人教版七年级下册数学《相交线课件》

合集下载

人教版七年级数学下册第五章511相交线课件共35张

人教版七年级数学下册第五章511相交线课件共35张

交点的个数
两条直线相交,最多有 ___1____ 个交点 三条直线相交,最多有 _1__+_2___ 个交点 四条直线相交,最多有1_+__2_+__3_ 个交点 …… n条直线相交,最多有 _1_+__2_+__3_+__·_··_+_(___n_-_1_)_ 个交点
公式: 1+2+3+···+( n-1)= n(n-1)/2
探究
∠1与∠2有怎样的数量关系? 互补
探究
∠1与∠3有怎样的数量关系? 相等
证明
你能说出∠1=∠3的道理吗? 请你用数学的语言写出这个过程.
因为 ∠1与∠2 互补, ∠3与∠2 互补 (邻补角的定义),
所以 ∠1=∠3(同角的补角相等), 同理 ∠2=∠4 .
例题
如图,直线a,b相交于点O,∠1=40°,求∠2 ,∠3 ,∠4 的度数.
∠1与∠3的边所在的位置有什么特点? 两边互为反向延长线
对顶角
对顶角的定义:∠1和∠3有 一个公共顶点O,并且∠1的两边分别 是∠3的两边的反向延长线 ,具有这种位置关系的两个角,互为 对顶角.
图中还有哪些对顶角? ∠2和∠4
例题
下列各图中,∠1和∠2是 邻补角吗?为什么?
例题
下列各图中,∠1和∠2是对顶角吗?为什么?
相交线
教学目标
理解邻补角和对顶角的概念. 掌握“对顶角相等”的性质.
教学重点
对顶角相等的探索过程.
教学难点
学生推理能力和表达能力的培养.
观察这些图片,你能否看到相交线、平行线?
思考
这里有一把剪刀,握紧剪刀的把手,就能剪开物体,你能说出
其中的道理吗?

人教版七年级下册数学课件:5.1.1相交线(共29张PPT)

人教版七年级下册数学课件:5.1.1相交线(共29张PPT)
3.判断的关键是看这两个角的两边,其中 一边是否为公共边,另一边是否互为反向 延长线。
考考你
下列各图中∠1、∠2是邻补角吗?为什么?
4、类比∠1和∠2,看∠1和∠3有怎样的位置关系?
C
A
12 O3
B
探 究
4

D

形如∠1 与∠3有一个公共顶点O,并且∠1 的 现
两边分别是∠3的两边的反向延长线,具有这 2
3、观察∠1和∠2的顶点和两边,有怎样的位置关系?
C
A
12 O3
B
4
探 究
D

形如∠1 与∠2有一条公共边OC,它们的另一边

互为反向延长线,具有这种关系的两个角,互为 现
邻补角.
1
图中有哪些角是邻补角呢?
∠1 和∠2, ∠2 和∠3,∠3 和∠4,∠4 和∠1
1.两条直线相交形成4对邻补角。
2.邻补角定义既包含位置关系,又包含数 量关系。
三条直线相交于一点,有几对对顶角? 四条直线相交于一点,有几对对顶角? n 条直线相交于一点,有几对对顶角?
教师寄语:
人生重要的不是脚下所站的位置,而 是所朝的方向,只要我们在每一节课中, 一点点的积累,就会不断地进步、升华, 数学成绩就会有很大的提高,老师祝愿同 学们都有一个完美的人生!
2
1
A
B
C
D
概念总结:
邻补角:如果两个角有一条公共边,它 们的另一边互为反向延长线,具有这种 关系的两个角,互为邻补角.
对顶角:如果两个角有一个公共顶点,并 且一个角的两边分别是另一个角两边的反 向延长线,具有这种位置关系两个角互为 对顶角.
探究二:
邻补角和对顶角的性质

人教版 七年级下册 5. 相交线 (20张)

人教版 七年级下册 5. 相交线 (20张)

二、探究新知
A 2
DA
2
D
1
3 O
B
4
C 邻补角
3 1O
B 4
C
对顶角
如果两个角有一条公共边,它们 如果一个角的两边是另一个角
的另一边互为反向延长线,那么这 的两边的反向延长线,那么这两
两个角互为邻补角.
个角互为对顶角.
∠1与∠2位置有什么特点? ∠1与∠3位置有什么特点?
位置:相邻
位置:相对
有一条公共边 OA
(经典教学PPT)人教版 七年级下册 5.1.1 相交线 (20张PPT)-导学课件(示范)
五、例题讲解
例2、如图所示,直线m,n相交于点O,∠1=60°, 求∠2,∠3,∠4的度数.
解:由邻补角的定义,可得:
∠2=180°-∠1 =180°-60° =120°
由对顶角相等,可得:
2
1 O3
n
4
∠3=∠1=60°,
课堂小结
角的 名称
特征
性 质
相同点
不同点
对 顶 角
①两条直线相 交形成的角; ②有公共顶点;
③没有公共边
对顶 角相 等
①都是两条 直线相交而 成的角;
①有无公共边 ②两直线相
邻 补
①两条直线相 交而成; ②有公共顶点;
②都有一个 公共顶点; 邻补
角互 ③都是成对
交时,对顶 角只有两对 邻补角有四 对
(经典教学PPT)人教版 七年级下册 5.1.1 相交线 (20张PPT)-导学课件(示范)
五、例题讲解
例2、如图所示,直线m,n相交于点O, 变式2:若∠2是∠1的3.5倍,求各个角的度数.
解:设∠1=x,∠2=3.5x

人教版七年级下册数学相交线课件.ppt

人教版七年级下册数学相交线课件.ppt

练习1、下列各图中∠1、∠2是对顶角 吗?为什么?
1( )2
1( )2
1( )2
练习2、下列各图中∠1、∠2是邻补角 吗?为什么?
1( (2
1( 2
1( 2
练习:
1、如图所示,三条直线AB、 A
F
CD、EF相交于一点O,∠AOC
的对顶角是
,∠COF C
O
D
的对顶角是
∠COB的邻补角是 。
E
B
对顶角的性质:
归纳小结
角的名称 特 征 性 质 相 同 点 不 同 点
对顶角 邻补角
①两条直线相 交形成的角
②有一个公共 顶点;
③没有公共边
对顶 角相 等
①两条直线相交 邻补
而成;
角互
②有一个公共点;补
③有一条公共边
①都是两条 ① 有 无 公
直线相交 共边
而 成 的 ②两直线
角;
相交时,
②都有一个 对 顶 角 只 公共顶点; 有一对
A
1
G
2
B
∠4的度数。 解:∵∠2=∠ 1 (对顶角相等) C
∠1=70 °(已知)
3H D 4
∴∠2= 70°(等量代换) 又∵ ∠2=∠3(已知)
图1 F
∴∠3= 70 °(等量代换)
∴∠4=180°—∠ 3 =110 °(邻补角的定义)
四、解答题 直线AB、CD交于点O,OE是
E A
D
∠求A∠ODDO的E的平度分数线。,已知∠AOC=50°C
解:∠3=∠1=400 (对顶角相等)a
∠2=1800-∠1=1800-400=1400
b
(补角的定义)
2

人教版七年级数学下册:5.1.1相交线课件(共16张PPT)

人教版七年级数学下册:5.1.1相交线课件(共16张PPT)
和∠BOC是 什么关系的角?
互为邻补角
A
C
·
O
B
2、图中∠1的邻补角有几个?
2
哪几个?它们的大小关系? 1
3
2个,∠2和∠4, 相等。
4
由今天所学知识知:∠2和∠4是对顶角
是不是对顶角都会相等?
对顶角的性质: 对顶角相等
∵∠1+∠2=180° ∠1+∠4=180°
∴∠2=∠4(同角的补角相等)
D
A
B O
C
小结
(1)相交是同一平面内两条直线的一种位置关系。 而垂直是相交的一种特殊情况.
(2)对顶角 对顶角相等
(3)邻补角 互为邻补角的两个角一定互补,但是互 为补角的两个角不一定是邻补角
互为对顶角
B
1.顶点相同.
C
20
2.角的两边互为反向延长线. 1
3
4
A
D
∠1 与∠3、 ∠2与 ∠4 互为对顶角
请判断:下列的∠1与∠2是否是对顶角?
1 2
(1) 1
2 (3)
1
2 (5)
12 (4)
12 (6)
1 2 (2)
(7) 21
3、 ∠1 与∠2在位置上有何联系?
互为邻补角
A
2
D
1
3
1.有一条公共边
例1:如图,直线 a与直线b相交,∠1=40°,
求∠2,∠3,∠4的度数。
a
2
1
3
4 b
练一练 1、课本P3 练习
2、下列说法正确的是( A ) A、对顶角的角平分线在一条直线上 B、相等的角是对顶角 C、一个角的邻补角只有一个 D、补角即为邻补角

人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)

人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)

变式2:若∠2是∠1的3倍,求∠3的度数? 解:设∠1=x°,则∠2=3x°
根据邻补角的定义,得 x+3x=180 所以 x=45 则∠1=45°
根据对顶角相等,可得 ∠3=∠1=45°
今天我们学了什么?
邻补角、对顶角概念 邻补角、对顶角性质
今天我们学了什么?
两直线相交
C
2
B
1
3
4
A
D
位置 特征
1、两直线相交,形成小于平角的角有哪几个?
2、以∠1和∠2为例分析这两个角存在怎样的
位置关系和大小关系?像这样的角还有哪些?
3、以∠1和∠3为例分析这两个角存在怎样的
位置关系?像这样的角还有哪些?
C
2
B
1 o3
4
A
D
动手画出两条相交直线
1、两条直线相交,形成的小于平角的角
有哪几个?
C
2
B
1
o3
4
A
1 2
(1)不是
1 2
(2) 是
1 2
(3) 不是
1
2
(4) 不是
2 1
(5)是
7、你能得到对顶角∠1和∠3的大小关系吗?
C
2
B
动动手:(1)、用量角器测
1
o3
量对顶角∠1和∠3,比较他们
4
的大小
A
D
(2)将对顶角∠1和∠3
进行翻折,比较它们的大小?
4、你能得到对顶角∠1和∠3的大小关系吗?
猜猜看:若直线CD绕点O转 C
例、如图,直线a、b相交,∠1=40°,求
∠2、∠3、∠4的度数。
b
解:由邻补角的定义可知 ∠2=180°-∠1

人教版七年级下册数学第5章《相交线》图文讲解课件

人教版七年级下册数学第5章《相交线》图文讲解课件

知2-讲
∠1=∠3 (或 ∠2=∠4)
解:直线AB与CD相交于O点 由邻补角的定义,可得 ∠1+∠2=180° ∠2+∠3=180 所以:∠1=∠3 同样的道理 ∠2=∠4
C 2O
B
1 ( ( )3 )
4 A
D
例2 如图,∠1与∠2是对顶角的是( C )
知2-讲
导引:判断两个角是不是对顶角,要紧扣对顶角的定义, A图中∠1和∠2的顶点不同;B图中∠1和∠2的两 边都不是互为反向延长线;C图中的∠1和∠2符合 定义;D图中∠1和∠2有一条公共边.
总结
知2-讲
判断两个角是否互为对顶角的方法: 一看它们有没有公共顶点; 二看这两个角的两边是否互为反向延长线,实质就 是看这两个角是否是两条直线相交所成的没有公共 边的两个角.
知2-讲
例3 如图,直线a, b相交,∠1 = 40°, 求∠2, ∠3, ∠4的度数.
解:由邻补角的定义,得 ∠2 = 180°-∠1 = 180°-40°=140°; 由对顶角相等,得 ∠3= ∠1=40° , ∠4= ∠2 = 140°.

个公共顶点③有 一条公共边
互补 成对出现.
两个.
2 易错小结
如图,点O是直线AB上的任意一点,OC,OD,OE是过点O 的三条射线,若∠AOD=∠COE=90°,则下列说法:①与 ∠AOC互为邻补角的角只有一个;②与∠AOC互为补角的角 只有一个;③与∠AOC互为邻补角的角有两个;④与∠AOC 互为补角的角有两个.其中正确的是( D )
(来自《典中点》)
知识点 2 对顶角的定义及性质
知2-讲
对顶角:有一个公共顶点一 个角的两边是另一个角的 两边的反向延长线,那么 这两个角互为对顶角.

新人教版七年级下5.1相交线19张课件

新人教版七年级下5.1相交线19张课件

1( (2
12
12
新人教版七年级下5.1相交线(19 张)
3、找出图中∠AOE的邻补角及对顶角,若没有请画出.
A
E D
O
C
B
F
新人教版七年级下5.1相交线(19 张)
4、如图,直线AB,CD,EF相交于点O. (1)写出∠AOC, ∠BOE的邻补角; (2)写出∠DOA, ∠EOC的对顶角; (3)如果∠AOC =50°,求∠BOD ,∠COB的度数。 D E
A
B
O
F
C
新人教版七年级下5.1相交线(19 张)
5. (应用题)在下图中,花坛转角按图纸要求这个角 (红色标注的角)为135°;施工结束后,要求你检测它是 否合格?请你设计检测的方法.
1 新人教版七年级2下5.1相交线(19
张)
合作探究
当堂检测 6、如图,直线AB,CD相交于点O, ∠EOC=70°,
OA平分∠EOC,求∠BOD的度数。
E
D

A
B
O
C
新人教版七年级下5.1相交线(19 张)
合作探究
拓展题:观察下列各图,寻找对顶角(不含平角)
A
C
图a
a O
D
b
AO
BC
图b
DG BA C
c E
O F
图c
D B
H
⑴ 如图a,图中共有 对对顶角;
⑵ 如图b,图中共有 对对顶角;
⑶ 如图c,图中共有 对对顶角;
名称
邻 补 角
数量 关系
对 顶 角 相 等
D

∠1和∠3、
1、有公共顶点 2、没有公共边
对 顶

人教版七年级数学课件《相交线》

人教版七年级数学课件《相交线》
人教版数学七年级下册
第五章第1节——相交线
PEOPLE EDUCATION VERSION OF THE SEVEN GRADE MATH VOLUME
学校:XXXX
老师:XXXX
情景引入
人教版数学七年级下册
1.理解两条直线相交的特征及邻补角与对顶角的概念.
2.掌握邻补角与对顶角的性质,并能运用它们的性质进行角的计
针对练习
人教版数学七年级下册
1.如图,直线AB、CD、EF相交,若∠1+∠5=180°,找出图中与
∠1相等的角.
2
解:∵ ∠1= ∠3(对顶角相等)
1
∠5+∠8=180 °且∠1 +∠5=180°
4
∴∠8= ∠1
∵ ∠8= ∠6(对顶角相等)
∴∠6= ∠1.
3
A
C
5
7
6
8
F
针对练习
人教版数学七年级下册
∠BOC
8.如图(2),直线AC和BD相交于点O,那么∠AOD的对顶角是________,
∠AOD,∠BOC
∠AOB的邻补角是__________________.
148°
32° ∠4=______.
148°
9.如图(3),直线a,b相交,∠1=32°,则∠2=______,∠3=____,
达标检测
人教版数学七年级下册
典例解析
人教版数学七年级下册
例1.下列四个图形中,∠1和∠2是对顶角的是( D ).
A.
B.
C.
D.
【分析】解:A.两角只有一条边互为反向延长线,另一条边没有互为反向延长线,不符
合题意;
B.两角没有公共顶点,两角也是只有一条边互为反向延长线,另一条边没有互为反向延

初中数学人教版七年级下册第五章 相交线与平行线5.1.1相交课件(共25张PPT)

初中数学人教版七年级下册第五章 相交线与平行线5.1.1相交课件(共25张PPT)

A.40°
B.50°
C.85°
D.60°
)
(第5题)
【点拨】
因为直线AB与CD相交于点O,所以∠BOD=∠AOC.因
为∠AOC=50°,所以∠BOD=50°.故选B.
4.如图,直线AB,CD相交于点O,若∠1=80°,
∠2=30°,则∠AOE的度数为(
A.30°
B.50°
C.60°
B )
D.80°
条公共边,“补”指的是两个角的数
量关系是互补.
3. 邻补角与补角的区别:
(1)互为邻补角是互为补角的特殊情况. 互为邻补角的两个
角除具备两角互补这一数量关系外,还要具备两角相邻
的位置关系.
(2)一个角的邻补角有两个,但一个角的补角可以有多个.
1-1. 下列选项中∠ 1与∠ 2 互为邻补角的是( D )
• •
关系,一个角的对顶角只有一个.
• •
2. 性质:对顶角相等.
特别提醒:(1)两个角互为对顶角,它们一定相等;
(2)相等的两个角不一定是对顶角.
2-1. [中考·安顺] 如图,直线a,b相交于点O,如果∠ 1+
∠ 2=60°,那么∠ 3 是( A )
A. 150°
B. 120°
C. 60°
D. 30°
因为∠BOD=60°,所以∠AOC=∠BOD
=60°,
所以∠FOC=∠AOF+∠AOC=90°+60°
=150°.
相交线
定义
性质



相交线



定义
性质
于点O.
(1)写出∠COE的邻补角;
【解】∠COE的邻补角为∠COF和∠EOD.

人教版初中数学七年级下册 5.1相交线 课件 (共31张PPT)

人教版初中数学七年级下册 5.1相交线 课件  (共31张PPT)

探究升级
l1
l2
O
l3
探究升级
l2
O
l3
探究升级
l2
O
l3
l2
O
l3
探究升级
l1
l2
O
l3
l2
O
l3
探究升级
l1
O l3
l2
O
l3
探究升级
l1
O l3
l2
O
l3
l1
O l3
探究升级
l1
l2
O
l3
l2
O
l3
l1
O l3
探究升级
l1
l2
O
l3
l2
O
l3
l1
O l3
探究升级
l1
l2
O
l2
对顶角相等.
(邻补角定义)
∴∠1=∠3 (同角的补角相等)
同理可得:∠2=∠4
学以致用
1.生活中应用“对顶角相等”的例子.
B
C
O
A
D
学以致用
2.判断下列说法是否正确:
(1)有一边互为反向延长线,且相等的两个角是对顶角;( × ) (2)两条直线相交,有公共顶点的两个角是对顶角;( × ) (3)两条直线相交,有公共顶点,没有公共边的两个角是对顶
D
AEB源自CFba
(1
(2 ) 4 )3
变式1:若∠2是∠1的3倍,求∠3的度数. 变式2:若∠2-∠1=400, 求∠4的度数.
变式3:若 1: 2 = 2: 7 ,求各个角的度数.
探究升级
思考:
两条直线相交于一点,有几对邻补角?几对对顶角? 三条直线相交于一点,有几对邻补角?几对对顶角? 四条直线相交于一点呢? n 条直线相交于一点呢?

人教版七年级下册数学相交线课件.ppt

人教版七年级下册数学相交线课件.ppt

练习1、下列各图中∠1、∠2是对顶角 吗?为什么?
1( )2
1( )2
1( )2
练习2、下列各图中∠1、∠2是邻补角 吗?为什么?
1( (2
1( 2
1( 2
练习:
1、如图所示,三条直线AB、 A
F
CD、EF相交于一点O,∠AOC
的对顶角是
,∠COF C
O
D
的对顶角是
∠COB的邻补角是 。
E
B
对顶角的性质:
F
2、如图所示,三条 A 直线AB、CD、EF相 交于O点,∠1=4 00, ∠2=750,则∠3等 C 于多少度?
O 1
2
3
D
B
E
二、 填空
1、一个角的对顶角有 一 个,邻补角最多有 两 个,而补角则可以有 无数 个。
2、右图中∠AOC的对顶角是 ∠DOB ,
邻补角是 ∠AOD和∠COB . A
③都是成对 邻 补 角 有
出现的
两个
一、判断题
达标测试
1、有公共顶点且相等的两个角是对顶角。( × )
2、两条直线相交,有两组对顶角。
(√ )
3、两条直线相交所构成的四个角中有一个角是直角,
那么其余的三个角也是直角。 二、选择题
(√ )
1、如右图直线AB、CD交于点O,OE为射线,那么(C)
A。∠AOC和∠BOE是对顶角;
归纳小结
角的名称 特 征直线相 交形成的角
②有一个公共 顶点;
③没有公共边
对顶 角相 等
①两条直线相交 邻补
而成;
角互
②有一个公共点;补
③有一条公共边
①都是两条 ① 有 无 公

人教版七年级下册数学相交线课件.ppt

人教版七年级下册数学相交线课件.ppt

D
3、如图,直线AB、CD相交于
O,∠AOC=80°∠1=30°;
求∠2的度数.
C
)1 O )2 E
解:∵∠DOB=∠ AOC ,( 对顶角相等 ) B
∠AOC =80°(已知)
∴∠DOB= 80 °(等量代换)
又∵∠1=30°( 已知 )
∴∠2=∠ DOB -∠ 1 = 80°- 30°= 50 °
解:∠3=∠1=400 (对顶角相等)a
∠2=1800-∠1=1800-400=1400
b
(补角的定义)
2
1
3
4
∠4=∠2=1400(对顶角相等)
变式练习
a
2
1
3
b
4
• 变式1:若∠2是∠1的3倍,求∠3的度数? • 变式2:若∠2-∠1=400, 求∠4的度数?
练习
1、两条直线相交得4个角,其中一 个角是900,其余各角是多少度?
A
1
G
2
B
∠4的度数。 解:∵∠2=∠ 1 (对顶角相等) C
∠1=70 °(已知)
3H D 4
∴∠2= 70°(等量代换) 又∵ ∠2=∠3(已知)
图1 F
∴∠3= 70 °(等量代换)
∴∠4=180°—∠ 3 =110 °(邻补角的定义)
四、解答题 直线AB、CD交于点O,OE是
E A
D
∠求A∠ODDO的E的平度分数线。,已知∠AOC=50°C
归纳小结
角的名称 特 征 性 质 相 同 点 不 同 点
对顶角 邻补角
①两条直线相 交形成的角
②有一个公共 顶点;
③没有公共边
对顶 角相 等
①两条直线相交 邻补

人教版七年级下册数学相交线课件.ppt

人教版七年级下册数学相交线课件.ppt
ຫໍສະໝຸດ ③都是成对 邻 补 角 有
出现的
两个
一、判断题
达标测试
1、有公共顶点且相等的两个角是对顶角。( × )
2、两条直线相交,有两组对顶角。
(√ )
3、两条直线相交所构成的四个角中有一个角是直角,
那么其余的三个角也是直角。 二、选择题
(√ )
1、如右图直线AB、CD交于点O,OE为射线,那么(C)
A。∠AOC和∠BOE是对顶角;
F
2、如图所示,三条 A 直线AB、CD、EF相 交于O点,∠1=4 00, ∠2=750,则∠3等 C 于多少度?
O 1
2
3
D
B
E
二、 填空
1、一个角的对顶角有 一 个,邻补角最多有 两 个,而补角则可以有 无数 个。
2、右图中∠AOC的对顶角是 ∠DOB ,
邻补角是 ∠AOD和∠COB . A
∠1和∠2与对顶角相比,有什么相同
点和不同点?
A
2
1O
4
C
D 3
B
∠1和∠2也是直线AB、CD相交得到的, 它们不仅有一个公共顶点O,还有一条公 共边OA,像这样的两个角叫做邻补角。
∠1、∠2还是邻补角吗?
12
1
2
邻补角是有特 ∠1、∠2的和是多少度? 殊位置关系的 ∠1和∠2还是补角吗? 两个互补的角。 ∠1和∠2还是邻补角吗?
A
1
G
2
B
∠4的度数。 解:∵∠2=∠ 1 (对顶角相等) C
∠1=70 °(已知)
3H D 4
∴∠2= 70°(等量代换) 又∵ ∠2=∠3(已知)
图1 F
∴∠3= 70 °(等量代换)
∴∠4=180°—∠ 3 =110 °(邻补角的定义)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(B)∠BOC与∠AOD
(C)∠COE与∠BOD
O
A
(D)∠AOE与∠DOE
D
∠1和∠2与对顶角相比,有什么相同
点和不同点?
A
2
1O
4
C
D ∠2与∠3
3
∠3与∠4
B ∠1与∠4
∠1和∠2也是直线AB、CD相交得到的, 它们不仅有一个公共顶点O,还有一条公
共边OA,像这样的两个角叫做邻补角。
∠1、∠2还是邻补角吗?
12
1
2
邻补角是有特 ∠1、∠2的和是多少度? 殊位置关系的 ∠1和∠2还是补角吗? 两个互补的角。 ∠1和∠2还是邻补角吗?
如图 直线AB、CD相交于O, OB平分∠EOD,图中互为邻 补角的是( )
(A)∠AOC和∠DOE C
(B)∠COB和∠AOD
(C)∠COE和∠EOD (D)∠AOC和∠BOE A
A
2
O
1
C
4
D 3
B
∠1与∠3是直线AB与CD相交得到的, 它们有一个公共顶点O,没有公共边,
像这样的两个角就角吗? 为什么?
1 2


1
12
2




如图 直线AB、CD相交于O,
OB平分∠EOD。图中互为
对顶角的是(

E
(A)∠AOC与∠BOE C
B
E B
O D
练习:
三条直线AB、CD、EF
两两相交,在这个图形
中有对顶角 6 对,
邻补角 12 对
A
F
C
D
E
B
综合练习1:
1、如图所示,三条直线AB、
CCAC的A的∠∠DCC对、对BAOOOO顶EC顶BFDA的角O相角B邻是B是交OD补D∠C于B角∠ADD一是BEOE∠A点OODBE,ADEOCAAOO,A∠∠和CBECAOOACDOOOABFCEFAOBBOFCEBFECCAEEAOCDECEBF BOOOODBOOF
2 1
3
∴ ∠1= ∠3(同角的补角相等)
4
对顶角相等
例题
已知:直线a,b相交,∠1=400 求∠2、∠3、∠4的度数?
解:∠3=∠1=400 (对顶角相等)
a
∠2=1800-∠1=1800-400=1400
(补角的定义)
b
∠4=∠2=1400(对顶角相等)
2
1
3
4
口答
若∠α与∠β是对顶角, ∠α=16°,则∠β = 1,6° 理由 对顶角相等
人教版七年级下册数学《相交线课件》
北京立交桥
2.1相交线 对顶角

1、能准确说出对顶角和邻补角的定义及 其特征。

2、在图形中能正确熟练地识别出对顶角、

邻补角。

3、能总结出对顶角的性质 4、能用对顶角的性质进行简单推理和计算。
当转动一木
条的位置时, 什么也随着发 生了变化?
如图1所示,∠1与∠3有什么特点?
解答题
三条直线 a、b、c 相交于O点,∠1=40°, ∠2=50°,求∠3的度数
解:∵∠4 =∠2=40°(对顶
角相等 ) ∴ ∠3=180 °-∠4-∠1
a
1 4
=180°-40°- 30°
3
=110°(补角定义)
b
2
c
棒! 看谁做得
• 已知 直线AB、CD相交于O点OA平分 ∠EOC,∠EOC=70°,求∠BOD和 ∠BOC的度数。
FFFD FD BB DF
FD
D
对顶角:2×3=6
邻补角:4×3=12
综合练习2:
2、如图所示∠1=∠2,则
∠2与∠3的关系是 互为,邻补角 1
∠1与∠3的关系是 互为。补角
32
请大家仿照下图,任作两条直 线相交,并量出各角的度数,你能 从中得出怎样的结论
∵ ∠1与∠ 2互补 ∠ 3与∠2互补(邻补角的定义)
E
D
A
O
B
C
归纳小结
角的名称 特 征 性质 相 同 点 不 同 点
对顶角 邻补角
①两条直线相 交形成的角
②有一个公共 顶点;
③没有公共边
对顶 角相 等
①两条直线相交 邻补
而成;
角互
②有一个公共点;补
③有一条公共边
①都是两条 ① 有 无 公
直线相交 共边
而 成 的 ②两直线
角;
相交时,
②都有一个 对 顶 角 有 公共顶点; 两 对 ,
③都是成对 而 邻 补
出现的
角有四

当转动一木
条的位置时, 什么也随着发 生了变化?
a
2
1
3
b
4
1.若∠2是∠1的3倍,求∠3的度数? 2.若∠2-∠1=400, 求∠4的度数?
谢谢!
相关文档
最新文档