3--污水处理构筑物的计算

合集下载

吨每天城市污水处理厂设计计算

吨每天城市污水处理厂设计计算

污水厂设计计算书第一章 污水处理构筑物设计计算一、粗格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =则: 最大流量Q max =×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45)3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=×(45-1)+×45=1.34m 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m 则:栅前槽总高度H 1=h+h 2=+=0.7m 栅后槽总高度H=h+h 1+h 2=++=0.802m 8.格栅总长度(L)L=L 1+L 2+++ H 1/tan α=++++tan60°= 9. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:α1αα图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规范,集水池的容积应大于污水泵5 min的出水量,即:V>0.347m3/s×5×60=104.1m3,可将其设计为矩形,其尺寸为3 m×5m,池高为7m,则池容为105m3。

污水处理构筑物设计计算

污水处理构筑物设计计算

污水厂设计计算书第一章 污水处理构筑物设计计算一、泵前中格栅1.设计参数:设计流量Q=5×104m3/d=578.7L/s栅前流速v1=0.7m/s,过栅流速v2=0.9m/s栅条宽度s=0.01m,格栅间隙e=20mm栅前部分长度0.5m,格栅倾角α=60°单位栅渣量ω1=0.05m3栅渣/103m3污水2.设计计算(1)确定格栅前水深,根据最优水力断面公式计算得:栅前槽宽,则栅前水深(2)栅条间隙数(取n=48)(3)栅槽有效宽度B=s(n-1)+en=0.01(48-1)+0.02×48=1.43m (4)进水渠道渐宽部分长度(其中α1为进水渠展开角)(5)栅槽与出水渠道连接处的渐窄部分长度(6)过栅水头损失(h1)因栅条边为矩形截面,取k=3,则其中ε=β(s/e)4/3h0:计算水头损失k:系数,格栅受污物堵塞后,水头损失增加倍数,取k=3ε:阻力系数,与栅条断面形状有关,当为矩形断面时β=2.42(7)栅后槽总高度(H)取栅前渠道超高h2=0.3m,则栅前槽总高度H1=h+h2=0.64+0.3=0.94m栅后槽总高度H=h+h1+h2=0.64+0.103+0.3=1.04(8)格栅总长度L=L1+L2+0.5+1.0+0.77/tanα=0.206+0.103+0.5+1.0+0.77/tan60°=2.35m(9)每日栅渣量ω=Q平均日ω1==1.79m3/d>0.2m3/d所以宜采用机械格栅清渣(10)计算草图如下:▲二、污水提升泵房1.设计参数设计流量:Q=578.7L/s,泵房工程结构按远期流量设计2.泵房设计计算采用氧化沟工艺方案,污水处理系统简单,对于新建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。

污水经提升后入旋流沉砂池,然后自流通过厌氧池、氧化沟、二沉池、砂滤池及接触池,最后由出水管道排入神仙沟。

各构筑物的水面标高和池底埋深见高程计算。

污水处理构筑物设计计算

污水处理构筑物设计计算

[ ] μn
=
0.47e0.098(T −15)
×
⎡ ⎢⎣
N
+
N 10 0.05T
−1.158
⎤ ⎥⎦
×
⎡ ⎢ ⎢⎣
K
O2 + O2
O2
⎤ ⎥ ⎥⎦
[ ] =
0.47e 0.098(15−15)
×
⎡ ⎢⎣
2
+
10
2
0.05×15−1.158
⎤ ⎥⎦
×
⎡2 ⎢⎣1.3 +
2
⎤ ⎥⎦
=0.204 d-1
= 0.26m3
(每格沉砂池设两个沉砂斗,两格共有四个沉砂斗)
其中X1:城市污水沉砂量 3m3/105m3, K:污水流量总变化系数 1.5
(6)沉砂斗各部分尺寸及容积:
设计斗底宽a1=0.5m,斗壁与水平面的倾角为 60°,斗高hd=0.5m, 则沉砂斗上口宽:
a
=
2hd tan 60°
+
a1
=
2 × 0.5 tan 60°
2)采用污泥龄 20d,则日产泥量为:
aQSr = 0.6 ×10000 × (190 − 6.4) = 550.8 kg/d 1 + btm 1000 × (1 + 0.05 × 20)
设其中有 12.4%为氮,近似等于 TKN 中用于合成部分为: 0.124× 550.8=68.30 kg/d
即:TKN 中有 68.30 ×1000 = 6.83 mg/L 用于合成。 10000
=0.88+0.44+0.5+1.0+0.77/tan60°=3.26m
(9)每日栅渣量ω=Q平均日ω1= 2.6 ×104 ×103 × 0.1 1.5

污水处理厂各构筑物的设计计算

污水处理厂各构筑物的设计计算

污水处理厂各构筑物的设计计算一、入口工程入口工程主要包括进水渠、雨水泵站和进水泵。

1.进水渠:进水渠的设计计算包括流量计算、渠宽计算和渠深计算。

流量计算根据城市规划的污水排放量和人口数来确定,可以考虑平均日流量和最大日流量。

渠宽和渠深可以根据流量和水的流态来确定,常用的设计方法有曼宁公式和底坡公式。

2.雨水泵站:雨水泵站的设计计算包括泵的选型、管道的设计和扬程的计算。

泵的选型需要根据进水渠的流量和扬程来确定,应选择合适的泵来确保良好的运行效果。

管道的设计需要根据流量和水的流态来确定,一般采用常规排水设计的方法来计算管道的尺寸。

扬程可以通过海绵城市设计的方法来计算。

3.进水泵:进水泵的设计计算包括流量计算、泵的选型和管道的设计。

流量计算可以根据进水渠的流量来确定,一般采用曼宁公式或底坡公式来计算。

泵的选型需要根据流量和扬程来确定,应选择合适的泵来确保厂区的进水正常运行。

管道的设计可以根据流量和水的流态来确定,一般采用常规排水设计的方法来计算管道的尺寸。

二、初沉池初沉池是用来沉降和去除污水中的固体颗粒、悬浮物和浮物的设施。

初沉池的设计计算包括沉降速度的计算、池的尺寸计算和搅拌器的选型。

沉降速度可以通过实验或实测数据来确定,可以参考已有的设计规范进行计算。

池的尺寸要根据进水量和沉降速度来确定,一般采用水力停留时间和提取水平法来计算。

搅拌器的选型需要根据池的尺寸和搅拌需求来确定,应选择合适的搅拌器来确保污水中的固体颗粒和悬浮物均匀分布。

三、曝气池曝气池是用来提供氧气和增加曝气面积,促进生物降解污水中的有机物的设施。

曝气池的设计计算包括曝气池的尺寸计算、曝气量的计算和曝气器的选型。

曝气池的尺寸要根据进水量和曝气时间来确定,一般采用水力停留时间和曝气强度来计算。

曝气量可以根据进水量和污水中的有机负荷来确定,一般采用生物需氧量和化学需氧量来计算。

曝气器的选型需要根据曝气量和曝气剂的形式来确定,常见的曝气器有喷射曝气器、曝气罩和机械曝气器。

污水设计构筑物的计算

污水设计构筑物的计算

污⽔设计构筑物的计算污⽔处理构筑物的设计计算中格栅及泵房格栅是由⼀组平⾏的⾦属栅条或筛⽹制成,安装在污⽔渠道上、泵房集⽔井的进⼝处或污⽔处理⼚的端部,⽤以截留较⼤的悬浮物或漂浮物。

本设计采⽤中细两道格栅。

1.1.1中格栅设计计算1.设计参数:最⼤流量:3max 150000 1.22.1/360024Z Q Q K m s ?=?==?栅前⽔深:0.4h m =,栅前流速:10.9/v m s =(0.4/~0.9/m s m s )过栅流速20.9/v m s =(0.6/~1.0m s /m s )栅条宽度0.01S m =,格栅间隙宽度0.04b m = 格栅倾⾓060α= 2.设计计算:(1)栅条间隙数:136n ===根设四座中格栅:1136344n ==根 (2)栅槽宽度:设栅条宽度0.01S m =()()1110.013410.0434 1.69B S n bn m =-+=?-+?=(3)进⽔渠道渐宽部分长度:设进⽔渠道宽1 1.46B m =,渐宽部分展开⾓度20α=1101 1.69 1.460.872tan 2tan 20B B l m α--=== 根据最优⽔⼒断⾯公式max 1 2.11.46440.90.4Q B m vh ===?? (4)栅槽与出⽔渠道连接处的渐宽部分长度:120.870.4322l l m ===(5)通过格栅的⽔头损失:02h K h ?=220sin 2v h g ξα=,43s b ξβ??=? ???h 0 ─────计算⽔头损失; g ─────重⼒加速度;K ─────格栅受污物堵塞使⽔头损失增⼤的倍数,⼀般取3;ξ─────阻⼒系数,其数值与格栅栅条的断⾯⼏何形状有关,对于锐边矩形断⾯,形状系数β = 2.42;43220.010.93 2.42sin 600.0410.0429.81h ??=≈m (6)栅槽总⾼度:设栅前渠道超⾼20.3h m =120.40.30.0410.741H h h h m =++=++=(7)栅槽总长度:1120.5 1.0tan H L L L α=++++0.40.30.870.430.5 1.0tan 60+=++++3m =(8)每⽇栅渣量:格栅间隙40mm 情况下,每31000m 污⽔产30.03m 。

某城镇污水处理厂工艺初步设计设计说明书(含计算书)

某城镇污水处理厂工艺初步设计设计说明书(含计算书)

目录1 设计概论 (1)1.1 课题意义 01.2 城镇污水常用处理方法 01.3 设计任务 (3)1.4 设计资料 (4)1.4.1 厂区概况 (4)1.4.2 设计规模 (4)1.4.3 设计水质 (4)2 污水处理工艺选择 (5)2.1 常用的城镇污水处理工艺比选 (5)2.2 工艺方案确定 (6)2.2.1 A2/O工艺原理 (7)2.2.2 A2/O工艺流程图 (7)3 污水处理构筑物设计计算 (8)3.1 设计水量 (8)3.2 粗格栅 (8)3.2.1设计说明 (8)3.2.2设计要求 (9)3.3 污水提升泵房 (12)3.3.1 设计说明 (12)3.3.2 设计要求 (13)3.3.3 设计计算 (14)3.4 细格栅 (15)3.4.1 设计说明 (15)3.4.2 设计参数 (15)3.4.3 设计计算 (15)3.5 沉砂池 (16)3.5.1 设计说明 (16)3.5.2 设计要求 (17)3.5.3 设计参数 (17)3.5.4 设计计算 (18)3.6 A2/O生物反应池 (19)3.6.1 判断是否可用A2/O法 (19)3.6.2 设计参数 (19)3.6.3 设计计算(污泥负荷法) (20)3.7 二沉池 (27)3.7.1 设计说明 (27)3.7.3 设计参数 (29)3.8 配水配泥井 (33)3.9 接触消毒池 (33)3.9.1 设计说明 (33)3.9.2 设计参数 (33)3.9.3 设计计算 (34)4 污泥处理构筑物的设计计算 (35)4.1 污泥量的计算 (35)4.2 污泥泵房 (36)4.2.1 设计说明 (36)4.2.2 设计计算 (37)4.3 污泥浓缩池 (37)4.3.1 设计说明 (38)4.3.2 设计要点 (38)4.3.3 设计计算 (38)4.4 贮泥池 (40)4.4.1 设计说明 (40)4.4.2 污泥量 (40)4.4.3 设计计算 (40)4.5.1 设计说明 (40)4.5.2 压滤机选型 (41)4.5.3 加药量计算 (42)5 污水处理厂总体布置 (42)5.1 污水厂的平面布置原则 (42)5.1.1 处理单元构筑物的平面布置 (42)5.1.2 管、渠的平面布置 (43)5.1.3 厂区道路,围墙设计 (44)5.1.4 辅助建筑物 (44)5.2 污水厂的平面布置 (45)5.3 污水厂的高程布置 (46)5.3.1 污水厂高程布置原则 (46)5.3.2 高程布置时的注意事项 (47)5.4 污水处理流程的高程计算 (47)5.5 污泥处理流程高程计算 (50)5.5.1 污泥处理构筑物的水头损失 (50)5.5.2 污泥管道水头损失 (50)5.5.3 污泥处理流程的高程布置 (51)6 污水处理厂运行成本核算 (52)6.2 运行费用 (52)6.2.1 成本估算有关单价 (52)6.2.2 运行成本估算 (53)7 工程效益 (55)8 结语 (55)参考文献 (56)致谢 (57)1 设计概论1.1 课题意义由于城市化、工业化和农业集约化的迅速发展,以及人类对水资源、水污染认识上存有一些误区,使得许多城市原有水资源不敷所用,许多地区进入水资源的污染物超过其环境容量,从而导致水体污染。

污泥处理构筑物设计计算

污泥处理构筑物设计计算

污泥处理构筑物设计计算1.回流污泥泵房1.回流污泥量⼆沉池活性污泥由吸泥管吸⼊,由池中⼼落泥管及排泥管排⼊池外套筒阀井中,然后由管道输送⾄回流泵房,其他污泥由刮泥板刮⼊污泥井中,再由排泥管排⼊剩余污泥泵房集泥井中。

设计回流污泥量为Q R=RQ,污泥回流⽐R=100%。

Q R=100%Q=38461m3/d =445.2L/s2.回流污泥泵设计(1)扬程:⼆沉池⽔⾯相对地⾯标⾼为0.6m,套筒阀井泥⾯相对标⾼为0.2m,回流污泥泵房泥⾯相对标⾼为-0.2-0.2=-0.4m,氧化沟⽔⾯相对标⾼为1.5m,则污泥回流泵所需提升⾼度为:1.5-(-0.4)=1.9m(2)流量:两座氧化沟设⼀座回流污泥泵房,泵房回流污泥量为20000m3/d=833m3/h (3)选泵:选⽤LXB-900螺旋泵3台(2⽤1备),单台提升能⼒为480m3/h,提升⾼度为2.0m-2.5m,电动机转速n=48r/min,功率N=55kW(4)回流污泥泵房占地⾯积为9m×5.5m⼆、剩余污泥泵房1.设计说明⼆沉池产⽣的剩余活性污泥及其它处理构筑物排出污泥由地下管道⾃流⼊集泥井,剩余污泥泵(地下式)将其提升⾄污泥浓缩池中。

处理⼚设⼀座剩余污泥泵房(两座⼆沉池共⽤)污⽔处理系统每⽇排出污泥⼲重为4×1133.4kg/d=4533.6 kg/d,即为按含⽔率为99%计的污泥流量4Q w=4×113.34m3/d=453.36m3/d=18.89m3/h ▲2.设计选型(1)污泥泵扬程:辐流式浓缩池最⾼泥位(相对地⾯为)-0.4m ,剩余污泥泵房最低泥位为-(5.34-0.3-0.6)-4.53m,则污泥泵静扬程为H 0=4.53-0.4=4.13m ,污泥输送管道压⼒损失为4.0m ,⾃由⽔头为1.0m ,则污泥泵所需扬程为H=H0+4+1=9.13m 。

(2)污泥泵选型:选两台,2⽤1备,单泵流量Q>2Q w /2=5.56m 3/h 。

污水处理厂毕业设计(含计算数据)..

污水处理厂毕业设计(含计算数据)..

一、污水处理工艺选择与可行性分析1、污水厂的设计规模近期污水量为2×104 m3/d,远期污水量为4×104 m3/d,其中生活污水和工业废水所占比例约为6:4。

污水厂主要处理构筑物拟分为二组,这样既可满足近期处理水量要求,又留有空地以二期扩建之用。

2、进出水水质由于进水不但含有BOD5,还含有大量的N,P所以不仅要求去除BOD5还应去除水中的N,P使其达到排放标准。

3、处理程度的计算1。

BOD5的去除率2 。

COD的去除率3。

SS的去除率4。

总氮的去除率5。

总磷的去除率4、本工程采用生物脱氮除磷工艺的可行性BOD5:N:P的比值是影响生物脱氮除磷的重要因素,氮和磷的去除率随着BOD5/N和BOD5/P比值的增加而增加。

理论上,BOD5/N>2。

86才能有效地进行脱氮,实际运行资料表明,BOD5/N>3时才能使反硝化正常进行。

在BOD5/N=4~5时,氮的去除率大于50%,磷的去除率也可达60%左右。

本工程BOD5/N=3,可以满足生物脱氮的要求。

对于生物除磷工艺,要求BOD5/P=33~100。

本工程BOD5/P等于36,能满足素之一,在碳化与硝化合并处理工艺中,硝化菌所占的比例很小,约5%。

一般负荷小于0。

15kg BOD5/kgMLSS。

d时,处理系统的硝化反认为处理系统的BOD5应才能正常进行。

根据所给定的污水水量及水质,参考目前国内外城市污水处理厂的设计及运转经验,对于生活污水占比例较大的城市污水而言,以下几种方法最具代表性:A2/O法、AB法、生物滤池、循环式活性污泥法(改良SBR)、氧化沟法.5、工艺比较及确定又要适当去除N,P故可采用SBR 城市污水处理厂的方案,既要考虑去除BOD5或氧化沟法,或A2/O法。

A A2/O法A2/O工艺即缺氧/厌氧/好氧活性污泥法, A2/O法处理城市污水的特点:运行费用较传统活性污泥法低,曝气池池容小,需气量少,具有脱氮除磷功能,BOD5和SS去除率高,出水水质较好,工作稳定可靠,有较成熟的设计、施工及运行管理经验,产泥量较传统活性污泥法少;污泥脱水性能较好;无需设初沉池;对水质和水温度化有一定适应能力;另外,从节省能耗的角度看,A2/O可以充分利,回收了部分硝化反应的需氧量,反硝化反应所用硝化液中的硝态氧来氧化BOD5产生的碱度可以部分补偿硝化反应消耗的碱度,因此对含氮浓度不高的城市污水可以不另外加碱来调节PH。

(完整版)污水处理厂工艺设计说明计算书:城市生活污水,2.0万吨每天,AO活性污泥法

(完整版)污水处理厂工艺设计说明计算书:城市生活污水,2.0万吨每天,AO活性污泥法

第一章 污水处理构筑物设计计算一、粗格栅1.设计流量Q=20000m 3/d ,选取流量系数K z =1.5则: 最大流量Q max =1.5×20000m 3/d=30000m 3/d =0.347m 3/s2.栅条的间隙数(n )设:栅前水深h=0.4m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数85.449.04.002.060sin 347.0sin 21=⨯⨯︒==bhv Q n α(取n=45)3.栅槽宽度(B)设:栅条宽度s=0.01m则:B=s (n-1)+bn=0.01×(45-1)+0.02×45=1.34m 4.进水渠道渐宽部分长度设:进水渠宽B 1=0.90m,其渐宽部分展开角α1=20°(进水渠道前的流速为0.6m/s ) 则:m B B L 60.020tan 290.034.1tan 2111=︒-=-=α5.栅槽与出水渠道连接处的渐窄部分长度(L 2)m L L 30.0260.0212===6.过格栅的水头损失(h 1)设:栅条断面为矩形断面,所以k 取3则:m g v k kh h 102.060sin 81.929.0)02.001.0(4.23sin 2234201=︒⨯⨯⨯⨯===αε其中ε=β(s/b )4/3k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,mε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值7.栅后槽总高度(H)设:栅前渠道超高h 2=0.3m则:栅前槽总高度H 1=h+h 2=0.4+0.3=0.7m栅后槽总高度H=h+h 1+h 2=0.4+0.102+0.3=0.802m 8.格栅总长度(L)L=L 1+L 2+0.5+1.0+ H 1/tan α=0.6+0.3+0.5+1.0+0.7/tan60°=2.8 9. 每日栅渣量(W)设:单位栅渣量W 1=0.05m 3栅渣/103m 3污水则:W=Q W 1=05.0105.130000100031max ⨯⨯=⨯⨯-Z K W Q =1.0m 3/d 因为W>0.2 m 3/d,所以宜采用机械格栅清渣 10.计算草图:图1-1 粗格栅计算草图二、集水池设计集水池的有效水深为6m,根据设计规范,集水池的容积应大于污水泵5min 的出水量,即:V >0.347m 3/s ×5×60=104.1m 3,可将其设计为矩形,其尺寸为3m ×5m ,池高为7m ,则池容为105m 3。

污水处理厂各构筑物的设计计算

污水处理厂各构筑物的设计计算

第二章设计方案城市污水处理厂的设计规模与进入处理厂的污水水质和水量有关,污水的水质和水量可以通过设计任务书的原始资料计算。

2.1厂址选择在污水处理厂设计中,选定厂址是一个重要的环节,处理厂的位置对周围环境卫生、基建投资及运行管理等都有很大的影响。

因此,在厂址的选择上应进行深入、详尽的技术比较。

厂址选择的一般原则为:1、在城镇水体的下游;2、便于处理后出水回用和安全排放;3、便于污泥集中处理和处置;4、在城镇夏季主导风向的下风向;5、有良好的工程地质条件;6、少拆迁,少占地,根据环境评价要求,有一定的卫生防护距离;7、有扩建的可能;8、厂区地形不应受洪涝灾害影响,防洪标准不应低于城镇防洪标准,有良好的排水条件;9、有方便的交通、运输和水电条件。

由于该地夏季盛行东南风,冬季盛行西北风,所以,本设计的污水处理厂应建在城区的东北或者西南方向较好,最终可根据主干管的来向和排水的方便程度来确定厂区的位置。

根据设计原则和设计要求,本工程拟比选出一个投资省、运行费用低、技术成熟、处理效果稳定可靠、运行管理方便、要求操作运转灵活、技术设备先进、成套性好、便于分期实施的处理工艺。

从进、出水水质要求来看,本工程对出水水质要求较高,要求达到一级A 标准,不但COD、BOD指标要求高,还要求脱氮除磷,所以需从出水水质要求来选择处理工艺。

1、A2/O工艺A2/O脱氮除磷工艺(即厌氧-缺氧-好氧活性污泥法,亦称A-A-O工艺),它是在A p/O除磷工艺上增设了一个缺氧池,并将好氧池出流的部分混合液回流至缺氧池,具有同步脱氮除磷功能。

其基本工艺流程如图1所示:进水内回流图1 A2/O工艺基本流程图污水经预处理和一级处理后首先进入厌氧池,在厌氧池中的反应过程与A p/O生物除磷工艺中的厌氧池反应过程相同;在缺氧池中的反应过程与A n/O 生物脱氮工艺中的缺氧过程相同;在好氧池中的反应过程兼有A p/O生物除磷工艺和A n/O生物脱氮工艺中好氧池中的反应和作用。

污水处理基本计算公式

污水处理基本计算公式
= 31.00kN/m2
板底均布净反力基本组合:
Q = 39.59-0.300×25.00×1.20= 30.59 kN/m2
板底均布净反力准永久组合:
Qe = 31.00-0.300×25.00
= 23.50 kN/m2
4、底板荷载计算(池内有水,池外无土):
水池底板以上全部竖向压力基本组合:
Qb=[4.500×8.000×1.50×1.27+945.00×1.20+(3.900×7.400×2.500)×10.00×1.27]/42.500
1500~2500M海拨高度时加3%的流量;
2500M以XX拨高度时加5%的流量。
比转速:ns
MBR计算公式
AAO进出水系统设计计算
一、曝气池的进水设计
初沉池的来水通过DN1000mm的管道送入厌氧—缺氧—好氧曝气池首端的进水渠道,管道内的水流速度为0.84m/s。在进水渠道中污水从曝气池进水口流入厌氧段,进水渠道宽1.0m,渠道内水深为1.0m,则渠道内最大水流速度
基底以上的覆盖土总重量Gt = Gt1 + Gt2 = 279.50 kN
基底以上的地下水总重量Gs = Gs1 + Gs2 = 45.50 kN
(4)活荷载作用Gh
顶板活荷载作用力Gh1= 54.00 kN
地面活荷载作用力Gh2= 65.00 kN
活荷载作用力总和Gh=Gh1+Gh2=119.00 kN
(5)基底压力Pk
基底面积: A=(L+2×t2)×(B+2×t2)=5.000×8.500 = 42.50 m2
基底压强: Pk=(Gc+Gw+Gt+Gs+Gh)/A

污水处理厂各构筑物的设计计算-污水处理构筑物的计算

污水处理厂各构筑物的设计计算-污水处理构筑物的计算

《水污染控制工程》课程设计题目:孤岛新镇污水处理厂设计学院:专业班级:姓名:序号:指导教师:第一章设计任务及资料1.1设计任务孤岛新镇6.46万吨/日污水处理厂工艺设计。

1.2设计目的及意义1.2.1设计目的孤岛新镇位于山东省黄河入海口的原黄泛区内。

东径118050'~118053',北纬37064'~37057',向北15公里为渤海湾。

向东10公里临莱州,向南20公里为现黄河入海口,距东营市(胜利油田指挥部)约60公里,该镇地处黄河下游三角洲河道改流摆动地区内。

该镇附近区域为胜利油田所属的孤岛油田和两桩油田。

地下蕴藏着丰富的石油资源。

为了开发这些油田并考虑黄河下游三角洲的长远发展。

胜利油田指挥部决定兴建孤岛新镇,使之成为孤岛油田和两桩油田的生活居住中心和生产指挥与科研中心,成为一个新型的社会主义现代化的综合石油城。

根据该镇总体规划,该镇具有完备的社会基础和工程基础设施。

有完备的城市交通、给水排水、供电、供暖、电信等设施,并考虑今后的发展与扩建的需要。

因此,为保护环境,防治水污染问题,建设城市污水治理工程势在必行。

1.2.2设计意义设计是实现高等工科院校培养目标所不可缺少的教学环节,是教学计划中的一个有机组成部分,是培养学生综合运用所学的基础理论、基础知识以及分析解决实际问题能力的重要一环。

它与其他教学环节紧密配合,相辅相成,在某种程度上是前面各个环节的继续、深化和发展。

我国城市污水处理相对于国外发达国家、起步较晚。

近200年来,城市污水处理已从原始的自然处理、简单的一级处理发展到利用各种先进技术、深度处理污水,并回用。

处理工艺也从传统活性污泥法、氧化沟工艺发展到A/O、A2/O、AB、SBR、 CASS等多种工艺,以达到不同的出水要求。

虽然如此,我国的污水处理还是落后于许多国家。

在我们大力引进国外先进技术、设备和经验的同时,必须结合我国发展,尤其是当地实际情况,探索适合我国实际的城市污水处理系统。

污水处理构筑物设计计算

污水处理构筑物设计计算

第三章 污水处理构筑物设计计算3.1格栅计算格栅是由一组平行的金属栅条制成,斜置在污水流经的渠道上或水泵前集水并处,用以截留污水中的大块悬浮杂质,以免后续处理单元的水泵或构筑物造成损害。

格栅按照栅条形式分为直棒式格栅、弧形格栅、辐射式格栅、转筒式格栅、活动格栅;按照格栅栅条间距分为粗格栅,栅条间距大于40mm ;中格栅,栅条间距为15-35mm ;细格栅,栅条间距为1-10mm 。

按照格栅除渣方式分为人工除渣格栅和机械除渣格栅。

按照安装方式分为单独设置的格栅和格栅与沉砂池合建一处的格栅。

其计算草图如下:3.1.1格栅设计参数设计流量33Q 10000m /d=0.116m /s = 栅前流速v 0.7m/s = 栅条宽度s=0.01m 过栅流速v=0.9m/s 栅前水深h=0.4m 格栅间隙b=0.02m 格栅倾角α=60。

单位栅渣量0.05m ³栅渣/10³m ³污水3.1.2计算据污水流量总变化系数表,由内差法得,z 1167012070K 1.69 1.59 1.69--=-- 解得K Z =1.50则 Q max =QK Z =0.174m 3/s又因为Q min 根据经验约为平均日流量的1/2-1/4。

所以得Q min =(1/2-1/4)Q=(0.058-0.029)m 3/s①栅条的间隙数max sin60n bhvQ N =。

式中 n ——格栅栅条间隙数(个)Q max ——最大设计流量(m ³/s )α——格栅倾角N ——设计的格栅组数(组)b ——格栅栅条间隙(m )h ——格栅栅前水深(m )v ——格栅过栅流速(m/s )0.174sin 60n 230.020.40.9⨯=≈⨯⨯。

(个) ②格栅槽的宽度B=s (n-1)+bn式中 B ——格栅槽的宽度(m )B=0.01()0.02230.68⨯23-1+⨯=(m ) 验证:max Q 0.174v 0.91b n h 0.02.4===(+1)(23+1)0(m/s ) 1hb B 0.40.020.68Q =v 0.910.19sin b s sin 600.010.02α⨯==++。

污水处理站设计计算书

污水处理站设计计算书

污水处理站设计计算书1 构筑物的计算平均流量Q=300m3/d=3.4 L/s=0.0034 m3/s 总变化系数Kz=2.3 则最大设计流量Q max=Q⨯Kz=690 m3/d =0.008m3/s1.1格栅1.1.1 主要技术标准⑴设计依据《污水综合排放标准》(GB8978-1996);《医院污水处理设计规范》(CECS07:88);《室外排水设计规范》(GBJ14-87);《医院污水排放标准》(GBJ48-1983)。

⑵设计参数栅条间隙:e=5mm=0.005m;栅条宽度s =5mm=0.005m;栅前水深为h=0.28m;过栅流速取0.8m/s;格栅倾角α=60°;小时变化系数K=2 。

1.1.2500B1111000B1H 2B 1设计计算⑴ 栅条间隙数 n=e h v⨯⨯0.0050.280.8⨯⨯取n=8式中 n ——栅条间隙数,个;Qmax ——最大设计流量,m3/s ; α——格栅倾角,为60°; v ——过栅流速,m/s ;e ——栅条间隙,m ; h ——栅前水深,m ;⑵ 栅槽宽度bnn S B +=)1-(=0.005(8-1)+0.005⨯8=0.04m⑶ 进水渠渐宽部分的长度设进水渠宽B 1=0.03m ,其渐宽部分展开角α1=200,则进水渠内流速为0.77m /s,在0.4~0.9 m /s 范围内,合乎要求。

所以,进水渠渐宽部分的长度:111a tan 2B B l -==0.040.032tan 20-⨯=0.014m式中 B 1——进水渠道宽度,取为0.42m ;1α——进水渠展开角,一般用20°。

栅栏与出水渠道连接处的渠渐窄部分的长度:2l =12l =0.007m⑷ 通过格栅的水头损失阻力系数ζ值与栅条断面形状有关,本设计采用圆形断面,β=1.79ζ=β43s b ⎛⎫ ⎪⎝⎭=430.0051.790.005⎛⎫ ⎪⎝⎭=1.79计算水头损失αζsin 220gvh ==20.81.790.86629.8⨯⨯=0.05mh 1=h o k=0.15m式中 g ——重力加速度,9.8m /s 2;k ——系数,格栅受污物堵塞时水头损失增大倍数,一般采用3。

污水处理厂内构筑物计算公式表

污水处理厂内构筑物计算公式表

1.2 0.115741
2 144 1 6.944444
0.1 12 0.06 1.929022 12.4 4.8
0.5 0.5
0.6 0
平 流 沉 淀 池
表面负荷 沉淀部分有 沉淀部分有 日平均流量 池子总表面 沉淀时间 水平流速 沉淀池长度 沉淀池宽度 3 2 效容积 效水深 q'(m /m · 3 2 t(h) v(mm/s) L(m) B(m) Q(m /S) 积A(m ) h2(m) h) V'(m3)
2.0736 0.8
2.5 2.5
28 28
772.8 115.92
资料)
污泥斗以上 污泥斗和梯 污泥斗容积 缓冲层高度 池子总高度 部分污泥容 形部分污泥 3 h3(m) H(m) V1(m ) 积V2(m3) 容积V3(m3)
0.5
资料)
Qmin时的水 验算最小流 流断流面积 速vmin(m/s) ω min
0.2
2
0.3
0.65147
0.05 1.723628
20
1
30
嚗 气 沉 砂
最大设计流 Qmax时的停 沉砂池的总 Qmax时的水 水流断面面 量 有效容积 平流速 留时间 积A(m) 3 3 v1(m/s) Qmax(m /s) t(min) V(m ) 格数n 超出地面高 沉砂池宽度 池底坡度i 度h1(m) b(m)



圆截锥部分 沉砂池部分 两次清除沉 每个沉砂斗 沉砂池半径 圆截锥部分 截锥部分倾 沉砂部分高 生活污水总 实际容积 所需容积 砂的时间间 下底半径 变化系数KZ 度h4(m) R(m) 角α (度) 容积V0(m3) 3 隔T(d) r(m) V1(m3) V(m )

高程计算

高程计算

3.5.2.2 污水处理构筑物高程布置设计计算
本设计污水处理厂的污水排入磁窑河,磁窑河洪水位较低,污水处理厂出水能够在洪水位时自流排出。

因此,在污水高程布置上主要考虑土方平衡,设计中以二沉池水面标高为基准,由此向两边推算其他构筑物高程。

由于河流最高水位较低,污水处理厂出水能够在洪水位时自流排出。

因此,在污水高程布置上主要考虑土方平衡,厂区地势平坦,地面标高为344.75m。

计算中以消毒池水面标高为基准,取为344.75m ,由此向两边推算其他构筑物高
3.5.2.3 污泥处理构筑物高程布置设计计算 (1)污泥处理构筑物高程布置设计计算 ①污泥管道水头损失 管道沿程水头损失:
86
.117.149.2⎪⎪⎭

⎝⎛⎪⎭⎫ ⎝⎛=H
f C v
D L h
管道局部损失:
g v h j 22
ξ
=
式中: CH ——污泥浓度系数; ξ——局部阻力系数; D ——污泥管管径(m ); V ——管内流速(m/s ); L ——管道长度(m )。

查计算表可知:污泥含水率97%时,污泥浓度系数 CH=71;污泥含水率95%时, 污泥浓度系数 CH=53。

污水处理构筑物设计计算

污水处理构筑物设计计算

污水处理构筑物设计计算污水处理构筑物是用于处理和处理废水的设施,包括污水处理厂,废水处理设备和相关的流程和系统。

在设计污水处理构筑物时,需要进行一系列的计算和考虑,以确保其能够有效地处理和处理污水。

下面将从污水处理进程的计算,处理设备的设计和污水处理构筑物的尺寸计算等方面进行详细介绍。

1.污水处理进程的计算污水处理进程的计算是设计污水处理构筑物的关键步骤之一、常见的污水处理进程包括初沉池、曝气池、沉淀池和滤池。

根据处理对象和水质情况,可以选择适当的进程。

针对每个处理过程,需要计算并确定相关参数,如进水流量、水质要求、处理时间等。

这些参数将用于后续处理设备和构筑物的设计。

2.处理设备的设计处理设备的设计是污水处理构筑物设计中的重要部分。

根据所选进程,需要设计并选择合适的处理设备,如曝气装置、沉降装置和滤料等。

设计处理设备时需要考虑以下参数:处理能力、水质要求、设备尺寸和材料选择等。

经过计算和考虑后,可以确定合适的处理设备及其相关参数。

3.污水处理构筑物的尺寸计算污水处理构筑物的尺寸计算是确保构筑物能够满足处理要求的关键步骤。

根据处理过程和处理设备的设计结果,计算构筑物的长度、宽度、深度等参数。

在计算尺寸时需要考虑的因素包括:进水流量、水质要求、处理时间、污水稀释等。

通过这些计算,可以确定构筑物的尺寸和形状,以满足处理要求。

4.结构设计和材料选择在进行污水处理构筑物设计时,还需要进行结构设计和材料选择。

结构设计包括计算构筑物的承载能力和稳定性,确保其能够承受污水处理过程中的各种荷载。

材料选择需要考虑其抗腐蚀性、耐久性和可维护性等因素,以确保构筑物的长期使用。

常用的材料包括混凝土、钢筋和塑料等。

总结:污水处理构筑物设计计算是设计污水处理设施的重要步骤,需要进行一系列的计算和考虑。

从污水处理进程的计算、处理设备的设计到污水处理构筑物的尺寸计算等方面,均需要综合考虑水质要求、处理能力和结构稳定性等因素,以确保构筑物的有效处理废水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 污水处理构筑物的计算
3.1细格栅
3.1.1设计说明
格栅系由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等。

以减轻后续处理构筑物的处理负荷,并保证其正常运行。

格栅的进出水水质见表3-1所示。

表3-1 格栅进出水水质
水质指标BOD5COD SS
进水6400 13000 2000
去除率0 0 10%
出水6400 13000 1800
3.1.2设计计算
本工艺采用矩形断面调节池前细格栅一道,采用机械清渣。

(1)栅前水深的确定
Q=2ℎ2ℎ1
式中,Q——设计流量,设计中取为0.0289m3/s;
h——栅前水深,m;
v1——栅前渠道水流流速,设计中取为0.6m/s。

h=√

2ℎ1=√
0.0289
2×0.6=0.16(m)
(2)细格栅的栅条间隙数
n=ℎ√ℎℎℎℎℎℎℎ
式中,n——格栅栅条间隙数,个;
Q——设计流量,m3/s;
α——格栅倾角,(o);
b——格栅栅条间隙,m;
h——格栅栅前水深,m;
v——格栅过栅流速,m/s。

过栅流速采用为0.7m/s,Q=0.0289m3/s,栅条间隙b=0.01m,栅前水深为0.16m,格栅安装倾角α=60o,则
n=0.0289×√ℎℎℎ60ℎ
0.01×0.16×0.7=24(个),取为25个。

(3)格栅槽有效宽度(B)
B=S(n−1)+bn
式中,B——格栅槽有效宽度,m;
S——每根格栅条的宽度,m。

设计中采用Φ10mm圆钢为栅条,即取S=0.01m,则
B=0.01×(25−1)+0.01×25=0.49(m),取为0.5m。

(4)进水渠道渐宽部分的长度
设进水渠道宽B1=0.25m,渐宽部分展开角ℎ1=20o,此时进水渠道内的流速为:
ℎ1=

ℎ1ℎ=
0.0289
0.25×0.16
=0.72(ℎ/ℎ),在0.4~0.9m/s范围之内,符合要求。

则,进水渠道渐宽部分长度:
ℎ1=
ℎ−ℎ1
2ℎℎℎℎ1=
0.5−0.25
2×ℎℎℎ20ℎ
=0.34(m)
(5)出水渠道的渐窄部分的长度
ℎ2=ℎ1
2=
0.34
2=0.17(m)
(6)过栅水头损失
ℎ1=kβ(ℎ
ℎ)
4
3ℎ2
2ℎℎℎℎℎ
式中,h1——水头损失,m;
β——格栅条的阻力系数,栅条断面为锐边矩形断面β=2.42;
k——格栅受污物堵塞时的水头损失增大系数,一般采用k=3。

ℎ1=3×2.42×(0.01
0.01)
4
3
×
0.72
2×9.8×ℎℎℎ60
ℎ=0.16(m)
(7)槽后明渠的总高度
H=h+ℎ1+ℎ2
式中,H——槽后明渠的总高度,m;
h2——明渠超高,m,设计中取h2=0.3m。

H=0.16+0.16+0.3=0.62(m)(8)格栅槽总长度
L=ℎ1+ℎ2+0.5+1.0+
ℎ1ℎℎℎℎ
式中,L——格栅槽总长度,m;
H1——格栅明渠的深度,m,H1=h+h2。

L=0.34+0.17+0.5+1.0+0.16+0.3
ℎℎℎ60ℎ
=2.28(ℎ)
(9)每日栅渣量
W=86400ℎℎ1 1000
式中,W——每日栅渣量,m3/d;
ω1——栅渣量,取ω1=0.1m3/103m3污水。

W=86400×0.0289×0.1
1000=0.25(ℎ
3/d)>0.2(ℎ3/d)
故采用机械清渣。

根据《给水排水设计手册》第9册,选用XWB-Ⅲ型背耙式格栅除污机。

表3-2 XWB-Ⅲ型背耙式格栅除污机性能
图3-1 格栅计算示意图
3.2调节池
3.2.1设计说明
(1)水量调节池实际是一座变水位的贮水池,进水一般为重力流,出水用泵提升。

池中最高水位不高于进水管的设计高度,最低水位为死水位。

(2)调节池的形状宜为方形或圆形,以利于形成完全混合状态。

长形池宜设多个进口和出口。

(3)调节池不具有废水处理的功能。

3.2.2设计计算
本设计水力停留时间取T=8h,设计流量Q=2500m3/d=104.2m3/h。

(1)调节池的尺寸
调节池体积:V=QT=104.2×8=833(m3)
取池子总高度H=5.5m,其中超高0.5m,有效水深h=5m,则池面积为
A=ℎ
ℎ=
833
5=166.6(ℎ
2)
池长取16m,池宽取12m,则实际有效水深为
ℎ′=

16×12=4.3(m)
取超高0.5m,则调节池的实际池深H=4.3+0.5=4.8m
(2)潜污泵
调节池集水坑内设2台上海阳光泵业制造有限公司生产的QW系列无堵塞移动式潜污泵(1用1备),水泵的基本性能参数见表3-3。

表3-3 潜水排污泵性能
型号
流量
(m3/h)扬程
(m)
转速
(r/min
电动机功率
(kW)
效率
(%)
出口直

QW125-13
130 15 1460 11 62 125 -15-11
(3)搅拌
为防止污水中悬浮物的沉积和使水质均匀,可采用水泵强制循环进行搅拌,也可以采用专用搅拌设备进行搅拌。

水泵强制循环搅拌,是在调节池底部设穿孔管,穿孔管与水泵压力水相连,用压力水进行搅拌。

水泵强制循环搅拌的优点是不需要在池内安装其它专用搅拌设备,并可根据悬浮沉积的程度随时调节压力水循环的强度。

其缺点是穿孔管容易堵塞,检修不方便,影响使用。

目前工程上常用潜水搅拌机进行搅拌。

根据调节池的有效容积,搅拌功率一般按1m3污水4~8W选配搅拌设备。

本工程取5W,调节池选配潜水搅拌机的总功率为2500×5=12.5(kW)。

选择5台晨容环保公司出产的QJB型潜水搅拌机(不锈钢),均匀安装在调节池内。

表3-4 潜水搅拌器电动机性能
(kW) (A) (mm) (r/min) (kg) QJB2.5/8-400/3-7408 2.5 9 400 740 70
图3-2 调节池计算示意图
3.3竖流沉淀池
3.3.1设计说明
竖流沉淀池是利用污水从沉淀池中心管流入,沿着中心管向下流动,经中心管下部的反射板折向上方流动,污水以流速v自下向上流动,污水中的颗粒以沉速u向下沉降,当u>v时颗粒开始下沉,u=v时颗粒悬浮污水中,u<v时,颗粒随污水流出。

上升至沉淀池顶部的污水用设在沉淀池四周的锯齿形三角堰流入集水槽排出。

竖流沉淀池由进水装置、中心管、出水装置、沉淀区、污泥斗及
排泥装置组成。

其进出水水质见表3-5所示。

表3-5 竖流沉淀池进出水水质
水质指标 BOD 5 COD SS
进水 6400 13000 1800
去除率 25% 20% 50%
出水 4800 10400 900
3.3.2设计计算
设计中取1座竖流沉淀池,设计流量Q =0.0289ℎ3
/ℎ。

(1)中心进水管面积与直径
ℎ0=ℎℎ0=0.02890.03
=1.0(ℎ2
)
ℎ0=√
4ℎ0ℎ=√4×1.0
3.14
=1.13(ℎ) 式中,A 0——沉淀池中心进水管面积(m 2);
Q ——设计流量(m 3/s);
v0——中心进水管流速,设计取为0.03m/s。

d0——中心进水管直径(m)。

(2)中心进水管喇叭口与反射板之间的缝隙高度
ℎ3=
ℎℎ1ℎℎ1
式中,h3——中心进水管喇叭口与反射板之间的缝隙高度(m);
v1——污水从中心进水管喇叭口与反射板之间的缝隙流出速度(m/s),一般取为0.02 m/s~0.03m/s;
d1——喇叭口直径(m),一般采用ℎ1=1.35ℎ0。

设计中取ℎ1=0.02m/s,ℎ1=1.35×1.13=1.53(ℎ)。

ℎ3=
0.0289
0.02×3.14×1.53=0.3(ℎ)
(3)沉淀池总面积及沉淀池直径
ℎ1=ℎℎ
A=ℎ0+ℎ1
D=√4ℎℎ
式中,A1——沉淀池的沉淀区面积(m2);。

相关文档
最新文档