攀枝花市中考数学试卷含答案解析版
四川省攀枝花市中考数学试卷(解析版)
![四川省攀枝花市中考数学试卷(解析版)](https://img.taocdn.com/s3/m/d3d04fd24bfe04a1b0717fd5360cba1aa8118c8a.png)
四川省攀枝花市中考数学试卷(解析版)四川省攀枝花市中考数学试卷(解析版)第一大题选择题1. 已知正方形ABCD的边长为10cm,点E是BC的中点,连接AE 交BD于点F,则△BFE的面积为多少平方厘米?A. 50B. 25C. 20D. 10解析:首先我们可以利用线段AE和线段BC的关系,注意到AE是BC中点,所以BE与EA长度相等。
因此,线段BE的长度为10/2=5cm。
由于△BFE是一个直角三角形,我们可以利用勾股定理来求解△BFE的面积。
根据勾股定理,我们可以得到BE^2 + EF^2 =BF^2。
代入已知数据5^2 + EF^2 = 10^2,可以求得EF的长度为√(100-25),即EF=√75。
根据面积公式S=1/2 ×底 ×高,代入已知数据,我们可以计算得出△BFE的面积为1/2 × 5 × √75 = 5√75。
注意到题目要求的是面积的平方厘米,因此我们需要进一步计算得到5×5×√75 = 25√75。
所以正确答案是B. 25。
2. 在△ABC中,∠ABC=60°,边AC=6cm,边BC=4cm,求△ABC 的面积。
解析:首先我们可以利用三角形的面积公式S=1/2 ×底 ×高。
注意到我们已知边AC和BC的长度,可以利用正弦定理来求解高。
根据正弦定理:h=sin(∠ABC) × AC = sin60° × 6 = √3 × 6 = 6√3。
因此,△ABC的面积为1/2 × 4 × 6√3 = 12√3。
所以答案是12√3。
3. 某商品的原价为500元,现打8.5折出售,打完折后的价格为多少元?解析:打8.5折相当于原价乘以0.85。
所以打完折后的价格为500 ×0.85 = 425元。
所以答案是425元。
第二大题计算题1. 一张长方形纸片,较短的边长是2m,纸片的面积是18平方米,求纸片的周长。
2020年四川省攀枝花市中考数学试卷(解析版)
![2020年四川省攀枝花市中考数学试卷(解析版)](https://img.taocdn.com/s3/m/c05d115a03d8ce2f01662329.png)
2020年四川省攀枝花市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(3分)3的相反数是( ) A .3-B .3C .13-D .132.(3分)下列事件中,为必然事件的是( ) A .明天要下雨 B .||0aC .21->-D .打开电视机,它正在播广告3.(3分)如图,平行线AB 、CD 被直线EF 所截,过点B 作BG EF ⊥于点G ,已知150∠=︒,则(B ∠= )A .20︒B .30︒C .40︒D .50︒4.(3分)下列式子中正确的是( ) A .235a a a -=B .1()a a --=C .22(3)3a a -=D .33323a a a +=5.(3分)若关于x 的方程20x x m --=没有实数根,则m 的值可以为( ) A .1-B .14-C .0D .16.(3分)下列说法中正确的是( ) A .0.09的平方根是0.3 B 164±C .0的立方根是0D .1的立方根是1±7.(3分)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019nCoV -.该病毒的直径在0.00000008米0.000000012-米,将0.000000012用科学记数法表示为10n a ⨯的形式,则n 为( )A .8-B .7-C .7D .88.(3分)实数a 、b 在数轴上的位置如图所示,化简222(1)(1)()a b a b ++---的结果是( )A .2-B .0C .2a -D .2b9.(3分)如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( )A .2πB .34π C .π D .3π10.(3分)甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离()s km 与运动时间()t h 的函数关系大致如图所示,下列说法中错误的是(A .两人出发1小时后相遇B .赵明阳跑步的速度为8/km hC .王浩月到达目的地时两人相距10kmD .王浩月比赵明阳提前1.5h 到目的地二、填空题:本大题共6小题,每小题4分,共24分. 11.(4分)sin60︒= .12.(4分)因式分解:2a ab -= .13.(4分)如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM 课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有 人.14.(4分)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 人进公园,买40张门票反而合算.15.(4分)如图,已知锐角三角形ABC 内接于半径为2的O ,OD BC ⊥于点D ,60BAC ∠=︒,则OD = .16.(4分)如图,在边长为4的正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,AF 的中点为H ,连接BG 、DH .给出下列结论:①AF DE ⊥;②85DG =;③//HD BG ;④ABG DHF ∆∆∽. 其中正确的结论有 .(请填上所有正确结论的序号)三、解答题:本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.已知3x =,将下面代数式先化简,再求值.2(1)(2)(2)(3)(1)x x x x x -++-+--. 18.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?19.三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G 是ABC ∆的重心.求证:3AD GD =.20.如图,过直线12y kx=+上一点P作PD x⊥轴于点D,线段PD交函数(0)my xx=>的图象于点C,点C为线段PD的中点,点C关于直线y x=的对称点C'的坐标为(1,3).(1)求k、m的值;(2)求直线12y kx=+与函数(0)my xx=>图象的交点坐标;(3)直接写出不等式1(0)2mkx xx>+>的解集.21.刘雨泽和黎昕两位同学玩抽数字游戏.五张卡片上分别写有2、4、6、8、x这五个数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P(抽到数字4的卡片)2 5=.(1)求这五张卡片上的数字的众数;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张.①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率.22.如图,开口向下的抛物线与x轴交于点(1,0)A-、(2,0)B,与y轴交于点(0,4)C,点P 是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.23.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i ,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100 cm,则高圆柱的高度为多少cm?2020年四川省攀枝花市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)3的相反数是()A.3-B.3C.13-D.13【解答】解:根据相反数的含义,可得3的相反数是:3-.故选:A.2.(3分)下列事件中,为必然事件的是()A.明天要下雨B.||0aC.21->-D.打开电视机,它正在播广告【解答】解:根据题意,结合必然事件的定义可得:A、明天要下雨不一定发生,不是必然事件,故选项不合题意;B、一个数的绝对值为非负数,故是必然事件,故选项符合题意;C、21->-,是不可能事件,故选项不合题意;D、打开电视机,它不一定正在播广告,有可能是其他节目,故不是必然事件,故选项不合题意;故选:B.3.(3分)如图,平行线AB、CD被直线EF所截,过点B作BG EF⊥于点G,已知150∠=︒,则(B∠=)A.20︒B.30︒C.40︒D.50︒【解答】解:延长BG,交CD于H,150∠=︒,250∴∠=︒, //AB CD ,B BHD ∴∠=∠,BG EF ⊥, 90FGH ∴∠=︒, 902B BHD ∴∠=∠=︒-∠ 9050=︒-︒40=︒.故选:C .4.(3分)下列式子中正确的是( ) A .235a a a -=B .1()a a --=C .22(3)3a a -=D .33323a a a +=【解答】解:2a 和3a 不是同类项,不能合并,因此选项A 不正确; 11()a a--=-,因此选项B 不正确;22(3)9a a -=,因此选项C 不正确; 33323a a a +=,因此选项D 正确;故选:D .5.(3分)若关于x 的方程20x x m --=没有实数根,则m 的值可以为( ) A .1-B .14-C .0D .1【解答】解:关于x 的方程20x x m --=没有实数根,∴△2(1)41()140m m =--⨯⨯-=+<,解得:14m <-,故选:A .6.(3分)下列说法中正确的是( ) A .0.09的平方根是0.3 B .164=±C .0的立方根是0D .1的立方根是1±【解答】解:.0.09A 的平方根是0.3±,故此选项错误; .164B =,故此选项错误;.0C 的立方根是0,故此选项正确; .1D 的立方根是1,故此选项错误;故选:C .7.(3分)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019nCoV -.该病毒的直径在0.00000008米0.000000012-米,将0.000000012用科学记数法表示为10n a ⨯的形式,则n 为( ) A .8-B .7-C .7D .8【解答】解:0.000000012用科学记数法表示为81.210-⨯, 8n ∴=-,故选:A .8.(3分)实数a 、b 在数轴上的位置如图所示,化简222(1)(1)()a b a b ++---的结果是( )A .2-B .0C .2a -D .2b【解答】解:由数轴可知21a -<<-,12b <<, 10a ∴+<,10b ->,0a b -<,∴222(1)(1)()a b a b +--|1||1|||a b a b =++--- (1)(1)()a b a b =-++-+- 11a b a b =--+-+-2=-故选:A .9.(3分)如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( )A .2πB .34π C .π D .3π【解答】解:半圆AB ,绕B 点顺时针旋转30︒,A B ABA AB S S S S ''∴=+-阴影半圆扇形半圆 ABA S '=扇形2630360π=3π=,故选:D .10.(3分)甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离()s km 与运动时间()t h 的函数关系大致如图所示,下列说法中错误的是(A .两人出发1小时后相遇B .赵明阳跑步的速度为8/km hC .王浩月到达目的地时两人相距10kmD .王浩月比赵明阳提前1.5h 到目的地 【解答】解:由图象可知,两人出发1小时后相遇,故选项A 正确;赵明阳跑步的速度为2438(/)km h ÷=,故选项B 正确; 王皓月的速度为:241816(/)km h ÷-=,王皓月从开始到到达目的地用的时间为:2416 1.5()h ÷=, 故王浩月到达目的地时两人相距8 1.512()km ⨯=,故选项C 错误; 王浩月比赵明阳提前3 1.5 1.5h -=到目的地,故选项D 正确; 故选:C .二、填空题:本大题共6小题,每小题4分,共24分. 11.(4分)sin60︒= 32 . 【解答】解:3sin 60︒=. 故答案为:3. 12.(4分)因式分解:2a ab -= (1)(1)a b b +- . 【解答】解:原式2(1)(1)(1)a b a b b =-=+-, 故答案为:(1)(1)a b b +-13.(4分)如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM 课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有 600 人.【解答】解:参加STEAM 课程兴趣小组的人数为120人,百分比为20%,∴参加各兴趣小组的学生共有12020%600÷=(人),故答案为:600.14.(4分)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 33 人进公园,买40张门票反而合算. 【解答】解:设x 人进公园,若购满40张票则需要:40(51)404160⨯-=⨯=(元), 故5160x >时, 解得:32x >,则当有32人时,购买32张票和40张票的价格相同,。
2020年四川省攀枝花市中考数学试卷-含详细解析
![2020年四川省攀枝花市中考数学试卷-含详细解析](https://img.taocdn.com/s3/m/0eca5673c1c708a1294a4455.png)
2020年四川省攀枝花市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.3的相反数是()A. −3B. 3C. −13D. 132.下列事件中,为必然事件的是()A. 明天要下雨B. |a|≥0C. −2>−1D. 打开电视机,它正在播广告3.如图,平行线AB、CD被直线EF所截,过点B作BG⊥EF于点G,已知∠1=50°,则∠B=()A. 20°B. 30°C. 40°D. 50°4.下列式子中正确的是()A. a2−a3=a5B. (−a)−1=aC. (−3a)2=3a2D. a3+2a3=3a35.若关于x的方程x2−x−m=0没有实数根,则m的值可以为()A. −1B. −14C. 0D. 16.下列说法中正确的是()A. 0.09的平方根是0.3B. √16=±4C. 0的立方根是0D. 1的立方根是±17.中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为2019−nCoV.该病毒的直径在0.00000008米−0.000000012米,将0.000000012用科学记数法表示为a×10n的形式,则n为()A. −8B. −7C. 7D. 88.实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是()A. −2B. 0C. −2aD. 2b9.如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A′,则图中阴影部分的面积是()A. π2B. 3π4C. πD. 3π10.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(ℎ)的函数关系大致如图所示,下列说法中错误的是(A. 两人出发1小时后相遇B. 赵明阳跑步的速度为8km/ℎC. 王浩月到达目的地时两人相距10kmD. 王浩月比赵明阳提前1.5ℎ到目的地二、填空题(本大题共6小题,共24.0分)11.计算:sin60°=______.12.因式分解a−ab2=______ .13.如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有______人.14.世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有______人进公园,买40张门票反而合算.15.如图,已知锐角三角形ABC内接于半径为2的⊙O,OD⊥BC于点D,∠BAC=60°,则OD=______.16.如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF⊥DE;②DG=8;③HD//BG;④△ABG∽△DHF.5其中正确的结论有______.(请填上所有正确结论的序号)三、解答题(本大题共7小题,共56.0分)17.已知x=3,将下面代数式先化简,再求值.(x−1)2+(x+2)(x−2)+(x−3)(x−1).18. 课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?19. 三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G 是△ABC 的重心.求证:AD =3GD .20. 如图,过直线y =kx +12上一点P 作PD ⊥x 轴于点D ,线段PD 交函数y =mx (x >0)的图象于点C ,点C 为线段PD 的中点,点C 关于直线y =x 的对称点C′的坐标为(1,3).(1)求k 、m 的值;(2)求直线y =kx +12与函数y =m x (x >0)图象的交点坐标; (3)直接写出不等式m x >kx +12(x >0)的解集.21.刘雨泽和黎昕两位同学玩抽数字游戏.五张卡片上分别写有2、4、6、8、x这五个数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P(抽到数字4的.卡片)=25(1)求这五张卡片上的数字的众数;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张.①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率.22.如图,开口向下的抛物线与x轴交于点A(−1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.23.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度i=1:0.75,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm,则高圆柱的高度为多少cm?答案和解析1.【答案】A【解析】解:根据相反数的含义,可得3的相反数是:−3.故选:A.根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此解答即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.2.【答案】B【解析】解:根据题意,结合必然事件的定义可得:A、明天要下雨不一定发生,不是必然事件,故选项不合题意;B、一个数的绝对值为非负数,故是必然事件,故选项符合题意;C、−2>−1,是不可能事件,故选项不合题意;D、打开电视机,它不一定正在播广告,有可能是其他节目,故不是必然事件,故选项不合题意;故选:B.必然事件就是一定发生的事件,即发生的概率是1的事件.本题考查了必然事件,关键是理解必然事件是一定会发生的事件.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.3.【答案】C【解析】解:延长BG,交CD于H,∵∠1=50°,∴∠2=50°,∵AB//CD,∴∠B=∠BHD,∵BG⊥EF,∴∠FGH=90°,∴∠B=∠BHD=90°−∠2=90°−50°=40°.故选:C.延长BG,交CD于H,根据对顶角相等得到∠1=∠2,再依据平行线的性质得到∠B=∠BHD,最后结合直角三角形的性质得结果.本题考查了对顶角的性质、直角三角形的性质、平行线的性质等知识点,延长BG构造内错角是解决本题的关键.本题用到的直角三角形的性质:直角三角形的两个锐角互余.4.【答案】D【解析】解:a2和a3不是同类项,不能合并,因此选项A不正确;(−a)−1=−1,因此选项B不正确;a(−3a)2=9a2,因此选项C不正确;a3+2a3=3a3,因此选项D正确;故选:D.根据合并同类项,负整数指数幂,积的乘方逐项判断即可.本题考查了合并同类项,负整数指数幂,积的乘方,解题时需要掌握运算法则.5.【答案】A【解析】解:∵关于x的方程x2−x−m=0没有实数根,∴△=(−1)2−4×1×(−m)=1+4m<0,,解得:m<−14故选:A.根据关于x的方程x2−x−m=0没有实数根,判断出△<0,求出m的取值范围,再找出符合条件的m的值.本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.6.【答案】C【解析】解:A.0.09的平方根是±0.3,故此选项错误;B.√16=4,故此选项错误;C.0的立方根是0,故此选项正确;D.1的立方根是1,故此选项错误;故选:C.根据平方根,算术平方根和立方根的定义分别判断即可.本题主要考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键7.【答案】A【解析】解:0.000000012用科学记数法表示为1.2×10−8,∴n=−8,故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,n由原数左边起第一个不为零的数字前面的0的个数所决定.本题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【答案】A【解析】解:由数轴可知−2<a<−1,1<b<2,∴a+1<0,b−1>0,a−b<0,∴√(a+1)2+√(b−1)2−√(a−b)2=|a+1|+|b−1|−|a−b|=−(a+1)+(b−1)+(a−b)=−a−1+b−1+a−b=−2故选:A.根据实数a和b在数轴上的位置,确定出其取值范围,再利用二次根式和绝对值的性质求出答案即可.本题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,学会根据表示数的点在数轴上的位置判断含数式子的符号,掌握绝对值的化简及二次根式的性质是解决本题的关键.9.【答案】D【解析】解:∵半圆AB,绕B点顺时针旋转30°,∴S阴影=S半圆A′B+S扇形ABA′−S半圆AB=S扇形ABA′=62π⋅30 360=3π,故选:D.由半圆A′B面积+扇形ABA′的面积−空白处半圆AB的面积即可得出阴影部分的面积.本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.10.【答案】C【解析】解:由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/ℎ),故选项B正确;王皓月的速度为:24÷1−8=16(km/ℎ),王皓月从开始到到达目的地用的时间为:24÷16=1.5(ℎ),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3−1.5=1.5ℎ到目的地,故选项D正确;故选:C.根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】√32【解析】解:sin60°=√32.故答案为:√32.根据我们记忆的特殊角的三角函数值即可得出答案.本题考查了特殊角的三角函数值,属于基础题,注意一些特殊角的三角函数值是需要我们熟练记忆的内容.12.【答案】a(1+b)(1−b)【解析】解:原式=a(1−b2)=a(1+b)(1−b),故答案为:a(1+b)(1−b)原式提取a,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【答案】600【解析】解:∵参加STEAM课程兴趣小组的人数为120人,百分比为20%,∴参加各兴趣小组的学生共有120÷20%=600(人),故答案为:600.根据扇形统计图中相应的项目的百分比,结合参加STEAM课程兴趣小组的人数为120人,即可算出结果.本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.14.【答案】33【解析】解:设x人进公园,若购满40张票则需要:40×(5−1)=40×4=160(元),故5x>160时,解得:x>32,则当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;32+1=33(人).则至少要有33人去世纪公园,买40张票反而合算.故答案为:33.先求出购买40张票,优惠后需要多少钱,然后再利用5x>160时,求出买到的张数的取值范围再加上1即可.此题主要考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.15.【答案】1【解析】解:连接OB和OC,∵△ABC内接于半径为2的⊙O,∠BAC=60°,∴∠BOC=120°,OB=OC=2,∵OD⊥BC,OB=OC,∴∠BOD=∠COD=60°,∴∠OBD=30°,OB=1,∴OD=12故答案为:1.连接OB和OC,根据圆周角定理得出∠BOC的度数,再依据等腰三角形的性质得到∠BOD 的度数,结合直角三角形的性质可得OD.本题考查了圆周角定理、三角形外接圆的性质、等腰三角形三线合一、30°的直角三角形的性质等知识,解题时需要添加辅助线,从而运用圆周角定理.16.【答案】①④【解析】解:∵四边形ABCD为正方形,∴∠ADC=∠BCD=90°,AD=CD,∵E和F分别为BC和CD中点,∴DF=EC=2,∴△ADF≌△DCE(SAS),∴∠AFD=∠DEC,∠FAD=∠EDC,∵∠EDC+∠DEC=90°,∴∠EDC+∠AFD=90°,∴∠DGF=90°,即DE⊥AF,故①正确;∵AD=4,DF=12CD=2,∴AF=√42+22=2√5,∴DG=AD×DF÷AF=4√55,故②错误;∵H为AF中点,∴HD=HF=12AF=√5,∴∠HDF=∠HFD,∵AB//DC,∴∠HDF=∠HFD=∠BAG,∵AG=√AD2−DG2=8√55,AB=4,∴ABDH =ABHF=4√55=AGDF,∴△ABG~△DHF,故④正确;∴∠ABG=∠DHF,而AB≠AG,则∠ABG和∠AGB不相等,故∠AGB≠∠DHF,故HD与BG不平行,故③错误;故答案为:①④.证明△ADF≌△DCE,再利用全等三角形的性质结合余角的性质得到∠DGF=90°,可判断①,再利用三角形等积法AD×DF÷AF可算出DG,可判断②;再证明∠HDF=∠HFD=∠BAG,求出AG,DH,HF,可判定△ABG~△DHF,可判断④;通过AB≠AG,得到∠ABG和∠AGB不相等,则∠AGB≠∠DHF,可判断③.本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,三角形的高,直角三角形斜边中线定理,知识点较多,有一定难度,解题时注意利用线段关系计算相应线段的长.17.【答案】解:(x−1)2+(x+2)(x−2)+(x−3)(x−1)=x2+1−2x+x2−4+x2−x−3x+3=3x2−6x将x=3代入,原式=27−18=9.【解析】原式利用完全平方公式,平方差公式,以及多项式乘多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.本题考查了整式的混合运算−化简求值,解题时要掌握完全平方公式和平方差公式以及多项式乘法法则.18.【答案】解:设这些学生共有x人,根据题意得x6−x8=2,解得x=48.答:这些学生共有48人.【解析】设这些学生共有x人,先表示出原来和后来各多少组,其等量关系为后来的比原来的少2组,根据此列方程求解.此题考查的知识点是一元一次方程的应用,其关键是找出等量关系及表示原来和后来各多少组,难度一般.19.【答案】证明:连接DE,∵点G 是△ABC 的重心,∴点E 和点D 分别是AB 和BC 的中点,∴DE 是△ABC 的中位线,∴DE//AC 且DE =12AC ,∴△DEG∽△ACG ,∴DE AC=DG AG , ∴12=DG AG ,∴DG AD =13,∴AD =3DG ,即AD =3GD .【解析】根据题意,可以得到DE 时△ABC 的中位线,从而可以得到DE//AC 且DE =12AC ,然后即可得到△DEG∽△ACG ,即可得到DG 和AG 的比值,从而可以得到DG 和AD 的比值,然后即可得到AD 和GD 的关系.本题考查三角形的重心、三角形的中位线、三角形相似,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:(1)∵C′的坐标为(1,3),代入y =m x (x >0)中,得:m =1×3=3,∵C 和C′关于直线y =x 对称,∴点C 的坐标为(3,1),∵点C 为PD 中点,∴点P(3,2),将点P 代入y =kx +12,∴解得:k =12;∴k 和m 的值分别为:3,12;(2)联立:{y =12x +12y =3x,得:x 2+x −6=0, 解得:x 1=2,x 2=−3(舍),∴直线y =kx +12与函数y =m x (x >0)图象的交点坐标为(2,32); (3)∵两个函数的交点为:(2,32),由图象可知:当0<x <32时,反比例函数图象在一次函数图象上面,∴不等式m x >kx +12(x >0)的解集为:0<x <32.【解析】(1)根据点C′在反比例函数图象上求出m值,利用对称性求出点C的坐标,从而得出点P坐标,代入一次函数表达式求出k值;(2)将两个函数表达式联立,得到一元二次方程,求解即可;(3)根据(2)中交点坐标,结合图象得出结果.本题考查了一次函数与反比例函数综合,一元二次方程,图象法解不等式,解题的关键是利用数形结合的思想,结合图象解决问题.21.【答案】解:(1)∵2、4、6、8、x这五个数字中,P(抽到数字4的卡片)=25,则数字4的卡片有2张,即x=4,∴五个数字分别为2、4、4、6、8,则众数为:4;(2)①不同,理由是:原来五个数字的中位数为:4,抽走数字2后,剩余数字为4、4、6、8,则中位数为:4+62=5,所以前后两次的中位数不一样;②根据题意画树状图如下:可得共有16种等可能的结果,其中两次都抽到数字4的情况有4种,则黎昕两次都抽到数字4的概率为:416=14.【解析】(1)根据抽到数字4的卡片的概率为25可得x值,从而可得众数;(2)①分别求出前后两次的中位数即可;②画出树状图,再根据概率公式求解即可.本题考查了中位数,众数的概念及求法,以及列表法或树状图法求概率,解题的关键是理解题意,分清放回与不放回的区别.22.【答案】解:(1)∵A(−1,0),B(2,0),C(0,4),设抛物线表达式为:y=a(x+1)(x−2),将C代入得:4=−2a,解得:a=−2,∴该抛物线的解析式为:y=−2(x+1)(x−2)=−2x2+2x+4;(2)连接OP,设点P坐标为(m,−2m2+2m+4),m>0,∵A(−1,0),B(2,0),C(0,4),可得:OA=1,OC=4,OB=2,∴S=S四边形CABP=S△OAC+S△OCP+S△OPB=12×1×4+12×4m+12×2×(−2m2+2m+4)=−2m2+4m+6=−2(m−1)2+8,当m=1时,S最大,最大值为8.【解析】(1)设二次函数表达式为y=a(x+1)(x−2),再将点C代入,求出a值即可;(2)连接OP,设点P坐标为(m,−2m2+2m+4),m>0,利用S四边形CABP=S△OAC+S△OCP+S△OPB得出S关于m的表达式,再求最值即可.本题考查了二次函数的应用,待定系数法求二次函数表达式,解题的关键是能将四边形CABP的面积表示出来.23.【答案】解:(1)设王诗嬑的影长为xcm,由题意可得:9072=150x,解得:x=120,经检验:x=120是分式方程的解,王诗嬑的的影子长为120cm;(2)正确,因为高圆柱在地面的影子与MN垂直,所以太阳光的光线与MN垂直,则在斜坡上的影子也与MN垂直,则过斜坡上的影子的横截面与MN垂直,而横截面与地面垂直,高圆柱也与地面垂直,∴高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB为高圆柱,AF为太阳光,△CDE为斜坡,CF为圆柱在斜坡上的影子,过点F作FG⊥CE于点G,由题意可得:BC=100,CF=100,∵斜坡坡度i=1:0.75,∴DECE =FGCG=10.75=43,∴设FG=4m,CG=3m,在△CFG中,(4m)2+(3m)2=1002,解得:m=20,∴CG=60,FG=80,∴BG=BC+CG=160,过点F作FH⊥AB于点H,∵同一时刻,90cm矮圆柱的影子落在地面上,其长为72cm,FG⊥BE,AB⊥BE,FH⊥AB,可知四边形HBGF为矩形,∴9072=AHHF=AHBG,∴AH=9072×BG=9072×160=200,∴AB=AH+BH=AH+FG=200+80=280,故高圆柱的高度为280cm.【解析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)根据落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,结合横截面分析可得;(3)过点F作FG⊥CE于点G,设FG=4m,CG=3m,利用勾股定理求出CG和FG,得到BG,过点F作FH⊥AB于点H,再根据同一时刻身高与影长的比例,求出AH的长度,即可得到AB.本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理解实际物体与影长之间的关系解决问题,属于中考常考题型.。
2022年四川省攀枝花市中考数学试卷(学生版+解析版)
![2022年四川省攀枝花市中考数学试卷(学生版+解析版)](https://img.taocdn.com/s3/m/4f157503580102020740be1e650e52ea5518cea9.png)
2022年四川省攀枝花市中考数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)2的平方根是()A.2B.±2C.√2D.±√22.(5分)下列各式不是单项式的为()A.3B.a C.ba D.12x2y3.(5分)下列计算正确的是()A.(a2b)2=a2b2B.a6÷a2=a3C.(3xy2)2=6x2y4D.(﹣m)7÷(﹣m)2=﹣m5 4.(5分)如图是由5个相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.5.(5分)实数a、b在数轴上的对应点位置如图所示,下列结论中正确的是()A.b>﹣2B.|b|>a C.a+b>0D.a﹣b<0 6.(5分)若点A(﹣a,b)在第一象限,则点B(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限7.(5分)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A.m<14B.m≤14C.m≥−14D.m>−148.(5分)为深入落实“立德树人”的根本任务,坚持德、智、体、美、劳全面发展,某学校积极推进学生综合素质评价改革,某同学在本学期德智体美劳的评价得分如图所示,则该同学五项评价得分的众数,中位数,平均数分别为()A .8,8,8B .7,7,7.8C .8,8,8.6D .8,8,8.4 9.(5分)如图,正比例函数y =k 1x 与反比例函数y =k 2x 的图象交于A (1,m )、B 两点,当k 1x ≤k2x 时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤110.(5分)如图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC .若OC =√5,BC =1,∠AOB =30°,则OA 的值为( )A .√3B .32C .√2D .111.(5分)如图,在矩形ABCD 中,AB =6,AD =4,点E 、F 分别为BC 、CD 的中点,BF 、DE 相交于点G ,过点E 作EH ∥CD ,交BF 于点H ,则线段GH 的长度是( )A .56B .1C .54D .53 12.(5分)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km .一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM 表示货车离西昌距离y 1(km )与时间x (h )之间的函数关系:折线OABN 表示轿车离西昌距离y 2(km )与时间x (h )之间的函数关系,则以下结论错误的是( )A .货车出发1.8小时后与轿车相遇B .货车从西昌到雅安的速度为60km /hC .轿车从西昌到雅安的速度为110km /hD .轿车到雅安20分钟后,货车离雅安还有20km二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)√−83−(﹣1)0= . 14.(5分)盒子里装有除颜色外没有其他区别的2个红球和2个黑球,搅匀后从中取出1个球,放回搅匀再取出第2个球,则两次取出的球是1红1黑的概率为 .15.(5分)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程13x ﹣1=0是关于x 的不等式组{x −2≤n 2n −2x <0的关联方程,则n 的取值范围是 .16.(5分)如图,以△ABC 的三边为边在BC 上方分别作等边△ACD 、△ABE 、△BCF .且点A 在△BCF 内部.给出以下结论:①四边形ADFE 是平行四边形;②当∠BAC =150°时,四边形ADFE 是矩形;③当AB =AC 时,四边形ADFE 是菱形;④当AB =AC ,且∠BAC =150°时,四边形ADFE 是正方形.其中正确结论有 (填上所有正确结论的序号).三、解答题:本大题共8小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(8分)解不等式:12(x ﹣3)<13−2x . 18.(8分)同学们在探索“多边形的内角和”时,利用了“三角形的内角和”.请你在不直接运用结论“n 边形的内角和为(n ﹣2)•180°”计算的条件下,利用“一个三角形的内角和等于180°”,结合图形说明:五边形ABCDE 的内角和为540°.19.(8分)为提高学生阅读兴趣,培养良好阅读习惯,2021年3月31日,教育部印发了《中小学生课外读物进校园管理办法》的通知.某学校根据通知精神,积极优化校园阅读环境,推动书香校园建设,开展了“爱读书、读好书、善读书”主题活动,随机抽取部分学生同时进行“你最喜欢的课外读物”(只能选一项)和“你每周课外阅读的时间”两项问卷调查,并绘制成如图1,图2的统计图.图1中A 代表“喜欢人文类”的人数,B 代表“喜欢社会类”的人数,C 代表“喜欢科学类”的人数,D 代表“喜欢艺术类”的人数.已知A 为56人,且对应扇形圆心角的度数为126°.请你根据以上信息解答下列问题:(1)在扇形统计图中,求出“喜欢科学类”的人数;(2)补全条形统计图;(3)该校共有学生3200人,估计每周课外阅读时间不低于3小时的人数.20.(8分)如图,一次函数y=x﹣2的图象与反比例函数y=3x的图象交于A、B两点,求△OAB的面积.21.(8分)如图,⊙O的直径AB垂直于弦DC于点F,点P在AB的延长线上,CP与⊙O 相切于点C.(1)求证:∠PCB=∠P AD;(2)若⊙O的直径为4,弦DC平分半径OB,求:图中阴影部分的面积.22.(8分)第24届冬奥会(也称2022年北京冬奥会)于2022年2月4日至2月20日在中国北京举行,北京成为了历史上第一座既举办过夏奥会又举办过冬奥会的城市.冬奥会上跳台滑雪是一项极为壮观的运动.运动员经过助滑、起跳、空中飞行和着陆,整个动作连贯一致,一气呵成,如图,某运动员穿着滑雪板,经过助滑后,从倾斜角θ=37°的跳台A点以速度v0沿水平方向跳出,若忽略空气阻力影响,水平方向速度将保持不变.同时,由于受重力作用,运动员沿竖直方向会加速下落,因此,运动员在空中飞行的路线是抛物线的一部分,已知该运动员在B点着陆,AB=150m.且sin37°=0.6.忽略空气阻力,请回答下列问题:(1)求该运动员从跳出到着陆垂直下降了多少m?(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s,求他飞行2s后,垂直下降了多少m?23.(10分)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为﹣1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结P A,PB,设点P的横坐标为t,△P AB 的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.24.(12分)如图,直线y=34x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD于点E,连结BE.(1)证明:CDDB =ODDE;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)2022年四川省攀枝花市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)2的平方根是( )A .2B .±2C .√2D .±√2【解答】解:±√2的平方是2,所以2的平方根是±√2,故选:D .2.(5分)下列各式不是单项式的为( )A .3B .aC .b aD .12x 2y【解答】解:A 、3是单项式,故本选项不符合题意;B 、a 是单项式,故本选项不符合题意;C 、b a 不是单项式,故本选项符合题意;D 、12x 2y 是单项式,故本选项不符合题意;故选:C .3.(5分)下列计算正确的是( )A .(a 2b )2=a 2b 2B .a 6÷a 2=a 3C .(3xy 2)2=6x 2y 4D .(﹣m )7÷(﹣m )2=﹣m 5【解答】解:A 、积的乘方等于乘方的积,故A 错误;B 、同底数幂的除法底数不变指数相减,故B 错误;C 、积的乘方等于乘方的积,故C 错误;D 、同底数幂的除法底数不变指数相减,故D 正确;故选:D .4.(5分)如图是由5个相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【解答】解:从上面看第一列是一个小正方形,第二列是两个小正方形,第三列居上是一个小正方形.故选:C.5.(5分)实数a、b在数轴上的对应点位置如图所示,下列结论中正确的是()A.b>﹣2B.|b|>a C.a+b>0D.a﹣b<0【解答】解:由数轴知,1<a<2,﹣3<b<﹣2,∴A错误,|b|>a,即B正确,a+b<0,即C错误,a﹣b>0,即D错误.故选:B.6.(5分)若点A(﹣a,b)在第一象限,则点B(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点A(﹣a,b)在第一象限内,∴﹣a>0,b>0,∴a<0,∴点B(a,b)所在的象限是:第二象限.故选:B.7.(5分)若关于x的方程x2﹣x﹣m=0有实数根,则实数m的取值范围是()A.m<14B.m≤14C.m≥−14D.m>−14【解答】解:∵关于x的方程x2﹣x﹣m=0有实数根,∴Δ=(﹣1)2﹣4(﹣m )=1+4m ≥0,解得m ≥−14,故选:C .8.(5分)为深入落实“立德树人”的根本任务,坚持德、智、体、美、劳全面发展,某学校积极推进学生综合素质评价改革,某同学在本学期德智体美劳的评价得分如图所示,则该同学五项评价得分的众数,中位数,平均数分别为( )A .8,8,8B .7,7,7.8C .8,8,8.6D .8,8,8.4【解答】解:该同学五项评价得分分别为7,8,8,9,10,出现次数最多的数是8,所以众数为8,位于中间位置的数是8,所以中位数是8,平均数为7+8+8+9+105=8.4,故选:D .9.(5分)如图,正比例函数y =k 1x 与反比例函数y =k 2x 的图象交于A (1,m )、B 两点,当k 1x ≤k2x 时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【解答】解:∵正比例函数y =k 1x 与反比例函数y =k2x 的图象交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图象可知,当k 1x ≤k 2x时,x 的取值范围是﹣1≤x <0或x ≥1, 故选:A .10.(5分)如图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC .若OC =√5,BC =1,∠AOB =30°,则OA 的值为( )A .√3B .32C .√2D .1【解答】解:∵∠OBC =90°,OC =√5,BC =1, ∴OB =√OC 2−BC 2=√(√5)2−12=2, ∵∠A =90°,∠AOB =30°, ∴AB =12OB =1,∴OA =√OB 2−AB 2=√22−12=√3, 故选:A .11.(5分)如图,在矩形ABCD 中,AB =6,AD =4,点E 、F 分别为BC 、CD 的中点,BF 、DE 相交于点G ,过点E 作EH ∥CD ,交BF 于点H ,则线段GH 的长度是( )A .56B .1C .54D .53【解答】解:∵四边形ABCD 是矩形,AB =6,AD =4, ∴DC =AB =6,BC =AD =4,∠C =90°,∵点E 、F 分别为BC 、CD 的中点, ∴DF =CF =12DC =3,CE =BE =12BC =2, ∵EH ∥CD , ∴FH =BH , ∵BE =CE , ∴EH =12CF =32,由勾股定理得:BF =√BC 2+CF 2=√42+32=5, ∴BH =FH =12BF =52, ∵EH ∥CD , ∴△EHG ∽△DFG , ∴EH DF=GH FG,∴323=GH52−GH , 解得:GH =56, 故选:A .12.(5分)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km .一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM 表示货车离西昌距离y 1(km )与时间x (h )之间的函数关系:折线OABN 表示轿车离西昌距离y 2(km )与时间x (h )之间的函数关系,则以下结论错误的是( )A .货车出发1.8小时后与轿车相遇B .货车从西昌到雅安的速度为60km /hC.轿车从西昌到雅安的速度为110km/hD.轿车到雅安20分钟后,货车离雅安还有20km【解答】解:由题意可知,货车从西昌到雅安的速度为:140÷4=60(km/h),故选项B不合题意;轿车从西昌到雅安的速度为:(240﹣75)÷(3﹣1.5)=110(km/h),故选项C不合题意;轿车从西昌到雅安所用时间为:240÷110=2211(小时),3−2211=911(小时),设货车出发x小时后与轿车相遇,根据题意得:60x=110(x−911),解得x=1.8,∴货车出发1.8小时后与轿车相遇,故选项A不合题意;轿车到雅安20分钟后,货车离雅安还有60×60−2060=40(km),故选项D符合题意.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)√−83−(﹣1)0=﹣3.【解答】解:原式=﹣2﹣1=﹣3.故答案为:﹣3.14.(5分)盒子里装有除颜色外没有其他区别的2个红球和2个黑球,搅匀后从中取出1个球,放回搅匀再取出第2个球,则两次取出的球是1红1黑的概率为12.【解答】解:画树状图如下:共有16种等可能的结果,其中两次取出的球是1红1黑的结果有8种,∴两次取出的球是1红1黑的概率为816=12.故答案为:12.15.(5分)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程13x ﹣1=0是关于x 的不等式组{x −2≤n 2n −2x <0的关联方程,则n 的取值范围是 1≤n <3 . 【解答】解:解方程13x ﹣1=0得x =3,∵x =3为不等式组{x −2≤n2n −2x <0的解,∴{1≤n 2n −6<0, 解得1≤n <3,即n 的取值范围为:1≤n <3, 故答案为:1≤n <3.16.(5分)如图,以△ABC 的三边为边在BC 上方分别作等边△ACD 、△ABE 、△BCF .且点A 在△BCF 内部.给出以下结论:①四边形ADFE 是平行四边形;②当∠BAC =150°时,四边形ADFE 是矩形;③当AB =AC 时,四边形ADFE 是菱形;④当AB =AC ,且∠BAC =150°时,四边形ADFE 是正方形.其中正确结论有 ①②③④ (填上所有正确结论的序号).【解答】解:①∵△ABE 、△CBF 是等边三角形, ∴BE =AB ,BF =CB ,∠EBA =∠FBC =60°; ∴∠EBF =∠ABC =60°﹣∠ABF ; ∴△EFB ≌△ACB (SAS ); ∴EF =AC =AD ;同理由△CDF ≌△CAB ,得DF =AB =AE ;由AE =DF ,AD =EF 即可得出四边形ADFE 是平行四边形,故结论①正确;②当∠BAC =150°时,∠EAD =360°﹣∠BAE ﹣∠BAC ﹣∠CAD =360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD 是平行四边形, ∴平行四边形ADFE 是矩形,故结论②正确;③由①知AB =AE ,AC =AD ,四边形AEFD 是平行四边形, ∴当AB =AC 时,AE =AD ,∴平行四边形AEFD 是菱形,故结论③正确;④综合②③的结论知:当AB =AC ,且∠BAC =150°时,四边形AEFD 既是菱形,又是矩形,∴四边形AEFD 是正方形,故结论④正确. 故答案为:①②③④.三、解答题:本大题共8小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(8分)解不等式:12(x ﹣3)<13−2x .【解答】解:12(x ﹣3)<13−2x ,去分母,得3(x ﹣3)<2﹣4x , 去括号,得3x ﹣9<2﹣4x , 移项、合并同类项,得7x <11. 化系数为1,得x <117.18.(8分)同学们在探索“多边形的内角和”时,利用了“三角形的内角和”.请你在不直接运用结论“n 边形的内角和为(n ﹣2)•180°”计算的条件下,利用“一个三角形的内角和等于180°”,结合图形说明:五边形ABCDE 的内角和为540°.【解答】解:连接AD,AC,∴五边形ABCDE的内角和等于△AED,△ADC,△ABC的内角和,∴五边形ABCDE的内角和=180°×3=540°.19.(8分)为提高学生阅读兴趣,培养良好阅读习惯,2021年3月31日,教育部印发了《中小学生课外读物进校园管理办法》的通知.某学校根据通知精神,积极优化校园阅读环境,推动书香校园建设,开展了“爱读书、读好书、善读书”主题活动,随机抽取部分学生同时进行“你最喜欢的课外读物”(只能选一项)和“你每周课外阅读的时间”两项问卷调查,并绘制成如图1,图2的统计图.图1中A代表“喜欢人文类”的人数,B 代表“喜欢社会类”的人数,C代表“喜欢科学类”的人数,D代表“喜欢艺术类”的人数.已知A为56人,且对应扇形圆心角的度数为126°.请你根据以上信息解答下列问题:(1)在扇形统计图中,求出“喜欢科学类”的人数;(2)补全条形统计图;(3)该校共有学生3200人,估计每周课外阅读时间不低于3小时的人数.【解答】解:(1)调查的总人数有:56÷126°360°=160(人),则“喜欢科学类”的人数有:160×(1−126°360°−20%﹣10%)=56(人);(2)每周课外阅读3:4小时的人数有:160﹣(5+28+37+50)=40(人), 补全统计图如下:(3)根据题意得: 3200×40+50160=1800(人),答:估计每周课外阅读时间不低于3小时的人数有1800人.20.(8分)如图,一次函数y =x ﹣2的图象与反比例函数y =3x的图象交于A 、B 两点,求△OAB 的面积.【解答】解:解方程组{y =x −2y =3x得{x =3y =1或{x =−1y =−3, 所以A 点坐标为(3,1),B 点坐标为(﹣1,﹣3), 设一次函数y =x ﹣2的图象交y 轴与点C ,则C (0,﹣2), ∴OC =2,∴S △OAB =S △AOC +S △BOC =12×2×3+12×2×1=4. 故△OAB 的面积为4.21.(8分)如图,⊙O的直径AB垂直于弦DC于点F,点P在AB的延长线上,CP与⊙O 相切于点C.(1)求证:∠PCB=∠P AD;(2)若⊙O的直径为4,弦DC平分半径OB,求:图中阴影部分的面积.【解答】(1)证明:连接OC,∵CP与⊙O相切,∴OC⊥PC,∴∠PCB+∠OCB=90°,∵AB⊥DC,∴∠P AD+∠ADF=90°,∵OB=OC,∴∠OBC=∠OCB,由圆周角定理得:∠ADF=∠OBC,∴∠PCB=∠P AD;(2)解:连接OD,在Rt△ODF中,OF=12OD,则∠ODF=30°,∴∠DOF=60°,∵AB⊥DC,∴DF=FC,∵BF=OF,AB⊥DC,∴S△CFB=S△DFO,∴S阴影部分=S扇形BOD=60π×22360=23π.22.(8分)第24届冬奥会(也称2022年北京冬奥会)于2022年2月4日至2月20日在中国北京举行,北京成为了历史上第一座既举办过夏奥会又举办过冬奥会的城市.冬奥会上跳台滑雪是一项极为壮观的运动.运动员经过助滑、起跳、空中飞行和着陆,整个动作连贯一致,一气呵成,如图,某运动员穿着滑雪板,经过助滑后,从倾斜角θ=37°的跳台A点以速度v0沿水平方向跳出,若忽略空气阻力影响,水平方向速度将保持不变.同时,由于受重力作用,运动员沿竖直方向会加速下落,因此,运动员在空中飞行的路线是抛物线的一部分,已知该运动员在B点着陆,AB=150m.且sin37°=0.6.忽略空气阻力,请回答下列问题:(1)求该运动员从跳出到着陆垂直下降了多少m?(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s,求他飞行2s后,垂直下降了多少m?【解答】解:(1)如图,以A为原点,建立平面直角坐标系.过点B作BD⊥y轴于点D.在Rt△OBD中,OD=AB•sin37°=150×0.6=90(m),答:该运动员从跳出到着陆垂直下降了90m;(2)在Rt△OBD中,BD=√AB2−OD2=√1502−902=120(m),∴B(﹣120,﹣90),由题意抛物线顶点为(0,0),经过(﹣120,﹣90).设抛物线的解析式为y=ax2,则有﹣90=a×(﹣120)2,∴a=−1 160,∴抛物线的解析式为y=−1160x2.(3)当x=﹣60时,y=﹣22.5,∴他飞行2s后,垂直下降了22.5m.23.(10分)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为﹣1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结P A,PB,设点P的横坐标为t,△P AB 的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.【解答】解:(1)∵二次函数的最小值为﹣1,点M(1,m)是其对称轴上一点,∴二次函数顶点为(1,﹣1),设二次函数解析式为y=a(x﹣1)2﹣1,将点O(0,0)代入得,a﹣1=0,∴a=1,∴y=(x﹣1)2﹣1=x2﹣2x;(2)连接OP,当y=0时,x2﹣2x=0,∴x=0或2,∴A(2,0),∵点P在抛物线y=x2﹣2x上,∴点P的纵坐标为t2﹣2t,∴S=S△AOB+S△OAP﹣S△OBP=12×2×1+12×2(﹣t2+2t)−12t=﹣t2+32t+1;(3)设N(n,n2﹣2n),当AB为对角线时,由中点坐标公式得,2+0=1+n,∴n=1,∴N(1,﹣1),当AM为对角线时,由中点坐标公式得,2+1=n+0,∴n=3,∴N(3,3),当AN为对角线时,由中点坐标公式得,2+n=0+1,∴n=﹣1,∴N(﹣1,3),综上:N(1,﹣1)或(3,3)或(﹣1,3).24.(12分)如图,直线y=34x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD于点E,连结BE.(1)证明:CDDB =ODDE;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)【解答】(1)证明:∵OC⊥OE,∴∠COE=90°,∴∠AOB =∠COE =90°,∵∠OCD =∠OAB ,∴∠ABO =∠CEO ,∵∠BDC =∠EDO ,∴△BDC ∽△EDO ,∴CD DB =OD DE ;(2)解:当x =0时,y =6,∴B (0,6),∴OB =6,当y =0时,34x +6=0,∴x =﹣8,∴A (﹣8,0),∴OA =8,如图2,∠BDE =90°,∴∠ODC =∠BDE =90°,∵∠OCD =∠OAB ,∴tan ∠OCD =tan ∠OAB ,∴OB OA =OD CD =68=34,∴设OD =3m ,CD =4m ,∵∠CDB =∠AOB =90°,∴CD ∥OA ,∴△CDB ∽△AOB ,∴CD OA =BD OB ,即4m 8=BD 6,∴BD =3m ,∴OB =BD +OD =3m +3m =6,∴m =1,∴BD =3,CD =4,由(1)知:CD DB =OD DE , ∴43=3DE, ∴DE =94;(3)解:如图3,由对称得:OA =OF ,∵动点F 在以O 为圆心,以OA 为半径的半圆AF A '上运动, ∴当F 在y 轴上,且在B 的上方时,BF 的值最小,如图4,此时BF =OF ﹣OB =8﹣6=2,即BF 的最小值是2.。
2021年四川省攀枝花市中考数学试卷(含答案解析)
![2021年四川省攀枝花市中考数学试卷(含答案解析)](https://img.taocdn.com/s3/m/d1741f5d9a6648d7c1c708a1284ac850ad02048c.png)
2021年四川省攀枝花市中考数学试卷学校:___________姓名:___________班级:___________考号:___________二、填空题16.如图,在正方形20.钓鱼岛及其附属岛屿是中国的固有领土,神圣不可侵犯!自21.在直角坐标系中,直线y1=x与反比例函数3A、B两点,已知B点的纵坐标是﹣2.23.如图,在直角梯形ABCD 中,90A B ∠=∠=︒,12AB =,14BC =,9AD =,线段BC 上的点P 从点B 运动到点C ,ADP Ð的角平分线DQ 交以DP 为直径的圆M 于点Q ,连接PQ .(1)当点P 不与点B 重合时,求证:PQ 平分BPD ∠;(2)当圆M 与直角梯形ABCD 的边相切时,请直接写出此时BP 的长度;(3)动点P 从点B 出发,运动到点C 停止,求点Q 所经过的路程.24.如图,开口向上的抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,与y 轴交于点C ,且AC ⊥BC ,其中1x ,2x 是方程x 2+3x ﹣4=0的两个根.(1)求点C 的坐标,并求出抛物线的表达式;(2)垂直于线段BC 的直线l 交x 轴于点D ,交线段BC 于点E ,连接CD ,求△CDE 的面积的最大值及此时点D 的坐标;(3)在(2)的结论下,抛物线的对称轴上是否存在点P ,使得△PDE 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:由旋转可知10545150A Ox ∠=︒+︒='︒,30A OB '∴∠=︒在Rt A OB '△中,11122A B A O AO ''∴===223BO A O A B ''=-=A ' 在第二象限,A '∴(3,1)-故选C【点睛】本题考查了坐标与图形,旋转的性质,含【点睛】本题考查了解直角三角形的实际应用,构建直角三角形是解题的关键.∵OA=OD,∴∠OAD=∠ODA,∵OF⊥AD,∴∠AEO=90°,∴∠AOF+∠OAD=90°,∵∠ADC=∠AOF,∴∠ADC+∠ODA=90°,即∠ODC=90°,∴OD⊥CD,∴CD与⊙O相切于点D;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADB=∠AEO,∴OF∥BD,OA=OB,【点睛】本题主要考查了直线与圆的位置关系,相似三角形的判定与性质,三角形的中位线定理,三角函数等知识,利用设参数表示线段的长是解题的关键.23.(1)见解析(2)4或9(3)8【分析】(1)利用等角的余角相等证明QPD BPQ ∠=∠即可;(2)分两种情况讨论:①当M 与AB 相切时,连接QM ,②当M 与BC 相切时,分别求解即可;(3)由(2)可知点Q 在梯形ABCD 的中位线TK 所在的直线上,求出点P 与点B 重合时KQ '的长,点P 与点C 重合时QK 的长,可得结论.【详解】(1)证明:如图1中,∵PD 是直径,∴90PQD ∠=︒,∴90QDP QPD ∠+∠=︒,∵AD BC ∥,∴180ADP DPB ∠+∠=︒,∴90ADQ BPQ ∠+∠=︒,∵QD 平分ADP Ð,∴ADQ QDP ∠=∠,∴QPD BPQ ∠=∠,∴PQ 平分BPD ∠.(2)解:如图2﹣1中,当M 与AB 相切时,连接QM .由A(﹣4,0),B(1,0),C(0,﹣∵DE⊥BC,AC⊥BC,∴DE∥AC,∴DP5=,∴P(32-,5)或(32-,5-),当DE=PE时,过E作EH⊥x轴于H∵∠HDE=∠EDB,∠DHE=∠BED=∴△DHE∽△DEB,∴DE HE DHBD BE DE==,即555522HE DH==∴HE=1,DH=2,∴E(12,﹣1),∵E在DP的垂直平分线上,∴P(32-,﹣2),当PD=PE时,如图:设P(32-,m),则m2=(3122--)2解得m52 =-,∴P(32-,52-),综上所述,P的坐标为(32-,5)或(【点睛】本题考查二次函数综合应用,涉及待定系数法、三角形相似的判定及性质、三角形面积、等腰三角形判定及应用等知识,点的坐标、相关线段的长度,一般为压轴题.。
四川攀枝花中考试题数学卷(解析版)
![四川攀枝花中考试题数学卷(解析版)](https://img.taocdn.com/s3/m/dc2d6dc3f61fb7360a4c6525.png)
中考真题精品解析 数学(四川攀枝花卷)精编word 版 一、选择题(共10小题,每小题3分,满分30分) 1.下列各数中,不是负数的是( )A .﹣2B .3C .58D .﹣0.10【答案】B .考点:正数和负数.2.计算23()ab 的结果,正确的是( )A .36a bB .35a bC .6abD .5ab【答案】A . 【解析】试题分析:23()ab =36a b .故选A .考点:幂的乘方与积的乘方.3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】D . 【解析】试题分析:A .平行四边形为中心对称图形,所以A 选项错误; B .图形为中心对称图形,所以B 选项错误; C .图形为轴对称图形,所以C 选项错误;D .图形是中心对称图形也是轴对称图形,所以D 选项正确. 故选D .考点:中心对称图形;轴对称图形. 4.下列说法中正确的是( )A .“打开电视,正在播放《新闻联播》”是必然事件B .“x2<0(x 是实数)”是随机事件C .掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查【答案】C.考点:概率的意义;全面调查与抽样调查;随机事件;探究型.5.化简22m nm n n m+--的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n 【答案】A.【解析】试题分析:22m nm n n m+--=22m nm n m n---=22m nm n--=()()m n m nm n+--=m+n.故选A.考点:分式的加减法.6.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【答案】B.【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.7.若x=﹣2是关于x的一元二次方程2232x ax a+-=的一个根,则a的值为()A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或4 【答案】C.考点:一元二次方程的解.8.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.12B.34C.45D.35【答案】D.【解析】试题分析:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD=ODCD=35.故选D.考点:锐角三角函数的定义.9.如图,二次函数2y ax bx c=++(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A.2a﹣b=0 B.a+b+c>0 C.3a﹣c=0D.当a=12时,△ABD是等腰直角三角形【答案】D.故选D.考点:二次函数图象与系数的关系.10.如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6其中正确的结论个数为()A.2B.3C.4D.5【答案】B.【解析】∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴OG,∴OG=2OG.①④⑤.故选B.考点:四边形综合题.二、填空题(共6小题,每小题4分,满分24分)11.月球的半径约为1738000米,1738000这个数用科学记数法表示为.【答案】1.738×106.【解析】试题分析:将1738000用科学记数法表示为1.738×106.故答案为:1.738×106. 考点:科学记数法—表示较大的数.12.对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:则这些学生年龄的众数是 . 【答案】17. 【解析】试题分析:∵在这一组数据中17是出现次数最多的,出现了7次,∴这些学生年龄的众数是17岁;故答案为:17岁. 考点:众数.13.如果一个正六边形的每个外角都是30°,那么这个多边形的内角和为 . 【答案】1800°. 【解析】试题分析:∵一个多边形的每个外角都是30°,∴n=360°÷30°=12,则内角和为:(12﹣2)•180°=1800°.故答案为:1800°. 考点:多边形内角与外角.14.设1x 、2x 是方程25320x x --=的两个实数根,则1211x x +的值为 .【答案】32-.【解析】试题分析:∵方程1x 、2x 是方程25320x x --=的两个实数根,∴1235x x +=,1225x x =-,∴1211x x +=1212x x x x +=32()55÷-=32-.故答案为:32-. 考点:根与系数的关系.15.已知关于x 的分式方程111k x kx x ++=+-的解为负数,则k 的取值范围是.【答案】k >12-且k≠0.考点:分式方程的解.16.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【答案】6 7.【解析】考点:切线的性质.三、解答题(共8小题,满分66分)17201621+.【答案】2.【解析】试题分析:根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值即可.试题解析:原式=21(21+--+=2.考点:实数的运算;零指数幂.18.如图,在平面直角坐标系中,直角△ABC 的三个顶点分别是A (﹣3,1),B (0,3),C (0,1)(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A1B1C1; (2)分别连结AB1、BA1后,求四边形AB1A1B 的面积.【答案】(1)作图见解析;(2)12. 【解析】 试题分析:(1)利用网格特点,延长AC 到A1使A1C=AC ,延长BC 到B1使B1C=BC ,C 点的对应点C1与C 点重合,则△A1B1C1满足条件;考点:作图-旋转变换;作图题. 19.中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为度;条形统计图中,喜欢“豆沙”月饼的学生有人;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有人.(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼,现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法,求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.【答案】(1)126°,4;(2)675;(3)1 3.【解析】试题分析:(1)根据“很喜欢”的部分占的百分比,计算所对应的圆心角;(2)用样本估计总体的思想即可解决问题.(3)画出树状图,根据概率的定义即可解决.试题解析:(1)∵“很喜欢”的部分占的百分比为:1﹣25%﹣40%=35%,∴扇形统计图中,“很喜欢”的部分所对应的圆心角为:360°×35%=126°;∴甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率=412=13考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.20.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数kyx=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3.(1)求反比例函数kyx=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【答案】(1)4yx=;(2)2;(3)132y x=-+.【解析】试题分析:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A 的坐标表示出∵点C、点D均在反比例函数kyx=的函数图象上,∴4322k mmk=⎧⎪⎨+=⨯⎪⎩,解得:14mk=⎧⎨=⎩,∴反比例函数的解析式为4yx =.(2)∵m=1,∴点A的坐标为(4,4),∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==,cos ∠OAB=AB OA ==2.(3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1).设经过点C 、D 的一次函数的解析式为y=ax+b ,则有2214a b a b =+⎧⎨=+⎩,解得:123a b ⎧=-⎪⎨⎪=⎩,∴经过C 、D 两点的一次函数解析式为132y x =-+.考点:反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征.21.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过14吨,则超过部分每吨按市场价n 元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,请写出y 与x 之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?【答案】(1)每吨水的政府补贴优惠价2元,市场调节价为 3.5元;(2)(014)3.521(14)x x y x x ≤≤⎧=⎨->⎩;(3)69.【解析】试题分析:(1)设每吨水的政府补贴优惠价为m 元,市场调节价为n 元,根据题意列出方程组,求解此方(2)当0≤x≤14时,y=2x ;当x >14时,y=14×2+(x ﹣14)×3.5=3.5x ﹣21,故所求函数关系式为:(014)3.521(14)x x y x x ≤≤⎧=⎨->⎩;(3)∵26>14,∴小英家5月份水费为3.5×26﹣21=69元.答:小英家5月份水费69元.考点:一次函数的应用;分段函数.22.如图,在矩形ABCD 中,点F 在边BC 上,且AF=AD ,过点D 作DE ⊥AF ,垂足为点E(1)求证:DE=AB ;(2)以A 为圆心,AB 长为半径作圆弧交AF 于点G ,若BF=FC=1,求扇形ABG 的面积.(结果保留π)【答案】(1)证明见解析;(2)4π.【解析】试题分析:(1)根据矩形的性质得出∠B=90°,AD=BC ,AD ∥BC ,求出∠DAE=∠AFB ,∠AED=90°=∠B,(2)∵BC=AD ,AD=AF ,∴BC=AF ,∵BF=1,∠ABF=90°,∴由勾股定理得:AB==,∴∠BAF=30°,∵△ABF ≌△DEA ,∴∠GDE=∠BAF=30°,,∴扇形ABG 的面积=230360π⨯=4π.考点:扇形面积的计算;全等三角形的判定与性质;矩形的性质.23.如图,在△AOB 中,∠AOB 为直角,OA=6,OB=8,半径为2的动圆圆心Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD 、QC .(1)当t 为何值时,点Q 与点D 重合?(2)当⊙Q 经过点A 时,求⊙P 被OB 截得的弦长.(3)若⊙P与线段QC只有一个公共点,求t的取值范围.【答案】(1)3011;(2);(3)0<t≤1813或3011<t≤5.【解析】试题分析:(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;(2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;(3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.试题解析:(1)∵OA=6,OB=8,∴由勾股定理可求得:AB=10,由题意知:OQ=AP=t,∴AC=2t,∵AC是⊙P的直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴AC AD AB OA,∴AD=65t,当Q与D QC只有一个交点;当QC⊥OA时,此时Q与D重合,由(1)可知:t=3011,∴当3011<t≤5时,⊙P与QC只有一个交点,综上所述,当,⊙P与QC只有一个交点,t的取值范围为:0<t≤1813或3011<t≤5.考点:圆的综合题;分类讨论;动点型;压轴题.24.如图,抛物线2y x bx c=++与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B 和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.【答案】(1)223y x x=--;(2)P点坐标为(32,154-)时,四边形ABPC的面积最大,最大面积为758;(3)存在,113y x=-.【解析】试题分析:(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB 和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.试题解析:(1)把B、C两点坐标代入抛物线解析式可得:9303b cc++=⎧⎨=-⎩,解得:23bc=-⎧⎨=-⎩,∴抛物线解析式为223y x x=--;(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,在223y x x=--中,令y=0可得2023x x=--,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3最大面积为75 8;考点:二次函数综合题;存在型;最值问题;二次函数的最值;动点型;压轴题.。
最新四川省攀枝花中考数学试卷(解析版)及答案.docx
![最新四川省攀枝花中考数学试卷(解析版)及答案.docx](https://img.taocdn.com/s3/m/ab8305aea21614791611287c.png)
攀枝花市中考数学试题一、选择题:本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中只有一项是符合题目要求的。
1、( 1)2等于()A 、1B 、1C、2D、2答案: B考点:乘方运算。
解析:(- 1)2=(-1)×(-1)= 12、在0 ,1, 2 , 3 这四个数中,绝对值最小的数是()A 、0B、1C、2D、3答案: A考点:实数的绝对值。
解析:| 0|= 0,|- 1|= 1,| 2|= 2,|- 3|= 3显然 0 最小,所以,选 A 。
3、用四舍五入法将130542精确到千位,正确的是()A 、131000B 、0.131106C、1.31105D、13.1104答案: C (A 答案是精确到个位,所以错误)考点:科学记数法。
解析:把一个数表示成 a 与 10 的 n 次幂相乘的形式(1≤a<10,n 为整数),这种记数法叫做科学记数法。
所以, 130542= 1.30542× 105,又精确到千位,所以,130542 = 1.30542×105≈ 1.31×1054、下列运算正确的是()A 、3a22a2a2B 、(2a)22a2C、(a b)2a2b2 D 、2(a 1)2a 1答案: A考点:整式的运算。
解析:合并同类项,可知, A 正确;B、错误,因为(2a) 24a2C 错误,因为(a b)2a22ab b2D 错误,因为2(a 1)2a25、如图 , AB∥CD , AD CD , 1 50 ,则 2 的度数是()A 、55B、60C、65D、70A2B1C D答案: C考点:两直线平行的性质。
解析:因为 AD = CD,所以,∠ DCA=1(18050 ) =65°,2又因为 AB ∥CD,,所以,∠ 2=∠ DCA= 65°,选 C。
6、下列说法错误的是()A 、平行四边形的对边相等B、对角线相等的四边形是矩形C、对角线互相垂直的平行四边形是菱形D、正方形既是轴对称图形、又是中心对称图形答案: B考点:特殊四边形的性质。
四川省攀枝花市2022年中考数学真题试题(含解析)
![四川省攀枝花市2022年中考数学真题试题(含解析)](https://img.taocdn.com/s3/m/6cf9d103773231126edb6f1aff00bed5b9f37313.png)
四川省攀枝花市2022年中考数学真题试题一、选择题:本大题共10个小题,每题3分,共30分.在每题给出的四个选项中只有一项为哪一项符合题目要求的1.以下实数中,无理数是〔〕A.0 B.﹣2 C.D.解:0,﹣2,是有理数,是无理数.应选C.2.以下运算结果是a5的是〔〕A.a10÷a2B.〔a2〕3C.〔﹣a〕5D.a3•a2解:A.a10÷a2=a8,错误;B.〔a2〕3=a6,错误;C.〔﹣a〕5=﹣a5,错误;D.a3•a2=a5,正确;应选D.3.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是〔〕A.点M B.点N C.点P D.点Q解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N.应选B.4.如图,等腰直角三角形的顶点A、C分别在直线a、b上,假设a∥b,∠1=30°,那么∠2的度数为〔〕A.30°B.15°C.10°D.20°解:如下图:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°.∵a∥b,∴∠ACD=180°﹣120°=60°,∴∠2=∠ACD﹣∠ACB=60°﹣45°=15°;应选B.5.以下平面图形中,既是中心对称图形,又是轴对称图形的是〔〕A.菱形B.等边三角形C.平行四边形D.等腰梯形解:A.菱形既是中心对称图形,也是轴对称图形,故本选项正确;B.等边三角形不是中心对称图形,是轴对称图形,故本选项错误;C.平行四边形是中心对称图形,不是轴对称图形,故本选项错误;D.等腰梯形不是中心对称图形,是轴对称图形,故本选项错误.应选A.6.抛物线y=x2﹣2x+2的顶点坐标为〔〕A.〔1,1〕B.〔﹣1,1〕C.〔1,3〕D.〔﹣1,3〕解:∵y=x2﹣2x+2=〔x﹣1〕2+1,∴顶点坐标为〔1,1〕.应选A.7.假设点A〔a+1,b﹣2〕在第二象限,那么点B〔﹣a,1﹣b〕在〔〕A.第一象限B.第二象限C.第三象限D.第四象限解:∵点A〔a+1,b﹣2〕在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,那么﹣a>1,1﹣b<﹣1,故点B〔﹣a,1﹣b〕在第四象限.应选D.8.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是〔〕A.B.C.D.解:画树状图得:那么共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为.应选A.9.如图,点A的坐标为〔0,1〕,点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是〔〕A.B.C.D.解:如下图:过点C作CD⊥y轴于点D.∵∠BAC=90°,∴∠DAC+∠OAB=90°.∵∠DCA+∠DAC=90°,∴∠DCA=∠OAB.又∵∠CDA=∠AOB=90°,∴△CDA∽△AOB,∴===tan30°,那么=,故y=x+1〔x>0〕,那么选项C符合题意.应选C.10.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为〔〕A.1 B.2 C.3 D.4解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB.∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA.∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2〔∠PAB+∠PBA〕=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC.∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE.∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA〔HL〕.∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个.应选B.二、填空题:本大题共6小题,每题4分,共24分.11.分解因式:x3y﹣2x2y+xy= .解:原式=xy〔x2﹣2x+1〕=xy〔x﹣1〕2.故答案为:xy〔x﹣1〕2.12.如果a+b=2,那么代数式〔a﹣〕÷的值是.解:当a+b=2时,原式=•=•=a+b=2故答案为:2.13.样本数据1,2,3,4,5.那么这个样本的方差是.解:∵1、2、3、4、5的平均数是〔1+2+3+4+5〕÷5=3,∴这个样本方差为s2= [〔1﹣3〕2+〔2﹣3〕2+〔3﹣3〕2+〔4﹣3〕2+〔5﹣3〕2]=2;故答案为:2.14.关于x的不等式﹣1<x≤a有3个正整数解,那么a的取值范围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1、2、3,那么3≤a<4.故答案为:3≤a<4.15.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,那么点P到A、B两点的距离之和PA+PB的最小值为.解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l 上,如图,作A关于直线l的对称点E,连接AE,连接BE,那么BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE===4,即PA+PB的最小值为4.故答案为:4.16.如图,点A在反比例函数y=〔x>0〕的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,假设△BCE的面积为4,那么k= .解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.又∵S△BEC=4,∴BC•EO=4,即BC×OE=8=BO×AB=|k|.∵反比例函数图象在第一象限,k>0,∴k=8.故答案为:8.三、解答题:本大题共8小题,共66分.解容许写出文字说明、证明过程或演算步骤17.解方程:﹣=1.解:去分母得:3〔x﹣3〕﹣2〔2x+1〕=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.18.某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级局部男生进行了一次测试〔总分值50分,成绩均记为整数分〕,并按测试成绩m〔单位:分〕分成四类:A类〔45<m≤50〕,B类〔40<m≤45〕,C类〔35<m≤40〕,D类〔m≤35〕绘制出如下图的两幅不完整的统计图,请根据图中信息解答以下问题:〔1〕求本次抽取的样本容量和扇形统计图中A类所对的圆心角的度数;〔2〕假设该校九年级男生有500名,D类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?解:〔1〕本次抽取的样本容量为10÷20%=50,扇形统计图中A类所对的圆心角的度数为360°×20%=72°;〔2〕估计该校九年级男生毕业体育测试成绩能达标的有500×〔1﹣〕=470名.19.攀枝花市出租车的收费标准是:起步价5元〔即行驶距离不超过2千米都需付5元车费〕,超过2千米以后,每增加1千米,加收1.8元〔缺乏1千米按1千米计〕.某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8〔x﹣2〕≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.20.△ABC中,∠A=90°.〔1〕请在图1中作出BC边上的中线〔保存作图痕迹,不写作法〕;〔2〕如图2,设BC边上的中线为AD,求证:BC=2AD.〔1〕解:如图1,AD为所作;〔2〕证明:延长AD到E,使ED=AD,连接EB、EC,如图2.∵CD=BD,AD=ED,∴四边形ABEC为平行四边形.∵∠CAB=90°,∴四边形ABEC为矩形,∴AE=BC,∴BC=2AD.21.如图,在平面直角坐标系中,A点的坐标为〔a,6〕,AB⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.点D的纵坐标为.〔1〕求反比例函数的解析式;〔2〕求直线EB的解析式;〔3〕求S△OEB.解:〔1〕∵A点的坐标为〔a,6〕,AB⊥x轴,∴AB=6.∵cos∠OAB═=,∴,∴OA=10,由勾股定理得:OB=8,∴A〔8,6〕,∴D〔8,〕.∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;〔2〕设直线OA的解析式为:y=bx.∵A〔8,6〕,∴8b=6,b=,∴直线OA的解析式为:y=x,那么,x=±4,∴E〔﹣4,﹣3〕,设直线BE的解式为:y=mx+n,把B〔8,0〕,E〔﹣4,﹣3〕代入得:,解得:,∴直线BE的解式为:y=x﹣2;〔3〕S△OEB=OB•|y E|=×8×3=12.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.〔1〕假设⊙O的半径为3,∠CDF=15°,求阴影局部的面积;〔2〕求证:DF是⊙O的切线;〔3〕求证:∠EDF=∠DAC.〔1〕解:连接OE,过O作OM⊥AC于M,那么∠AMO=90°.∵DF⊥AC,∴∠DFC=90°.∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°.∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC∠C=30°,∴OM=OA==,AM=OM=.∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影局部的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;〔2〕证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD.∵DF⊥AC,∴DF⊥OD.∵OD过O,∴DF是⊙O的切线;〔3〕证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC.∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC.∵∠EBC=∠DAC,∴∠FDC=∠DAC.∵A、B、D、E四点共圆,∴∠DEF=∠ABC.∵∠ABC=∠C,∴∠DEC=∠C.∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.23.如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B 点时,P、Q两点同时停止运动,以PQ为边作正△PQM〔P、Q、M按逆时针排序〕,以QC为边在AC上方作正△QCN,设点P运动时间为t秒.〔1〕求cosA的值;〔2〕当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;〔3〕当t为何值时,△PQM的某个顶点〔Q点除外〕落在△QCN的边上.解:〔1〕如图1中,作BE⊥AC于E.∵S△ABC=•AC•BE=,∴BE=.在Rt△ABE中,AE==6,∴coaA===.〔2〕如图2中,作PH⊥AC于H.∵PA=5t,PH=3t,AH=4t,HQ=AC﹣AH﹣CQ=9﹣9t,∴PQ2=PH2+HQ2=9t2+〔9﹣9t〕2.∵S△PQM=S△QCN,∴•PQ2=וCQ2,∴9t2+〔9﹣9t〕2=×〔5t〕2,整理得:5t2﹣18t+9=0,解得t=3〔舍弃〕或,∴当t=时,满足S△PQM=S△QCN.〔3〕①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴PH=HQ,∴3t=〔9﹣9t〕,∴t=.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得PH=QH,∴3t=〔9t﹣9〕,∴t=.综上所述:当t=s或s时,△PQM的某个顶点〔Q点除外〕落在△QCN的边上.24.如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A〔x1,0〕、B〔x2,0〕〔x1<x2〕两点,与y 轴交于C点,且+=﹣.〔1〕求抛物线的解析式;〔2〕抛物线顶点为D,直线BD交y轴于E点;①设点P为线段BD上一点〔点P不与B、D两点重合〕,过点P作x轴的垂线与抛物线交于点F,求△BDF 面积的最大值;②在线段BD上是否存在点Q,使得∠BDC=∠QCE?假设存在,求出点Q的坐标;假设不存在,请说明理由.解:〔1〕∵抛物线对称轴为直线x=1∴﹣∴b=2由一元二次方程根与系数关系:x1+x2=﹣,x1x2=∴+==﹣∴﹣那么c=﹣3∴抛物线解析式为:y=x2﹣2x﹣3〔2〕由〔1〕点D坐标为〔1,﹣4〕当y=0时,x2﹣2x﹣3=0解得x1=﹣1,x2=3∴点B坐标为〔3,0〕①设点F坐标为〔a,b〕∴△BDF的面积S=×〔4﹣b〕〔a﹣1〕+〔﹣b〕〔3﹣a〕﹣×2×4 整理的S=2a﹣b﹣6∵b=a2﹣2a﹣3∴S=2a﹣〔a2﹣2a﹣3〕﹣6=﹣a2+4a﹣3∵a=﹣1<0∴当a=2时,S最大=﹣4+8﹣3=1②存在由点D坐标为〔1,﹣4〕,点B坐标为〔3,0〕∴直线BD解析式为:y=2x﹣6那么点E坐标为〔0,﹣6〕连BC、CD,那么由勾股定理CB2=〔3﹣0〕2+〔﹣3﹣0〕2=18CD2=12+〔﹣4+3〕2=2BD2=〔﹣4〕2+〔3﹣1〕2=20∴CB2+CD2=BD2∴∠BDC=90°∵∠BDC=∠QCE∴∠QCE=90°∴点Q纵坐标为﹣3代入﹣3=2x﹣6∴x=∴存在点Q坐标为〔,﹣3〕。
2020年四川省攀枝花市中考数学试卷(含详细解析)
![2020年四川省攀枝花市中考数学试卷(含详细解析)](https://img.taocdn.com/s3/m/f6b83264195f312b3069a552.png)
……○…………装学校:___________姓名……○…………装保密★启用前2020年四川省攀枝花市中考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一、单选题1.-3相反数是( ) A .3B .-3C .13D .13-2.下列事件中,为必然事件的是( ). A .明天要下雨 B .||0a ≥C .21->-D .打开电视机,它正在播广告3.如图,平行线AB 、CD 被直线EF 所截,过点B 作BG EF ⊥于点G ,已知150∠=︒,则B ∠=( ).A .20︒B .30︒C .40︒D .50︒4.下列式子中正确的是( ). A .235a a a -= B .1()a a --= C .22(3)3a a -=D .33323a a a +=5.若关于x 的方程20x x m --=没有实数根,则m 的值可以为( ).○…………外……装……………订…不※※要※※在※※装※※※内※※○…………内……装……………订…A .1-B .14-C .0D .16.下列说法中正确的是( ). A .0.09的平方根是0.3 B 4=± C .0的立方根是0D .1的立方根是±17.中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为2019nCoV -.该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学计数法表示为10n a ⨯的形式,则n 为( ). A .8-B .7-C .7D .88.实数a 、b +果是( ).A .2-B .0C .2a -D .2b9.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34π C .πD .3π10.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离(km)s 与运动时间(h)t 的函数关系大致如图所示,下列说法中错误的是( ).○…………外…………装…………○订…………○…_________姓名:___________班_考号:___________○…………内…………装…………○订…………○…C .王浩月到达目的地时两人相距10km D .王浩月比赵明阳提前1.5h 到目的地二、填空题11.sin60=_______.12.如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM 课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有________人.13.世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算. 14.如图,已知锐角三角形ABC 内接于半径为2的O ,OD BC 于点D ,60BAC ∠=︒,则OD =________.15.如图,在边长为4的正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,AF 的中点为H ,连接BG 、DH .给出下列结论:①AF DE ⊥;②85DG =;③HD//BG ;④ABGDHF .其中正确的结论有________.(请填上所有正确结论的序号)外…………○……………○…………订※※请※在※※装※※订※※线※※内内…………○……………○…………订三、因式分解16.因式分解:a -ab 2= 四、解答题17.已知3x =,将下面代数式先化简,再求值.2(1)(2)(2)(3)(1)x x x x x -++-+--18.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?19.三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G 是ABC 的重心.求证:3AD GD =.20.如图,过直线12y kx =+上一点P 作PD x ⊥轴于点D ,线段PD 交函数(0)my x x=>的图像于点C ,点C 为线段PD 的中点,点C 关于直线y x =的对称点C '的坐标为(1,3).(1)求k 、m 的值;(2)求直线12y kx =+与函数(0)my x x =>图像的交点坐标; (3)直接写出不等式1(0)2m kx x x >+>的解集.…○…………订……___班级:___________考号:___…○…………订……数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P (抽到数字4的卡片)25=. (1)求这五张卡片上的数字的众数;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张. ①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率.22.如图,开口向下的抛物线与x 轴交于点()1,0A -、(2,0)B ,与y 轴交于点(0,4)C ,点P 是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP 的面积为S ,求S 的最大值.23.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN 的距离皆为100cm .王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm ;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN 互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i =,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm ?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm ,则高圆柱的高度为多少cm ?线…………○……线…………○……参考答案1.A【解析】【分析】根据相反数的定义可得答案.【详解】-的相反数是3.解:3故选A.【点睛】本题考查的是相反数的定义,掌握相反数的定义是解题的关键.2.B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】解:根据题意,结合必然事件的定义可得:A、明天要下雨不一定发生,不是必然事件,故选项错误;a≥是必然事件,故选项正确;B、一个数的绝对值为非负数,故||0->-不是必然事件,故选项错误;C、21-<-,故21D、打开电视机,它不一定正在播广告,有可能是其他节目,故不是必然事件,故选项错误;故选B.【点睛】本题考查了必然事件,关键是理解必然事件是一定会发生的事件.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.3.C【解析】【分析】延长BG,交CD于H,根据对顶角相等得到∠1=∠2,再依据平行线的性质得到∠B=∠BHD,最后结合垂线的定义和三角形内角和得到结果.【详解】解:延长BG ,交CD 于H , ∵∠1=50°, ∴∠2=50°, ∵AB ∥CD , ∴∠B=∠BHD , ∵BG ⊥EF , ∴∠FGH=90°,∴∠B=∠BHD=180°-∠2-∠FGH=180°-50°-90°=40°. 故选C.【点睛】本题考查了对顶角相等,垂线的定义,平行线的性质,三角形内角和,解题的关键是延长BG 构造内错角. 4.D 【解析】 【分析】分别根据合并同类项,负整数指数幂,积的乘方逐项判断即可. 【详解】解:A 、2a 和3a 不是同类项,不能合并,故选项错误; B 、11()a a--=-,故选项错误;C 、22(3)9a a -=,故选项错误;D 、33323a a a +=,故选项正确; 故选D.【点睛】本题考查了合并同类项,负整数指数幂,积的乘方,解题时需要掌握运算法则. 5.A 【解析】 【分析】根据关于x 的方程20x x m --=没有实数根,判断出△<0,求出m 的取值范围,再找出符合条件的m 的值. 【详解】解:∵关于x 的方程20x x m --=没有实数根, ∴△=()()214114m m --⨯⨯-=+<0, 解得:14m <-, 故选项中只有A 选项满足, 故选A. 【点睛】本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零. 6.C 【解析】 【分析】根据平方根,算术平方根和立方根的定义分别判断即可. 【详解】解:A 、0.09的平方根是±0.3,故选项错误;B 4=,故选项错误;C 、0的立方根是0,故选项正确;D 、1的立方根是1,故选项错误; 故选C. 【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键. 7.A 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000000012用科学计数法表示为1.2×10-8, ∴n=-8, 故选A. 【点睛】本题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 8.A 【解析】 【分析】根据实数a 和b 在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案. 【详解】解:由数轴可知-2<a <-1,1<b <2, ∴a+1<0,b-1>0,a-b <0,+ =11a b a b ++--- =()()()11a b a b -++-+- =-2 故选A.【点睛】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.9.D【解析】【分析】由半圆A′B面积+扇形ABA′的面积-空白处半圆AB的面积即可得出阴影部分的面积.【详解】解:∵半圆AB,绕B点顺时针旋转30°,∴S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′=2630 360π⋅=3π故选D.【点睛】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.10.C【解析】【分析】根据图像可得两地之间的距离,再分别算出两人的行进速度,据此可得各项数据进而判断各选项.【详解】解:由图可知:当时间为0h时,两人相距24km,即甲乙两地相距24km,当时间为1h时,甲乙两人之间距离为0,即此时两人相遇,故A正确;∵24÷1=24,可得两人的速度和为24km/h,由于王浩月先到达目的地,故赵明阳全程用了3h,∴赵明阳的速度为24÷3=8km/h,故B正确;可知王浩月的速度为24-8=16km/h,∴王浩月到达目的地时,用了24÷16=32 h,此时赵明阳行进的路程为:32×8=12km,即此时两人相距12km,故C错误;赵明阳到达目的地时,用了3h,则3-32=32=1.5h,∴王浩月比赵明阳提前1.5h到目的地,故D正确.故选C.【点睛】本题考查了动点问题的函数图像,解题时要充分理解题意,读懂函数图像的意义.11.2【解析】3sin60故答案为2.12.600【解析】【分析】根据扇形统计图中相应的项目的百分比,结合参加STEAM课程兴趣小组的人数为120人,即可算出结果.【详解】解:∵参加STEAM课程兴趣小组的人数为120人,百分比为20%,∴参加各兴趣小组的学生共有120÷20%=600人,故答案为:600.【点睛】本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.13.33【解析】【分析】先求出购买40张票,优惠后需要多少钱,然后再利用5x>160时,求出买到的张数的取值范围再加上1即可.【详解】解:设x人进公园,若购满40张票则需要:40×(5-1)=40×4=160(元),故5x>160时,解得:x>32,∴当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;∴32+1=33(人);则至少要有33人去世纪公园,买40张票反而合算.故答案为:33.【点睛】此题主要考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.14.1【解析】【分析】连接OB和OC,根据圆周角定理得出∠BOC的度数,再依据等腰三角形的性质得到∠BOD 的度数,结合直角三角形的性质可得OD.【详解】解:连接OB和OC,∵△ABC内接于半径为2的圆O,∠BAC=60°,∴∠BOC=120°,OB=OC=2,∵OD⊥BC,OB=OC,∴∠BOD=∠COD=60°,∴∠OBD=30°,∴OD=12OB=1,故答案为:1.【点睛】本题考查了圆周角定理,三角形外接圆的性质,等腰三角形三线合一,30°的直角三角形的性质,解题时需要添加辅助线,从而运用圆周角定理.15.①④【解析】【分析】证明△ADF≌△DCE,再利用全等三角形的性质结合余角的性质得到∠DGF=90°,可判断①,再利用三角形等积法AD×DF÷AF可算出DG,可判断②;再证明∠HDF=∠HFD=∠BAG,求出AG,DH,HF,可判定ABG DHF,可判断④;通过AB≠AG,得到∠ABG和∠AGB不相等,则∠AGB≠∠DHF,可判断③.【详解】解:∵四边形ABCD为正方形,∴∠ADC=∠BCD=90°,AD=CD,∵E和F分别为BC和CD中点,∴DF=EC=2,∴△ADF≌△DCE(SAS),∴∠AFD=∠DEC,∠FAD=∠EDC,∵∠EDC+∠DEC=90°,∴∠EDC+∠AFD =90°,∴∠DGF=90°,即DE⊥AF,故①正确;∵AD=4,DF=12CD=2,∴AF=224225+=,∴DG=AD×DF÷AF=45,故②错误;∵H为AF中点,∴HD=HF=12AF=5,∴∠HDF=∠HFD,∵AB∥DC,∴∠HDF=∠HFD=∠BAG,∵AG=22AD DG-=85,AB=4,∴455AB AB AG DH HF DF===,∴ABG DHF,故④正确;∴∠ABG=∠DHF,而AB≠AG,则∠ABG和∠AGB不相等,故∠AGB≠∠DHF,故HD与BG不平行,故③错误;故答案为:①④.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,三角形的高,直角三角形斜边中线定理,知识点较多,有一定难度,解题时注意利用线段关系计算相应线段的长.16.【解析】略17.236x x-;9【解析】【分析】先利用完全平方公式和平方差公式以及多项式乘法法则展开,再合并同类项,最后将x=3代入即可.【详解】解:2(1)(2)(2)(3)(1)x x x x x -++-+--=22212433x x x x x x +-+-+--+=236x x -将x=3代入,原式=9【点睛】本题考查了整式的混合运算—化简求值,解题时要掌握完全平方公式和平方差公式以及多项式乘法法则.18.48人【解析】【分析】设这些学生共有x 人,先表示出原来和后来各多少组,其等量关系为后来的比原来的少2组,根据此列方程求解.【详解】解:设这些学生共有x 人,根据题意,得 268x x -= 解得x=48.答:这些学生共有48人.【点睛】此题考查的知识点是一元一次方程的应用,其关键是找出等量关系及表示原来和后来各多少组,难度一般.19.见解析【解析】【分析】过点D 作DH ∥AB 交CE 于H ,根据三角形的中位线平行于第三边并且等于第三边的一半可得BE=2DH ,从而得到AE=2DH ,再根据△AEG 和△DHG 相似,利用相似三角形对应边成比例列出比例式计算即可得证.【详解】解:过点D 作DH ∥AB ,交CE 于点H ,∵AD 是△ABC 的中线,∴点D 是BC 的中点,∴DH 是△BCE 的中位线,∴BE=2DH ,DH ∥AB ,∵CE 是△BCE 的中线,∴AE=BE ,∴AE=2DH ,∵DH ∥AB ,∴△AEG ∽△DHG , ∴2AG AE DG DH==, ∴AG=2GD ,即AD=3GD.【点睛】本题考查了三角形的重心定理的证明,作辅助线构造成三角形的中位线和相似三角形是解题的关键,也是本题的难点.20.(1)3,12;(2)(2,32);(3)0<x <32【解析】【分析】(1)根据点C′在反比例函数图像上求出m 值,利用对称性求出点C 的坐标,从而得出点P 坐标,代入一次函数表达式求出k 值;(2)将两个函数表达式联立,得到一元二次方程,求解即可;(3)根据(2)中交点坐标,结合图像得出结果.【详解】解:(1)∵C′的坐标为(1,3), 代入(0)m y x x=>中, 得:m=1×3=3,∵C 和C′关于直线y=x 对称,∴点C 的坐标为(3,1),∵点C 为PD 中点,∴点P (3,2),将点P 代入12y kx =+, ∴解得:k=12; ∴k 和m 的值分别为:3,12; (2)联立:11223y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,得:260x x +-=, 解得:12x =,23x =-(舍), ∴直线12y kx =+与函数(0)m y x x =>图像的交点坐标为(2,32); (3)∵两个函数的交点为:(2,32), 由图像可知:当0<x <32时,反比例函数图像在一次函数图像上面, ∴不等式1(0)2m kx x x >+>的解集为:0<x <32. 【点睛】本题考查了一次函数与反比例函数综合,一元二次方程,图像法解不等式,解题的关键是利用数形结合的思想,结合图像解决问题.21.(1)4;(2)①不同,理由见解析;②1 4【解析】【分析】(1)根据抽到数字4的卡片的概率为25可得x值,从而可得众数;(2)①分别求出前后两次的中位数即可;②画出树状图,再根据概率公式求解即可. 【详解】解:(1)∵2、4、6、8、x这五个数字中,P(抽到数字4的卡片)25 =,则数字4的卡片有2张,即x=4,∴五个数字分别为2、4、4、6、8,则众数为:4;(2)①不同,理由是:原来五个数字的中位数为:4,抽走数字2后,剩余数字为4、4、6、8,则中位数为:465 2+=,∴前后两次的中位数不一样;②由题意可得:可得共有16种等可能的结果,其中两次都抽到数字4的情况有4种,∴黎昕两次都抽到数字4的概率为41 164=.【点睛】本题考查了中位数,众数的概念及求法,以及列表法或树状图法求概率,解题的关键是理解题意,分清放回与不放回的区别.22.(1)2224y x x =-++;(2)8【解析】【分析】(1)设二次函数表达式为()()12y a x x =+-,再将点C 代入,求出a 值即可;(2)连接OP ,设点P 坐标为(m ,2224m m -++),m >0,利用S 四边形CABP =S △OAC +S △OCP +S △OPB 得出S 关于m 的表达式,再求最值即可.【详解】解:(1)∵A (-1,0),B (2,0),C (0,4),设抛物线表达式为:()()12y a x x =+-,将C 代入得:,解得:a=-2,∴该抛物线的解析式为:()()2212224y x x x x =-+-=-++; (2)连接OP ,设点P 坐标为(m ,2224m m -++),m >0,∵A (-1,0),B (2,0),C (0,4),可得:OA=1,OC=4,OB=2,∴S=S 四边形CABP =S △OAC +S △OCP +S △OPB =()21111442224222m m m ⨯⨯+⨯⨯+⨯⨯-++ =2246m m -++当m=1时,S 最大,且为8.【点睛】本题考查了二次函数的应用,待定系数法求二次函数表达式,解题的关键是能将四边形CABP的面积表示出来.23.(1)120cm;(2)正确;(3)280cm【解析】【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)根据落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,结合横截面分析可得;(3)过点F作FG⊥CE于点G,设FG=4m,CG=3m,利用勾股定理求出CG和FG,得到BG,过点F作FH⊥AB于点H,再根据同一时刻身高与影长的比例,求出AH的长度,即可得到AB.【详解】解:(1)设王诗嬑的影长为xcm,由题意可得:90150 72x=,解得:x=120,经检验:x=120是分式方程的解,王诗嬑的的影子长为120cm;(2)正确,因为高圆柱在地面的影子与MN垂直,所以太阳光的光线与MN垂直,则在斜坡上的影子也与MN垂直,则过斜坡上的影子的横截面与MN垂直,而横截面与地面垂直,高圆柱也与地面垂直,∴高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB为高圆柱,AF为太阳光,△CDE为斜坡,CF为圆柱在斜坡上的影子,过点F作FG⊥CE于点G,由题意可得:BC=100,CF=100,∵斜坡坡度1:0.75i=,∴140.753 DE FGCE CG===,∴设FG=4m,CG=3m,在△CFG中,()()22243100m m +=,解得:m=20,∴CG=60,FG=80,∴BG=BC+CG=160,过点F 作FH ⊥AB 于点H ,∵同一时刻,90cm 矮圆柱的影子落在地面上,其长为72cm ,FG ⊥BE ,AB ⊥BE ,FH ⊥AB ,可知四边形HBGF 为矩形, ∴9072AH AH HF BG==, ∴AH=90901607272BG ⨯=⨯=200, ∴AB=AH+BH=AH+FG=200+80=280,故高圆柱的高度为280cm.【点睛】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理解实际物体与影长之间的关系解决问题,属于中考常考题型.。
2020年四川省攀枝花市中考数学试题(含答案解析)
![2020年四川省攀枝花市中考数学试题(含答案解析)](https://img.taocdn.com/s3/m/489e23e4be1e650e53ea9945.png)
2020年四川省攀枝花市中考数学试题(含答案解析)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是()A.﹣3 B.3 C.﹣D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得3的相反数是:﹣3.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.下列事件中,为必然事件的是()A.明天要下雨B.|a|≥0C.﹣2>﹣1D.打开电视机,它正在播广告【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:根据题意,结合必然事件的定义可得:A、明天要下雨不一定发生,不是必然事件,故选项不合题意;B、一个数的绝对值为非负数,故是必然事件,故选项符合题意;C、﹣2>﹣1,是不可能事件,故选项不合题意;D、打开电视机,它不一定正在播广告,有可能是其他节目,故不是必然事件,故选项不合题意;故选:B.【点评】本题考查了必然事件,关键是理解必然事件是一定会发生的事件.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.3.如图,平行线AB、CD被直线EF所截,过点B作BG⊥EF于点G,已知∠1=50°,则∠B=()A.20°B.30°C.40°D.50°【分析】延长BG,交CD于H,根据对顶角相等得到∠1=∠2,再依据平行线的性质得到∠B=∠BHD,最后结合直角三角形的性质得结果.【解答】解:延长BG,交CD于H,∵∠1=50°,∴∠2=50°,∵AB∥CD,∴∠B=∠BHD,∵BG⊥EF,∴∠FGH=90°,∴∠B=∠BHD=90°﹣∠2=90°﹣50°=40°.故选:C.【点评】本题考查了对顶角的性质、直角三角形的性质、平行线的性质等知识点,延长BG构造内错角是解决本题的关键.本题用到的直角三角形的性质:直角三角形的两个锐角互余.4.下列式子中正确的是()A.a2﹣a3=a5B.(﹣a)﹣1=a C.(﹣3a)2=3a2D.a3+2a3=3a3【分析】根据合并同类项,负整数指数幂,积的乘方逐项判断即可.【解答】解:a2和a3不是同类项,不能合并,因此选项A不正确;,因此选项B不正确;(﹣3a)2=9a2,因此选项C不正确;a3+2a3=3a3,因此选项D正确;故选:D.【点评】本题考查了合并同类项,负整数指数幂,积的乘方,解题时需要掌握运算法则.5.若关于x的方程x2﹣x﹣m=0没有实数根,则m的值可以为()A.﹣1 B.﹣C.0 D.1【分析】根据关于x的方程x2﹣x﹣m=0没有实数根,判断出△<0,求出m的取值范围,再找出符合条件的m的值.【解答】解:∵关于x的方程x2﹣x﹣m=0没有实数根,∴△=(﹣1)2﹣4×1×(﹣m)=1+4m<0,解得:,故选:A.【点评】本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.6.下列说法中正确的是()A.0.09的平方根是0.3 B.=±4C.0的立方根是0 D.1的立方根是±1【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【解答】解:A.0.09的平方根是±0.3,故此选项错误;B.,故此选项错误;C.0的立方根是0,故此选项正确;D.1的立方根是1,故此选项错误;故选:C.【点评】本题主要考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键7.中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019﹣nCoV.该病毒的直径在0.00000008米﹣0.000000012米,将0.000000012用科学记数法表示为a×10n的形式,则n为()A.﹣8 B.﹣7 C.7 D.8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000012用科学记数法表示为1.2×10﹣8,∴n=﹣8,故选:A.【点评】本题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.实数a、b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b【分析】根据实数a和b在数轴上的位置,确定出其取值范围,再利用二次根式和绝对值的性质求出答案即可.【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【点评】本题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,学会根据表示数的点在数轴上的位置判断含数式子的符号,掌握绝对值的化简及二次根式的性质是解决本题的关键.9.如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是()A.B.C.πD.3π【分析】由半圆A′B面积+扇形ABA′的面积﹣空白处半圆AB的面积即可得出阴影部分的面积.【解答】解:∵半圆AB,绕B点顺时针旋转30°,∴S阴影=S半圆A′B+S扇形ABA′﹣S半圆AB=S扇形ABA′==3π,故选:D.【点评】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.10.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是(A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王皓月的速度为:24÷1﹣8=16(km/h),王皓月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题:本大题共6小题,每小题4分,共24分.11.(4分)sin60°=.【分析】根据我们记忆的特殊角的三角函数值即可得出答案.【解答】解:sin60°=.故答案为:.【点评】本题考查了特殊角的三角函数值,属于基础题,注意一些特殊角的三角函数值是需要我们熟练记忆的内容.12.(4分)因式分解:a﹣ab2=a(1+b)(1﹣b).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(1﹣b2)=a(1+b)(1﹣b),故答案为:a(1+b)(1﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(4分)如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加STEAM课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有600人.【分析】根据扇形统计图中相应的项目的百分比,结合参加STEAM课程兴趣小组的人数为120人,即可算出结果.【解答】解:∵参加STEAM课程兴趣小组的人数为120人,百分比为20%,∴参加各兴趣小组的学生共有120÷20%=600(人),故答案为:600.【点评】本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.14.(4分)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有33人进公园,买40张门票反而合算.【分析】先求出购买40张票,优惠后需要多少钱,然后再利用5x>160时,求出买到的张数的取值范围再加上1即可.【解答】解:设x人进公园,若购满40张票则需要:40×(5﹣1)=40×4=160(元),故5x>160时,解得:x>32,则当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;32+1=33(人).则至少要有33人去世纪公园,买40张票反而合算.故答案为:33.【点评】此题主要考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解决本题的关键.15.(4分)如图,已知锐角三角形ABC内接于半径为2的⊙O,OD⊥BC于点D,∠BAC =60°,则OD=1.【分析】连接OB和OC,根据圆周角定理得出∠BOC的度数,再依据等腰三角形的性质得到∠BOD的度数,结合直角三角形的性质可得OD.【解答】解:连接OB和OC,∵△ABC内接于半径为2的⊙O,∠BAC=60°,∴∠BOC=120°,OB=OC=2,∵OD⊥BC,OB=OC,∴∠BOD=∠COD=60°,∴∠OBD=30°,∴OD=OB=1,故答案为:1.【点评】本题考查了圆周角定理、三角形外接圆的性质、等腰三角形三线合一、30°的直角三角形的性质等知识,解题时需要添加辅助线,从而运用圆周角定理.16.(4分)如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF⊥DE;②DG=;③HD∥BG;④△ABG∽△DHF.其中正确的结论有①④.(请填上所有正确结论的序号)【分析】证明△ADF≌△DCE,再利用全等三角形的性质结合余角的性质得到∠DGF=90°,可判断①,再利用三角形等积法AD×DF÷AF可算出DG,可判断②;再证明∠HDF =∠HFD=∠BAG,求出AG,DH,HF,可判定△ABG~△DHF,可判断④;通过AB≠AG,得到∠ABG和∠AGB不相等,则∠AGB≠∠DHF,可判断③.【解答】解:∵四边形ABCD为正方形,∴∠ADC=∠BCD=90°,AD=CD,∵E和F分别为BC和CD中点,∴DF=EC=2,∴△ADF≌△DCE(SAS),∴∠AFD=∠DEC,∠FAD=∠EDC,∵∠EDC+∠DEC=90°,∴∠EDC+∠AFD=90°,∴∠DGF=90°,即DE⊥AF,故①正确;∵AD=4,DF=CD=2,∴AF=,∴DG=AD×DF÷AF=,故②错误;∵H为AF中点,∴HD=HF=AF=,∴∠HDF=∠HFD,∵AB∥DC,∴∠HDF=∠HFD=∠BAG,∵AG==,AB=4,∴,∴△ABG~△DHF,故④正确;∴∠ABG=∠DHF,而AB≠AG,则∠ABG和∠AGB不相等,故∠AGB≠∠DHF,故HD与BG不平行,故③错误;故答案为:①④.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,三角形的高,直角三角形斜边中线定理,知识点较多,有一定难度,解题时注意利用线段关系计算相应线段的长.三、解答题:本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知x=3,将下面代数式先化简,再求值.(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1).【分析】原式利用完全平方公式,平方差公式,以及多项式乘多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(x﹣1)2+(x+2)(x﹣2)+(x﹣3)(x﹣1)=x2+1﹣2x+x2﹣4+x2﹣x﹣3x+3=3x2﹣6x将x=3代入,原式=27﹣18=9.【点评】本题考查了整式的混合运算﹣化简求值,解题时要掌握完全平方公式和平方差公式以及多项式乘法法则.18.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?【分析】设这些学生共有x人,先表示出原来和后来各多少组,其等量关系为后来的比原来的少2组,根据此列方程求解.【解答】解:设这些学生共有x人,根据题意得,解得x=48.答:这些学生共有48人.【点评】此题考查的知识点是一元一次方程的应用,其关键是找出等量关系及表示原来和后来各多少组,难度一般.19.三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G是△ABC的重心.求证:AD=3GD.【分析】根据题意,可以得到DE时△ABC的中位线,从而可以得到DE∥AC且DE=AC,然后即可得到△DEG∽△ACG,即可得到DG和AG的比值,从而可以得到DG 和AD的比值,然后即可得到AD和GD的关系.【解答】证明:连接DE,∵点G是△ABC的重心,∴点E和点D分别是AB和BC的中点,∴DE是△ABC的中位线,∴DE∥AC且DE=AC,∴△DEG∽△ACG,∴,∴,∴,∴AD=3DG,即AD=3GD.【点评】本题考查三角形的重心、三角形的中位线、三角形相似,解答本题的关键是明确题意,利用数形结合的思想解答.20.如图,过直线y=kx+上一点P作PD⊥x轴于点D,线段PD交函数y=(x>0)的图象于点C,点C为线段PD的中点,点C关于直线y=x的对称点C'的坐标为(1,3).(1)求k、m的值;(2)求直线y=kx+与函数y=(x>0)图象的交点坐标;(3)直接写出不等式>kx+(x>0)的解集.【分析】(1)根据点C′在反比例函数图象上求出m值,利用对称性求出点C的坐标,从而得出点P坐标,代入一次函数表达式求出k值;(2)将两个函数表达式联立,得到一元二次方程,求解即可;(3)根据(2)中交点坐标,结合图象得出结果.【解答】解:(1)∵C′的坐标为(1,3),代入y=(x>0)中,得:m=1×3=3,∵C和C′关于直线y=x对称,∴点C的坐标为(3,1),∵点C为PD中点,∴点P(3,2),将点P代入y=kx+,∴解得:k=;∴k和m的值分别为:3,;(2)联立:,得:x2+x﹣6=0,解得:x1=2,x2=﹣3(舍),∴直线y=kx+与函数y=(x>0)图象的交点坐标为(2,);(3)∵两个函数的交点为:(2,),由图象可知:当0<x<时,反比例函数图象在一次函数图象上面,∴不等式(x>0)的解集为:0<x<.【点评】本题考查了一次函数与反比例函数综合,一元二次方程,图象法解不等式,解题的关键是利用数形结合的思想,结合图象解决问题.21.刘雨泽和黎昕两位同学玩抽数字游戏.五张卡片上分别写有2、4、6、8、x这五个数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P(抽到数字4的卡片)=.(1)求这五张卡片上的数字的众数;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张.①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率.【分析】(1)根据抽到数字4的卡片的概率为可得x值,从而可得众数;(2)①分别求出前后两次的中位数即可;②画出树状图,再根据概率公式求解即可.【解答】解:(1)∵2、4、6、8、x这五个数字中,P(抽到数字4的卡片)=,则数字4的卡片有2张,即x=4,∴五个数字分别为2、4、4、6、8,则众数为:4;(2)①不同,理由是:原来五个数字的中位数为:4,抽走数字2后,剩余数字为4、4、6、8,则中位数为:=5,所以前后两次的中位数不一样;②根据题意画树状图如下:可得共有16种等可能的结果,其中两次都抽到数字4的情况有4种,则黎昕两次都抽到数字4的概率为:=.【点评】本题考查了中位数,众数的概念及求法,以及列表法或树状图法求概率,解题的关键是理解题意,分清放回与不放回的区别.22.如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP的面积为S,求S的最大值.【分析】(1)设二次函数表达式为y=a(x+1)(x﹣2),再将点C代入,求出a值即可;(2)连接OP,设点P坐标为(m,﹣2m2+2m+4),m>0,利用S四边形CABP=S△OAC+S△OCP+S△OPB得出S关于m的表达式,再求最值即可.【解答】解:(1)∵A(﹣1,0),B(2,0),C(0,4),设抛物线表达式为:y=a(x+1)(x﹣2),将C代入得:4=﹣2a,解得:a=﹣2,∴该抛物线的解析式为:y=﹣2(x+1)(x﹣2)=﹣2x2+2x+4;(2)连接OP,设点P坐标为(m,﹣2m2+2m+4),m>0,∵A(﹣1,0),B(2,0),C(0,4),可得:OA=1,OC=4,OB=2,∴S=S四边形CABP=S△OAC+S△OCP+S△OPB=×1×4+×4m+×2×(﹣2m2+2m+4)=﹣2m2+4m+6=﹣2(m﹣1)2+8,当m=1时,S最大,最大值为8.【点评】本题考查了二次函数的应用,待定系数法求二次函数表达式,解题的关键是能将四边形CABP的面积表示出来.23.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度i=1:0.75,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100 cm,则高圆柱的高度为多少cm?【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)根据落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,结合横截面分析可得;(3)过点F作FG⊥CE于点G,设FG=4m,CG=3m,利用勾股定理求出CG和FG,得到BG,过点F作FH⊥AB于点H,再根据同一时刻身高与影长的比例,求出AH的长度,即可得到AB.【解答】解:(1)设王诗嬑的影长为xcm,由题意可得:,解得:x=120,经检验:x=120是分式方程的解,王诗嬑的的影子长为120cm;(2)正确,因为高圆柱在地面的影子与MN垂直,所以太阳光的光线与MN垂直,则在斜坡上的影子也与MN垂直,则过斜坡上的影子的横截面与MN垂直,而横截面与地面垂直,高圆柱也与地面垂直,∴高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB为高圆柱,AF为太阳光,△CDE为斜坡,CF为圆柱在斜坡上的影子,过点F作FG⊥CE于点G,由题意可得:BC=100,CF=100,∵斜坡坡度i=1:0.75,∴,∴设FG=4m,CG=3m,在△CFG中,(4m)2+(3m)2=1002,解得:m=20,∴CG=60,FG=80,∴BG=BC+CG=160,过点F作FH⊥AB于点H,∵同一时刻,90cm矮圆柱的影子落在地面上,其长为72cm,FG⊥BE,AB⊥BE,FH⊥AB,可知四边形HBGF为矩形,∴,∴AH==200,∴AB=AH+BH=AH+FG=200+80=280,故高圆柱的高度为280cm.【点评】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理解实际物体与影长之间的关系解决问题,属于中考常考题型.。
2020年四川省攀枝花市中考数学试卷(解析版)
![2020年四川省攀枝花市中考数学试卷(解析版)](https://img.taocdn.com/s3/m/73a980f3336c1eb91b375d8e.png)
【详解】解:A、 a2 和 a3 不是同类项,不能合并,故选项错误; B、 (a)1 1 ,故选项错误;
a C、 (3a)2 9a2 ,故选项错误;
D、 a3 2a3 3a3 ,故选项正确;
故选 D. 【点睛】本题考查了合并同类项,负整数指数幂,积的乘方,解题时需要掌握运算法则.
5.若关于 x 的方程 x2 x m 0 没有实数根,则 m 的值可以为( ).
D. a3 2a3 3a3
5.若关于 x 的方程 x2 x m 0 没有实数根,则 m 的值可以为( ).
A. 1
B. 1
C. 0
4
6.下列说法中正确的是( ).
D. 50
D. 1
A. 0.09 的平方根是 0.3
B. 16 4
C. 0的立方根是 0
D. 1 的立方根是
7.中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自
C. 王浩月到达目的地时两人相距10 km
D. 王浩月比赵明阳提前1.5h 到目的地
二、填空题:本大题共 6 小题,每小题 4 分,共 24 分. 11. sin60 _______.
12.因式分解:a-ab2=_____________________.
13.如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加 STEAM 课程兴趣小组的人数为 120
2020 年高中阶段教育学校招生统一考试
数学
一、选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.
1.3 的相反数是( ).
A. 3
B. 3
2.下列事件中,为必然事件的是( ).
四川省攀枝花市中考数学试题有答案(Word版)
![四川省攀枝花市中考数学试题有答案(Word版)](https://img.taocdn.com/s3/m/3c84ed7577232f60dccca114.png)
四川省攀枝花市中考数学试题 (本试卷满分120分,考试时间l20分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017四川省攀枝花市,第1题,3分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为( )A .66.710⨯ B .66.710-⨯ C .56.710⨯ D .70.6710⨯ 2.(2017四川省攀枝花市,第2题,3分)下列计算正确的是( )A .239= B .222()a b a b -=- C .3412()a a = D .236a a a ⋅=3.(2017四川省攀枝花市,第3题,3分)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为( )A .33°B .57°C .67°D .60°4.(2017四川省攀枝花市,第4题,3分)某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是( )A .19 ,19B .19 ,19.5C .20 ,19D .20 ,19.55.(2017四川省攀枝花市,第5题,3分)如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是 ( )A .花B .是C .攀D .家6.(2017四川省攀枝花市,第6题,3分)关于x 的一元二次方程2(1)210m x x ---=有两个实数根,则实数m 的取值范围是( )A .m ≥0B .m >0C .m ≥0且m ≠1D .m >0且m ≠1 7.(2017四川省攀枝花市,第7题,3分)下列说法正确的是 ( ) A .真命题的逆命题都是真命题B .在同圆或等圆中,同弦或等弦所对的圆周角相等C .等腰三角形的高线、中线、角平分线互相重合D .对角线相等且互相平分的四边形是矩形8.(2017四川省攀枝花市,第8题,3分)如图,△ABC 内接于⊙O ,∠A= 60°,BC=BC 的长为( )A .2πB .4πC .8πD .12π9.(2017四川省攀枝花市,第9题,3分)二次函数2y ax bx c =++(a ≠0)的图象如图所示,则下列命题中正确的是( )A .a >b >cB .一次函数y=ax +c 的图象不经第四象限C .m (am+b )+b <a (m 是任意实数)D .3b+2c >010.(2017四川省攀枝花市,第10题,3分)如图,正方形ABCD 中.点E ,F 分别在BC ,CD 上,△AEF 是等边三角形.连接AC 交EF 于点G .过点G 作GH ⊥CE 于点H ·若3EGH S ∆=,则ADF S ∆=( )A .6B .4C .3D .2第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分,请把答案填在题中的横线上)11.(2017四川省攀枝花市,第11题,4分)函数y =x 的取值范围为_______. 12.(2017四川省攀枝花市,第12题,4分)一个不透明的袋中装有除颜色外均相同的5个红球和n 个黄球,从中随机摸出一个,摸到红球的概率是58,则n_______.13.(2017四川省攀枝花市,第13题,4分)计算:011(3)()12π--+=_______. 14.(2017四川省攀枝花市,第14题,4分)若关于x 的分式方程7311mx x x +=--无解,则实数m=_______. 15.(2017四川省攀枝花市,第15题,4分)如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CFCE=_______.16.(2017四川省攀枝花市,第16题,4分)如图1,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线BE-ED-DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、点Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (2cm ),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t ≤10时,△BPQ 是等腰三角形;②ABE S ∆=482cm ;③当14<t <22时,y=110-5t ;④在运动过程中,使得△ABP 是等腰三角形的P 点一共有3个;⑤△BPQ 与△ABE 相似时,t=14.5. 其中正确结论的序号是_______.三、解答题(本大题共8小题,共66分,解答应写出必要的文字说明、证明过程或演算步骤) 17.(2017四川省攀枝花市,第17题,6分)先化简,再求值:2221(1)1x x x x--÷++,其中x=2. 18.(2017四川省攀枝花市,第18题,6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有____名;(2)在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(2017四川省攀枝花市,第19题,6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=(1)若tan∠ABE =2,求CF的长;(2)求证:BG=DH.20.(2017四川省攀枝花市,第20题,8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A 品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(2017四川省攀枝花市,第21题,8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,-2),反比例函数kyx(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(2017四川省攀枝花市,第22题,8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=43DC ,求DF CF 的值.23.(2017四川省攀枝花市,第23题,12分)如图1,在平面直角坐标系中,,直线MN 分别与x 轴、y 轴交于点M (6,0),N (0,,等边△ABC 的顶点B 与原点O 重合,BC 边落在x 轴正半轴上,点A 恰好落在线段MN 上,将等边△ABC 从图l 的位置沿x 轴正方向以每秒l 个单位长度的速度平移,边AB ,AC 分别与线段MN 交于点E ,F (如图2所示),设△ABC 平移的时间为t (s ). (1)等边△ABC 的边长为_______;(2)在运动过程中,当t=_______时,MN 垂直平分AB ;(3)若在△ABC 开始平移的同时.点P 从△ABC 的顶点B 出发.以每秒2个单位长度的速度沿折线BA —AC 运动.当点P 运动到C 时即停止运动.△ABC 也随之停止平移. ①当点P 在线段BA 上运动时,若△PEF 与△MNO 相似.求t 的值;②当点P 在线段AC 上运动时,设PEF S S ∆=,求S 与t 的函数关系式,并求出S 的最大值及此时点P 的坐标.24.(2017四川省攀枝花市,第24题,12分)如图,抛物线2y x bx c =++与x 轴交于A ,B 两点,B 点坐标为(3,0).与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y=x+m 与直线BC 交于点E ,与y 轴交于点F ,求PE+EF 的最大值;(3)点D 为抛物线对称轴上一点.①当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标; ②若△BCD 是锐角三角形,求点D 的纵坐标的取值范围.答案。
2023年四川省攀枝花市中考数学真题卷(含答案与解析)_7867
![2023年四川省攀枝花市中考数学真题卷(含答案与解析)_7867](https://img.taocdn.com/s3/m/54422983d4bbfd0a79563c1ec5da50e2524dd194.png)
2023年四川省攀枝花市初中学业水平考试数学试卷本试卷共6页,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ﹣3的绝对值是( ) A. ﹣3B. 3C. -13D.132. 下列各数是不等式10x -≥的解的是( ) A. 2-B. 1-C. 0D. 13. 将数据0.000000023用科学记数法表示正确的是( ) A. 70.2310-⨯B. 82.310-⨯C. 92.310-⨯D. 92310-⨯4. 计算01-,以下结果正确的是( ) A. 011-=-B. 010-=C. 011-=D. 01-无意义5. 以下因式分解正确的是( ) A. ()221ax a a x -=- B. ()321m m m m +=+ C. ()22323x x x x +-=+-D. ()()22331x x x x +-=-+6. ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c .已知6a =,8b =,10c =,则cos A ∠的值为( ) A.35B.34C.45D.437. 为了回馈客户,商场将定价为200元的某种儿童玩具降价10%进行销售.“六·一”儿童节当天,又将该种玩具按新定价再次降价10%销售,那么该种玩具在儿童节当天的销售价格为( )A 160元B. 162元C. 172元D. 180元8. 已知ABC 的周长为l ,其内切圆的面积为2r π,则ABC 的面积为( ) A.12rl B.12rl π C. rlD.rl π9. 如图,正方形ABCD 的边长为4,动点P 从点B 出发沿折线BCDA 做匀速运动,设点P 运动的路程为x ,PAB 的面积为y ,下列图象能表示y 与x 之间函数关系的是( )A. B.C. D.10. 每次监测考试完后,老师要对每道试题难度作分析.已知:题目难度系数=该题参考人数得分的平均分÷该题的满分.上期全市八年级期末质量监测,有11623名学生参考.数学选择题共设置了12道单选题,每题5分.最后一道单选题的难度系数约为0.34,学生答题情况统计如表:选项 留空 多选 A BCD人数112242093934 20571390占参考人数比(%)0.09 0.19 36.21 33.85 17.7 11.96根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为( ) A. AB. BC. CD. D11. 如图,已知正方形ABCD 的边长为3,点P 是对角线BD 上的一点,PF AD ⊥于点F ,PE AB ⊥于.点E ,连接PC ,当:1:2PE PF =时,则PC =( )A.B. 2C.D.5212. 我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:①()2222a b a ab b +=++ ②()2222a b a ab b -=-+③22()()a b a b a b +-=- ④22()()4a b a b ab-=+-其中,图形的面积关系能正确解释相应的代数恒等式的有( ) A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共4小题,每小题5分,共20分.13. 2420x x --=的两根分别为m 、n ,则11m n+=________. 14. 如图,在ABC 中,40A ∠=︒,90C ∠=︒,线段AB 的垂直平分线交AB 于点D ,交AC 于点E ,则EBC ∠=________.15. 如图,在正方形ABCD 中,分别以四个顶点为圆心,以边长的一半为半径画圆弧,若随机向正方形ABCD 内投一粒米(米粒大小忽略不计),则米粒落在图中阴影部分的概率为________.16. 如图,在直角ABO中,AO =,1AB =,将ABO 绕点O 顺时针旋转105︒至A B O ''△的位置,点E 是OB '的中点,且点E 在反比例函数ky x=的图象上,则k 的值为________.三、解答题:本大题共8小题,共70分.解答应写出文字说明、证明过程或演算步骤.17 解不等式组:21521x x +<⎧⎨-≤⎩18. 已知2x y y -=,求211()xx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭的值. 19. 如图,点(),6A n 和()3,2B 是一次函数1y kx b =+的图象与反比例函数2(0)myx x=>的图象的两个交点..(1)求一次函数与反比例函数的表达式; (2)当x 为何值时,12y y >20. 如图,AB 为O 直径,如果圆上的点D 恰使ADC B ∠=∠,求证:直线CD 与O 相切.21. 2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行18决赛,14决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.(1)本届世界杯分在C 组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个C 组分组积分赛对阵表(不要求写对阵时间).(2)请简要说明本届世界杯冠军阿根廷队决赛阶段一共踢了多少场比赛? (3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?22. 拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB ,选取与塔底B 在同一水平地面上的E 、G 两点,分别垂直地面竖立两根高为1.5m 的标杆EF 和GH ,两标杆间隔EG 为46m ,并且东塔AB 、标杆EF 和GH 在同一竖直平面内.从标杆EF 后退2m 到D 处(即2m ED =),从D 处观察A 点,A 、F 、D 在一直线上;从标杆GH 后退4m 到C 处(即4m CG =),从C 处观察A 点,A 、H 、C的在三点也在一直线上,且B 、E 、D 、G 、C 在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB 的高度.23. 如图,抛物线2(0)y ax bx c a =++≠经过坐标原点O ,且顶点为()2,4A -.(1)求抛物线的表达式;(2)设抛物线与x 轴正半轴的交点为B ,点P 位于抛物线上且在x 轴下方,连接OA 、PB ,若90AOB PBO ∠+∠=︒,求点P 的坐标.24. 如图1,在ABC 中,28AB BC AC ===,ABC 沿BC 方向向左平移得到DCE △,A 、C 对应点分别是D 、E .点F 是线段BE 上的一个动点,连接AF ,将线段AF 绕点A 逆时针旋转至线段AG ,使得BAD FAG ∠=∠,连接FG .(1)当点F 与点C 重合时,求FG 的长;(2)如图2,连接BG 、DF .在点F 的运动过程中:①BG 和DF 是否总是相等?若是,请你证明;若不是,请说明理由; ②当BF 长为多少时,ABG 能构成等腰三角形?的参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ﹣3的绝对值是( ) A. ﹣3 B. 3C. -13D.13【答案】B 【解析】【分析】根据负数的绝对值是它的相反数,可得出答案. 【详解】根据绝对值的性质得:|-3|=3. 故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 2. 下列各数是不等式10x -≥的解的是( ) A. 2- B. 1-C. 0D. 1【答案】D 【解析】【分析】移项即可得出答案. 【详解】解:∵x -1≥0, ∴x ≥1, 故选:D .【点睛】本题考查不等式的解集,解题的关键是正确理解不等式的解的概念,本题属于基础题型. 3. 将数据0.000000023用科学记数法表示正确的是( ) A. 70.2310-⨯ B. 82.310-⨯C. 92.310-⨯D. 92310-⨯【答案】B 【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:将数据0.000000023用科学记数法表示为82.310-⨯;故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 4. 计算01-,以下结果正确的是( ) A. 011-=- B. 010-= C. 011-= D. 01-无意义【答案】A 【解析】【分析】根据零次幂可进行求解. 【详解】解:011-=-; 故选A .【点睛】本题主要考查零次幂,熟练掌握零次幂的意义是解题的关键. 5. 以下因式分解正确的是( ) A. ()221ax a a x -=- B. ()321m m m m +=+ C. ()22323x x x x +-=+-D. ()()22331x x x x +-=-+【答案】B 【解析】【分析】利用平方差公式,21x -还可分解因式;利用十字相乘法,223(3)(1)x x x x +-=+-. 【详解】解:22(1)(1)(1)ax a a x a x x -=-=+-;故A 不正确,不符合题意.32(1)m m m m +=+;故B 正确,符合题意.223(3)(1)x x x x +-=+-;故C ,D 不正确,不符合题意.故选:B .【点睛】本题考查因式分解,灵活掌握因式分解的方法是本题的关键.6. ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c .已知6a =,8b =,10c =,则cos A ∠的值为( ) A.35B.34C.45D.43【答案】C 【解析】【分析】根据余弦的定义可直接进行求解.【详解】解:由题意得:4cos 5b Ac ∠==; 故选C .【点睛】本题主要考查余弦,熟练掌握求一个角的余弦值是解题的关键.7. 为了回馈客户,商场将定价为200元的某种儿童玩具降价10%进行销售.“六·一”儿童节当天,又将该种玩具按新定价再次降价10%销售,那么该种玩具在儿童节当天的销售价格为( ) A. 160元 B. 162元C. 172元D. 180元【答案】B 【解析】【分析】根据题意可直接进行列式求解. 【详解】解:由题意得:()()200110110162⨯-⨯-=%%(元);故选B .【点睛】本题主要考查有理数乘法应用,解题的关键是理解题意.8. 已知ABC 的周长为l ,其内切圆的面积为2r π,则ABC 的面积为( ) A.12rl B.12rl π C. rlD.rl π【答案】A 【解析】【分析】由题意可得1122AOB S AB OE AB r =⨯=⨯ ,12BOC S BC r =⨯ ,12AOC S AC r =⨯ ,由面积关系可求解.【详解】解:如图,设内切圆O 与ABC 相切于点D ,点E ,点F ,连接OA ,OB ,OC ,OE ,OF ,OD ,AB 切O 于E ,OE AB ∴⊥,OE r =,的1122AOB S AB OE AB r ∴=⨯=⨯ , 同理:12BOC S BC r =⨯ , 12AOC S AC r =⨯ , 1111()2222AOB BOC AOC S S S S AB r BC r AC r AB BC AC r ∴=++=⨯+⨯+⨯=++⨯ , l AB BC AC =++ ,12S lr ∴=,故选A【点睛】本题考查了三角形的内切圆与内心,掌握内切圆的性质是解题的关键.9. 如图,正方形ABCD 的边长为4,动点P 从点B 出发沿折线BCDA 做匀速运动,设点P 运动的路程为x ,PAB 的面积为y ,下列图象能表示y 与x 之间函数关系的是( )A. B.C. D.【答案】D 【解析】【分析】分段求出函数关系式,再观察图象可得答案. 【详解】解:当P 在BC 上,即04x <≤时,1422y x x =⨯=,当4x =时,8y =;当P 在CD 上,即48x <≤时,14482y =⨯⨯=, 当P 在AD 上,即812x <<时,14(12)2242y x x =⨯-=-+; 观察4个选项,符合题意的为D ; 故选D【点睛】本题考查动点问题的函数图象,解题的关键是分段求出函数关系式.10. 每次监测考试完后,老师要对每道试题难度作分析.已知:题目难度系数=该题参考人数得分的平均分÷该题的满分.上期全市八年级期末质量监测,有11623名学生参考.数学选择题共设置了12道单选题,每题5分.最后一道单选题的难度系数约为0.34,学生答题情况统计如表:选项 留空 多选 A BCD人数112242093934 20571390占参考人数比(%)0.09 0.19 36.21 33.85 17.7 11.96根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为( ) A. A B. BC. CD. D【答案】B 【解析】【分析】先计算出最后一道单选题参考人数得分的平均分,再分别测算,进行比较即可. 【详解】解: 题目难度系数=该题参考人数得分的平均分÷该题的满分,∴最后一道单选题参考人数得分的平均分=题目难度系数⨯该题的满分0.345 1.7=⨯=,如果正确答案应为A ,则参考人数得分的平均分为:36.21%5 1.8⨯≈, 如果正确答案应为B ,则参考人数得分的平均分为:33.85%5 1.7⨯≈, 如果正确答案应为C ,则参考人数得分的平均分为:17.7%50.9⨯≈, 如果正确答案应为D ,则参考人数得分的平均分为:11.96%50.6⨯≈, 故选:B .【点睛】本题考查了统计表、新概念“题目难度系数”等知识,熟练掌握新概念“题目难度系数”,由统计表的数据计算出参考人数得分的平均分是解题的关键.11. 如图,已知正方形ABCD 的边长为3,点P 是对角线BD 上的一点,PF AD ⊥于点F ,PE AB ⊥于点E ,连接PC ,当:1:2PE PF =时,则PC =( )A.B. 2C.D.52【答案】C 【解析】【分析】先证四边形AEPF 是矩形,可得PE AF =,90PFD ∠=︒,由等腰直角三角形的性质可得PF DF =,可求AF ,DF 的长,由勾股定理可求AP 的长,由“SAS ”可证ABP CBP △≌△,可得AP PC ==.【详解】解:如图:连接AP ,四边形ABCD 是正方形,3AB AD ∴==,45ADB ∠=︒,PF AD ⊥ ,PE AB ⊥,90BAD ∠=︒,∴四边形AEPF 是矩形,PE AF ∴=,90PFD ∠=︒,PFD ∴ 是等腰直角三角形,PF DF ∴=,:1:2PE PF = , :1:2AF DF ∴=,1AF ∴=,2DF PF ==,AP ∴===,AB BC = ,45ABD CBD ∠=∠=︒,BP BP =,(SAS)ABP CBP ∴△≌△,AP PC ∴=故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.12. 我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:①()2222a b a ab b +=++ ②()2222a b a ab b -=-+③22()()a b a b a b +-=- ④22()()4a b a b ab-=+-其中,图形的面积关系能正确解释相应的代数恒等式的有( ) A. 1个 B. 2个C. 3个D. 4个【答案】D 【解析】【分析】观察各个图形及相应的代数恒等式即可得到答案.【详解】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④, 故选:D .【点睛】本题考查用图形面积解释代数恒等式,解题的关键是用两种不同的方法表示同一个图形的面积.二、填空题:本大题共4小题,每小题5分,共20分.13. 2420x x --=的两根分别为m 、n ,则11m n+=________. 【答案】2- 【解析】【分析】依据题意,由根与系数的关系得,4m n +=,mn 2=-,再由11m n m n mn++=进而代入可以得解.【详解】解:由题意,根据根与系数的关系可得,4m n +=,mn 2=-,11422m n m n mn +∴+--===, 故答案为:2-.【点睛】本题主要考查根与系数的关系,解题时要熟练掌握并理解是关键.14. 如图,在ABC 中,40A ∠=︒,90C ∠=︒,线段AB 的垂直平分线交AB 于点D ,交AC 于点E ,则EBC ∠=________.【答案】10︒##10度 【解析】【分析】由90C ∠=︒,40A ∠=︒,求得50ABC ∠=︒,根据线段的垂直平分线、等边对等角和直角三角形的两锐角互余求得.【详解】解:∵90C ∠=︒,40A ∠=︒, ∴50ABC ∠=︒,∵DE 是线段AB 的垂直平分线, ∴AE BE =,∴40EBA A ∠=∠=︒,∴10EBC ABC EBA ∠=∠-∠=︒, 故答案为:10︒.【点睛】此题考查了直角三角形的性质、线段垂直平分线性质,熟记直角三角形的性质、线段垂直平分线性质是解题的关键.15. 如图,在正方形ABCD 中,分别以四个顶点为圆心,以边长的一半为半径画圆弧,若随机向正方形ABCD 内投一粒米(米粒大小忽略不计),则米粒落在图中阴影部分的概率为________.【答案】4π##14π 【解析】【分析】将图中阴影面积除以正方形面积即可求出米粒落在图中阴影部分的概率. 【详解】解:设正方形的边长为2a ,则4个扇形的半径为a ,22(2)4a a ππ=,故答案为:4π.点睛】本题考查几何概率,掌握几何概率的计算方法,以及扇形面积和正方形面积的计算方法是解题的关键.16. 如图,在直角ABO中,AO =,1AB =,将ABO 绕点O 顺时针旋转105︒至A B O ''△的位置,点E 是OB '的中点,且点E 在反比例函数ky x=的图象上,则k 的值为________.【答案】12 【解析】【分析】依据题意,在Rt BAO中,AO =1AB =,从而2BO ==,可得30AOB ∠=︒,又结合题意,105BOB '∠=︒,进而45B OH '∠=︒,故可得E 点坐标,代入解析式可以得解.【【详解】解:如图,作EH x ⊥轴,垂足为H .由题意,在Rt BAO △中,AO =,1AB =,2BO ∴==. 12AB BO ∴=. 30AOB ∴∠=︒.又ABO 绕点O 顺时针旋转105︒至A B O ''△的位置, 105BOB '∴∠=︒. 45B OH '∴∠=︒.又点E 是OB '的中点, 11122OE BO B O '∴===. 在Rt EOH △中, 45B OH '∠=︒ ,EH OH ∴===.E ∴.又E 在ky x=上,12k ∴==. 故答案为:12.【点睛】本题主要考查了反比例函数图象上的点的坐标特征,旋转的性质,勾股定理等知识,解题时需要熟练掌握并灵活运用是关键.三、解答题:本大题共8小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 解不等式组:21521x x +<⎧⎨-≤⎩【答案】12x ≤< 【解析】【分析】依据题意,分别解组成不等式组的两个不等式进而可以得解.【详解】解:由题意,21521x x +<⎧⎨-≤⎩①②,∴由①得,2x <;由②得,1x ≥.∴原不等式组的解集为:12x ≤<.【点睛】本题主要考查了解一元一次不等式组,解题时要熟练掌握并准确计算是关键. 18. 已知2x y y -=,求211()xx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭的值. 【答案】1 【解析】 【分析】由2x yy-=可知3x y =,然后对分式进行化简,进而问题可求解. 【详解】解:由2x yy-=可知3x y =, ∴211()xx y x y x y ⎛⎫+÷⎪-+-⎝⎭()()()()2()x x y x y x y x x y x x y y y ⎡⎤=+÷⎢⎥-+⎦+-+--⎣()()()22x y xx y x y x -=⨯+- ()2x y x y-=+()233y y y y-=+1=.【点睛】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键. 19. 如图,点(),6A n 和()3,2B 是一次函数1y kx b =+图象与反比例函数2(0)myx x=>的图象的两个交点.(1)求一次函数与反比例函数的表达式; (2)当x 为何值时,12y y > 【答案】(1)128y x =-+;26y x= (2)13x << 【解析】【分析】(1)用待定系数法求函数的解析式即可;(2)根据函数图象进行观察,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可. 【小问1详解】解:将点(3,2)B 代入2m y x=, 6m ∴=,26y x∴=, 将(,6)A n 代入26y x=, 1n ∴=,(1,6)A ∴,将(1,6)A 和(3,2)B 代入1y kx b =+,∴632k b k b +=⎧⎨+=⎩,解得:28k b =-⎧⎨=⎩,128y x ∴=-+;的【小问2详解】解:根据图象可得,当12y y >时,x 的取值范围为:13x <<.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是掌握待定系数法求函数解析式.求x 的取值范围,从函数图象的角度看,是确定直线在双曲线上方(或下方)部分所有的点的横坐标所构成的集合.20. 如图,AB 为O 的直径,如果圆上的点D 恰使ADC B ∠=∠,求证:直线CD 与O 相切.【答案】见详解 【解析】【分析】由等腰三角形的性质和圆周角定理得出90ODA ADC ∠+∠=︒,则CD OD ⊥,再由切线的判定即可得出结论.【详解】证明:如图,连接OD ,OA OD = ,A ODA ∴∠=∠,AB 为O 的直径,90ADB ∴∠=︒,90A B ∴∠+∠=︒, ADC B ∠=∠ ,90∴∠+∠=︒ODA ADC ,即90CDO ∠=︒,CD OD ∴⊥, OD 是O 的半径,∴直线CD 与O 相切.【点睛】本题考查了切线的判定、圆周角定理、直角三角形的性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解题的关键.21. 2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行18决赛,14决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.(1)本届世界杯分在C组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个C组分组积分赛对阵表(不要求写对阵时间).(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?(3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?【答案】(1)C组分组积分赛对阵表见解答过程;(2)本届世界杯冠军阿根廷队在决赛阶段一共踢了7场比赛;(3)本届世界杯32支球队在决赛阶段一共踢了64场比赛.【解析】【分析】(1)根据同组内每2支球队之间都只进行一场比赛列表即可;(2)冠军阿根廷队分组积分赛踢了3场,18决赛,14决赛,半决赛,决赛又踢了4场,即可得到答案;(3)分组积分赛48场,18决赛一共8场,14决赛一共4场,半决赛2场,冠、亚军决赛和三、四名决赛各1场,相加即可.【小问1详解】C组分组积分赛对阵表:阿根廷沙特墨西哥波兰阿根廷阿根廷:沙特阿根廷:墨西哥阿根廷:波兰沙特沙特:阿根廷沙特:墨西哥沙特:波兰墨西哥墨西哥:阿根廷 墨西哥:沙特墨西哥:波兰波兰 波兰:阿根廷波兰:沙特波兰:墨西哥【小问2详解】冠军阿根廷队分组积分赛踢了3场,18决赛,14决赛,半决赛,决赛又踢了4场, ∴一共踢了347+=(场),∴本届世界杯冠军阿根廷队在决赛阶段一共踢了7场比赛;【小问3详解】分组积分赛每个小组6场,8个小组一共4868=⨯(场);18决赛一共8场,14决赛一共4场,半决赛2场,冠、亚军决赛和三、四名决赛各1场; ∴一共踢了488421164+++++=(场);∴本届世界杯32支球队在决赛阶段一共踢了64场比赛.【点睛】本题考查数学在实际生活中的应用,解题的关键是读懂题意,理解世界杯比赛的对阵规则. 22. 拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB ,选取与塔底B 在同一水平地面上的E 、G 两点,分别垂直地面竖立两根高为1.5m 的标杆EF 和GH ,两标杆间隔EG 为46m ,并且东塔AB 、标杆EF和GH 在同一竖直平面内.从标杆EF 后退2m 到D 处(即2m ED =),从D 处观察A 点,A 、F 、D 在一直线上;从标杆GH 后退4m 到C 处(即4m CG =),从C 处观察A 点,A 、H 、C 三点也在一直线上,且B 、E 、D 、G 、C 在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB 的高度.【答案】36m 【解析】【分析】设m BD x =,则()48m BC x =+,通过证明ABD FED ∽,得到EF DEAB BD=,即1.52AB x =,同理得到1.5448AB x =+,则可建立方程2448x x =+,解方程即可得到答案. 【详解】解:设m BD x =,则()48m BC BD DG CG x =++=+ ∵AB BC ⊥,EF BC ⊥,∴AB EF ∥, ∴ABD FED ∽, ∴EF DEAB BD=,即1.52AB x =, 同理可证∽ABC HGC △△,∴GH CG AB BC =,即1.5448AB x =+, ∴2448x x =+, 解得48x =,经检验,48x =是原方程的解, ∴1.5248AB =, ∴36AB =,∴该古建筑AB 的高度为36m .【点睛】本题主要考查了相似三角形的应用,利用相似三角形的性质建立方程是解题的关键. 23. 如图,抛物线2(0)y ax bx c a =++≠经过坐标原点O ,且顶点为()2,4A -.(1)求抛物线的表达式;(2)设抛物线与x 轴正半轴的交点为B ,点P 位于抛物线上且在x 轴下方,连接OA 、PB ,若90AOB PBO ∠+∠=︒,求点P 的坐标.【答案】(1)24y x x =-(2)1(2P ,7)4-【解析】【分析】(1)设抛物线的表达式为2(2)4y a x =--,将(0,0)O 代入可得24y x x =-;(2)过A 作AT y ⊥轴于T ,过P 作PK x ⊥轴于K ,设2(,4)P m m m -,求出(4,0)B ;根据90AOB AOT ∠+∠=︒,90AOB PBO ∠+∠=︒,得AOT PBO ∠=∠,故AOT PBK △∽△,从而22444m m m=-+-,即可解得答案.【小问1详解】解:设抛物线的表达式为2(2)4y a x =--, 将(0,0)O 代入得:440a -=, 解得1a =,22(2)44y x x x ∴=--=-;小问2详解】过A 作AT y ⊥轴于T ,过P 作PK x ⊥轴于K ,如图:设2(,4)P m m m -,在24y x x =-中,令0y =得0x =或4x =,(4,0)B ∴;【90AOB AOT ∠+∠=︒ ,90AOB PBO ∠+∠=︒, AOT PBO ∴∠=∠, 90ATO PKB ∠=︒=∠ ,AOT PBK ∴△∽△,∴AT OTPK BK=, (2,4)A - ,∴22444m m m=-+-,解得12m =或4m =(此时P 与B 重合,舍去), 1(2P ∴,74-.【点睛】本题考查二次函数综合应用,涉及待定系数法,三角形相似判定与性质,解题的关键是证明AOT PBK △∽△,用对应边成比例列式求出m 的值.24. 如图1,在ABC 中,28AB BC AC ===,ABC 沿BC 方向向左平移得到DCE △,A 、C 对应点分别是D 、E .点F 是线段BE 上的一个动点,连接AF ,将线段AF 绕点A 逆时针旋转至线段AG ,使得BAD FAG ∠=∠,连接FG .(1)当点F 与点C 重合时,求FG 的长;(2)如图2,连接BG 、DF .在点F 的运动过程中:①BG 和DF 是否总是相等?若是,请你证明;若不是,请说明理由; ②当BF 的长为多少时,ABG 能构成等腰三角形? 【答案】(1)(2)①DF BG =;②BF 的长为14或11或8或0 【解析】【分析】(1)根据平移的性质可得四边形ABCD 、四边形ACED 是平行四边形,再由已知推导出AB 是CAG ∠的平分线,由等腰三角形的性质可得AB CG ⊥,过B 点作BH AC ⊥交于H 点,求出的BH =,再由12sin 4CGBAC ∠==,所以CG FG ==; (2)①证明(SAS)ABG ADF △≌△,则DF BG =;②过点A 作AN BC ⊥交于N,由等积法可得114822AN ⨯⨯=⨯,求出AN =,分三种情况讨论:当AG AB =时,8AG AF ==;当F 点与B 点重合时,8AF =,此时0BF =,当2BF BN =时,8AF =,在Rt ABN △中,7BN =,可得14BF =;当AG BG =时,DF AF =,过点F 作FM AD ⊥交于M ,所以4AM FN ==,能求出1CN =,3CF =,则11BF =;当BA BG =时,DC DF =,当F 点在BE 上时,CD DF =,此时C 点与F 点重合,此时8BF BC ==. 【小问1详解】解:当F 点与C 点重合时,AF AC =, 由平移可知,CD AB =,CD AB ∥,∴四边形ABCD 、四边形ACED 是平行四边形,AD BC ∴=,AD BC ∥,BAD FAG ∠=∠ ,DAF BAG ∴∠=∠,AB BC = , BAC ACB ∴∠=∠,DAC ACB =∠∠ ,DAC BAC BAG ∴∠=∠=∠,AB ∴是CAG ∠的平分线,AC AG = , AB CG ∴⊥,如图1,过B 点作BH AC ⊥交于H 点,28AB BC AC === ,2 AH∴=,BH∴=12sin4CGBAC∴∠==,CG FG∴==【小问2详解】解:①DF BG=,理由如下:如图2,AG AF=,DAF BAG∠=∠,AB AD=,(SAS)ABG ADF∴△≌△,DF BG∴=;②如图2,过点A作AN BC⊥交于N,由①可知114822AN⨯⨯=⨯,AN∴=当AG AB=时,8AB BC==,8AG∴=,AG AF=,8AF∴=,当F点与B点重合时,8AF=,此时0BF=,当2BF BN=时,8AF=,在Rt ABN△中,7BN==,14BF∴=;当AG BG=时,AF BG=,DF BG=,DF AF∴=,过点F作FM AD⊥交于M,4∴==,AM DM⊥,,AN BCFM AD⊥AM FN∴==,4,BN=7∴=,CN1∴=,CF3∴=;BF11=时,当BA BG,=DF BG∴=,AB DF===,AB CD BC AD∴=,DC DF=,此时C点与F点重合,当F点在BE上时,CD DF∴==;8BF BC综上所述:BF的长为14或11或8或0.【点睛】本题考查几何变换的综合应用,熟练掌握三角形平移的性质,旋转的性质,三角形全等的判定及性质,等腰三角形的性质,分类讨论是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年四川省攀枝花市中考数学试卷一、选择题(本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.×106B.×10﹣6C.×105D.×1072.(3分)下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2 C.(a3)4=a12D.a2•a3=a63.(3分)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°4.(3分)某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁) 18 19 20 21人数 2 4 3 1 A.19,19 B.19,C.20,19 D.20,5.(3分)如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家6.(3分)关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m 的取值范围是()A.m≥0 B.m>0 C.m≥0且m≠1 D.m>0且m≠17.(3分)下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形8.(3分)如图,△ABC内接于⊙O,∠A=60°,BC=6,则的长为()A.2π B.4π C.8π D.12π9.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>010.(3分)如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH =3,则S△ADF=()A.6 B.4 C.3 D.2二、填空题(本大题共6小题,每小题4分,共24分,请把答案填在题中的横线上)11.(4分)在函数y=中,自变量x的取值范围是.12.(4分)一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出一个,摸到红球的概率是,则n .13.(4分)计算:(3﹣π)0﹣+()﹣1+|1﹣|= .14.(4分)若关于x的分式方程+3=无解,则实数m= .15.(4分)如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则= .16.(4分)如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE ﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S=48cm2;③当14△ABE<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=.其中正确结论的序号是.三、解答题(本大题共8小题,共66分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:(1﹣)÷,其中x=2.18.(6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示“D等级”的扇形的圆心角为度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.19.(6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=2.(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.20.(8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.21.(8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数y=(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22.(8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.23.(12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M (6,0),N(0,2),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l 个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为;(2)在运动过程中,当t= 时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;=S,求S与t的函数关系式,并求出S的②当点P在线段AC上运动时,设S△PEF最大值及此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.2017年四川省攀枝花市中考数学试卷一、选择题(本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为()A.×106B.×10﹣6C.×105D.×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6 700 000=×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2 C.(a3)4=a12D.a2•a3=a6【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.(3分)如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°【分析】由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣33°=57°,∵a∥b,∴∠2=∠3=57°.故选:B.【点评】此题考查了平行线的性质.注意运用:两直线平行,同位角相等.4.(3分)某篮球队10名队员的年龄如下表所示:则这10名队员年龄的众数和中位数分别是()年龄(岁) 18 19 20 21人数 2 4 3 1 A.19,19 B.19,C.20,19 D.20,【分析】由表格中的数据可以直接看出众数,然后将这十个数据按照从小到大的顺序排列即可得到中位数,本题得以解决.【解答】解:由表格可知,一共有2+4+3+1=10个数据,其中19出现的次数最多,故这组数据的众数是19,按从小到大的数据排列是:18、19、19、19、19、19、20、20、20、21,故中位数是19.故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义.5.(3分)如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“我”相对的面上的汉字是()A.花B.是C.攀D.家【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“我”与“家”相对,“攀”与“花”相对,“枝”与“是”相对,故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.(3分)关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m 的取值范围是()A.m≥0 B.m>0 C.m≥0且m≠1 D.m>0且m≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,∴,解得:m≥0且m≠1.故选C.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△≥0时,方程有两个实数根”是解题的关键.7.(3分)下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形【分析】根据真假命题的概念、圆周角定理、等腰三角形的性质、矩形的判定定理判断即可.【解答】解:真命题的逆命题不一定都是真命题,A错误;在同圆或等圆中,同弦所对的圆周角不一定相等,B错误;等边三角形的高线、中线、角平分线互相重合,C错误;对角线相等且互相平分的四边形是矩形,D正确,故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)如图,△ABC内接于⊙O,∠A=60°,BC=6,则的长为()A.2π B.4π C.8π D.12π【分析】连接CO,并延长,与圆交于点D,连接BD,利用同弧所对的圆周角相等求出∠D的度数,在直角三角形BCD中,利用勾股定理求出CD的长,即为圆的直径,进而求出∠BOC的度数,利用弧长公式计算即可得到结果.【解答】解:连接CO,并延长,与圆交于点D,连接BD,∵CD为圆O的直径,∴∠DBC=90°,∵∠A与∠D都对,∴∠D=∠A=60°,在Rt△DCB中,∠BCD=30°,∴BD=CD,设BD=x,则有CD=2x,根据勾股定理得:x2+(6)2=(2x)2,解得:x=6,∴OB=OD=OC=6,且∠BOC=120°,则的长为=4π,故选B【点评】此题考查了三角形外接圆与外心,以及弧长的计算,熟练掌握公式及法则是解本题的关键.9.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>0【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c 的值,然后根据抛物线与x轴交点的个数及x=﹣1时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:A、由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x 轴下方可得c<0,由x=﹣1,得出﹣=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;B、∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C、当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;故选:D.【点评】此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.10.(3分)如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,若S△EGH =3,则S△ADF=()A.6 B.4 C.3 D.2【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,得到EG=GF,根据=12,设AD=x,则DF=x﹣2,根据勾股定理得到AD=+3,相似三角形的性质得到S△EFCDF=3﹣,根据三角形的面积公式即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴△CEF是等腰直角三角形,∵AE=AF,∴AC垂直平分EF,∴EG=GF,∵GH⊥CE,∴GH∥CF,∴△EGH∽△EFC,=3,∵S△EGH∴S=12,△EFC∴CF=2,EF=4,∴AF=4,设AD=x,则DF=x﹣2,∵AF2=AD2+DF2,∴(4)2=x2+(x﹣2)2,∴x=+3,∴AD=+3,DF=3﹣,∴S=AD•DF=6.△ADF故选A.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,相似三角形的判定和性质,勾股定理的运用,等边三角形的性质的运用,解答本题的关键是运用勾股定理的性质.二、填空题(本大题共6小题,每小题4分,共24分,请把答案填在题中的横线上)11.(4分)在函数y=中,自变量x的取值范围是x≥.【分析】根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x 的范围.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(4分)一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出一个,摸到红球的概率是,则n =3 .【分析】用红球的个数除以总球的个数得出红球的概率,从而求出n的值.【解答】解:由题意得:=,解得:n=3;故答案为:=3.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)计算:(3﹣π)0﹣+()﹣1+|1﹣|= 2 .【分析】此题涉及零次幂、负整数指数幂、二次根式的化简和绝对值,首先分别计算4个考点,然后再计算加减即可.【解答】解:原式=1﹣2+2+﹣1=2﹣,故答案为:2﹣.【点评】此题主要考查了实数运算,关键是掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.14.(4分)若关于x的分式方程+3=无解,则实数m= 3或7 .【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:7+3(x﹣1)=mx,整理,得(m﹣3)x=4,当整式方程无解时,m﹣3=0,m=3;当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7,∴m的值为3或7.故答案为3或7.【点评】本题考查了分式方程无解的条件,是需要识记的内容.15.(4分)如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则= .【分析】根据等边三角形的性质、相似三角形的性质得到∠AED=∠BDF,根据相似三角形的周长比等于相似比计算即可.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=6,由折叠的性质可知,∠EDF=∠C=60°,EC=ED,FC=FD,∴∠AED=∠BDF,∴△AED∽△BDF,∴===,∴==,故答案为:.【点评】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.16.(4分)如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE ﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.=48cm2;③当14给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE<t<22时,y=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=.其中正确结论的序号是①③⑤.【分析】由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;(2)在ED段,y=40是定值,持续时间4s,则ED=4;(3)在DC段,y持续减小直至为0,y是t的一次函数.【解答】解:由图象可以判定:BE=BC=10 cm.DE=4 cm,=BC•AB=40cm2,当点P在ED上运动时,S△BPQ∴AB=8 cm,∴AE=6 cm,∴当0<t≤10时,点P在BE上运动,BP=BQ,∴△BPQ是等腰三角形,故①正确;=AB•AE=24 cm2,S△ABE故②错误;当14<t<22时,点P在CD上运动,该段函数图象经过(14,40)和(22,0)两点,解析式为y=110﹣5t,故③正确;△ABP为等腰直角三角形需要分类讨论:当AB=AP时,ED上存在一个符号题意的P点,当BA=BO时,BE上存在一个符合同意的P点,当PA=PB时,点P在AB垂直平分线上,所以BE和CD上各存在一个符号题意的P点,共有4个点满足题意,故④错误;⑤△BPQ与△ABE相似时,只有;△BPQ∽△BEA这种情况,此时点Q与点C重合,即==,∴PC=,即t=.故⑤正确.综上所述,正确的结论的序号是①③⑤.故答案是:①③⑤.【点评】本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.三、解答题(本大题共8小题,共66分,解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:(1﹣)÷,其中x=2.【分析】首先化简(1﹣)÷,然后把x的值代入化简后的算式即可.【解答】解:(1﹣)÷=÷=当x=2时,原式==.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.18.(6分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)参加比赛的学生共有20 名;(2)在扇形统计图中,m的值为40 ,表示“D等级”的扇形的圆心角为72 度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.【分析】(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:3÷15%=20(人),故答案为:20;(2)C级所占的百分比为×100%=40%,表示“D等级”的扇形的圆心角为×360°=72°;故答案为:40、72.(3)列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P==.恰好是一名男生和一名女生【点评】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.19.(6分)如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB=2.(1)若tan∠ABE=2,求CF的长;(2)求证:BG=DH.【分析】(1)由平行四边形的性质,结合三角函数的定义,在Rt△CFD中,可求得CF=2DF,利用勾股定理可求得CF的长;(2)利用平行四边形的性质结合条件可证得△AGD≌△CHB,则可求得BH=DG,从而可证得BG=DH.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠CDF=∠ABE,DC=AB=2,∵tan∠ABE=2,∴tan∠CDF=2,∵CF⊥AD,∴△CFD是直角三角形,∴=2,设DF=x,则CF=2x,在Rt△CFD中,由勾股定理可得(2x)2+x2=(2)2,解得x=2或x=﹣2(舍去),∴CF=4;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,∵AE⊥BC,CF⊥AD,∴AE⊥AD,CF⊥BC,∴∠GAD=∠HCB=90°,∴△AGD≌△CHB,∴BH=DG,∴BG=DH.【点评】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等是解题的关键,注意全等三角形的应用.20.(8分)攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了1箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.【分析】(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意列出方程组即可解决问题.(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,根据题意列不等式组即可得到结论.【解答】解:(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:,解得:答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,∴18﹣n≥2n且18﹣n≤4n,∴≤n≤6,∵n非负整数,∴n=4,5,6,相应的18﹣n=14,13,12;∴购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;∴所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∴购进A品种芒果6箱,B品种芒果12箱总费用最少.【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是学会设未知数,列出解方程组解决问题,学会构建一次函数,利用一次函数的性质解决最值问题,属于中考常考题型.21.(8分)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数y=(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.【分析】(1)连结AC,BD,根据坐标原点O是菱形ABCD的对称中心,可得AC,BD相交于点O,且∠AOB=90°,根据B(1,﹣2),且AB∥x轴,可设A(a,﹣2),则AO2=a2+4,BO2=5,AB2=(1﹣a)2,在Rt△AOB中,由勾股定理可得A(﹣4,﹣2),C(4,2),再根据待定系数法可求反比例函数解析式为y=;(2)连结OE,则△OCE是以O,C,E为顶点的三角形,根据待定系数法可求直线BC的解析式为y=x﹣,设其与y轴交于点F(0,﹣),解方程可求点E的横坐标为﹣,再根据三角形面积公式即可求解.【解答】解:(1)连结AC,BD,∵坐标原点O是菱形ABCD的对称中心,∴AC,BD相交于点O,且∠AOB=90°,∵B(1,﹣2),且AB∥x轴,∴设A(a,﹣2),则AO2=a2+4,BO2=5,AB2=(1﹣a)2,在Rt△AOB中,由勾股定理得(1﹣a)2=a2+4+5,解得a=﹣4,∴A(﹣4,﹣2),∴C(4,2),∵反比例函数y=(k≠0)的图象经过A,C两点,∴反比例函数解析式为y=;(2)连结OE,则△OCE是以O,C,E为顶点的三角形,设直线BC的解析式为y=kx+b,∵点B(1,﹣2),C(4,2)在该直线上,∴,解得.∴直线BC的解析式为y=x﹣,设其与y轴交于点F(0,﹣),∵反比例函数为y=,∴=x﹣,解得x1=4,x2=﹣,∴点E的横坐标为﹣,∴以O,C,E为顶点的三角形的面积=××(4+)=.【点评】考查了反比例函数与一次函数的交点问题,对称中心的性质,勾股定理,待定系数法求反比例函数与一次函数解析式,三角形面积计算,关键是根据待定系数法求反比例函数与一次函数解析式.22.(8分)如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.(1)求证:直线CA是⊙O的切线;(2)若BD=DC,求的值.【分析】(1)若要证明直线CA是⊙O的切线,则只要证明∠ACB=90°即可;(2)易证△ADF∽△ACE,由相似三角形的性质以及结合已知条件即可求出的值.【解答】解:(1)证明:∵BC为直径,∴∠BDC=∠ADC=90°,∴∠1+∠3=90°∵AE平分∠BAC,CE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°,∵∠3=∠4,∴∠2+∠5=90°,∴∠ACB=90°,即AC⊥BC,∴直线CA是⊙O的切线;(2)由(1)可知,∠1=∠2,∠3=∠5,∴△ADF∽△ACE,∴,∵BD=DC,∴tan∠ABC=,∵∠ABC+∠BAC=90°,∠ACD+∠BAC=90°,∴∠ABC=∠ACD,∴tan∠ACD=,∴sin∠ACD=,∴.【点评】本题考查了切线的判断和性质、相似三角形的判断和性质、圆周角定理以及三角函数的性质,熟记切线的判断和性质是解题的关键.23.(12分)如图1,在平面直角坐标系中,直线MN分别与x轴、y轴交于点M (6,0),N(0,2),等边△ABC的顶点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l 个单位长度的速度平移,边AB,AC分别与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).(1)等边△ABC的边长为 3 ;(2)在运动过程中,当t= 3 时,MN垂直平分AB;(3)若在△ABC开始平移的同时.点P从△ABC的顶点B出发.以每秒2个单位长度的速度沿折线BA﹣AC运动.当点P运动到C时即停止运动.△ABC也随之停止平移.①当点P在线段BA上运动时,若△PEF与△MNO相似.求t的值;=S,求S与t的函数关系式,并求出S的②当点P在线段AC上运动时,设S△PEF最大值及此时点P的坐标.【分析】(1)根据,∠OMN=30°和△ABC为等边三角形,求证△OAM为直角三角形,然后即可得出答案.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,由此即可解决问题;(3)①如图1中,由题意BP=2t,BM=6﹣t,由△PEF与△MNO相似,可得=或=,即=或=,解方程即可解决问题;②当P点在EF上方时,过P作PH⊥MN于H,如图2中,构建二次函数利用二次函数的性质即可解决问题;【解答】解:(1)∵直线MN分别与x轴正半轴、y轴正半轴交于点M、N,OM=6cm,ON=2∴tan∠OMN==,∴∠OMN=30°,∴∠ONM=60°,∵△ABC为等边三角形∴∠AOC=60°,∠NOA=30°∴OA⊥MN,即△OAM为直角三角形,∴OA=OM=×6=3.故答案为3.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,所以t=3.故答案为3.(3)①如图1中,由题意BP=2t,BM=6﹣t,∵∠BEM=90°,∠BME=30°,∴BE=3﹣,AE=AB﹣BE=,∵∠BAC=60°,∴EF=AE=t,当点P在EF下方时,PE=BE﹣BP=3﹣t,由,解得0≤t<,∵△PEF与△MNO相似,∴=或=,∴=或=,解得t=或3.∵0≤t≤,且,即<t≤,∴t=,综上所述,t=1或或.②当P点在EF上方时,过P作PH⊥MN于H,如图2中,由题意,EF=t,FC=MC=3﹣t,∠PFH=30°,∴PF=PC﹣CF=(6﹣2t)﹣(3﹣t)=3﹣t,∴PH=PF=,∴S=•EF•PH=×t×=﹣t2+t=﹣(t﹣)2+,∵≤t≤3,∴当t=时,△PEF的面积最大,最大值为,此时P(3,),当t=3时,点P与F重合,故P点在EF下方不成立.【点评】本题考查相似形综合题,等边三角形的性质、平移变换、解直角三角形、相似三角形、二次函数等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.【分析】(1)利用待定系数法求抛物线的解析式;(2)易得BC的解析式为y=﹣x+3,先证明△ECF为等腰直角三角形,作PH⊥y 轴于H,PG∥y轴交BC于G,如图1,则△EPG为等腰直角三角形,PE=PG,设P (t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,所以PE+EF=2PE+PF=﹣t2+3t+,然后利用二次函数的性质解决问题;(3)①如图2,抛物线的对称轴为直线x=﹣=2,设D(2,y),利用两点间的距离公式得到BC2=18,DC2=4+(y﹣3)2,BD2=1+y2,讨论:当△BCD是以BC为直角边,BD为斜边的直角三角形时,18+4+(y﹣3)2=1+y2;当△BCD是以BC为直角边,CD为斜边的直角三角形时,4+(y﹣3)2=1+y2+18,分别解方程求出t即可得到对应的D点坐标;。