集合为 A 的广义并集,记作 A , ∪ 称 ∪ 为广义并运算符, A 可描述为

集合的概念及其运算

集合的概念及其运算

集合的概念及其运算1、集合中元素的性质:确定性,互异性,无序性2、有n个元素的集合的子集的个数是2n,真子集的个数是2n-13、自然数集N 正整数集N* 整数集Z 有理数集Q 实数集R 复数C4、交集:由所有属于集合A且属于集合B的元素所组成的集合叫做集合A与B的交集,记为A∩B,即A∩B={x|x∈A,且x∈B}并集:由所有属于集合A或属于集合B的元素所组成的集合叫做集合A与B的并集,记为A∪B,即A∪B={x|x∈A,或x∈B}补集:一般地设S是一个集合,A是S的一个子集(即A S),由S中所有不属于A的元素组成的集合,叫做集合A在全集S中的补集(或余集).5、真子集关系对于集合A、B,如果A ⊆ B,并且A≠B,我们就说集合A是集合B的真子集 显然,空集是任何非空集合的真子集1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.82.若集合A={x|x2-4x<0},则集合A∩Z中元素的个数为( )A.3B.4C.5D.23.已知集合A={a-2,2a2+5a,12},且-3∈A,则a= .4、已知集合A={1,3,5},B={2,4,6}.定义集合A+B={a+b|a∈A,b∈B},则A+B中元素的个数是( )A.9B.6C.5D.45、满足Φ A⊆{1,2,3}的集合A的个数是( )A.7B.8C.6D.42>0},N={x|x>a}.若M⊆N,求实数a的取值范围6、 已知集合M={x|3+2x-x7、已知集合M={x|x2+x-6=0},N={x|ax-1=0},且M∩N=N,求实数a的值.8、集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( )A.0B.1C.2D.49、若A、B、C为三个集合,A∪B=B∩C,则一定有A. A⊆CB.C⊆AC.A≠CD.A=∅10、已知集合A={y|y=log2x,x>1},B={y|y=(1/2)x,x>1},则A∩B等于A. ∅B.{y|0<y<1}C.{y|1/2<y<1}D.{y|0<y<1/211、.设全集U是实数集R,M={x|x2>4},N={x|≥1},则下图中阴影部分所表示的集合是A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}12、.设集合A={5,log2(a2-3a+6)},集合B={1,a,b},若A∩B ={2},则集合A∪B的真子集的个数是A.3个B.7个C.12个D.15个13、.设全集U=R,A={x|x<-3或x≥2},B={x|-1<x<5},则集合{x|-1<x<2}是A. (UA)∪(UB)B. U(A∪B)C. (UA)∩BD.A∩B14、定义集合A*B={x|x∈A,且xB},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为10、A.1 B.2 C.3 D.415、.设集合M={x|x≤m},N={y|y=2-x,x∈R},若M∩N≠,则实数m 的取值范围是A.m≥0B.m>0C.m≤0D.m<016、.已知集合A={x∈R|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来;命题及其关系充要条件1、2. 用命题的等价性判断:判断p是q的什么条件,其实质是判断“若p,则q”及其逆命题“若q,则p”是真还是假,原命题为真而逆命题为假,p是q的充分不必要条件;原命题为假而逆命题为真,则p是q的必要不充分条件;原命题为真,逆命题为真,则p是q的充要条件;原命题为假,逆命题为假,则p是q的既不充分也不必要条件.3. 原命题为“若P则q,则它的逆命题为若q则p;否命题为若非p则非q,逆否命题为若非q则非p 原命题与它的逆否命题等价,逆命题与它的否命题等价1、写出“面积相等的两个三角形是全等三角形”的逆命题、否命题、逆否命题2、写出“若a>b且c>d,则a+c>b+d”的逆命题、否命题、逆否命题3、设原命题”若p则q”假,而逆命题真,则p是q的()A、充分不必要条件B、必要不充分条件C、充要条件 D既不充分也不必要条件3、0<x<5是不等式lx-2l<4成立的()A、充分不必要条件B、必要不充分条件C、充要条件 D既不充分也不必要条件4、1命题:“若x2<1,则-1<x<1”的逆否命题是 ( )A.若x2≥1,则x≥1或x≤-1 B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1 D.若x≥1或x≤-1,则x2≥12.已知集合M={x|0<x<1},集合N={x|-2<x<1},那么“a∈N”是“a∈M”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件。

第1讲集合的概念和运算

第1讲集合的概念和运算

第1讲 集合的概念和运算必记考点1.集合的基本概念(1)集合元素的三个特征: 、 、 . (2)元素与集合的关系是属于或不属于关系,用符号 或 表示. (3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集: N ; N *(或N +) ; Z ;Q ; R . (5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、 . 2.集合间的基本关系(1)子集: ,则A ⊆B (或B ⊇A ). (2)真子集: 则A B (或B A ).若集合A 中含有n 个元素,则A 的子集有2n 个,A 的真子集有2n -1个.(3)空集:空集是 的子集,是 的真子集.即∅⊆A ,∅B (B ≠∅).(4)集合相等:若 ,则A =B . 3.集合的基本运算及其性质(1)并集:A ∪B = . (2)交集:A ∩B = .(3)补集:∁U A = ,U 为全集,∁U A 表示A 相对于全集U 的补集. (4)集合的运算性质①A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B ; ②A ∩A =A ,A ∩∅=∅; ③A ∪A =A ,A ∪∅=A ;④A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .考向一 集合的基本概念【例1】►已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 014+b 2 014=________.【训练1】集合⎩⎨⎧⎭⎬⎫x ∈N *⎪⎪12x∈Z 中含有的元素个数为( ).考向二 集合间的基本关系【例2】已知集合A ={x |0<x ≤4},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是________.【训练2】已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.考向三 集合的基本运算【例3】►(1)(2012·安徽)设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( ).A .(1,2)B .[1,2]C .[1,2)D .(1,2](2)(2012·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ). A .{1,2,4} B .{2,3,4} C .{0,2,4}D .{0,2,3,4}(3)设全集U ={1,2,3,4,5,6},集合A ={1,2,4},B ={3,4,5},则图中的阴影部分表示的集合为( ).A .{5}B .{4}C.{1,2} D.{3,5}基础演练1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则().A.A B B.B AC.A=B D.A∩B=∅2.设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=().A.{1,2,3,4,6} B.{1,2,3,4,5}C.{1,2,5} D.{1,2}3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=().A.{1,4} B.{1,5}C.{2,3} D.{3,4}4.若集合A={x||x|>1,x∈R},B={y|y=2x2,x∈R},则(∁R A)∩B=().A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅5.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 6.集合A={x∈R||x-2|≤5}中的最小整数为________.7.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.第2讲函数及其表示必记考点1.函数的概念一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A到集合B 的一个函数.记作.2.函数的三要素函数由、、三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:.(2)值域:.(3)两个函数就相同: .3.函数的表示方法表示函数的常用方法有:解析法、图象法、列表法.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.考向一函数的定义【例1】(1)下列各图形中是函数图象的是().2.下列各组函数表示相同函数的是().A.f(x)=x2,g(x)=(x)2B.f(x)=1,g(x)=x2C.f(x)=⎩⎪⎨⎪⎧x,x≥0,-x,x<0,g(t)=|t|D.f(x)=x+1,g(x)=x2-1x-1考向二 求函数的定义域、值域【例2】►(1) 函数y =x +1x 的定义域为________.(2)函数y =x -3x +1的值域为________.(3) 设函数f (x )=41-x ,若f (a )=2,实数a =________.考向三 分段函数及其应用【例3】(1) 设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( ).A.15 B .3 C.23D.139(2)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( ).A .1B .0C .-1D .π(3)已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A.12 B.45 C .2 D .9基础演练1.函数f (x )=11-x +lg(1+x )的定义域是( ).A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)2.下列各组函数中,表示同一函数的是( ). A .f (x )=x ,g (x )=(x )2 B .f (x )=x 2,g (x )=(x +1)2 C .f (x )=x 2,g (x )=|x |D .f (x )=0,g (x )=x -1+1-x3.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( ).A .-3B .±3C .-1D .±14.函数f (x )=lg 1-x 2的定义域为________.5.(2013·皖南八校联考)已知f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,log 2x ,x >0,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫-12=________. 6.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.第3讲 函数的性质必记考点 1.函数的单调性 (1)单调函数的定义设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,①若 ,则f (x )在区间D 上是增函数;②若 ,则f (x )在区间D 上是减函数.(2)单调区间的定义若函数f (x )在区间D 上是 或 ,则区间D 叫做f (x )的单调区间.(3)用定义判断函数单调性的步骤: . 2. 函数的奇偶性(1)定义:如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做偶函数.如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做奇函数.(2)性质:奇函数的图象关于 对称;偶函数的图象关于 对称.考向一 确定函数的单调性或单调区间【例1】(1)下列函数中,在区间(0,+∞)上为增函数的是( ).A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x(2)函数y =-x 2+2x -3(x <0)的单调增区间是( ).A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]考向二 函数单调性的应用【例2】(1)若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=________. (2) 函数y =f(x)在R 上为增函数,且f(2m)>f(-m +9),则实数m 的取值范围是 .考向三 求函数的最值【例3】函数f (x )=2xx +1在[1,2]上的最大值和最小值分别是________.考向四 判断函数的奇偶性【例4】判断下列函数的奇偶性: (1)f (x )=x 3-2x ;(2)f (x )=x 2-1+1-x 2;(3)f (x )=(x -1)- 1+x1-x.考向五 函数奇偶性的应用【例5】(1)函数f (x )=(x +a )(x -4)为偶函数,则实数a =________.(2) 设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________. (3) 设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)= .基础演练1.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( ).A .函数f (x )先增后减B .f (x )是R 上的增函数C .函数f (x )先减后增D .函数f (x )是R 上的减函数2.函数y =f (x )在R 上为减函数,且f (2m )>f (-m +9),则实数m 的取值范围是 .3.下列函数中,在(0,+∞)上单调递增的函数是( ).A .y =1xB .y =|x |+1C .y =-x 2+1D .y =-2x +14.已知f (x )=x 2-2mx +6在(-∞,-1]上是减函数,则m 的范围为________.5.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围为________. 6.下列函数是偶函数的是( ).A .y =xB .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1]7. 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是 .8. 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.9.已知函数y =f (x )是偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是________. 10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0.(1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.第4讲 指数与指数函数必记考点1.指数与指数运算 (1)根式的概念若x n =a ,则x 叫 ,.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.即x n=a ⇒⎩⎨⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).(2)根式的性质①(na )n = .②当n 为奇数时,na n= ;当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0).(3)分数指数幂的含义正分数指数幂a m n =na m (a >0,m ,n ∈N *,n >1).负分数指数幂a -m n =1a m n =1na m (a >0,m ,n ∈N *,n >1).(4)幂指数的运算性质a r ·a s = rs aa= (a r )s = (ab )r =2.指数函数的图象与性质考向一 指数幂的化简与求值【例1】化简下列各式: (1)[(0.06415)-2.5]23- 3338-π0;(2) 2132a b ·(-31132a b )÷156613a b(3)a ·3a 25a ·3a考向二 指数函数的性质【例2】(1)方程2x -2+x =0的解的个数是________. (2) 下列各式比较大小正确的是( ). A .1.72.5>1.73 B .0.6-1>0.62C .0.8-0.1>1.250.2 D .1.70.3<0.93.1(3)已知函数f (x )=2x -12x +1,①讨论f (x )的奇偶性;②讨论f (x )的单调性.⎝⎛⎭⎫21412-⎝⎛⎭⎫-350-⎝⎛⎭⎫827-13=________. 已知函数f (x )=4+a x -1(a >0且a ≠1)的图象恒过定点P ,则点P 的坐标是( ).函数y =1-3x 的定义域为________。

集合的基本概念与运算

集合的基本概念与运算

集合的基本概念与运算集合是数学中一个基本的概念,简单地说,集合是由元素构成的一种集合结构。

在数学中,集合和集合运算能够被应用到各种各样的领域,比如计算机科学、物理学、经济学等。

本文将深入探讨集合的基本概念和运算。

一、基本概念在集合的讨论中,我们需要先了解一些基本概念。

首先,元素是指集合中的一个个体。

例如,{1, 2, 3}中的1、2、3就是元素。

其次,集合可以用花括号{}来表示,例如{1, 2, 3}就是一个集合。

注意,集合中的元素是无序的,也就是说{1, 2, 3}和{3, 2, 1}是等价的。

另外,集合中的元素必须是不同的,例如{1, 1, 2}就不是一个合法的集合,因为其中有重复的元素。

集合的大小可以用“|S|”来表示,其中S是集合的名字。

比如{1, 2, 3}的大小是3。

二、集合运算在集合的讨论中,我们需要介绍一些集合运算。

这些集合运算包括并集、交集、补集等。

并集对于两个集合A、B,它们的并集是指由它们中的所有元素组成的集合,用“∪”表示。

例如,如果A={1, 2},B={2, 3},则它们的并集是{1, 2, 3},即A∪B={1, 2, 3}。

需要注意的是,如果两个集合的元素有重复,重复的元素只会出现一次。

交集对于两个集合A、B,它们的交集是指它们中共同包含的元素所组成的集合,用“∩”表示。

例如,如果A={1, 2},B={2, 3},则它们的交集是{2},即A∩B={2}。

补集对于一个集合A和它的一个父集合U,A的补集是指U中不包含A中所有元素的集合,用“A'”表示。

例如,如果U={1, 2, 3},A={1, 2},则A的补集是{3},即A'={3}。

三、常用集合运算规则对于集合的运算,还有一些常用的规则。

结合律对于任意三个集合A、B、C,它们的并集和交集都满足结合律。

即(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。

交换律对于任意两个集合A、B,它们的并集和交集都满足交换律。

集合的基本概念与运算方法

集合的基本概念与运算方法

集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。

理解集合的基本概念和运算方法对于解决各种数学问题至关重要。

本文将介绍集合的基本概念以及常用的运算方法。

一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。

例如,集合A可以表示为:A = {1, 2, 3, 4}。

2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。

例如,集合A中的元素1、2、3、4便是集合A的元素。

3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。

用符号表示为A ⊆ B。

例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。

4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。

用符号表示为A = B。

二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。

用符号表示为A ∪ B。

例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。

2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。

用符号表示为A ∩ B。

例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。

3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。

用符号表示为A'。

例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。

4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。

用符号表示为A - B。

例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。

5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。

集合的概念与运算

集合的概念与运算

集合的概念与运算(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除01集合的概念知识梳理1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或?表示.(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A?B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}?U A={x|x∈U,且x?A}并集的性质:A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?B?A.交集的性质:A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A?B.补集的性质:A∪(?U A)=U;A∩(?U A)=?;?U(?U A)=A.题型一.集合例1. (1)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .9(2)已知集合A ={m +2,2m 2+m},若3∈A ,则m 的值为________. 答案 (1)C (2)-32(2)由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.【感悟提升】(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.变式1.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中的元素个数为( )A .3B .4C .5D .6 变式2.设a ,b ∈R ,集合{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.答案 1.B 2.2解析 1.因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4时,a =1,2,3,此时x =5,6,7.当b =5时,a =1,2,3,此时x =6,7,8. 所以根据集合元素的互异性可知,x =5,6,7,8. 即M ={5,6,7,8},共有4个元素.2.因为{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,ba ,b ,a ≠0, 所以a +b =0,得ba =-1,所以a=-1,b=1,所以b-a=2.题型二. 集合间的基本关系例2.(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A?C?B的集合C的个数为()A.1 B.2 C.3 D.4B⊆,则实数m的最大值为(2)已知集合},xm-≤≤xA若A=xBx=m|{121},7≤≤{-|2+_____.答案(1)D(2)4 注:若B是A的真子集,则m的最大值为什么?【感悟提升】(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn图等来直观解决这类问题.变式1.已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=?C.A?B D.B?A变式2.已知集合A={x|log2x≤2},B={x|x<a},若A?B,则实数a的取值范围是________.答案 1.D 2.(4,+∞)解析 1.A={x|x>-3},B={x|x≥2},结合数轴可得:B?A.2.由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A ?B ,如图所示,则a>4. 题型三. 集合的基本运算例3.(1)已知}2|1||{<-=x x A ,}06|{2<-+=ax x x B ,}0152|{2<--=x x x C , ① ,B B A =⋃求a 的范围;② 是否存在a 的值使C B B A ⋂=⋃,若存在,求出a 的值,若不存在,说明理由. (2)设集合U =R ,A ={x|2x(x -2)<1},B ={x|y =ln(1-x)},则图中阴影部分表示的集合为( )A .{x|x ≥1}B .{x|1≤x<2}C .{x|0<x ≤1}D .{x|x ≤1}答案 (1)✍(-5≤a ≤-1);✍1519,-≤≤-⊆⊆a C B A (2)B变式1.已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3D .1或3变式2.}32|{+≤≤=a x a x A ,}51|{>-<=x x x B 或,∅≠⋂B A ,则a 的取值范围为_______.答案1.B 2.]3,2()21,(⋃--∞【感悟提升】1.一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.2.运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.变式3.(2015·天津)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(?UB)等于( )A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}变式4.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(?UA)∩B =?,则m的值是__________.答案 3.A 4.1或2解析 3.由题意知,?UB={2,5,8},则A∩(?UB)={2,5},选A.4.A={-2,-1},由(?UA)∩B=?,得B?A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠?.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.题型四. 集合的新定义问题例4.若集合A具有以下性质:(Ⅰ)0∈A,1∈A;(Ⅱ)若x∈A,y∈A,则x-y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题正确的个数是()(1)集合B={-1,0,1}是“好集”;(2)有理数集Q是“好集”;(3)设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A. A .0 B .1 C .2 D .3 答案 C变式: (2015·湖北)已知集合A ={(x ,y)|x 2+y 2≤1,x ,y ∈Z},B ={(x ,y)||x|≤2,|y|≤2,x ,y ∈Z},定义集合A*B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B},则A*B 中元素的个数为( )A .77B .49C .45D .30 答案 C解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A*B 显然是集合{(x ,y)||x|≤3,|y|≤3,x ,y ∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A*B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A*B 中元素的个数为45.故选C. 【真题演练】1.【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭【答案】D【解析】因为23{|430}={|13},={|},2A x x x x xB x x =+<<<>-所以33={|13}{|}={|3},22A B x x x x x x <<><<故选D.2.【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞)【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .3.【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6【答案】C 【解析】由题意,{2,1,0,1,2}A Z =--,故其中的元素个数为5,选C. 4.【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C 【解析】}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞(-1,+),选C. 5.【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12},(C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】集合{|12,}{0,1}B x x x =-<<∈=Z ,而{1,2,3}A =,所以{0,1,2,3}A B =,故选C.6.【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞ 【答案】B 【解析】根据补集的运算得.故选B .7.【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =,故选A .8.【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ 【答案】C【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .。

集合的概念与运算

集合的概念与运算
粒子分布等。
社会科学
在经济学、社会学、心理学等社会 科学中,经常使用集合的概念来表 示不同的群体或类别。
生物学
在生物学中,基因组、物种分类等 都涉及到集合的概念。
05
集合运算的注意事项
空集的特殊性
空集是任何集合的子集,包括空 集本身。
空集是唯一不含任何元素的集合。
任何集合与空集的交集等于该集 合本身,任何集合与空集的并集
描述法
通过描述集合中元素的共同特征 ,用大括号括起来。
集合的元素
元素是构成集合的基本单位,可以是 任何对象或实体。
元素可以是具体的,如苹果、汽车等 ;也可以是抽象的,如数字、图形等 。
并集
并集是将两个集合中的所有元素合并到一个新的集合中。 并集运算可以用符号“∪”表示。
交集
交集是两个集合中共有的元素组成的集合。
交集运算可以用符号“∩”表示。
差集
差集是一个集合中去除另一个集合中的元素后剩余的元素组成的集合。
差集运算可以用符号“−”表示。
02
集合的运算
并集
并集是指两个或多个集合中所 有元素的集合,即所有属于A 或属于B的元素组成的集合。
并集的表示方法为A∪B,其中 A和B为两个集合。
并集的性质包括交换律、结合 律和分配律。
也等于该集合本身。
子集与超集的关系
子集
一个集合的所有元素都属于另一个集 合,则称该集合为另一个集合的子集。
超集
一个集合包含另一个集合的所有元素, 则称该集合为另一个集合的超集。
集合运算的优先级
并运算优先于交运算
当进行多个集合的运算时,先进行并运算再进行交运算。
交运算优先于差运算
当进行多个集合的运算时,先进行交运算再进行差运算。

集合的基本概念与运算

集合的基本概念与运算

集合的基本概念与运算集合是数学中的一个基本概念,可以理解为具有共同特征的事物的总体。

集合中的元素是指构成集合的个体或对象。

在集合中,元素的顺序并不重要,也不会重复出现。

本文将介绍集合的基本概念、集合运算的种类以及相关的性质。

一、集合的基本概念集合通常用大写字母表示,例如A、B、C等。

集合中的元素用小写字母表示,例如a、b、c等。

如果一个元素x属于集合A,我们用x∈A表示;如果一个元素y不属于集合A,我们用y∉A表示。

一个集合中的元素可以是任何事物,可以是数,可以是字母,也可以是其他集合。

集合的大小可以通过计算集合中元素的个数来确定。

如果集合A中有n个元素,我们用|A|表示集合A的大小,即|A|=n。

二、集合的表示方法1. 列举法:将集合中的元素逐个列举出来并用花括号{}括起来。

例如,集合A={1, 2, 3, 4}表示集合A包含了元素1、2、3、4。

2. 描述法:用一个条件来描述集合中的元素。

例如,集合B={x | x 是整数,0≤x≤10}表示集合B包含了满足0≤x≤10的所有整数。

三、集合的运算集合的运算包括并集、交集、差集和补集四种。

1. 并集:记为A∪B,表示包含了属于A或属于B的元素的集合。

即A∪B={x | x∈A或x∈B}。

例如,若A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。

2. 交集:记为A∩B,表示包含了既属于A又属于B的元素的集合。

即A∩B={x | x∈A且x∈B}。

例如,若A={1, 2, 3},B={3, 4, 5},则A∩B={3}。

3. 差集:记为A-B,表示包含了属于A但不属于B的元素的集合。

即A-B={x | x∈A且x∉B}。

例如,若A={1, 2, 3},B={3, 4, 5},则A-B={1, 2}。

4. 补集:对于给定的全集U,集合A的补集记为A',表示包含了属于U但不属于A的元素的集合。

即A'={x | x∈U且x∉A}。

集合的概念及运算

集合的概念及运算
②并集: 由所有属于集合A或属于集合B的元素组成的集合 叫做集合 A 与 B 的并集, 记作A∪B, 即
A∪B={x | x∈A, 或 x∈B}.
③补集: 设 S 是一个集合, A 是 S 的一个子集(即AS), 由 S 中所有不属于 A 的元素组成的集合, 叫做 S 中子集 A 的补集 (或余集), 记作 CsA, 即
一、集合的基本概念及表示方法
1.集合与元素
某些指定的对象集在一起就成为一个集合, 简称集, 通常 用大写字母A, B, C, … 表示. 集合中的每个对象叫做这个集合 的元素, 通常用小写字母a, b, c, … 表示.
2.集合的分类 集合按元素多少可分为: 有限集(元素个数有限)、无限集
(元素个数无限)、空集(不含任何元素); 也可按元素的属性分, 如: 数集(元素是数), 点集(元素是点)等.
集合中的每个对象叫做这个集合的元素, 通常用小写字母a, b, c, … 表示.
A∪B=B∪A, (-∞, -9)∪[1, +∞)
元素与集合之间的关系
A∪BA,
A∪BB,
A∪A=A,
A∪ =A, AB A∪B=B. a3x4-2a2x2-x+a-1=0 的实根,
注: 集合与集合的关系特例:
设有限集合 A 中有 n 个元素, 则 A 的子集有:
M∪Cs(N∩P) D.
(1)求证: A B; (2)如果 A={-1, 3}, 求 B.
C (C A)=A, C =S, C S= A∩(C A)= , A∪(C A)=S, s s s s 元素与集合之间是个体与整体的关系, 不存在大小与相等关系.
则 x=card(A∩B) 且 card(A)=75, card(B)=80, 依题意得:

集合的基本概念与运算

集合的基本概念与运算

集合的基本概念与运算在数学领域中,集合是一种包含对象的集合体。

这些对象可以是数字、字母、符号、单词、人或任何其他事物。

集合的概念和运算是数学中重要的基础,本文将介绍集合的基本概念以及常见的集合运算。

一、集合的基本概念集合是由一组对象组成的,并且这些对象是无序的。

用大写字母表示集合,例如A、B、C等,而用小写字母表示集合中的元素,例如a、b、c等。

如果元素a属于集合A,我们可以表示为a∈A。

如果元素x不属于集合A,我们可以表示为x∉A。

在确定一个集合的时候,我们可以列举其中的元素,也可以使用描述集合中元素的特征或性质。

例如,可以表示“大于0的整数”为集合A,可以表示“A={x|x>0, x∈Z}”。

这样即可定义出集合A。

二、集合的基本运算1. 并集运算当我们希望将两个或多个集合合并成一个新的集合时,我们可以使用并集运算。

用符号∪表示并集。

对于集合A和集合B,A∪B表示包含所有属于集合A或属于集合B的元素的新集合。

例如,如果A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。

2. 交集运算交集运算是指将两个集合中共有的元素组成一个新集合。

用符号∩表示交集。

对于集合A和集合B,A∩B表示包含所有既属于集合A又属于集合B的元素的新集合。

例如,如果A={1,2,3},B={3,4,5},则A∩B={3}。

3. 差集运算差集运算是指从一个集合中减去另一个集合中的元素。

用符号\表示差集运算。

对于集合A和集合B,A\B表示包含属于集合A但不属于集合B的元素的新集合。

例如,如果A={1,2,3,4},B={3,4,5},则A\B={1,2}。

4. 补集运算在集合理论中,我们还可以定义补集运算。

对于给定的全集U和集合A,A的补集表示U中所有不属于A的元素。

用符号A'或A表示补集。

例如,如果U为全集,A为集合A。

则A'表示U中所有不属于集合A的元素的集合。

三、集合的扩展运算除了基本的集合运算外,还存在集合的扩展运算。

集合的概念与运算总结

集合的概念与运算总结

集合的概念与运算总结在数学中,集合是由一组特定对象组成的。

这些对象可以是数字、字母、词语、人物、事物等等。

集合的运算是指对集合进行交、并、差等操作的过程。

本文将对集合的概念及其运算进行总结。

一、集合的概念集合是数学中的基础概念之一,通常用大写字母表示,如A、B、C 等。

集合中的对象称为元素,用小写字母表示。

一个元素要么属于一个集合,要么不属于,不存在属于但不属于的情况。

表示元素属于某个集合的关系可以用符号∈表示,不属于则用∉表示。

例如,对于集合A={1,2,3},元素1∈A,元素4∉A。

集合还有一些常用的特殊表示方法,如空集∅表示不包含任何元素的集合,全集U表示某一给定条件下所有可能元素的集合。

二、集合的基本运算1. 交集运算(∩)交集运算是指将两个集合中共同拥有的元素合并成一个新的集合。

用符号∩表示。

例如,对于集合A={1,2,3}和集合B={2,3,4},它们的交集为A∩B={2,3}。

2. 并集运算 (∪)并集运算是指将两个集合中所有的元素合并成一个新的集合。

用符号∪表示。

例如,对于集合A={1,2,3}和集合B={2,3,4},它们的并集为A∪B={1,2,3,4}。

3. 差集运算(\)差集运算是指从一个集合中去除另一个集合的所有元素。

用符号\表示。

例如,对于集合A={1,2,3}和集合B={2,3,4},集合A减去集合B的差集为A\B={1}。

4. 补集运算补集运算是指对于给定的全集U,从全集中去除某个集合中的元素得到的集合。

用符号'表示。

例如,对于集合A={1,2,3}和全集U={1,2,3,4,5},A的补集为A'={4,5}。

三、集合运算的性质集合运算具有以下几个基本性质:1. 交换律交换律指的是对于任意两个集合A和B,A∩B = B∩A,A∪B =B∪A。

2. 结合律结合律指的是对于任意三个集合A、B和C,(A∩B)∩C = A∩(B∩C),(A∪B)∪C = A∪(B∪C)。

1.1 集合的概念及运算

1.1 集合的概念及运算

集合的概念及运算一、 集合的含义与表示1. 集合的含义一些确定的元素组成的总体叫做集合。

2. 元素与集合的关系1. 集合用大写字母 ,,,C B A 表示2. 元素用小写字母 ,,,c b a 表示3. 元素与集合的关系有且仅有两种:属于(用符号""∈表示)和不属于(用符号""∉表示)。

4. 不含任何元素的集合叫做空集,记做∅。

注意 空集属于任何集合。

3. 集合中元素的性质1. 确定性2. 互异性3. 无序性4. 集合的分类1. 无限集,2. 有限集。

5. 常用数集及其符号表示6. 集合的表示方法1. 列举法 如2. 描述法 如7. 练习1. 已知集合{}2,1,0=A ,则集合{}A y x A y A x y x B ∈-∈∈-=,,中元素的个数是2. 已知集合{}5,4,3,2,1=A ,则集合{}A y x A y A x y x B ∈-∈∈=,,),(中元素的个数是3. i 是虚数单位,若集合{}1,0,1-=S ,则S i A ∈. S i B ∈2. S i C ∈3. S i D ∈2. 二、 集合间的基本关系1. 已知集合{}3,2,1=A ,{}3,2=B 则,集合A 与集合B 的关系2. 集合{}1,0,1-共有 个子集。

三、 集合的基本运算1. 已知集合{}m A ,3,1=,{}m B ,1=,A B A =⋃,则m=2. 已知M ,N 为集合I 的非空子集,且M ,N 不相等,若=⋃∅=⋂N M M C N I 则,3. 已知集合{}2,1,0,1,2--=A ,{}0)2)(1(<+-=x x x B ,则=⋂B A4. 已知全集{}8,7,6,5,4,3,2,1=U ,集合{}6,5,3,2=A ,集合{}7,6,4,3,1=B ,则集合=⋂B C A U5. 若集合{}432,,,i i i i A =(i 是虚数单位),{}1,1-=B ,则=⋂B A6. 设集合{}0)2)(1(<-+=x x x A ,集合{}31<<=x x B ,则=⋃B A7. 已知集合{}0322≥--=x x x A ,{}22≤≤-=x x B ,则=⋂B A8. 已知集合U=R ,{}0≤=x A ,{}1≥=x x B ,则集合=⋃)(B A C U9. 设全集{}2≥∈=x N x U ,集合{}52≥∈=x N x A ,则=A C U10.已知集合{}1log 04<<=x x A ,{}2≤=x x B ,则=⋂B A11.已知集合{}023>+∈=x R x A ,{}0)3)(1(>-+∈=x x R x B ,则=⋂B A。

集合的概念和运算规则

集合的概念和运算规则

集合的概念和运算规则集合是数学中一个基本而重要的概念,它以一种直观的方式描述了事物的整体、分类和关系。

在集合论中,我们研究了集合的概念以及它们之间的运算规则。

本文将深入探讨集合的概念和运算规则,并为读者提供清晰的解释。

一、集合的概念在数学中,集合是由一些事物组成的整体。

这些事物被称为集合的元素。

我们可以用大括号{}来表示一个集合,其中包含了一系列的元素。

例如,我们可以用{1, 2, 3, 4}表示一个包含了数字1、2、3和4的集合。

集合的元素可以是任何类型的事物,例如数字、字母、单词、人、动物等等。

元素之间没有顺序关系,每个元素在集合中只出现一次。

如果一个元素在集合中多次出现,我们只计算它一次。

二、集合的运算规则在集合论中,我们定义了几种基本的运算规则,包括并集、交集、补集和差集。

这些运算可以帮助我们更好地理解和处理集合中的元素。

1. 并集两个集合的并集是由两个集合中的所有元素组成的集合。

用符号∪表示。

例如,如果集合A={1, 2, 3},集合B={3, 4, 5},则它们的并集可以表示为A∪B={1, 2, 3, 4, 5}。

2. 交集两个集合的交集是由两个集合中共有的元素组成的集合。

用符号∩表示。

例如,如果集合A={1, 2, 3},集合B={3, 4, 5},则它们的交集可以表示为A∩B={3}。

3. 补集给定一个全集U和一个集合A,A对于U的补集是由U中不属于A的元素组成的集合。

用符号A'表示。

例如,如果全集U={1, 2, 3, 4, 5},集合A={1, 2, 3},则A对于U的补集可以表示为A'={4, 5}。

4. 差集两个集合的差集是由属于第一个集合但不属于第二个集合的元素组成的集合。

用符号表示。

例如,如果集合A={1, 2, 3},集合B={3, 4, 5},则它们的差集可以表示为A-B={1, 2}。

三、例子说明为了更好地理解集合的概念和运算规则,我们举例进行说明。

高中数学中集合的概念与运算的解题归纳

高中数学中集合的概念与运算的解题归纳

高中数学中集合的概念与运算的解题归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§1.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若A a ∉则B a ∈),则称 集合A 为集合B 的子集,记为A ⊆B 或B ⊇A ;如果A ⊆B ,并且A ≠B ,这时集合A 称为集合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A ⊆B 、B ⊇A ,则A=B.5.补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为 A C s .6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常 记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作A ⋂B.8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并 集,记作A ⋃B.9.空集:不含任何元素的集合称为空集,记作Φ.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N +或N *,整数集记作Z ,有理数集记作Q ,实数集记作R .二、疑难知识导析1.符号⊆,,⊇,,=,表示集合与集合之间的关系,其中“⊆”包括“”和“=”两种情况,同样“⊇”包括“”和“=”两种情况.符号∈,∉表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B =Φ易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n 个元素的集合的所有子集个数为:n 2,所有真子集个数为:n 2-1三、经典例题导讲[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}错解:求M∩N 及解方程组⎩⎨⎧+=+=112x y x y 得⎩⎨⎧==10y x 或 ⎩⎨⎧==21y x ∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 错解:由x 2-3x +2=0得x =1或2.当x =1时,a =2, 当x =2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A .当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或 ∴C={0,1,2}[例3]已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有: ( )A .m +n ∈A B. m +n ∈B C.m +n ∈C D. m +n 不属于A ,B ,C 中任意一个错解:∵m ∈A ,∴m =2a ,a Z ∈,同理n =2a +1,a ∈Z, ∴m +n =4a +1,故选C错因是上述解法缩小了m +n 的取值范围.正解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B, 故选B.[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若BA ,求实数p 的取值范围.错解:由x 2-3x -10≤0得-2≤x≤5. 欲使B A ,只须3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p ∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21. 点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. [例6] 设A 是实数集,满足若a∈A,则a -11∈A ,1≠a 且1∉A. ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a1∈A. ⑷求证:集合A 中至少含有三个不同的元素. 解:⑴2∈A ⇒ -1∈A ⇒21∈A ⇒ 2∈A∴ A 中至少还有两个元素:-1和21 ⑵如果A 为单元素集合,则a =a -11 即12+-a a =0该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ a -11∈A ⇒ a --1111∈A ⇒111---a a ∈A ,即1-a 1∈A ⑷由⑶知a∈A 时,a-11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a-11 ②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a1 ③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a -11. 综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7] 设集合A={a |a =12+n ,n ∈N +},集合B={b |b =542+-k k ,k ∈N +},试证:A B .证明:任设a ∈A,则a =12+n =(n +2)2-4(n +2)+5 (n ∈N +), ∵ n∈N*,∴ n +2∈N*∴ a∈B 故 ①显然,1{}*2,1|Nn n a a A ∈+==∈,而由 B={b |b =542+-k k ,k ∈N +}={b |b =1)2(2+-k ,k ∈N +}知1∈B,于是A≠B②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x 2-3x -10≤0,x ∈Z},B={x|2x 2-x -6>0, x ∈ Z},则A ∩B 的非空真子集的个数为( )A .16B .14C .15D .322.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,-5 }C .{±2,±5 }D .{5,-5}3. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )A .PB .QC .D .不知道4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )A .P∩Q=B .P QC .P=QD .PQ5.若集合M ={11|<xx },N ={x |2x ≤x },则M N = ( ) A .}11|{<<-x x B .}10|{<<x xC .}01|{<<-x xD .∅6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13,B x x A B φ=<<≠,求实数a 的取值范围。

离散数学第三章集合的基本概念和运算

离散数学第三章集合的基本概念和运算
第3章 集合的基本概念和运算
3.1 集合的基本概念
3.2 集合的基本运算
3.3 集合中元素的计数
3.1 集合的基本概念
1.子集:若 B⊆A⇔∀x(x∈B→x∈A),则称B为A的子集. 2.真子集:若 B⊆A ∧ B≠A,则称B为A的真子集. 3.集合相等: B⊆A ∧ A⊆B⇔A=B,称集合A与B相等. 4.空集:不含任何元素的集合称为空集.记作φ. 空集是一切集合的子集;空集是唯一的. 5.n元集:含有n个元素的集合称为n元集. 6.全集:如果所涉及的集合都是某个集合的子集,则称这个集 合为全集(E). 7.幂集:设A为集合,把A的全体子集构成的集合,称为A的幂集 记作P(A),P(A)={x|x⊆A}. 若A是n元集,则P(A)有2n个元集(n元集有2n个子集).
二.集合运算的算律 幂等律:A∪A=A, A∩A=A;
结合律: (A∪B)∪C=A∪(B∪C), (A∩B)∩C=A∩(B∩C); 交换律: A∪B=B∪A , A∩B=B∩A; 分配律: A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C); 同一律: A∪φ=A, 排中律: A∪~A=E; A∩E=A; 零律: A∪E=E, A∩φ=φ;
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
二.包含排斥原理 包含排斥原理

集合与集合的运算

集合与集合的运算

集合与集合的运算集合是数学中非常重要的一个概念,在各个学科领域都有广泛的应用。

而集合的运算是对集合之间的关系进行操作,可以得到新的集合。

本文将介绍集合的基本概念及常见的集合运算。

1. 集合的基本概念集合是由一些确定的元素构成的整体,元素可以是个体、对象或其他数学对象。

用大写字母表示集合,元素用小写字母表示。

例如,集合A可以表示为:A = {a, b, c, d, e},其中a、b、c、d、e为集合A的元素。

2. 集合间的关系2.1 包含关系若集合A中的每个元素都是集合B的元素,则称集合A是集合B的子集,记作A ⊆ B。

若A ⊆ B且B ⊆ A,则称A和B相等,记作A = B。

2.2 交集两个集合A和B的交集,表示为A ∩ B,是指同时属于集合A和集合B的元素所构成的集合。

2.3 并集两个集合A和B的并集,表示为A ∪ B,是指集合A与集合B 中所有元素的集合。

3. 集合的运算3.1 交集运算交集运算将两个集合的共有元素筛选出来,得到一个新的集合,用数学符号表示为:A ∩ B。

例如,对于集合A = {1, 2, 3}和集合B = {2, 3, 4},它们的交集为A ∩ B = {2, 3}。

3.2 并集运算并集运算将两个集合的所有元素合并在一起,得到一个新的集合,用数学符号表示为:A ∪ B。

例如,对于集合A = {1, 2, 3}和集合B = {2, 3, 4},它们的并集为A ∪ B = {1, 2, 3, 4}。

3.3 差集运算差集运算是指将一个集合中不属于另一个集合的元素筛选出来,得到一个新的集合,用数学符号表示为:A - B。

例如,对于集合A = {1, 2, 3, 4}和集合B = {2, 3},它们的差集为A - B = {1, 4}。

3.4 补集运算补集运算是指在某个全集中,将集合A不包含的元素筛选出来,得到一个新的集合,用数学符号表示为:A'。

例如,在全集U = {1, 2, 3, 4}中,集合A = {2, 3}的补集为A' = {1, 4}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 集合
一.考试要求:
理解集合,子集,补集,交集,并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并用它们正确表示一些简单的集合。

二.基本概念和性质
1.集合的基本概念:
某些指定的对象集在一起成为一个集合。

其中每一个对象叫做集合的_______,集合中的元素具有________、_________、________三个特性。

2.集合的三种表示方法:_________、________、_________,它们各有优点,用什么方法来
表示集合要具体问题具体分析。

3.集合中元素与集合的关系分为__________或_________,它们用符号___或____表示。

4.集合间的关系及运算
子集:___________________________________称A 为B 的子集,记作为_____;
真子集:___________________________________称A 为B 的真子集,记为_____;
空集:____________________,记为_____
补集:如果已知全集U ,集合A U ⊆,则U C A =_________________;
交集:A B =___________________;并集:A
B =_____________________
5.集合中常用运算性质 若,A B B A ⊆⊆则______,若,A B B C ⊆⊆则_______, ___A ∅,
若,A ≠∅则___A ∅,___,__,__,__A A A A A A =∅==∅=
__U A C A = __,()__,()__U U U A C A C A B C A B ===
____A B A B A B ⊆⇔=⇔=
6.熟练掌握描述法表示集合的方法,理解下列五个常见集合:
{}{}{}{}{}(1)|()0,:______________(2)|()0,:_________________
(3)|():____________________(4)|(),:________________(5)(,)|(),:__________________________
x f x x R x f x x R x y f x y y f x x M x y y f x x M =∈>∈==∈=∈
7.特别注意:
(1)空集和全集是集合中的特殊集合,应引起重视,特别是空集,避免误解或漏解。

(2)为了直观表示集合之间的关系,常用韦恩图来解决问题,另外要充分利用数轴和平面
直角坐标系来反映集合及其关系。

(3)解决有关集合问题,关键在于集合语言的转化。

三、例题选讲
题型1:集合与元素之间的关系
例1:已知集合{}22,2A a a =+,若3A ∈,则a 的值为____________。

2、已知集合{}{}(,)|2,,(,)|2,x A x y y x R B x y y x x R ==∈==∈,则A B 的元素数目为__________。

3、(2012年山东卷)定义集合运算:A ⊙B ={z ︳z = xy (x+y ),z ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为________。

巩固练习:
(1)已知{}222,(1),33A a a a a =++++,若1A ∈则a=____
(2)设P 、Q 为两个非空数集,定义集合{}|,P Q a b a P b Q +=+∈∈,若{}{}0,2,5,1,2,6P Q ==则P Q +中元素的个数为__________。

(3)定义集合运算:A ⊙B ={z ︳z = xy (x+y ),z ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之积为________。

例2:已知集合{}
2|320,A x R ax x a R =∈-+=∈。

(1) 若A 是空集,求a 的取值范围;
(2) 若A 中只有一个元素,求求a 的取值范围,并将集合A 写出来;
(3) 若A 中到多有一个元素,求a 的取值范围。

题型2:集合之间的关系
例3:已知11|.,|.,623b A x x a a Z B x x b Z ⎧
⎫⎧⎫==+∈==-∈⎨⎬⎨⎬⎩⎭⎩⎭
1|.26c C x x c Z ⎧⎫==
+∈⎨⎬⎩⎭
,则A____B_____C(用符号,,,∈⊂⊃=填空)。

巩固练习:
已知集合{}{}{}
111|,,|,,|,26623n p M x x m m Z N x x n Z P x x p Z ==+∈==-∈==+∈,则M 、N 、P 之间的关系是_________;
例4:设集合{}{}21,,,,,A a b B a a ab ==,且A=B ,求;实数,a b 的值。

巩固练习:1、已知A={a ,a+d ,a+2d},,若A=B ,求q 的值。

2、若{}{}22|,(,)|A y y x B x y y x ====,则A
B =_______。

例5:{}{}222|40,|2(1)10A x x x B x x a x a =+==+++-=,
(1)若A
B B =,求a 的值;(2)若A B B =,求a 的值。

巩固练习:已知{}{}2|60,|09A x x x B x x m =--<<-<①若A
B B =,则m 的取值范围是____
②若A B ≠∅,则实数m 的取值范围是______________.
},,{2aq aq a B =
题型3:数形结合类:
例6:(1)、如图1-1-1,I 是全集,M ,P ,S 是I 的3个子集,
那么阴影部分所表示的集合是_________。

(2)、已知{}{}2(,)|9,(,)|,A x y y x B x y y x m ==-==+且A
B =∅,求实数m 的取值范围。

(3)、已知{}{}(,)|1,(,)|||,A x y y ax B x y y x ==+==若A
B 中只有一个元素,则实数a 的取值范围是_____________。

巩固练习:
已知集合{}{}2(,)|2,(,)|9P x y y x b Q x y y x
==+==-若P Q 恰有4个子集,求实数b 的取值范
围是________________。

题型4:新概念集合类问题
例7:设集合31|,|43M x m x m N x n x n ⎧
⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭
,且M ,N 都是集合{}|01x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,则集合M
N 的“长度”最小值为_____。

巩固练习:
(1) 设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈
P },Q ∧={n ∈N |f (n )∈Q },则(P ∧
∩N Q ∧)∪(Q ∧
∩N P ∧
)=_____________。

(2) 非空集合G 关于运算⊕满足:(1)对任意,a b G ∈都有;(2)a b G ⊕∈存在e G ∈,使得
对一切a G ∈,都有,a e e a a ⊕=⊕=则称G 关于运算⊕为“融洽集”,现给出下列集合运算:(1){},G =⊕非负整数为整数的加法;(2){}
,G =⊕偶数为整数的乘法;(3)
{},G =⊕平面向量为平面的加法;
(4){},G =⊕二次二项式为多项式的加法;(5){},G =⊕虚数为复数的乘法。

其中G 关于运算⊕为“融洽集”是____________。

(填序号)。

相关文档
最新文档