高考数学三角函数重点考点归纳

合集下载

专题17 三角函数概念与诱导公式 (教师版)高中数学53个题型归纳与方法技巧总结篇

专题17 三角函数概念与诱导公式 (教师版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】知识点一:三角函数基本概念1.角的概念(1)任意角:①高中数学53个题型归纳与方法技巧总结篇专题17三角函数概念与诱导公式定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是{}Z k k S ∈+︒⋅==,αββ360.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.(4)象限角的集合表示方法:2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:rad 180π=︒,rad 1801π=︒,π︒=180rad 1.(3)扇形的弧长公式:r l ⋅=α,扇形的面积公式:22121r lr S ⋅==α.3.任意角的三角函数(1)定义:任意角α的终边与单位圆交于点)(y x P ,时,则y =αsin ,x =αcos ,)0(tan ≠=x xyα.(2)推广:三角函数坐标法定义中,若取点P )(y x P ,是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则r y =αsin ,r x =αcos ,)0(tan ≠=x xyα三角函数的性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号αsin R ++--αcos R+--+αtan }2|{Z k k ∈+≠,ππαα+-+-记忆口诀:三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦.4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函数线有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线知识点二:同角三角函数基本关系1.同角三角函数的基本关系(1)平方关系:1cos sin 22=+αα.(2)商数关系:)2(tan cos sin ππααααk +≠=;知识点三:三角函数诱导公式公式一二三四五六角)(2Z k k ∈+απαπ+α-απ-απ-2απ+2正弦αsin αsin -αsin -αsin αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -口诀函数名不变,符号看象限函数名改变,符号看象限【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.【方法技巧与总结】1.利用1cos sin 22=+αα可以实现角α的正弦、余弦的互化,利用αααtan cos sin =可以实现角α的弦切互化.2.“ααααααcos sin cos sin cos sin -+,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=【题型归纳目录】题型一:终边相同的角的集合的表示与区别题型二:等分角的象限问题题型三:弧长与扇形面积公式的计算题型四:三角函数定义题题型五:象限符号与坐标轴角的三角函数值题型六:同角求值—条件中出现的角和结论中出现的角是相同的题型七:诱导求值与变形【典例例题】题型一:终边相同的角的集合的表示与区别例1.(2022·全国·高三专题练习)与角94π的终边相同的角的表达式中,正确的是()A .245k π+ ,k Z ∈B .93604k π⋅+,k Z ∈C .360315k ⋅- ,k Z ∈D .54k ππ+,k Z ∈【答案】C 【解析】【分析】要写出与94π的终边相同的角,只要在该角上加2π的整数倍即可.【详解】首先角度制与弧度制不能混用,所以选项AB 错误;又与94π的终边相同的角可以写成92()4k k Z ππ+∈,所以C 正确.故选:C .例2.(2022·全国·高三专题练习)若角α的终边在直线y x =-上,则角α的取值集合为()A .2,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z B .32,4k k πααπ⎧⎫=+∈⎨⎬⎩⎭Z C .3,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z D .,4k k πααπ⎧⎫=-∈⎨⎬⎩⎭Z 【答案】D 【解析】【分析】根据若,αβ终边相同,则2,k k Z βπα=+∈求解.【详解】解:,由图知,角α的取值集合为:()32,2,4421,2,44,4k k Z k k Z k k Z k k Z k k Z ππααπααπππααπααππααπ⎧⎫⎧⎫=+∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫==+-∈⋃=-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==-∈⎨⎬⎩⎭故选:D.【点睛】本题主要考查终边相同的角,还考查了集合的运算能力,属于基础题.例3.(2022·上海市嘉定区第二中学高一阶段练习)设集合{}{}|45180,|135180,A k k Z k k Z αααα==︒+⋅︒∈⋃=︒+⋅︒∈,集合{}|4590,B k k Z ββ==︒+⋅︒∈,则()A .AB =∅ B .A BC .B AD .A B=【答案】D 【解析】【分析】考虑A 中角的终边的位置,再考虑B 中角的终边的位置,从而可得两个集合的关系.【详解】.45180,k k Z α=︒+⋅︒∈表示终边在直线y x =上的角,135180,k k Z α=︒+⋅︒∈表示终边在直线y x =-上的角,而4590,k k Z β=︒+⋅︒∈表示终边在四条射线上的角,四条射线分别是射线,0;,0;,0;,0y x x y x x y x x y x x =≥=-≤=≤=-≥,它们构成直线y x =、直线y x =-,故A B =.故选:D.【点睛】本题考查终边相同的角,注意180k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线,而90k α⋅︒+的终边与α的终边的关系是重合或互为反向延长线或相互垂直,本题属于中档题.(多选题)例4.(2022·全国·高三专题练习)如果角α与角45γ+︒的终边相同,角β与45γ-︒的终边相同,那么αβ-的可能值为()A .90︒B .360︒C .450︒D .2330︒【答案】AC 【解析】根据终边相同可得角与角之间的关系,从而可得αβ-的代数形式,故可得正确的选项.【详解】因为角α与角45γ+︒的终边相同,故45360k γα ,其中k Z ∈,同理145360k βγ=-︒+⋅︒,其中1k Z ∈,故90360n αβ-=︒+⋅︒,其中n Z ∈,当0n =或1n =时,90αβ-=︒或450αβ-=︒,故AC 正确,令36090360n ︒=︒+⋅︒,此方程无整数解n ;令903060233n =︒+⋅︒︒即569n =,此方程无整数解n ;故BD 错误.故选:AC.(多选题)例5.(2022·全国·高三专题练习)下列条件中,能使α和β的终边关于y 轴对称的是()A .90αβ+=︒B .180αβ+=︒C .()36090k k αβ+=⋅︒+︒∈ZD .()()21180k k αβ+=+⋅︒∈Z 【答案】BD 【解析】【分析】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z ,逐一判断正误即可.【详解】根据α和β的终边关于y 轴对称时()180360k k αβ+=︒+︒∈Z 可知,选项B 中,180αβ+=︒符合题意;选项D 中,()()21180k k αβ+=+⋅︒∈Z 符合题意;选项AC 中,可取0,90αβ=︒=︒时显然可见α和β的终边不关于y 轴对称.故选:BD.例6.(2022·全国·高三专题练习)写出两个与113π-终边相同的角___________.【答案】3π,53π-(其他正确答案也可)【解析】【分析】利用终边相同的角的定义求解.【详解】设α是与113π-终边相同的角,则112,3k k Z παπ=-∈,令1k =,得53πα=-,令2k =,得3πα=,故答案为:3π,53π-(其他正确答案也可)【方法技巧与总结】(1)终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2)注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.题型二:等分角的象限问题例7.(2022·浙江·高三专题练习)若18045,k k Z α=⋅+∈ ,则α的终边在()A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限【答案】A 【解析】【分析】分21,k n n Z =+∈和2,k n n =∈Z 讨论可得角的终边所在的象限.【详解】解:因为18045,k k Z α=⋅+∈ ,所以当21,k n n Z =+∈时,218018045360225,n n n Z α=⋅++=⋅+∈ ,其终边在第三象限;当2,k n n =∈Z 时,21804536045,n n n Z α=⋅+=⋅+∈ ,其终边在第一象限.综上,α的终边在第一、三象限.故选:A.例8.(2022·全国·高三专题练习(理))角α的终边属于第一象限,那么3α的终边不可能属于的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】【分析】由题意知,222k k ππαπ<<+,k Z ∈,即可得3α的范围,讨论3k n =、31k n =+、32k n =+()n Z ∈对应3α的终边位置即可.【详解】∵角α的终边在第一象限,∴222k k ππαπ<<+,k Z ∈,则223363k k παππ<<+,k Z ∈,当3()k n n Z =∈时,此时3α的终边落在第一象限,当31()k n n Z =+∈时,此时3α的终边落在第二象限,当32()k n n Z =+∈时,此时3α的终边落在第三象限,综上,角α的终边不可能落在第四象限,故选:D.例9.(2022·全国·高三专题练习)θ是第二象限角,则下列选项中一定为负值的是()A .sin2θB .cos2θC .sin 2θD .cos 2θ【答案】C 【解析】表示出第二象限角的范围,求出2θ和2θ所在象限,确定函数值的符号.【详解】因为θ是第二象限角,所以22,2k k k Z ππθππ+<<+∈,则4242,k k k Z ππθππ+<<+∈,所以2θ为第三或第四象限角或终边在y 轴负半轴上,,所以sin 2θ<0.而,422k k k Z πθπππ+<<+∈,2θ是第一象限或第三象限角,正弦余弦值不一定是负数.故选:C .例10.(2022·全国·高三专题练习)已知角α第二象限角,且cos cos22αα=-,则角2α是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】【分析】由α是第二象限角,知2α在第一象限或在第三象限,再由coscos22αα=-,知cos02α≤,由此能判断出2α所在象限.【详解】因为角α第二象限角,所以()90360180360Z k k k α+⋅<<+⋅∈,所以()4518090180Z 2k k k α+⋅<<+⋅∈,当k 是偶数时,设()2Z k n n =∈,则()4536090360Z 2n n n α+⋅<<+⋅∈,此时2α为第一象限角;当k 是奇数时,设()21Z k n n =+∈,则()225360270360Z 2n n n α+⋅<<+⋅∈,此时2α为第三象限角.;综上所述:2α为第一象限角或第三象限角,因为coscos22αα=-,所以cos02α≤,所以2α为第三象限角.故选:C .【方法技巧与总结】先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示.题型三:弧长与扇形面积公式的计算例11.(2022·浙江·镇海中学模拟预测)《九章算术》是中国古代的数学名著,其中《方田》章给出了弧田面积的计算公式.如图所示,弧田是由圆弧AB 及其所对弦AB 围成的图形.若弧田的弦AB 长是2,弧所在圆心角的弧度数也是2,则弧田的弧AB 长为_______,弧田的面积为_________.【答案】2sin1;211sin 1tan1-.【解析】【分析】(1)利用弧长公式解决,那么需要算出半径和圆心角;(2)用扇形的面积减去三角形的面积即可.【详解】由题意可知:111,,sin1sin1tan1tan1======AC BC BC AC AO OC ,所以弧AB 长122sin1sin1=⨯=,弧田的面积22111111222sin12tan1sin 1tan1⎛⎫=-=⨯⨯-⨯⨯=- ⎪⎝⎭扇形AOB AOB S S ,故答案为:2sin1;211sin 1tan1-.例12.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ⊥.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CDs AB OA=+.当2,60OA AOB =∠=︒时,s =()A B C D 【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ⊥,又CD AB ⊥,所以,,O C D 三点共线,即2OD OA OB ===,又60AOB ∠=︒,所以2AB OA OB ===,则OC =2CD =所以()22222CD s AB OA =+=+=故选:B.例13.(2022·全国·高三专题练习)中国传统扇文化有着极其深厚的底蕴.按如下方法剪裁,扇面形状较为美观.从半径为r 的圆面中剪下扇形OAB ,使剪下扇形OAB,再从扇形OAB 中剪下扇环形ABDC 制作扇面,使扇环形ABDC 的面积与扇形OAB.则一个按上述方法制作的扇环形装饰品(如图)的面积与圆面积的比值为()ABCD2-【答案】D 【解析】【分析】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,根据扇形面积公式,弧长公式,以及题中条件,即可计算出结果.【详解】记扇形OAB 的圆心角为α,扇形OAB 的面积为1S ,扇环形ABDC 的面积为2S ,圆的面积为S ,由题意可得,2112S r α=,21S S =2S r π=,所以()122124S Srαππ==,因为剪下扇形OAB ,所以22r r r παπ-=(3απ=,所以()()()2113244S S απππ====.故选:D.例14.(2022·浙江·赫威斯育才高中模拟预测)“圆材埋壁”是我国古代的数学著作《九章算术》中的一个问题,现有一个“圆材埋壁”的模型,其截面如图所示,若圆柱形材料的底面半径为1,截面圆圆心为O ,墙壁截面ABCD 为矩形,且1AD =,则扇形OAD 的面积是__________.【答案】6π##16π【解析】【分析】计算AOD ∠,再利用扇形的面积公式求解.【详解】由题意可知,圆O 的半径为1,即1OA OD ==,又1AD =,所以OAD △为正三角形,∴3AOD π∠=,所以扇形OAD 的面积是221112236S r AOD ππ=⨯⨯∠=⨯⨯=.故答案为:6π例15.(2022·全国·模拟预测)炎炎夏日,在古代人们乘凉时习惯用的纸叠扇可看作是从一个圆面中剪下的扇形加工制作而成.如图,扇形纸叠扇完全展开后,扇形ABC 的面积S 为22225cm π,若2BD DA =,则当该纸叠扇的周长C 最小时,BD 的长度为___________cm .【答案】10π【解析】【分析】设扇形ABC 的半径为r cm ,弧长为l cm ,根据扇形ABC 的面积S 为22225cm π,由212252rl π=得到rl ,然后由纸叠扇的周长2C r l =+,利用基本不等式求解.【详解】解:设扇形ABC 的半径为r cm ,弧长为l cm ,则扇形面积12S rl =.由题意得212252rl π=,所以2450rl π=.所以纸叠扇的周长260C r l π=+≥==,当且仅当22,450,r l rl π=⎧⎨=⎩即15r π=,30l π=时,等号成立,所以()15BD DA cm π+=.又2BD DA =,所以()1152BD BD cm π+=,所以()3152BD cm π=,故()10BD cm π=.故答案为:10π例16.(2022·全国·高三专题练习)已知扇形的周长为4cm ,当它的半径为________cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________cm 2.【答案】121【解析】【详解】24l r +=,则()21142222S lr r r r r ==-=-+,则1,2r l ==时,面积最大为1,此时圆心角2lrα ,所以答案为1;2;1.【方法技巧与总结】(1)熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2)掌握简单三角形,特别是直角三角形的解法题型四:三角函数定义题例17.(2022·广东·深圳市光明区高级中学模拟预测)已知角θ的终边过点()1,1A -,则sin()6πθ-=()ABCD【答案】D 【解析】【分析】由任意三角形的定义求出sin ,cos θθ,由两角差的正弦公式代入即可求出sin()6πθ-.【详解】因为角θ的终边过点()1,1A -,由任意三角形的定义知:sin θθ==sin()sin cos cos sin 666πππθθθ-=-=故选:D.例18.(2022·河北衡水·高三阶段练习)已知角α的终边经过点(-,则()tan sin 232πααπ⎛⎫++-= ⎪⎝⎭()A .32B .34-C.D【答案】D 【解析】【分析】利用三角函数的定义、诱导公式、二倍角公式以及弦化切可求得所求代数式的值.【详解】依题意,由三角函数的定义可知tan α=()22sin cos 2sin cos 2tan sin 23sin 22sin sin cos cos 2παπαααααπαπαααα⎛⎫+ ⎪⎛⎫⎝⎭++-=-=-- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭22212sin cos 2tan tan sin cos tan 1ααααααα=--===++故选:D.例19.(2022·湖北武汉·模拟预测)已知角α的始边与x 轴非负半轴重合,终边上一点()sin 3,cos3P ,若02απ≤≤,则α=()A .3B .32π-C .532π-D .32π-【答案】C【分析】根据三角函数的定义求出tan α,结合诱导公式即可得解,注意角所在的象限.【详解】解:因为角α的终边上一点()sin 3,cos3P ,所以cos31tan 0sin 3tan 3α==<,又cos 30,sin 30<>,所以α为第四象限角,所以23,Z 2k k παπ=+-∈,又因02απ≤≤,所以532πα=-.故选:C.例20.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin 2α=()A .2425-B .725-C .725D .2425【答案】A 【解析】【分析】根据终边上的点确定角的正余弦值,再由二倍角正弦公式求sin 2α.【详解】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-.故选:A【方法技巧与总结】(1)任意角的正弦、余弦、正切的定义;题型五:象限符号与坐标轴角的三角函数值例21.(2022·全国·高三专题练习)如果cos 0θ<,且tan 0θ<,则sin cos cos θθθ-+的化简为_____.【答案】sin θ【解析】【分析】由cos 0θ<,且tan 0θ<,得到θ是第二象限角,由此能化简sin cos cos θθθ-+.解:∵cos 0θ<,且tan 0θ<,∴θ是第二象限角,∴sin cos cos sin cos cos sin θθθθθθθ-+=-+=.故答案为:sin θ.例22.(2022·河北·石家庄二中模拟预测)若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】根据sin cos 0αα⋅<可知α是第二或第四象限角;根据第二或第四象限角正余弦的符号可确定结果.【详解】sin cos 0αα⋅< ,α 是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<;当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意;综上所述:α是第二象限角.故选:B.例23.(2022·浙江·模拟预测)已知R θ∈,则“cos 0θ>”是“角θ为第一或第四象限角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要【答案】B 【解析】【分析】利用定义法进行判断.【详解】充分性:当cos 0θ>时,不妨取cos 1,0θθ==时轴线角不成立.故充分性不满足;必要性:角θ为第一或第四象限角,则cos 0θ>,显然成立.故选:B.例24.(2022·重庆·高三开学考试)若tan 0θ>,则下列三角函数值为正值的是()A .sin θB .cos θC .sin 2θD .cos 2θ【答案】C 【解析】【分析】结合诱导公式、二倍角公式判断出正确选项.【详解】sin tan 0sin cos 0sin 22sin cos 0cos θθθθθθθθ=>⇒⋅>⇒=>,所以C 选项正确.当5π4θ=时,5ππtan 0,sin 0,cos 0,cos 2coscos 022θθθθ><<===,所以ABD 选项错误.故选:C例25.(2022·全国·高三专题练习(理))我们知道,在直角坐标系中,角的终边在第几象限,这个角就是第几象限角.已知点()cos ,tan P αα在第三象限,则角α的终边在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】【分析】本题首先可以根据题意得出cos 0α<、tan 0α<,然后得出sin 0α>,即可得出结果.【详解】因为点()cos ,tan P αα在第三象限,所以cos 0α<,tan 0α<,则sin 0α>,角α的终边在第二象限,故选:B.例26.(2022·全国·高三专题练习(理))已知sin 0,cos 0αα><,则()A .sin 20α>B .cos20α<C .tan02α>D .sin2α<【答案】C 【解析】【分析】由条件得到角α所在的象限,从而得到2α所在的象限,这样就可以得到答案.【详解】由sin 0,cos 0αα><知,α为第二象限角,所以2α为第一或第三象限角,所以tan02α>.故选:C.例27.(2022·江西南昌·三模(文))若角α的终边不在坐标轴上,且sin 2cos 2αα+=,则tan α=()A .43B .34C .23D .32【答案】A 【解析】【分析】结合易知条件和同角三角函数的平方关系即可求出cos α,从而求出sin α,根据sin tan cos ααα=即可求得结果.【详解】22sin cos 13cos 5sin 2cos 2ααααα⎧+=⇒=⎨+=⎩或cos 1α=,∵α的终边不在坐标轴上,∴3cos 5α=,∴34sin 2255α=-⨯=,∴sin 4tan cos 3ααα==.故选:A .例28.(2022·全国·高三专题练习(理))若α是第二象限角,则下列不等式正确的是()A .()cos 0α->B .tan02α>C .sin 20α>D .()sin 0α->【答案】B 【解析】【分析】根据α是第二象限角,分别求出四个选项中角所在的象限,再判断三角函数的符号,即可求解.【详解】对于A :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()cos 0α-<,故选项A 不正确;对于B :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππππZ 422k k k α+<<+∈,当()2Z k n n =∈时,()ππ2π2πZ 422n n n α+<<+∈,此时2α是第一象限角,当()21Z k n n =+∈时,()5π3π2π2πZ 422n n n α+<<+∈,此时2α是第三象限角,所以2α是第一或第三象限角,所以tan02α>,故选项B 正确;对于C :因为()π2ππ2πZ 2k k k α+<<+∈,所以()π4π22π4πZ k k k α+<<+∈,所以2α是第三或第四象限角或终边落在y 轴非正半轴,所以sin 20α<,故选项C 不正确;对于D :因为()π2ππ2πZ 2k k k α+<<+∈,所以()ππ2π2πZ 2k k k α--<-<--∈,所以α-是第三象限角,所以()sin 0α-<,故选项D 不正确;故选:B.【方法技巧与总结】正弦函数值在第一、二象限为正,第三、四象限为负;.余弦函数值在第一、四象限为正,第二、三象限为负;.正切函数值在第一、三象限为正,第二、四象限为负.题型六:同角求值—条件中出现的角和结论中出现的角是相同的例29.(2022·安徽·合肥市第八中学模拟预测(文))若tan 2θ=-,则2sin 2cos 1θθ+的值为___________.【答案】23-【解析】【分析】利用二倍角公式和同角三角函数平方关系可构造正余弦齐次式,分子分母同除2cos θ,代入tan θ即可得到结果.【详解】2222sin 22sin cos 2tan 42cos 12cos sin 2tan 243θθθθθθθθ===-=-++++.故答案为:23-.例30.(2022·河北·沧县中学模拟预测)已知tan 3α=,则22sin 22sin cos2cos -=-αααα___________.【答案】43【解析】【分析】根据二倍角公式,结合同角三角函数齐次式关系求解即可.【详解】解:22222222sin 22sin 2sin cos 2sin 2tan 2tan 23234cos2cos sin tan 33---⨯-⨯====----ααααααααααα.故答案为:43例31.(2022·广东惠州·一模)已知tan 2α=,32παπ<<,则cos sin αα-=()A B .C D .【答案】A 【解析】【分析】由sin tan 2cos ααα==及22sin cos 1αα+=解出sin α与cos α即可求解.【详解】因为sin tan 2cos ααα==,且22sin cos 1αα+=,32παπ<<,所以sin α=cos α=,所以cos sin αα⎛-== ⎝⎭.故选:A.例32.(2022·全国·模拟预测)已知0πA <<,1sin cos 5A A +=,则1sin 21cos 2AA-=+()A .132B .118C .4918D .4932【答案】C 【解析】【分析】结合同角的平方关系以及二倍角公式即可求出结果.【详解】由1sin cos 5A A +=及22sin cos 1A A +=,解得4sin 5A =,3cos 5A =-或4cos 5A =,3sin 5A =-.因为sin 0A >,所以4sin 5A =,3cos 5A =-,所以24sin 22sin cos 25A A A ==-,227cos 2cos sin 25A A A =-=-,所以2411sin 2492571cos 218125A A +-==+-,故选:C.例33.(2022·海南·模拟预测)已知角α为第二象限角,tan 3α=-,则cos α=()A.BC.D【答案】A 【解析】【分析】由角所在的象限及同角三角函数的平方关系、商数关系求cos α即可.【详解】因为α是第二象限角,所以sin 0α>,cos 0α<,由sin tan 3cos ααα==-,22sin cos 1αα+=,可得:cos α=故选:A.例34.(2022·全国·高三专题练习)已知(,22ππα∈-,且212sin 5cos 9αα-=,则cos 2=α()A .13B .79-C .34-D .18【答案】B 【解析】【分析】利用同角公式化正弦为余弦,求出cos α的值,再利用二倍角的余弦公式求解即得.【详解】依题意,原等式化为:212(1cos )5cos 9αα--=,整理得:(4cos 3)(3cos 1)0αα+-=,因(,)22ππα∈-,则cos 0α>,解得:1cos 3α=,所以2217cos 22cos 12139αα⎛⎫=-=⨯-=- ⎪⎝⎭.故选:B例35.(2022·全国·高三阶段练习(理))若sin cos 2sin cos θθθθ+=-,则sin (1sin 2)sin cos θθθθ+=+()A .65-B .25-C .65D .25【答案】C 【解析】【分析】由已知得sin 3cos θθ=,从而sin ,cos θθ同号,即sin cos 0>θθ,然后由平方关系求得22cos ,sin θθ,进而求得sin cos θθ,求值式应用二倍角公式和平方关系变形后可得结论.【详解】因为sin cos 2sin cos θθθθ+=-,所以sin 3cos θθ=,所以sin ,cos θθ同号,即sin cos 0>θθ,22222sin cos 9cos cos 10cos 1θθθθθ+=+==,21cos 10θ=,从而29sin 10θ=,229sin cos 100θθ=,所以3sin cos 10θθ=,22sin (1sin 2)sin (sin cos 2sin cos )sin (sin cos )sin cos sin cos θθθθθθθθθθθθθθ+++==+++2936sin sin cos 10105θθθ=+=+=.故选:C .例36.(2022·广东广州·三模)已知sin cos x x +=()0,πx ∈,则cos2x 的值为()A .12B C .12-D .【答案】D 【解析】【分析】将sin cos x x +=2sin x cos x =-12<0,结合sin cos x x +=求出x 的范围,再利用22cos 2sin 21x x +=求解即可.【详解】解:将sin cos x x +=2sin x cos x =-12<0,所以π(,π)2x ∈,又因为sin cos x x +=0,所以π3π(,24x ∈,2x 3π(π,)2∈,又因为sin2x =-12,所以cos2x 故选:D.例37.(2022·湖北武汉·模拟预测)已知1sin cos 5θθ+=-,(0,)θπ∈,则sin cos θθ-=()A .15B .15-C .75D .75-【答案】C 【解析】【分析】利用平方关系,结合同角三角函数关系式,即可求解.【详解】()21sin cos 12sin cos 25θθθθ+=+=,242sin cos 025θθ=-<,()0,θπ∈ ,,2πθπ⎛⎫∴∈ ⎪⎝⎭,sin cos θθ>,()249sin cos 12sin cos 25θθθθ-=-=,所以7sin cos 5θθ-=.故选:C例38.(2022·山西晋中·模拟预测(理))若tan 1θ=-,则()cos 1sin 2sin cos θθθθ--等于()A .12B .2C .1-D .13-【答案】C 【解析】【分析】化简原式为2tan 1tan 1θθ-+即得解.【详解】解:原式()222cos sin 2sin cos cos cos (sin cos )=sin cos sin cos θθθθθθθθθθθθ-⋅+-=--22cos (sin cos )sin cos θθθθθ-=+2tan 12=1tan 12θθ--==-+.故选:C例39.(2022·湖北·模拟预测)已知()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,则3sin sin sin 2ααπα-=⎛⎫+ ⎪⎝⎭()A .35B .35C .310D .310-【答案】D 【解析】【分析】根据题意求出tan α,再将原式化简为:32sin sin tan tan 1sin 2αααπαα-=+⎛⎫+ ⎪⎝⎭,求解即可.【详解】因为()cos 3cos 02πααπ⎛⎫++-= ⎪⎝⎭,所以sin 3cos 0αα--=,所以tan 3α=-()232sin 1sin sin sin tan 3sin cos cos tan 110sin 2αααααααπααα--====-+⎛⎫+ ⎪⎝⎭.故选:D.【方法技巧与总结】(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.题型七:诱导求值与变形例40.(2022·贵州·贵阳一中高三阶段练习(理))若π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】D 【解析】【分析】由三角函数的二倍角的余弦公式,结合诱导公式,即可求得答案.【详解】由题意得:2222πππππ27cos 22cos 12cos 12sin 113326699αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=---=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选:D .例41.(2022·贵州·贵阳一中模拟预测(文))若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】B 【解析】【分析】利用诱导公式计算可得;【详解】解:因为1sin 63a π⎛⎫+= ⎪⎝⎭,所以21cos cos sin 32663ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:B.例42.(2022·青海·海东市教育研究室一模(理))()tan 165-︒=()A .2-B .2-+C .2D .2【答案】C 【解析】【分析】先利用诱导公式可得()tan 165tan15-︒=︒,在运用正切两角差公式()tan15tan 4530︒=︒-︒计算.【详解】()()()tan 165tan 18015tan15tan 4530-︒=-︒+︒=︒=︒-︒1tan 45tan 3021tan 45tan 30︒-︒===+︒︒故选:C .例43.(2022·安徽·合肥市第八中学模拟预测(文))已知2cos sin 022a ππα⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则()tan -=πα()A .2B .—2C .12D .12-【答案】C 【解析】【分析】根据诱导公式五、六可得2sin cos 0αα+=,由同角三角函数的关系可得1tan 2α=-,结合诱导公式二计算即可.【详解】由已知得2sin cos 0αα+=,12sin cos tan 2ααα∴=-∴=-,,∴1tan()tan 2παα-=-=.故选:C【方法技巧与总结】(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化【过关测试】一、单选题1.(2022·宁夏·银川一中模拟预测(理))中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分)现有一个如图所示的曲池,1AA 垂直于底面,13AA =,底面扇环所对的圆心角为2π,弧AD 长度是弧BC 长度的3倍,2CD =,则该曲池的体积为()A .92πB .5πC .112πD .6π【答案】D 【解析】【分析】利用柱体体积公式求体积.【详解】不妨设弧AD 所在圆的半径为R ,弧BC 所在圆的半径为r ,由弧AD 长度为弧BC 长度的3倍可知3R r =,22CD R r r =-==,所以1r =,3R =.故该曲池的体积22()364V R r ππ=⨯-⨯=.故选:D.2.(2022·海南中学高三阶段练习)二十四节气是中华民族上古农耕文明的产物,是中国农历中表示李节变迁的24个特定节令.如图,每个节气对应地球在黄道上运动15︒所到达的一个位置.根据描述,从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为()A .π3-B .π2C .5π12D .π3【答案】B【解析】【分析】根据条件得到运行度数为6×15°,化为弧度即可得解.【详解】根据题意,立春是立冬后的第六个节气,故从立冬到立春相应于地球在黄道上逆时针运行了61590︒⨯=︒,所以从立冬到立春对应地球在黄道上运动所对圆心角的弧度数为π2.故选:B3.(2022·河北·模拟预测)已知圆锥的母线长为2,其侧面展开图是圆心角等于23π的扇形,则该圆锥的体积为()A B .1627πC D .1681π【答案】C 【解析】【分析】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,从而可求出半径r ,再求出h ,进而可求出其体积【详解】设圆锥的底面半径为r ,高为h ,则由题意可得2223r ππ=⨯,解得23r =,所以h ===所以圆锥的体积为22112333V r h ππ⎛⎫==⨯=⎪⎝⎭故选:C4.(2022·福建省福州格致中学模拟预测)已知角θ的大小如图所示,则1sin 2cos 2θθ+=()A .5-B .5C .15-D .15【答案】A 【解析】【分析】由图中的信息可知tan 54πθ⎛⎫+=- ⎪⎝⎭,化简1sin 2cos 2θθ+即可.【详解】由图可知,tan 54πθ⎛⎫+=- ⎪⎝⎭,()()()22222cos sin 1sin 2sin cos 2sin cos cos sin cos 2cos sin cos sin cos sin cos sin θθθθθθθθθθθθθθθθθθ+++++===--+-tantan 1tan 4tan 51tan 41tan tan 4πθθπθπθθ++⎛⎫===+=- ⎪-⎝⎭-;故选:A.5.(2022·江西·临川一中模拟预测(文))tan195︒=()A.2-B.2-+C .2D .2【答案】C 【解析】【分析】利用诱导公式及两角差的正切公式计算可得;【详解】解:()()tan195tan 18015tan15tan 4530︒=︒+︒=︒=︒-︒tan 45tan 301tan 45tan 30︒-︒=+︒︒12==故选:C6.(2022·江苏·南京市天印高级中学模拟预测)若21sin2512sin αα+=-,则tan α=()A .23-B .32-C .23D .32【答案】C 【解析】【分析】通过“1”的替换,齐次化,然后得到关于tan α的方程,解方程即可【详解】22221sin 2(cos sin )cos sin 1tan 512sin cos sin cos sin 1tan αααααααααααα++++====----,解得2tan 3α=故选:C7.(2022·四川成都·模拟预测(文))已知向量(3cos 2,sin )a αα= ,(2,cos 5sin )b αα=+ ,π0,2α⎛⎫∈ ⎪⎝⎭,若a b ⊥ ,则tan α=()A .2B .-2C .3D .34【答案】C 【解析】【分析】由a b ⊥可得向量的数量积等于0,化简可得6cos 2sin (cos 5sin )0αααα++=,结合二倍角公式以及同角的三角函数关系式化为226tan tan n 10ta ααα-++=,可求得答案.【详解】由题意a b ⊥可得0a b ⋅= ,即6cos 2sin (cos 5sin )0αααα++=,即2226(cos sin )sin cos 5sin 0ααααα-++=,故22226cos sin sin c sin os 0cos αααααα-++=,即226tan tan n 10ta ααα-++=,由于π0,2α⎛⎫∈ ⎪⎝⎭,故tan 3,tan 2αα==-(舍去),故选:C8.(2022·黑龙江·哈九中模拟预测(文))数学家华罗庚倡导的“0.618优选法”在各领域都应用广泛,0.618就是黄金分割比m =2sin18︒).A .4B 1+C .2D 1【答案】A 【解析】【分析】根据2sin18m ︒=,结合三角函数的基本关系式,诱导公式和倍角公式,即可求解.【详解】根据题意,可得2sin182cos72m =︒=︒,4sin144cos54︒==︒()4sin 90544cos544cos54cos54︒+︒︒===︒︒.故选:A .二、多选题9.(2022·全国·高三专题练习)下列说法正确的有()A .经过30分钟,钟表的分针转过π弧度B .1801radπ︒=C .若sin 0θ>,cos 0θ<,则θ为第二象限角D .若θ为第二象限角,则2θ为第一或第三象限角【答案】CD 【解析】【分析】对于A ,利用正负角的定义判断;对于B ,利用角度与弧度的互化公式判断;对于C ,由sin 0θ>求出θ的范围,由cos 0θ<求出θ的范围,然后求交集即可;对于D ,由θ是第二象限角,可得222k k ππθππ+<<+,k Z ∈,然后求2θ的范围可得答案【详解】对于A ,经过30分钟,钟表的分针转过π-弧度,不是π弧度,所以A 错;对于B ,1︒化成弧度是rad 180π,所以B 错误;对于C ,由sin 0θ>,可得θ为第一、第二及y 轴正半轴上的角;由cos 0θ<,可得θ为第二、第三及x 轴负半轴上的角.取交集可得θ是第二象限角,故C 正确;对于D :若θ是第二象限角,所以222k k ππθππ+<<+,则()422k k k Z πθπππ+<<+∈,当2()k n n Z 时,则22()422n n n Z πθπππ+<<+∈,所以2θ为第一象限的角,当21()k n n Z =+∈时,5322()422n n n Z πθπππ+<<+∈,所以2θ为第三象限的角,综上,2θ为第一或第三象限角,故选项D 正确.故选:CD.10.(2022·全国·高三专题练习)中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形(如图)的面积为1S ,圆心角为1α,圆面中剩余部分的面积为2S ,圆心角为2α,当1S 与2S0.618≈(黄金分割比)时,折扇看上去较为美观,那么()A .1127.5α=︒B .1137.5α=︒C.21)απ=D.12αα=【答案】BCD 【解析】【分析】利用扇形的面积公式以及角度制与弧度制的互化即可求解.【详解】设扇形的半径为R,由211122221212R S S R αααα===,故D 正确;由122ααπ+=,。

高考三角函数知识点总结

高考三角函数知识点总结

高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。

1弧度等于圆周的1/2π。

2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。

3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。

4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。

二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。

- sin(x) = a / c,其中a是对边,c是斜边。

- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。

2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。

- cos(x) = b / c,其中b是邻边,c是斜边。

- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。

3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。

- tan(x) = a / b,其中a是对边,b是邻边。

- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。

4.余切函数:余切函数是正切函数的倒数。

- cot(x) = 1 / tan(x)。

5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。

- sec(x) = 1 / cos(x)。

6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。

- csc(x) = 1 / sin(x)。

三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。

高考数学中的三角函数基本变换及应用

高考数学中的三角函数基本变换及应用

高考数学中的三角函数基本变换及应用三角函数是数学中极为重要的一部分,它是数学中的基础知识,并且在高中数学课程中占有重要的地位。

在高考数学中,三角函数相关的考点较多,而在这些考点之中,三角函数基本变换及其应用更是占据了相当重要的地位。

本文将深入探讨高考数学中三角函数基本变换及其应用的相关知识。

一、三角函数的基本概念在开始学习三角函数的基本变换及应用之前,我们需要先了解三角函数的基本概念。

三角函数有三个基本函数,分别是正弦函数 sinx,余弦函数 cosx,正切函数 tanx。

其中,正弦函数是指在单位圆上,某一点关于 X 轴的投影的长度;余弦函数是指在单位圆上,某一点关于Y 轴的投影的长度;正切函数是指在单位圆上,某一点关于 X 轴的投影除以关于 Y 轴的投影。

这些函数与角度的关系可以用弧度制表示,公式如下:sinx = y/rcosx = x/rtanx = y/x其中,x,y,r 分别是某个角度对应的点在单位圆上的坐标值,而 r 则是该点到圆心的距离。

这些坐标值可以根据三角函数的特征自行计算。

二、三角函数的基本变换三角函数的基本变换是指在角度上对三角函数进行变换。

最常见的变换方式有以下两种:1. 水平方向变换在三角函数的表达式中,加上一个常数可以使函数图像水平方向发生平移。

以正弦函数 sinx 为例,当我们在 x 上加上一个正数k 时,可以得到新的函数 f(x) = sin(x + k),该函数的图像在 x 方向上的平移量为 k。

2. 垂直方向变换在三角函数的表达式中,乘上一个正常数可以使函数图像垂直方向发生伸缩。

以正弦函数 sinx 为例,当我们在函数表达式中乘上一个正常数 a 时,可以得到新的函数 f(x) = a*sinx,该函数的图像在 y 方向上的伸缩量为 a。

三、三角函数的应用三角函数的应用非常广泛,其中最为普遍的应用之一是在几何图形中的应用。

1. 圆的相关问题在几何图形中,圆是最为基本的图形之一,而三角函数的应用则可以使我们更加深入地了解圆的特性。

高考数学之三角函数知识点总结

高考数学之三角函数知识点总结

三角函数一、根底学问定义1 角,一条射线围着它的端点旋转得到的图形叫做角。

若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。

角的大小是随意的。

定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角的弧长为L ,则其弧度数的肯定值|α|=rL,其中r 是圆的半径。

定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边及x 轴的正半轴重合,在角的终边上随意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的间隔 为r,则正弦函数s in α=ry,余弦函数co s α=rx,正切函数tan α=xy,余切函数cot α=y x ,定理1 同角三角函数的根本关系式, 倒数关系:tan α=,商数关系:tan α=;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α. 定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α; ( Ⅳ)s in =co s α, co s=s in α(奇变偶不变,符号看象限)。

定理3 正弦函数的性质,依据图象可得y =s inx (x ∈R )的性质如下。

单调区间:在区间上为增函数,在区间上为减函数,最小正周期为2π. 奇偶数. 有界性:当且仅当x =2kx +2π时,y 取最大值1,当且仅当x =3k π-2π时, y 取最小值-1。

高考数学专题复习-三角函数与解三角形

高考数学专题复习-三角函数与解三角形

第1讲 三角函数的图象与性质高考定位 三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.真 题 感 悟1.(全国Ⅰ卷)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 B2.(全国Ⅲ卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误. 答案 D3.(全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 答案 B4.(全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4. 答案 A考 点 整 合1.常用三种函数的图象与性质(下表中k ∈Z )图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.(2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换热点一 三角函数的定义【例1】 (1)(北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.(2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45,则sin 2α+cos 2α+11+tan α=________.解析 (1)法一 由已知得β=(2k +1)π-α(k ∈Z ). ∵sin α=13,∴sin β=sin[(2k +1)π-α]=sin α=13(k ∈Z ). 当cos α=1-sin 2α=223时,cos β=-223,∴cos(α-β)=cos αcos β+sin αsin β=223×⎝ ⎛⎭⎪⎫-223+13×13=-79. 当cos α=-1-sin 2α=-223时,cos β=223,∴cos(α-β)=cos αcos β+sin αsin β=-79.综上可知,cos(α-β)=-79.法二 由已知得β=(2k +1)π-α(k ∈Z ),∴sin β=sin[(2k +1)π-α]=sinα, cos β=cos[(2k +1)π-α]=-cos α,k ∈Z .当sin α=13时,cos(α-β)=cos αcos β+sin αsin β=-cos 2α+sin 2α=-(1-sin 2α)+sin 2α=2sin 2α-1=2×19-1=-79.(2)由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825. 答案 (1)-79 (2)1825探究提高 1.当角的终边所在的位置不是唯一确定的时候要注意分情况解决,机械地使用三角函数的定义就会出现错误.2.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.【训练1】 (1)(潍坊三模)在直角坐标系中,若角α的终边经过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,则sin(π-α)=( ) A.12B.32C.-12D.-32(2)(北京卷)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵解析 (1)∵角α的终边过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,且|OP |=1.∴由三角函数定义,知sinα=cos 2π3=-12.因此sin(π-α)=sin α=-12.(2)设点P 的坐标为(x ,y ),由三角函数的定义得yx <x <y ,所以-1<x <0,0<y <1.所以P 所在的圆弧是EF ︵. 答案 (1)C (2)C 热点二 三角函数的图象 考法1 三角函数的图象变换【例2-1】 (1)要想得到函数y =sin 2x +1的图象,只需将函数y =cos 2x 的图象( )A.向左平移π4个单位长度,再向上平移1个单位长度 B.向右平移π4个单位长度,再向上平移1个单位长度 C.向左平移π2个单位长度,再向下平移1个单位长度D.向右平移π2个单位长度,再向下平移1个单位长度(2)(湖南六校联考)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,其图象相邻两条对称轴之间的距离为π2,将函数y =f (x )的图象向左平移π3个单位长度后,得到的图象关于y 轴对称,那么函数y =f (x )的图象( )A.关于点⎝ ⎛⎭⎪⎫π12,0对称B.关于点⎝ ⎛⎭⎪⎫-π12,0对称C.关于直线x =π12对称D.关于直线x =-π12对称解析 (1)因为y =sin 2x +1=cos ⎝ ⎛⎭⎪⎫2x -π2+1=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+1,故只需将函数y =cos 2x 的图象向右平移π4个单位长度,再向上平移1个单位长度,即可得到函数y =sin 2x +1的图象. (2)由题意,T =π,ω=2.又y =f ⎝ ⎛⎭⎪⎫x +π3=sin ⎝⎛⎭⎪⎫2x +φ+2π3的图象关于y 轴对称.∴φ+2π3=k π+π2,k ∈Z . 由|φ|<π2,取φ=-π6,因此f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,代入检验f ⎝ ⎛⎭⎪⎫π12=0,A 正确.答案 (1)B (2)A探究提高 1.“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.考法2 由函数的图象特征求解析式【例2-2】 (1)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A.f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6B.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3C.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π12D.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6(2)(济南调研)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.1B.12C.22D.32解析 (1)由题意知A =2,T =4⎝ ⎛⎭⎪⎫5π12-π6=π,ω=2,因为当x =5π12时取得最大值2,所以2=2sin ⎝ ⎛⎭⎪⎫2×5π12+φ, 所以2×5π12+φ=2k π+π2,k ∈Z ,解得φ=2k π-π3,k ∈Z , 因为|φ|<π2,得φ=-π3. 因此函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3.(2)观察图象可知,A =1,T =π,则ω=2. 又点⎝ ⎛⎭⎪⎫-π6,0是“五点法”中的始点,∴2×⎝ ⎛⎭⎪⎫-π6+φ=0,φ=π3. 则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),所以x 1+x 22=π12,则x 1+x 2=π6,因此f (x 1+x 2)=sin ⎝ ⎛⎭⎪⎫2×π6+π3=32. 答案 (1)B (2)D探究提高 已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练2】 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.解 (1)设函数f (x )的最小正周期为T ,由题图可知 A =1,T 2=2π3-π6=π2,即T =π,所以π=2πω,解得ω=2,所以f (x )=sin(2x +φ),又过点⎝ ⎛⎭⎪⎫π6,0,由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π,k ∈Z , 则φ=2k π-π3,k ∈Z ,因为|φ|<π2,所以φ=-π3,故函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. (2)根据条件得g (x )=sin ⎝ ⎛⎭⎪⎫4x +π3,当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,所以当x =π8时,g (x )取得最小值,且g (x )min =12. 热点三 三角函数的性质 考法1 三角函数性质【例3-1】 (合肥质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间),但是当A >0,ω<0时,需先利用诱导公式变形为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间即为原函数的减区间,减区间即为原函数的增区间. 考法2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.(1)求函数f (x )的单调递增区间.(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 解 (1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π3.由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,整理得k π-π12≤x ≤kx +5π12,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象;所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【训练3】 (湖南师大附中质检)已知向量m =(2cos ωx ,-1),n =(sin ωx -cos ωx ,2)(ω>0),函数f (x )=m·n +3,若函数f (x )的图象的两个相邻对称中心的距离为π2. (1)求函数f (x )的单调增区间;(2)若将函数f (x )的图象先向左平移π4个单位,然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,求函数g (x )的值域.解 (1)f (x )=m·n +3=2cos ωx (sin ωx -cos ωx )-2+3 =sin 2ωx -cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π4.依题意知,最小正周期T =π.∴ω=1,因此f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,求得f (x )的增区间为⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π,k ∈Z .(2)将函数f (x )的图象先向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4的图象.故g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4,由π4≤x ≤π2,知5π4≤4x +π4≤9π4.∴-1≤sin ⎝ ⎛⎭⎪⎫4x +π4≤22.故函数g (x )的值域是[-2,1].1.已知函数y=A sin(ωx+φ)+B(A>0,ω>0)的图象求解析式(1)A=y max-y min2,B=y max+y min2.(2)由函数的周期T求ω,ω=2πT.(3)利用“五点法”中相对应的特殊点求φ.2.运用整体换元法求解单调区间与对称性类比y=sin x的性质,只需将y=A sin(ωx+φ)中的“ωx+φ”看成y=sin x中的“x”,采用整体代入求解.(1)令ωx+φ=kπ+π2(k∈Z),可求得对称轴方程;(2)令ωx+φ=kπ(k∈Z),可求得对称中心的横坐标;(3)将ωx+φ看作整体,可求得y=A sin(ωx+φ)的单调区间,注意ω的符号.3.函数y=A sin(ωx+φ)+B的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y=A sin(ωx +φ)+B(一角一函数)的形式;第二步:把“ωx+φ”视为一个整体,借助复合函数性质求y=A sin(ωx+φ)+B的单调性及奇偶性、最值、对称性等问题.一、选择题1.(全国Ⅲ卷)函数f(x)=tan x1+tan2x的最小正周期为()A.π4 B.π2 C.π D.2π解析f(x)=tan x1+tan2x=sin xcos x1+sin2xcos2x=sin x cos xcos2x+sin2x=sin x cos x=12sin 2x,所以f(x)的最小正周期T=2π2=π.答案 C2.(全国Ⅲ卷)函数f(x)=15sin⎝⎛⎭⎪⎫x+π3+cos⎝⎛⎭⎪⎫x-π6的最大值为()A.65 B.1 C.35 D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A3.(湖南六校联考)定义一种运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,将函数f (x )=⎪⎪⎪⎪⎪⎪2 2sin x 3 cos x 的图象向左平移φ(φ>0)个单位,所得图象对应的函数为偶函数,则φ的最小值是( ) A.π6B.π3C.2π3D.5π6解析 f (x )=2cos x -23sin x =4cos ⎝ ⎛⎭⎪⎫x +π3,依题意g (x )=f (x +φ)=4cos ⎝ ⎛⎭⎪⎫x +π3+φ是偶函数(其中φ>0).∴π3+φ=k π,k ∈Z ,则φmin =23π. 答案 C4.偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,其中△EFG 是斜边为4的等腰直角三角形(E ,F 是函数与x 轴的交点,点G 在图象上),则f (1)的值为( )A.22B.62C. 2D.2 2解析 依题设,T 2=|EF |=4,T =8,ω=π4. ∵函数f (x )=A sin(ωx +φ)为偶函数,且0<φ<π. ∴φ=π2,在等腰直角△EGF 中,易求A =2. 所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π2=2cos π4x ,则f (1)= 2.答案 C5.(天津卷)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增B.在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减C.在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增D.在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减解析 把函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度得函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π10+π5=sin 2x 的图象,由-π2+2k π≤2x ≤π2+2k π(k ∈Z )得-π4+k π≤x ≤π4+k π(k ∈Z ),令k =1,得3π4≤x ≤5π4,即函数g (x )=sin 2x 的一个单调递增区间为⎣⎢⎡⎦⎥⎤3π4,5π4.答案 A 二、填空题6.(江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.因为-π2<φ<π2,所以π6<2π3+φ<7π6,则2π3+φ=π2,φ=-π6.答案 -π67.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,其中|PQ |=2 5.则f (x )的解析式为________.解析 由题图可知A =2,P (x 1,-2),Q (x 2,2),所以|PQ |=(x 1-x 2)2+(-2-2)2=(x 1-x 2)2+42=2 5.整理得|x 1-x 2|=2,所以函数f (x )的最小正周期T =2|x 1-x 2|=4,即2πω=4,解得ω=π2.又函数图象过点(0,-3),所以2sin φ=-3,即sin φ=-32.又|φ|<π2,所以φ=-π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π3.答案 f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π38.(北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23.答案 23 三、解答题9.已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝ ⎛⎭⎪⎫x -π3- 3. (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z },f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.10.(西安模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32.(1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π,k ∈Z ,∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23,故cos(x 1-x 2)=23.11.设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3,已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.解 (1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx=32sin ωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx=3sin ⎝ ⎛⎭⎪⎫ωx -π3.由题设知f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z ,故ω=6k +2,k ∈Z . 又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12. 因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.。

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。

题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。

这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。

题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。

这类题目需要熟练掌握各种诱导公式,以及灵活应用。

题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。

需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。

题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。

需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。

题型五:三角函数的周期性这类题目要求确定三角函数的周期。

需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。

题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。

需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。

题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。

需要掌握各种三角函数的恒等式,以及灵活应用。

2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。

高中数学高考总复习---三角函数的概念知识讲解及考点梳理

高中数学高考总复习---三角函数的概念知识讲解及考点梳理

2
要点诠释: ①三角函数的定义是本章内容的基础和出发点,正确理解了三角函数的定义,则三角函数的定义域、
三角函数在各个象限内的符号以及同角三角函数之间的关系便可以得到牢固掌握.利用定义求三角函数值 时,也可以自觉地根据角的终边所在象限进行分情况讨论.
②三角函数线是三角函数的几何表示,是处理有关三角问题的重要工具,它能把某些繁杂的三角问题 形象直观地表达出来.有关三角函数值的大小比较问题、简单三角不等式及简单三角方程的解集的确定等 问题的解决常结合使用三角函数线,这是数形结合思想在三角中的具体运用. 考点四、同角三角函数间的基本关系式
3
【典型例题】 类型一、角的相关概念 例 1.已知 是第三象限角,求角 的终边所处的位置.
【答案】 是第二或第四象限角
【解析】方法一:∵ 是第三象限角,即


,

时,
,
∴ 是第二象限角,

时,
,
∴ 是第四象限角,
∴ 是第二或第四象限角. 方法二:
由图知: 的终边落在二,四象限.
【总结升华】(1)要熟练掌握象限角的表示方法.本题容易误认为 是第二象限角,其错误原因为认
方法三:分别令
,代入

只有

满足条件,
所以 为第一或第三象限. 【总结升华】角的象限和角的三角函数值符号可以相互判定,方法三只能用于选择题或填空题. 举一反三:
【变式 1】确定
的符号.
【答案】原式小于零
【解析】因为
分别是第三、第四、第一象限的角,所以


,Байду номын сангаас
所以原式小于零.
【变式 2】已知 【答案】二
8

专题:三角函数高考在考什么?如何轻松解答三角函数高考题

专题:三角函数高考在考什么?如何轻松解答三角函数高考题

专题:三角函数高考在考什么?如何轻松解答三角函数高考题一高考要求1三角函数(1)任意角的概念、弧度制 ① 了解任意角的概念.② 了解弧度制概念,能进行弧度与角度的互化. (2)三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义.② 能利用单位圆中的三角函数线推导出πα±的正弦、余弦、正切,及2πα±的正弦、余弦的诱导公式,能画出sin y x =,cos y x =,tan y x =的图象,了解三角函数的周期性. ③ 理解正弦函数、余弦函数在区间[]0,2π的性质(如单调性、最大值和最小值、图象与x 轴的交点等);理解正切函数在区间(,)22ππ-的单调性.④ 理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos xx x=. ⑤ 了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图象,了解参数,,A ωϕ对函数图象变化的影响.⑥ 了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.2.三角恒等变换(1)和与差的三角函数公式① 会用向量的数量积推导出两角差的余弦公式.② 能利用两角差的余弦公式导出两角差的正弦、正切公式.③ 能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).3.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.4常用解题思想方法1.三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

高考数学-三角函数专题复习

高考数学-三角函数专题复习

高考数学-三角函数专题复习三角函数专题考点例题解析】考点1.求值1、求sin330°、tan690°、sin585°的值。

解:利用三角函数的周期性和对称性,可得:sin330°=sin(360°-30°)=sin30°=1/2tan690°=tan(720°-30°)=tan30°=1/√3sin585°=sin(540°+45°)=sin45°=√2/22、已知角α为第三象限角,求sin(α+π/2)的值。

解:由于α为第三象限角,所以sinα<0,cosα<0.又因为sin(α+π/2)=cosα,所以sin(α+π/2)<0.3、已知sinθ+cosθ=5/3,cosθ-sinθ=2,求sin2θ的值。

解:将sinθ+cosθ和cosθ-sinθ相加,可得cosθ+cosθ=5/3+2=11/3,即cosθ=11/6.将cosθ-sinθ和sinθ+cosθ相减,可得2sinθ=-1/6,即sinθ=-1/12.代入sin2θ=2sinθcosθ的公式,可得sin2θ=-11/72.4、已知si n(π/4-α)=2/√5,求cosα的值。

解:sin(π/4-α)=sinπ/4cosα-cosπ/4sinα=2/√5,代入cosπ/4=√2/2和sinπ/4=√2/2,可得cosα=1/√10.5、已知f(cosx)=cos3x,求f(sin30°)的值。

解:将x=π/6代入f(cosx)=cos3x,可得f(cosπ/6)=cos(3π/6)=cosπ=-1.又因为sin30°=cosπ/6,所以f(sin30°)=-1.6、已知tanα=15π/22,求cos(π/2-α)的值。

解:tanα=15π/22,所以α为第三象限角,cos(π/2-α)=sinα>0.由tanα=sinα/cosα,可得cosα=15/√466,代入sin^2α+cos^2α=1,可得sinα=7/√466,最终可得cos(π/2-α)=7/15.7、已知tan(π/4+x)=2tan(π/4-x),求cos2x的值。

高考数学冲刺复习三角函数图像考点解析

高考数学冲刺复习三角函数图像考点解析

高考数学冲刺复习三角函数图像考点解析在高考数学中,三角函数图像是一个重要的考点,它不仅要求我们掌握基本的概念和性质,还需要我们能够灵活运用这些知识解决各种问题。

在冲刺复习阶段,对三角函数图像考点进行系统的梳理和深入的理解,能够帮助我们在考试中更加得心应手。

一、三角函数的基本类型我们先来了解一下常见的三角函数,包括正弦函数(y = sin x)、余弦函数(y = cos x)和正切函数(y = tan x)。

正弦函数的图像是一个以2π 为周期,在-1 到1 之间波动的曲线。

它在 x = 0 时,函数值为 0;在 x =π/2 时,函数值为 1;在 x =3π/2 时,函数值为-1。

余弦函数的图像同样是以2π 为周期,在-1 到 1 之间波动。

它在 x = 0 时,函数值为 1;在 x =π 时,函数值为-1。

正切函数的图像则有所不同,它的周期是π,定义域为x ≠ (π/2)+kπ(k 为整数),值域为R。

其图像在每个周期内都是单调递增的,且有垂直渐近线 x =(π/2) +kπ。

二、三角函数图像的性质1、周期性正弦函数和余弦函数的周期都是2π,正切函数的周期是π。

周期性是三角函数的重要特征之一,利用周期性可以将函数在一个周期内的性质推广到整个定义域。

2、对称性正弦函数是关于直线 x =π/2 +kπ(k 为整数)对称的奇函数;余弦函数是关于直线 x =kπ(k 为整数)对称的偶函数。

3、单调性正弦函数在π/2 +2kπ, π/2 +2kπ(k 为整数)上单调递增,在π/2 +2kπ, 3π/2 +2kπ上单调递减。

余弦函数在2kπ π, 2kπ上单调递增,在2kπ, 2kπ +π上单调递减。

4、值域正弦函数和余弦函数的值域都是-1, 1,正切函数的值域是 R。

三、三角函数图像的变换1、平移变换对于函数 y = sin(x +φ),当φ > 0 时,图像向左平移φ 个单位;当φ < 0 时,图像向右平移|φ|个单位。

高考数学必考重点之三角函数

高考数学必考重点之三角函数

三角比与正弦定理、余弦定理1。

知识结构:122.三角变换的常用技巧有:异名化同名,异角化同角,尽量减少三角比名称和角的个数,变换中要做到“同名、同角、同一个变量”.(1)名变换:当题目中出现不同名的三角函数时,这就需要变“名”,即化异名函数为同名函数。

名变换是为了减少函数名称或统一函数而实施的变换,最常见的做法是弦切互化和辅助角公式。

(2)角变换:“角”变换的基本思想是,通过拼凑或分解的方法把未知角转化为已知角的“和、差、倍角、半角”,然后运用相应的公式求解。

常见的变角方式有:①α2是α的二倍;α是2α的二倍;απ22±是απ±4的二倍;②ββαα-+=)(,2)()(βαβαα-++=; ③)4(24αππαπ--=+;④)4()4()()(2απαπβαβαα--+=-++=等等。

(3)“1”的变换:如①)4(tan )tan 1(tan 1tan 1tan 1)4(tan θπθθθθθπ-⋅+=-⇒+-=-;3②)4(tan )tan 1(tan 1tan 1tan 1)4(tan θπθθθθθπ+⋅-=+⇒-+=+。

(4)公式逆用:在进行三角变换时,大多顺用两角和差的正弦、余弦、正切公式以及二倍角公式,但有时若能逆用这些公式也可以帮助我们快速解题。

逆用公式的方法有:①通过添项拼凑出要用的公式,常见于二倍角公式的逆用;②公式的恒等变形,常见于两角和差的正切公式的逆用。

(5)降次与升幂变换:常见的降次与升幂方法有:①利用余弦的二倍角公式,如升幂公式:αααα22sin 22cos 1,cos 22cos 1=-=+;降幂公式:2cos 21cos 2αα+=,21cos 2sin 2αα-=;②巧用“1”,如1cos sin 22=+a a ,αααα2cos sin 21sin cos 244-=+等.(6)换元变换:当函数表达式中同时出现x x cos sin +(或x x cos sin -)与x x cos sin ,可设x x t cos sin +=(或x x t cos sin -=),则21cos sin 2-=t x x (或21cos sin 2t x x -=),把三角函数转化为熟悉的函数来求解.有时,换元可以达到简化运算的目的。

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。

- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。

即:sinA = 对边/斜边。

- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。

即:cosA = 邻边/斜边。

- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。

即:tanA = 对边/邻边。

2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

- 三角函数的同角关系:sinA/cosA = tanA。

- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。

3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。

- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。

- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。

4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。

- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。

以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总结

高中数学三角函数知识点归纳总结知识网络】三角函数是数学中的一种基本函数,广泛应用于各个领域。

在研究三角函数时,需要掌握弧长公式、同角三角函数的基本关系式、三角函数的角度制与任意角的概念、图像和性质、弧度制三角函数和角公式、倍角公式、差角公式等知识。

任意角的概念与弧度制】角是由沿x轴正向的射线围绕原点旋转所形成的图形,逆时针旋转为正角,顺时针旋转为负角,不旋转为零角。

同终边的角可表示为计算与化简的形式,也可以用证明恒等式的方式进行表达。

已知三角函数值求角时,可以利用如下公式:α=β+k360°(k为整数)在x轴上的角为α=k180°(k为整数),在y轴上的角为α=90°+k180°(k为整数)。

第一象限角、第二象限角、第三象限角和第四象限角的定义和表示方式不同。

需要区分第一象限角、锐角以及小于90的角。

弧度制】弧度制是一种角度表示方法,弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad。

角度与弧度的转化公式为1°=π/180 rad。

角度与弧度对应表可以帮助我们更好地理解它们之间的关系。

弧长和面积的计算公式分别为l=α×R和S=1/2×α×R^2.任意角的三角函数】三角函数包括正弦、余弦和正切。

它们的值可以通过终边上任意点的坐标和半径来计算。

三角函数值对应表可以帮助我们更好地理解它们的取值范围和变化规律。

三角函数在各象限中的符号:在第一象限,x、y坐标都为正,所以sinα>0,cosα>0,tanα>0.在第二象限,x坐标为负,y坐标为正,所以sinα>0,cosα<0,tanα<0.在第三象限,x、y坐标都为负,所以sinα0.在第四象限,x坐标为正,y坐标为负,所以sinα0,tanα<0.三角函数线:设任意角α的顶点在原点O,始边与x轴非负半轴重合,终边与单位圆相交于P(x,y),过P作x轴的垂线,垂足为M;过点A(1,0)作单位圆的切线,它与角α的终边或其反向延长线交于点T。

三角函数最全知识点总结

三角函数最全知识点总结

三角函数最全知识点总结三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数、正切函数等。

下面将对这些三角函数的定义、性质以及常用的解题方法进行总结。

一、正弦函数(sin):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的纵坐标y即为θ的正弦值,记作sinθ。

正弦函数的定义域为实数集,值域为[-1,1]。

2. 周期性:sin(θ+2π)=sinθ,sin(θ+π)=-sinθ。

其中π为圆周率。

3. 奇偶性:sin(-θ)=-sinθ,即正弦函数关于原点对称。

4. 正负性:当θ为锐角时,sinθ>0;当θ为钝角时,sinθ<0。

5. 值域变化:当θ从0增加到π/2时,sinθ从0增加到1,然后再从1减小到0。

二、余弦函数(cos):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的横坐标x即为θ的余弦值,记作cosθ。

余弦函数的定义域为实数集,值域为[-1,1]。

2. 周期性:cos(θ+2π)=cosθ,cos(θ+π)=-cosθ。

3. 奇偶性:cos(-θ)=cosθ,即余弦函数关于y轴对称。

4. 正负性:当θ为锐角时,cosθ>0;当θ为钝角时,cosθ<0。

5. 值域变化:当θ从0增加到π/2时,cosθ从1减小到0。

三、正切函数(tan):1. 定义:正切值tanθ等于θ的正弦值除以θ的余弦值,即tanθ=sinθ/cosθ。

正切函数的定义域为实数集,值域为实数集。

2. 周期性:tan(θ+π)=tanθ。

3. 奇偶性:tan(-θ)=-tanθ,即正切函数关于原点对称。

4. 正负性:当θ为锐角时,tanθ>0;当θ为钝角时,tanθ<0。

四、反三角函数:1. 反正弦函数:定义域为[-1,1],值域为[-π/2,π/2]。

记作arcsin x或sin⁻¹x。

2. 反余弦函数:定义域为[-1,1],值域为[0,π]。

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。

考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。

考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。

考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。

此外,该函数的图像还可以通过一定的变换得到。

一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。

cosθ)(θ∈(π/2,π)),则sin=-cosθ。

3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。

练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。

4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。

练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。

高中数学 三角函数(解析版)

高中数学 三角函数(解析版)

三角函数【考纲要求】1.了解任意角和弧度制的概念,能进行弧度与角度的互化,理解任意角三角函数的定义.2.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin xcos x=tan x .3.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.4.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式. 5.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性. 6.了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象. 一、任意角和弧度制及任意角的三角函数 【思维导图】【考点总结】 1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:角α的弧度数公式 |α|=lr(l 表示弧长)角度与弧度的换算 ①1°=π180rad ;②1 rad =⎝⎛⎭⎫180π° 弧长公式 l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).二、同角三角函数的基本关系及诱导公式 【思维导图】【考点总结】1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sin αcos α=tan_α(α≠π2+k π,k ∈Z ).2.三角函数的诱导公式公式 一 二 三 四 五 六 角 2k π+α (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin_α -sin_α sin_α cos_α cos_α 余弦 cos_α -cos_α cos_α -cos_α sin_α -sin_α 正切 tan αtan_α-tan_α-tan_α口诀函数名不变,符号看象限 函数名改变,符号看象限三、三角恒等变换【思维导图】【考点总结】1.两角和与差的正弦、余弦、正切公式C (α-β):cos(α-β)=cos_αcos__β+sin_αsin__β. C (α+β):cos(α+β)=cos_αcos__β-sin_αsin__β. S (α+β):sin(α+β)=sin_αcos__β+cos_αsin__β. S (α-β):sin(α-β)=sin_αcos__β-cos_αsin__β.T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎫α,β,α+β≠π2+k π,k ∈Z .T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎫α,β,α-β≠π2+k π,k ∈Z . 2.二倍角的正弦、余弦、正切公式S 2α:sin 2α=2sin_αcos__α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠π4+k π2,且α≠k π+π2,k ∈Z . 四、三角函数的图象与性质 【思维导图】【考点总结】1.用五点法作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).五点法作图有三步:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质函数 y =sin xy =cos xy =tan x图象定义域R R {x |x ∈R ,且x ≠k π+π2,k ∈Z } 值域 [-1,1] [-1,1] R 奇偶性奇函数偶函数奇函数单调性在[-π2+2k π,π2+2k π](k ∈Z )上是递增函数,在 [π2+2k π,3π2+2k π](k ∈Z )上是递减函数在[2k π-π,2k π](k ∈Z )上是递增函数,在[2k π,2k π+π](k ∈Z )上是递减函数在(-π2+k π,π2+k π)(k ∈Z )上是递增函数周期性周期是2k π(k ∈Z 且k ≠0),最小正周期是2π周期是2k π(k ∈Z 且k ≠0),最小正周期是2π周期是k π(k ∈Z 且k ≠0),最小正周期是π对称性对称轴是x =π2+k π(k ∈Z ),对称中心是(k π,0)(k ∈Z )对称轴是x =k π(k ∈Z ),对称中心是(k π+π2,0)(k ∈Z )对称中心是(k π2,0)(k ∈Z ) 五、函数y =A sin(ωx +φ)的图象及应用 【思维导图】【考点总结】1.函数y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ) (A>0,ω>0) 振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:ωx+φ0π2π3π22πx -φωπ2ω-φωπ-φω3π2ω-φω2π-φωy=A sin(ωx+φ)0 A 0-A 0 3.【题型汇编】题型一:任意角的三角函数 题型二:同角三角函数的基本关系 题型三:三角函数的诱导公式 题型四:三角函数恒等变换 题型五:三角函数的图象和性质 【题型讲解】题型一:任意角的三角函数 一、单选题1.(2022·北京市八一中学一模)在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()3,4-,则cos θ=( ) A .45B .35C .35 D .45-【答案】C 【解析】 【分析】根据余弦函数的定义进行求解即可. 【详解】设点()3,4P -,因为()22345OP =-+=,所以33cos 55θ-==-. 故选:C.2.(2022·北京房山·二模)已知3cos ,5αα=是第一象限角,且角,αβ的终边关于y 轴对称,则tan β=( )A .34B .34-C .43D .43-【答案】D 【解析】 【分析】根据cos α求出tan α,根据角,αβ的终边关于y 轴对称可知tan β=tan α-. 【详解】∵3cos ,5αα=是第一象限角,∵24sin 1cos 5αα-=,sin 4tan cos 3ααα==, ∵角,αβ的终边关于y 轴对称,∵4tan tan 3βα=-=-.故选:D .3.(2022·山东潍坊·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,点()1,2A x ,()2,4B x 在角α的终边上,且121x x -=,则tan α=( ) A .2 B .12C .2-D .12-【答案】C 【解析】 【分析】根据题意,得到直线AB 的斜率为12242k x x -==--,进而判断α所在象限,即可求解. 【详解】由已知得,因为点()1,2A x ,()2,4B x 在角α的终边上,所以直线AB 的斜率为12242k x x -==--,所以,明显可见,α在第二象限,tan 2α.故选:C4.(2022·山西临汾·一模(文))已知α角的终边过点()sin30,sin30︒-︒,则sin α的值为( ) A .12-B .12C .2D 2【答案】C 【解析】 【分析】先求出点的坐标,进而根据三角函数的定义求得答案. 【详解】由题意,点的坐标为11,22⎛⎫- ⎪⎝⎭,则22122sin 21122α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭. 故选:C.5.(2022·河南·一模(文))已知α是第二象限角,则( ) A .cos 0α> B .sin 0α<C .sin 20α<D .tan 0α>【答案】C 【解析】 【分析】由已知结合三角函数的定义及象限角的范围,及正弦的二倍角公式判断即可. 【详解】由α是第二象限角,可得cos 0α<,sin 0α>,tan 0α<sin 22sin cos 0ααα∴=<故选:C6.(2022·山东济南·二模)如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( ) A .12B .12-C .3D .3【答案】C 【解析】先计算三角函数值得(1,3P ,再根据三角函数的定义22sin ,yr x y rα=+. 【详解】解:由题意得(1,3P -,它与原点的距离()2132r +,所以33sin y r α-===. 故选:C.7.(2022·河北石家庄·一模)若角α终边经过点()2,1-,则cos α= A .5B .25C 5D 25【答案】B 【解析】【详解】分析:利用三角函数的定义,即可求出. 详解:角α终边经过点()2,1-,则()221 5.r =-+=由余弦函数的定义可得25cos x r α== 故选B.点睛:本题考查三角函数的定义,属基础题. 二、多选题1.(2022·湖北·孝昌县第一高级中学三模)已知角α的终边经过点()8,3cos P α.则( ) A .1sin 3α=B .7cos 29α= C .2tan α= D .22cos α=【答案】ABD 【解析】 【分析】根据同终边角的正弦和余弦可知22sin 649cos 649cos αααα==++sin 0,cos 0αα>>,逐项代入即可.【详解】 解:由题意得: 如图所示:()22283cos 649cos OP αα=++22sin 649cos 649cos PQ OQ OP OP αααα∴==++ 2sin 649cos 3cos αα∴+=,即()222sin 649cos 9cos ααα+= ()222sin 649(1sin )91sin ααα⎡⎤∴+-=-⎣⎦,即429sin 82sin 90αα-+=解得:2sin 9α=(舍去)或21sin 9α=cos 0α>sin 0α∴>1sin 3α=,故A 正确; 22cos α∴D 正确; 22222217cos 2cos sin 39ααα⎛⎫∴=-=-= ⎪⎝⎭⎝⎭,故B 正确; 1sin 23tan cos 22ααα==C 错误; 故选:ABD题型二:同角三角函数的基本关系 一、单选题1.(2022·宁夏·固原一中一模(文))若3cos 5α=,且α在第四象限,则tan α=( ) A .34B .34-C .43D .43-【答案】D 【解析】由已知利用同角三角函数基本关系式即可计算得解. 【详解】 解:∵3cos 5α=,且α在第四象限, ∵24sin 1cos 5αα=--,∵sin tan s 43co ααα==-. 故选:D .2.(2022·辽宁·沈阳二中二模)若3sin cos 0αα+=,则21cos sin 2αα=+( )A .103 B .53C .23D .2-【答案】A 【解析】先由3sin cos 0αα+=求出1tan 3α=-,再由同角三角函数基本关系,以及二倍角的正弦公式,将所求式子化简,即可得出结果. 【详解】因为3sin cos 0αα+=,所以1tan 3α=-,因此22222111sin cos 11092cos sin 2cos 2sin cos 12tan an 3t 31ααααααααα+++====+++-. 故选:A. 【点睛】本题主要考查由同角三角函数基本关系化简求值,涉及二倍角的正弦公式,属于基础题型. 3.(2022·黑龙江·哈九中三模(文))已知1sin 24α=,且ππ32α<<,则cos sin αα-=( )A .12 B .12-C .3D 3【答案】C 【解析】 【分析】利用二倍角公式结合平方关系得()213cos sin 144αα-=-=,利用32ππα<<开方取负值即可 【详解】221sin 22sin cos ,sin cos 14ααααα==+=,()213cos sin 144αα∴-=-=,3,cos sin 32ππααα<<∴-= 故选:C.4.(2022·江西萍乡·三模(文))已知1tan 2θ=,则sin cos θθ=( ) A .25B .25-C .85D .85-【答案】A 【解析】 【分析】 由22sin co si s sin cos cos n θθθθθθ=+,分子分母同除以2cos θ,即可求出结果. 【详解】 因为222sin cos tan sin cos co sin n s 1ta θθθθθθθθ==++,又1tan 2θ=,所以122sin cos 1514θθ==+,故选:A.5.(2022·广东广州·三模)已知2sin cos x x +=()0,πx ∈,则cos2x 的值为( ) A .12B 3C .12-D .3 【答案】D 【解析】 【分析】 将2sin cos x x +=2sin x cos x =-12<0,结合2sin cos x x +=求出x 的范围,再利用 22cos 2sin 21x x +=求解即可. 【详解】 解:将2sin cos x x +=2sin x cos x =-12<0, 所以π(,π)2x ∈ , 又因为2sin cos x x +=0, 所以π3π(,)24x ∈,2x 3π(π,)2∈,又因为sin2x =-12,所以cos2x =21sin 2x -3 故选:D.6.(2022·江西南昌·三模(文))若角α的终边不在坐标轴上,且sin 2cos 2αα+=,则tan α=( )A .43B .34C .23D .32【答案】A 【解析】 【分析】结合易知条件和同角三角函数的平方关系即可求出cos α,从而求出sin α,根据sin tan cos ααα=即可求得结果.【详解】22sin cos 13cos 5sin 2cos 2ααααα⎧+=⇒=⎨+=⎩或cos 1α=, ∵α的终边不在坐标轴上,∵3cos 5α=, ∵34sin 2255α=-⨯=,∵sin 4tan cos 3ααα==. 故选:A .7.(2022·广西南宁·二模(文))若α是钝角且1sin 3α=,则tan α=( ) A .2B 2C .2D 2【答案】A 【解析】 【分析】先求出cos α,再根据商数关系求出tan α即可. 【详解】因为α是钝角,所以22122cos 1sin 13αα⎛⎫=-=--= ⎪⎝⎭sin 2tan cos ααα== 故选:A.题型三:三角函数的诱导公式 一、单选题1.(2022·江西萍乡·三模(理))已知2cos(πθ)sin(πθ)-=+,则sin 2θ=( )A .45B .45-C .85D .85-【答案】A 【解析】 【分析】利用诱导公式化简2cos(πθ)sin(πθ)-=+可以得到tan θ2=,再将sin 2θ化为齐次式,采用“弦化切”,代入tan θ即可得到答案【详解】2cos(πθ)sin(πθ)-=+ ,2cos θ=sin θ∴tan θ2∴=222222sin 2θ2sin θcos θ2tan θ224sin 2θsin θcos θsin θcos θtan θ1215⨯=====++++故选:A2.(2022·宁夏·吴忠中学三模(文))若4cos 5α=,α为第四象限角,则()tan πα-等于( ) A .43-B .43C .34D .34-【答案】C 【解析】 【分析】利用平方关系及商数关系,结合诱导公式即可求值. 【详解】由题设3sin 5α=-,所以3tan 4α=-,则()3tan tan 4παα-=-=.故选:C3.(2022·内蒙古呼和浩特·二模(文))20cos 3π=( ) A .12-B .12C .3D 3【答案】A 【解析】 【分析】由诱导公式化简求值即可. 【详解】20π18π+2π2π2π1coscos()cos(6π)cos 33332==+==-, 故选:A4.(2022·宁夏石嘴山·一模(理))已知31sin 23πα⎛⎫-= ⎪⎝⎭,则cos α=( ) A .13B .13-C 22D .22【答案】A 【解析】 【分析】利用诱导公式化简即得所求 【详解】 ()331sin sin cos cos 223ππαααα⎛⎫⎛⎫-=--=--== ⎪⎪⎝⎭⎝⎭故选:A5.(2022·福建漳州·二模)已知π1sin 63x ⎛⎫-= ⎪⎝⎭,则πcos 3x ⎛⎫+= ⎪⎝⎭( )A .22B .13-C .13D 22【答案】C 【解析】 【分析】整体法用诱导公式求解. 【详解】ππππ1cos sin sin 33263x x x ⎛⎫⎛⎫⎛⎫+=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C6.(2022·广西柳州·二模(理))已知π1sin 33α⎛⎫+= ⎪⎝⎭,则πcos 6α⎛⎫-= ⎪⎝⎭( )A .79B .13C .13-D .79-【答案】B 【解析】 【分析】利用诱导公式化简求值.由诱导公式得π1cos cos sin 63233πππααα⎛⎫⎛⎫⎛⎫-=+-=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:B.7.(2022·内蒙古·满洲里市教研培训中心三模(文))若π4sin ,25α⎛⎫-=- ⎪⎝⎭,()cos π2α-的值为( )A .725B .725-C .925D .925-【答案】B 【解析】 【分析】由诱导公式进行化简,然后根据二倍角公式即可求解. 【详解】π44sin ,cos 255αα⎛⎫-=-∴=- ⎪⎝⎭ ,()2247cos π2cos 22cos 121525ααα⎛⎫∴-=-=-+=-⨯-+=- ⎪⎝⎭故选:B8.(2022·贵州贵阳·二模(理))若3cos 45πα⎛⎫-= ⎪⎝⎭,sin 2α=( )A .2425-B .725-C .2425D .725【答案】B 【解析】 【分析】利用二倍角公式可得cos 22πα⎛⎫- ⎪⎝⎭,利用诱导公式可得结果.【详解】2187cos 22cos 11242525ππαα⎛⎫⎛⎫-=--=-=- ⎪ ⎪⎝⎭⎝⎭,7sin 2cos 2225παα⎛⎫∴=-=- ⎪⎝⎭.故选:B.9.(2022·江西九江·三模(理))已知1sin cos 3αα-=,则cos 4πα⎛⎫+= ⎪⎝⎭( )A .13-B .2C .13D 2【答案】B 【解析】首先根据辅助角公式得到2sin 4πα⎛⎫- ⎪⎝⎭【详解】1sin cos 243πααα⎛⎫-=-= ⎪⎝⎭,即2sin 46πα⎛⎫-= ⎪⎝⎭2cos cos sin 4424ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=--= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:B10.(2022·安徽马鞍山·三模(文))若4cos 5α=,sin cos 1αα+<,则()tan πα-等于( ) A .43-B .43C .34-D .34【答案】D 【解析】 【分析】由平方关系结合已知可得sin α,然后由诱导公式和商数关系可得所求. 【详解】 因为4cos 5α=,所以3sin 5α=± 因为sin cos 1αα+<,所以3sin 5α=-所以()3sin 35tan tan 4cos 45απααα--=-=-=-=. 故选:D题型四:三角函数恒等变换 一、单选题1.(2022·湖南·雅礼中学二模)已知3cos28cos 5αα-=,则cos α=( ) A .23-B .23C .5D 5【答案】A 【解析】 【分析】利用二倍角公式即得. 【详解】由题可得26cos 8cos 80αα--=,解得cos 2α=(舍去),或2cos 3α=-.故选:A.2.(2022·北京·二模)已知角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin2α=( )A .2425-B .725-C .725D .2425【答案】A 【解析】 【分析】根据终边上的点确定角的正余弦值,再由二倍角正弦公式求sin 2α. 【详解】由题设43sin ,cos 55αα==-,而4324sin 22sin cos 2()5525ααα==⨯⨯-=-.故选:A3.(2022·河南商丘·三模(文))已知tan 3α=-,则sin 21cos 2αα=-( )A .3B .13C .13-D .-3【答案】C 【解析】 【分析】利用二倍角公式化简即可 【详解】2sin 22cos sin cos 111cos 22sin sin tan 3αααααααα====--.故选:C4.(2022·黑龙江·哈九中三模(文))已知1sin 24α=,且ππ32α<<,则cos sin αα-=( )A .12 B .12-C .3D 3【答案】C【解析】 【分析】利用二倍角公式结合平方关系得()213cos sin 144αα-=-=,利用32ππα<<开方取负值即可 【详解】221sin 22sin cos ,sin cos 14ααααα==+=,()213cos sin 144αα∴-=-=,3,cos sin 32ππααα<<∴-= 故选:C.5.(2022·福建南平·三模)在ABC 中,若()tan 2A B +=-tan 2C =( ) A .22- B .2C 2D .22【答案】A 【解析】 【分析】由()tan tan 2C A B =-+=. 【详解】因为A B C π+=-,所以()tan tan 2C A B =-+ 所以()222tan 22tan 2221tan 12C C C ==---故选:A6.(2022·内蒙古包头·二模(理))若π,π2a ⎛⎫∈ ⎪⎝⎭,3cos tan 22sin =-ααα,则tan α=( )A 3B .3C 3D .3-【答案】B 【解析】 【分析】根据同角的三角函数关系式,结合二倍角的正弦公式和余弦公式、特殊角的三角函数值进行求解即可. 【详解】 23cos sin 23cos 2sin cos 3cos tan 22sin cos 22sin 12sin 2sin αααααααααααα=⇒=⇒=----,因为π,π2a ⎛⎫∈ ⎪⎝⎭,所以cos 0a ≠,于是由222sin cos 3cos 2sin 312sin 2sin 12sin 2sin αααααααα=⇒=----, 解得24sin 4sin 30αα+-=, 解得1sin 2α=,或3sin 12α=-<-(舍去),因为π,π2a ⎛⎫∈ ⎪⎝⎭,所以5π6a =, 即5ππ3tan tan tan 66α==-= 故选:B7.(2022·湖北武汉·二模)设sin32k =,则1tan16tan16+=( ) A .2kB .1kC .2kD .k【答案】A 【解析】 【分析】化切为弦,通分,再利用平方关系及倍角公式即可得解. 【详解】 解:1sin16cos16tan16tan16cos16sin16︒︒=+︒︒︒+︒22sin 16cos 16sin16cos16︒+︒︒⋅︒=11sin 322=︒ 2k=. 故选:A.8.(2022·陕西·安康市高新中学三模(文))若1tan 2α=,则cos 21sin 2αα=+( ) A .34B .12C .13D .35【答案】C 【解析】【分析】利用二倍角公式及同角三角函数的基本关系将弦化切,再代入计算可得; 【详解】解:()22211cos 2cos sin cos sin 1tan 1211sin 2cos sin 1tan 3sin cos 12αααααααααααα----=====+++++. 故选:C .9.(2022·江西萍乡·二模(文))已知1sin 62πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭ ( )A .12B 3C .12-D .3 【答案】A 【解析】 【分析】利用二倍角的余弦公式求解. 【详解】因为1sin 62πα⎛⎫+= ⎪⎝⎭,所以cos 2cos 236ππαα⎡⎤⎛⎫⎛⎫+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,212sin 6πα⎛⎫=-+ ⎪⎝⎭,2111222⎛⎫=-= ⎪⎝⎭,故选:A10.(2022·山西·二模(理))若sin 21tan 3αα=,则cos2=α( ) A .23B .23-C .13D .13-【答案】B 【解析】 【分析】利用二倍角公式和切化弦,化简即可求得. 【详解】因为2sin 22sin cos 12cos 1cos 2sin tan 3cos αααααααα===+=,所以2cos 23α=-.故选:B .11.(2022·黑龙江·哈师大附中三模(理))若()0,απ∈,1cos sin 2αα-=,则cos2=α( )A 7B 7C .34D .-34【答案】A 【解析】 【分析】由题意利用同角三角函数的基本关系、二倍角公式先求得sin 2α的值,再求sin cos αα+,结合二倍角余弦公式求值即可 【详解】∵1cos sin 2αα-=,平方可得11sin 24α-=, ∵3sin 24α=, ∵ sin ,cos αα同号,又()0,απ∈, ∵2,0πα⎛∈⎫ ⎪⎝⎭,∵()27sin cos 1sin 24ααα+=+=, ∵7sin cos αα+=则227cos 2cos sin (cos sin )(cos sin )ααααααα=-=-+=, 所以cos2=α7故选:A.12.(2022·山西晋城·三模(理))若tan 2θ=,则cos2θ=( ) A .35 B .13-C .35D .13【答案】A 【解析】【分析】由余弦的二倍角公式,然后再结合平方关系和商的关系,转化为tan θ的式子,得出答案. 【详解】22222222cos sin 1tan 143cos 2cos sin cos sin 1tan 145θθθθθθθθθ---=-====-+++ 故选:A 二、多选题1.(2022·海南海口·二模)已知(),2αππ∈,tan sin tan 22αβα==,则( ) A .tan 3α=B .1cos 2α=C .tan 43β=D .1cos 7β=【答案】BD 【解析】 【分析】根据商的关系化简条件可求cos α,利用平方关系求sin α,再由商的关系求tan α,再利用tan 2β,结合二倍角公式及同角三角函数关系求tan β,cos β. 【详解】因为tan sin tan cos 2αααα==, 所以1cos 2α=,又 (),2αππ∈, 所以3sin α=tan 3α=A 错误,B 正确. 3tan2β= 所以22tan2tan 431tan 2βββ==--222222cos sin 1tan 1222cos 7sin cos 1tan 222βββββββ--===++, 故C 错误,D 正确. 故选:BD.2.(2022·全国·模拟预测)已知,2x ππ⎛⎫∈ ⎪⎝⎭,3cos 8tan x x =,则( )A .1sin 3x =B .42tan 2x =C .1cos 23x =D .3429sin cos 44x x ππ-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭【答案】ABD 【解析】 【分析】切化弦后,由平方关系化为关于sin x 的方程,解方程可得sin x ,求出cos x 后由商数关系得tan x ,再由正切的二倍角公式得tan 2x ,由余弦的二倍角公式得cos2x ,由两角和的正弦余弦公式化简后代入cos ,sin x x 值可得3sin cos 44x x ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭.【详解】对于选项A ,∵3cos 8tan x x =,∵23cos 8sin x x =,∵23sin 8sin 30x x +-=,解得1sin 3x =或sin 3x =-(舍),故选项A 正确;对于选项B ,∵,2x ππ⎛⎫∈ ⎪⎝⎭,∵22cos x =1sin 3tan cos 22x x x ==-2=22222tan 42tan 21tan 21x x x ⎛⨯ -⎝⎭===-⎛- ⎝⎭B 正确; 对于选项C ,2cos 22cos 1x x =-=2227219⎛⨯-= ⎝⎭,故选项C 错误; 对于选项D ,322sin cos 44x x x x ππ⎫⎛⎫⎛⎫++=⋅⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()22142912sin cos 2x x x x ⎛⎫-=-+= ⎪ ⎪⎝⎭D 正确. 故选:ABD .题型五:三角函数的图象和性质1.(2022·河北邯郸·二模)函数()πsin(2)3f x x =+在ππ,33⎛⎫- ⎪⎝⎭上的值域为( )A .(]0,1B .3⎛⎫⎪ ⎪⎝⎭C .3⎛⎤⎥⎝⎦D .[]1,1-【答案】C 【解析】 【分析】根据正弦型函数的图像和单调性即可求解. 【详解】当ππ,33x ⎛⎫∈- ⎪⎝⎭时,ππ2,π33x ⎛⎫+∈- ⎪⎝⎭,当ππ232x +=时,即π12x = 时,()πsin(2)3f x x =+取最大值1,当ππ233x +=-,即π3x =- 时,()πsin(2)3f x x =+取最小值大于3,故值域为3⎛⎤ ⎥⎝⎦故选:C2.(2022·陕西西安·三模(文))下列区间中,函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .π0,2⎛⎫⎪⎝⎭B .π,π2⎛⎫ ⎪⎝⎭C .3ππ,2⎛⎫ ⎪⎝⎭D .3π,2π2⎛⎫⎪⎝⎭【答案】C 【解析】 【分析】根据诱导公式,结合余弦型函数的单调性进行判断即可. 【详解】()ππππ2sin 2cos 2cos 4244f x x x x ⎛⎫⎛⎫⎛⎫=-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当π0,2x ⎛⎫∈ ⎪⎝⎭时,ππ3π,444x ⎛⎫+∈ ⎪⎝⎭,显然该集合是()0,π的子集此时函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭单调递减,不符合题意;当π,π2x ⎛⎫∈ ⎪⎝⎭时,π3π5π,444x ⎛⎫+∈ ⎪⎝⎭,显然该集合不是()π,2π的子集此时函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭不单调递增,不符合题意;当3ππ,2x ⎛⎫∈ ⎪⎝⎭时,π5π7π,444x ⎛⎫+∈ ⎪⎝⎭,显然该集合是()π,2π的子集此时函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭单调递增,符合题意;当3π,2π2x ⎛⎫∈ ⎪⎝⎭时,π7π9π,444x ⎛⎫+∈ ⎪⎝⎭,显然该集合不是()π,2π的子集此时函数()π2sin 4f x x ⎛⎫=- ⎪⎝⎭不单调递增,不符合题意,故选:C3.(2022·安徽淮南·二模(文))函数()22sin y x x x -=-的部分图象可能是( )A .B .C .D .【答案】B 【解析】 【分析】根据函数的奇偶性以及特殊值排除法,即可求解. 【详解】记()()22sin f x x x x -=-,则()()22sin f x x x x --=--,故()()f x f x =--,()f x 是奇函数,故图像关于原点对称.此时可排除A,C ,取22,()02222x f ππππ-⎛⎫⎛⎫==-> ⎪ ⎪⎝⎭⎝⎭ ,排除D.故选:B4.(2022·江西九江·一模(理))函数()()22cos 2sin 0f x x x ωωω=->的最小正周期为π2,则ω的值为( ).A .2B .4C .1D .12【答案】A 【解析】 【分析】根据二倍角的余弦公式可得()31cos 222f x x ω=-,结合求最小正周期的公式2πT ω=计算即可.【详解】 解:()()1cos 2311cos 2cos 2222x f x x x ωωω+=--=-, 由0ω>得函数的最小正周期为2ππ22T ω==, ∵2ω=, 故选:A .5.(2022·安徽蚌埠·三模(文))已知函数()()2sin 02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭>,<的图像如图所示,则ω的值为( )A .2B .1C .12D .14【答案】C 【解析】 【分析】由图象分析函数的周期,求得ω的值. 【详解】由图象可知,函数的半周期是2π,所以2ωπ=π,得12ω=. 故选:C6.(2022·上海松江·二模)设函数()sin()(05)6f x x πωω=+<<图像的一条对称轴方程为12x π=,若1x 、2x 是函数()f x 的两个不同的零点,则12||x x -的最小值为( ) A .6π B .4π C .2π D .π【答案】B 【解析】 【分析】根据对称轴和ω的范围可得ω的值,从而可得周期,然后由题意可知12||x x -的最小值为2T可得.【详解】 由题知,1262k k πππωπ+=+∈Z ,则124,k k ω=+∈Z ,因为05ω<<,所以4ω= 所以22T ππω==易知12||x x -的最小值为24T π=. 故选:B7.(2022·青海·海东市教育研究室一模(理))已知定义在π0,4⎡⎤⎢⎥⎣⎦上的函数()()πsin 04f x x ωω⎛⎫=-> ⎪⎝⎭,若()f x 的最大值为5ω,则ω的取值最多有( ) A .2个 B .3个C .4个D .5个【答案】A 【解析】 【分析】因为πππ,44π44x ωω⎡⎤--⎢⎥⎣-⎦∈,讨论πππ442ω-≥或πππ442ω-<,结合函数图像理解分析.【详解】∵π0,4x ⎡⎤∈⎢⎥⎣⎦,则πππ,44π44x ωω⎡⎤--⎢⎥⎣-⎦∈若()f x 的最大值为5ω,分两种情况讨论: ∵当πππ442ω-≥,即3ω≥时,根据正弦函数的单调性可知,()max 15f x ω==,解得5ω=;∵当πππ442ω-<,即03ω<<时,根据正弦函数的单调性可知,sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增,所以()max ππsin 0445f x ωω⎛⎫=-=> ⎪⎝⎭,结合函数ππsin 44y x ⎛⎫=- ⎪⎝⎭与5x y =在()0,3上的图像可知,存在唯一的()0,3ω∈,使得ππsin 445ωω⎛⎫-= ⎪⎝⎭.综上可知,若()f x 的最大值为5ω,则ω的取值最多有2个. 故选:A .8.(2022·湖南·雅礼中学二模)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>> ⎪⎝⎭的图象如图所示.则()f ϕ=( )A .0B .AC .2AD .2A -【答案】A 【解析】 【分析】由相邻零点与对称轴间的距离为周期的四分之一,求得周期,进而求得ω,由最低点的坐标求得ϕ的值,进而计算得解. 【详解】由图象可得()f x 的最小正周期74123T πππ⎛⎫=-=⎪⎝⎭,∵22T πω==, 由7322,122k k ππϕπ⋅+=+∈Z ,解得2,3k k πϕπ=+∈Z ,由2πϕ得3πϕ=,∵()sin 23f x A x π⎛⎫=+ ⎪⎝⎭,∵()sin 03f f A πϕπ⎛⎫=== ⎪⎝⎭,故选:A9.(2022·新疆克拉玛依·三模(理))函数()()1sin f x x x π=--在区间3722ππ⎡⎤-⎢⎥⎣⎦,上的所有零点之和为( )A .0B .2πC .4πD .6π【答案】C 【解析】 【分析】把方程()0f x =变形,把零点个数转化为正弦函数图象与另一函数1y x π=-图象的交点个数,根据函数的对称性计算可得. 【详解】解:因为()()1sin f x x x π=--,令()0f x =,即()1sin x x π=-,当x π=时显然不成立, 当x π≠时1sin x x π=-,作出sin y x =和1y x π=-的图象,如图,它们关于点(,0)π对称,由图象可知它们在3722ππ⎡⎤-⎢⎥⎣⎦,上有4个交点,且关于点(,0)π对称,每对称的两个点的横坐标和为2π,所以4个点的横坐标之和为4π. 故选:C .10.(2022·河南郑州·三模(文))关于函数()cos ,6f x x x R π⎛⎫=+∈ ⎪⎝⎭,有下述四个结论:∵()f x 的一个周期为2π-; ∵()f x 的图象关于直线43x π=对称; ∵()f x π+的一个零点为3x π=; ∵()f x 在0,2π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的编号是( ) A .∵∵B .∵∵C .∵∵D .∵∵【答案】A 【解析】 【分析】由余弦函数的周期性、对称性、零点及单调性依次判断即可. 【详解】(2)cos 2cos ()66f x x x f x ππππ⎛⎫⎛⎫-=-+=+= ⎪ ⎪⎝⎭⎝⎭,∵正确;443()cos cos 03362f ππππ⎛⎫=+== ⎪⎝⎭,则()f x 的图象关于4,03π⎛⎫⎪⎝⎭对称,∵错误;()cos cos 66f x x x ππππ⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎝⎭⎝⎭,cos 036ππ⎛⎫-+= ⎪⎝⎭,∵正确;由0,2x π⎛⎫∈ ⎪⎝⎭可得2,663x πππ⎛⎫+∈ ⎪⎝⎭,()f x 单调递减,∵错误.故选:A. 二、多选题1.(2022·河北秦皇岛·二模)已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭图象的一条对称轴方程为6x π=,与其相邻对称中心的距离为4π,则( ) A .()f x 的最小正周期为π B .()f x 的最小正周期为2π C .6π=ϕ D .3πϕ=【答案】AC 【解析】 【分析】根据三角函数图象性质可得函数解析式进而可得周期. 【详解】因为()f x 图象相邻的对称中心与对称轴的距离为4π,所以最小正周期T π=,故A 正确,B 不正确; 因为22Tπω==,且()2,622k k πππϕπϕ⨯+=+∈<Z ,所以6π=ϕ,故C 正确,D 不正确, 故选:AC.2.(2022·湖北·荆州中学三模)已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,关于()f x 有下述四个结论,其中错误的结论是( ) A .()f x 的一个周期是2π B .()f x 是偶函数C .()f x 在区间(0,)π上单调递减D .()f x 2 【答案】BC 【解析】 【分析】利用函数周期性的定义可判断A 选项的正误;利用4f π⎛⎫- ⎪⎝⎭和4f π⎛⎫⎪⎝⎭的值可判断B 选项的正误;化简函数()f x 在0,2π⎛⎫⎪⎝⎭上的解析式,可判断C 选项的正误;由()0f 的值可判断D 选项的正误.【详解】对于A 选项,()()()[][]()2sin cos 2cos sin 2sin cos cos sin f x x x x x f x πππ+=+++=+=⎡⎤⎡⎤⎣⎦⎣⎦, 所以,函数()f x 的一个周期为2π,A 选项正确;对于B 选项,22sin cos sin 0cos 014f π⎡⎡⎛⎫=+=+=⎢⎢ ⎪⎝⎭⎣⎦⎣⎦, ()22sin cos sin 0cos 1cos14f π⎡⎡⎛⎫-=+=+-=⎢⎢ ⎪⎝⎭⎣⎦⎣⎦,44f f ππ⎛⎫⎛⎫∴-≠ ⎪ ⎪⎝⎭⎝⎭,44f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 不是偶函数,B 选项错误; 对于C 选项,当02x π<<时,0sin 1x <<,0cos 1x <<,则[][]sin cos 0x x ==,则()sin0cos01f x =+=,所以,函数()f x 在0,2π⎛⎫⎪⎝⎭是常函数,C 选项错误;对于D 选项,()[][]0sin cos0cos sin 0sin1cos01sin12f ∴=+=+=+>D 选项正确. 故选:BC. 三、解答题1.(2022·江西·上高二中模拟预测(理))设函数()()()π3πsin cos sin 3πcos π22f x x x x x ⎡⎤⎛⎫⎛⎫=++-⋅++-⎡⎤ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦. (1)求函数()f x 单调递减区间;(2)求函数()()π6g x f x f x ⎛⎫=++ ⎪⎝⎭在区间π0,2⎡⎤⎢⎥⎣⎦上的最值.【答案】(1)()ππ,πZ 4k k k ⎛⎫-+∈ ⎪⎝⎭(2)()g x 最小值为32-3【解析】 【分析】(1)根据诱导公式和二倍角公式化简得:()cos2f x x =-,再根据余弦函数的单调性求解即可; (2)化简得π()3)3g x x =-,再根据ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,求解即可.(1)()()()22cos sin sin cos sin cos cos2f x x x x x x x x =---=-=- ,当()22ππ,2πx k k ∈- Z k ∈ ,即x ∈()ππ,πZ 4k k k ⎛⎫-+∈ ⎪⎝⎭时是单调递减区间;(2)()π33πcos 2cos 22cos 23sin 2323g x x x x x x ⎛⎫⎛⎫=--+-- ⎪ ⎪⎝⎭⎝⎭ ,因为π02,x ⎡⎤∈⎢⎥⎣⎦,所以ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,()()min π30332g x g ⎛⎫==-=- ⎪⎝⎭ ,()max 5ππ33122g x g ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,故()g x 最小值为32-32.(2022·山东临沂·二模)已知函数()sin (0,01)4f x A x A πωω⎛⎫=+><< ⎪⎝⎭,42f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在30,4π⎛⎫ ⎪⎝⎭2 (1)求()f x 的解析式;(2)将函数()f x 图象上所有点的横坐标缩小为原来的13,纵坐标不变,得到函数()g x 的图象,若122g α⎛⎫= ⎪⎝⎭,求sin 2α的值.【答案】(1)2()2)34f x x π=+;(2)34-【解析】 【分析】(1)由01ω<<求得2T π>,再结合()f x 在30,4π⎛⎫⎪⎝⎭242f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,知3()28f π=,求出,A ω即可;(2)先求出()g x ,由122g α⎛⎫= ⎪⎝⎭求得sin()422πα+=sin 2α.(1)因为01ω<<,所以周期22T ππω=>,又()f x 在30,4π⎛⎫⎪⎝⎭2,且42f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 所以当13()2428x πππ=+=时,()f x 2所以2A 且3()28f π=32284ππω⎛⎫+= ⎪⎝⎭3501,4848ππππωω<<∴<+<,故3842πππω+=,解得23ω=,故2()2)34f x x π=+; (2)()(3)2)4g x f x x π=+,又12)242g απα⎛⎫=+= ⎪⎝⎭,则sin()422πα+=23sin 2cos 22sin 1244ππααα⎛⎫⎛⎫=-+=+-=- ⎪ ⎪⎝⎭⎝⎭.3.(2022·浙江台州·二模)设函数()()sin 6f x x x π⎛⎫=-∈ ⎪⎝⎭R .(1)求函数26y f x π⎛⎫=+ ⎪⎝⎭的最小正周期;(2)求函数()226y f x f x π⎛⎫=++ ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)π(2)74【解析】 【分析】(1)由三角函数的性质求解(2)由三角恒等变换公式化简,根据三角函数性质求解 (1)22sin 6y f x x π⎛⎫=+= ⎪⎝⎭1cos22x -=∵函数26y f x π⎛⎫=+ ⎪⎝⎭的最小正周期为π.(2)()221cos 21cos23622x x y f x f x ππ⎛⎫-- ⎪-⎛⎫⎝⎭=++=+ ⎪⎝⎭33131sin 21223x x x π⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭. ∵02x π≤≤,∵42333x πππ≤+≤,即333243x π⎛⎫-+ ⎪⎝⎭∵函数()226y f x f x π⎛⎫=++ ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值为74.4.(2022·浙江·三模)已知函数()2sin sin 6f x x x π⎛⎫=⋅+ ⎪⎝⎭.(1)求()f x 的单调递增区间;(2)若对任意,3x t π⎡⎤∈⎢⎥⎣⎦,都有()332f x ≤,求实数t 的取值范围. 【答案】(1)5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦ (2)0,3π⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)()f x 的解析式可化简为()3sin 23f x x π⎛⎫=- ⎪⎝⎭,令222,232k x k k Z πππππ-+≤-≤+∈,即可解得()f x 的单调递增区间(2)对恒成立的不等式等价转化后,结合23x π-的范围可得2333t πππ-≤-<,从而解得t 的范围(1)()312sin sin 2sin cos 62f x x x x x x π⎫⎛⎫=⋅+=+⎪ ⎪⎪⎝⎭⎝⎭)2133sin cos 3sin sin 21cos 2sin 223x x x x x x π⎛⎫==-=- ⎪⎝⎭令222,232k x k k Z πππππ-+≤-≤+∈解之得5,1212k x k k Z ππππ-+≤≤+∈∵()f x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)对任意,3x t π⎡⎤∈⎢⎥⎣⎦,都有()333sin 223f x x π⎛⎫≤⇔- ⎪⎝⎭ ∵22,333x t πππ⎡⎤-∈-⎢⎥⎣⎦, ∵2333t πππ-≤-<,∵03t π≤<,∵实数t 的范围为0,3π⎡⎫⎪⎢⎣⎭.。

高中数学三角函数知识点总结实用版

高中数学三角函数知识点总结实用版

三角函数1. ① 与(0°≤<360°)终边相同的角的集合(角与 角|k 360, k Z②终边在 x 轴上的角的集合:|k 180 , kZ4cosx ③终边在 y 轴上的角的集合:|k 18090 , k Zcosx④终边在坐标轴上的角的集合:|k 90 , k Z1的终边重合):▲y32sinxsinx1cosxxcosx4sinxsinx 23⑤终边在 y=x 轴上的角的集合: |k 18045 , k Z⑥终边在 yx 轴上的角的集合:|k 18045 , kZSIN COS 三角函数值大小关系图1、 2、 3、 4表示第一、二、三、 四象限一半所在区域⑦若角 与角 的终边关于 x 轴对称,则角 与角 的关系: 360 k ⑧若角 与角 的终边关于 y 轴对称,则角 与角 的关系: 360 k 180 ⑨若角 与角 的终边在一条直线上,则角 与角的关系:180 k⑩角与角的终边互相垂直,则角与角的关系:360 k902. 角度与弧度的互换关系: 360 °=2 180 °= 1° =0.01745 1=57.30 ° =57 ° 18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 、弧度与角度互换公式:1rad =180°≈ 57.30°=57 ° 18ˊ.3、弧长公式:l|| r .s 扇形1 扇形面积公式: lr24、三角函数:设 是一个任意角,在的终边上任取(异于原点的)一点P (x,y ) P 与原点的距离为 r ,则siny ;rcos x ; tan y;cotx ; secr;.cscr .rxyxy5、三角函数在各象限的符号: (一全二正弦,三切四余弦)yy y + + - + -+ox o + xox-- --+正弦、余割 余弦、正割正切、余切.1°=≈0.01745( rad ) 1801 | | r2 2ya 的终边P ( x,y )roxy T POMA x16. 几个重要结论:6、三角函数线(1)y(2) y|sinx|>|cosx|正弦线: MP;余弦线: OM;正切线: AT.sinx>cosx|cosx|>|sinx||cosx|>|sinx|Ox xOcosx>sinx|sinx|>|cosx|(3) 若 o<x<2 ,则sinx<x<tanx7.三角函数的定义域:三角函数f ( x) sinxf ( x)cosxf ( x)tanxf ( x) cotxf ( x)secxf ( x)cscx8、同角三角函数的基本关系式:tan cot1 csc sin1sin 2cos21sec2tan2定义域x | x Rx | x Rx | x R且 x k1, k Z2x | xR且x k, k Zx | x R且 x k1, k Z2x | xR且x k, k Zsintancoscotcos sinsec cos11csc2cot 219、诱导公式:把k的三角函数化为的三角函数,概括为:2“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组一公式组二公式组三sinx·cscx=1sin x22sin(2k x)sin x sin(x)sin xtanx=sin x+cos x=1cos x cos(2k x)cos x cos(x)cosxx= cos xcosx· secx=11+tan2 x =sec2 x tan(2k x)tan x tan(x)tan x sin xcot(2k x)cot x cot(x)cot x tanx·cotx=11+cot2 x=csc2x公式组四公式组五公式组六sin(x)sin x sin(2x)sin x sin(x)sin xcos(x)cos x cos(2x)cosx cos(x)cos xtan(x)tan x tan(2x)tan x tan(x)tan xcot(x)cot x cot(2x)cot x cot(x)cot x(二)角与角之间的互换公式组一公式组二cos()cos cos sin sin sin 22sin coscos()cos cos sin sin cos 2cos2sin2 2 cos2 1 1 2 sin2sin()sin cos cos sin tan22 tan 1tan 2sin()sin cos cos sin sin1cos22tan()tan tancos1cos 1 tan tan22tan(tantantan1 cossin1 cos)tan tan1 cos1 cossin12公式组三公式组四公式组五2 tansin cos1sinsin1) sin22cos(sin22cos sin1sinsinsin(11 tan) cos22cos cos1coscos2tan(11 tan 222) cotcossin sin1cos2tan2cos121 )sin2sin sin 2 sincoscos(2222 tansinsin2 cossin1 )cottan(tan22222cos cos 2 coscos11tan22 2sin() coscoscos2sin2 sin22sin 15 cos 7562, , tan 15 cot 7523,.tan 75 cot15234sin 75cos156 2410. 正弦、余弦、正切、余切函数的图象的性质:y sin xycosxytan xy cot x定义域RRx | x R 且xk1,kZx | x R 且 x k , k Z2值域 [ 1, 1] [ 1, 1]RR周期性22奇偶性奇函数偶函数奇函数奇函数[2k , [ 2k 1 , ;k , k k , k 1 上为减函 22k ]22数( kZ )2k ]上为增函 上 为 增 函 数2 数( k Z )上为增函 [ 2k ,数 ; 2k1 ]单调性[ 2k ,上为减函数232k ]( k Z )2上为减函数( k Z )y A sin x( A 、 >0)RA, A2当 0, 非奇非偶 当0, 奇函数2k2( A),1 2k2( A)上为增函数;2k2( A),32k2( A)上 为减函数( k Z )注意:① y sin x 与 y sin x 的单调性正好相反;y cosx 与 y cos x 的单调性也同样相反.一般地,若 y f ( x) 在 [a, b] 上递增(减),则 y f ( x) 在 [ a, b] 上递减(增) .▲ycosx 的周期是.② y sin x 与y③ y sin(x) 或 y cos( x) (0)的周期T 2.xx Oy的周期为 2(T T2,如图,翻折无效) . tan2④ y sin(x) 的对称轴方程是x k2( k Z ),对称中心( k,0); y cos( x) 的对称轴方程是x k ( k Z ),对称中心(k1,0);y tan( x) 的对称中心(k,0 ).22 y cos 2x原点对称y cos( 2 x )cos 2 x⑤当tan·1,k(k Z); tan·tan1,k( k Z ) .22⑥ y cos x 与y sin x2k是同一函数 ,而 y( x) 是偶函数,则2y ( x)sin(x k 1 )cos(x) .2⑦函数 y tan x 在R上为增函数.(×)[只能在某个单调区间单调递增. 若在整个定义域,y tan x为增函数,同样也是错误的].⑧定义域关于原点对称是 f ( x) 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数: f ( x) f ( x) ,奇函数:f ( x) f (x) )奇偶性的单调性:奇同偶反. 例如:y tan x 是奇函数,y tan( x 1)是非奇非偶 .(定3义域不关于原点对称)奇函数特有性质:若 0x 的定义域,则 f (x) 一定有f (0)0.(0x 的定义域,则无此性质)▲▲y sin x为周期函数( T y y⑨ y sin x 不是周期函数;);x1/2xy= cos|x| 图象y=|cos2x+1/2|图象ycos x 是周期函数(如图) ;y cos x 为周期函数(T );ycos 2x 1的周期为(如图),并非所有周期函数都有最小正周期,例如:2y f ( x) 5 f ( x k ), k R .⑩ y a cosb sina 2b 2sin()cosb有a 2 b 2y .a11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例 —— 五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线) .3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数 y = Asin (ω x +φ)的振幅 |A| ,周期T2,频率1 | |,相位 x; 初相| | f2T(即当 x =0 时的相位).(当 A > 0,ω> 0 时以上公式可去绝对值符号) ,由 y = sinx 的图象上的点的横坐标保持不变,纵坐标伸长 (当 |A|> 1)或缩短(当 0< |A|<1)到原来的 |A|倍,得到 y = Asinx 的图象, 叫做 振幅变换 或叫沿 y 轴的伸缩变换.(用 y/A替换 y )由 y = sinx 的图象上的点的纵坐标保持不变, 横坐标伸长 ( 0< |ω |< 1)或缩短( |ω |> 1)到原来的| 1 倍,得到 y = sin ω x 的图象,叫做 周期变换 或叫做沿 x 轴的伸缩变换. (用ω x|替换 x)由 y = sinx 的图象上所有的点向左 (当φ> 0)或向右(当φ< 0)平行移动|φ|个单位,得到 y = sin ( x +φ)的图象,叫做相位变换 或叫做沿 x 轴方向的平移. (用 x +φ替换 x)由 y = sinx 的图象上所有的点向上 (当 b > 0)或向下(当 b < 0)平行移动| b |个单位,得到 y = sinx + b 的图象叫做沿 y 轴方向的平移. (用 y+(-b) 替换 y )由 y = sinx 的图象利用图象变换作函数y = Asin (ω x +φ)( A > 0,ω> 0)( x ∈ R )的图象, 要特别注意: 当周期变换和相位变换的先后顺序不同时, 原图象延 x 轴量伸缩量的区别。

高考三角函数知识点归纳

高考三角函数知识点归纳

高考三角函数知识点归纳三角函数是高中数学中的一大重要内容,也是高考数学中的重点难点。

下面将围绕高考数学三角函数知识点进行归纳。

1.弧度制与角度制:-角度制:一个圆的周长定义为360度,1度等于圆周长的1/360。

-弧度制:一个圆的半径为1时,一个弧长等于半径的弧度数为1弧径(弧度)。

弧度应该是弧长和半径数的比值。

2.正弦、余弦、正切:- 正弦:在直角三角形中,对于一个锐角,将其对边的长度除以斜边的长度,所得的比值称为这个锐角的正弦,记作sin。

- 余弦:在直角三角形中,对于一个锐角,将其邻边的长度除以斜边的长度,所得的比值称为这个锐角的余弦,记作cos。

- 正切:在直角三角形中,对于一个锐角,将其对边的长度除以邻边的长度,所得的比值称为这个锐角的正切,记作tan。

3.基本三角函数的基本性质:- 周期性:sin和cos的周期都为2π,tan的周期为π。

- 奇偶性:sin是奇函数,cos是偶函数,tan是奇函数。

- 五个特殊值:sin0=0,sin30°=1/2,sin45°=√2/2,sin60°=√3/2,sin90°=1;cos0°=1,cos30°=√3/2,cos45°=√2/2,cos60°=1/2,cos90°=0;tan0°=0,tan30°=1/√3,tan45°=1,tan60°=√3,tan90° 不存在。

4.三角恒等式:- 余弦的平方加正弦的平方等于1:cos²x + sin²x = 1;- 倒角公式:sin(2x)=2sin(x)cos(x),cos(2x)=cos²(x)-sin²(x);- 和差公式:sin(x+y)=sinxcosy+cosxsiny, cos(x+y)=cosxcosy-sinxsiny。

高考数学三角函数知识点总结及练习

高考数学三角函数知识点总结及练习

高考数学三角函数知识点总结及练习三角函数总结及统练本文旨在总结和统练三角函数的基础知识,包括以下内容:一、基础知识1.集合S表示与角α终边相同的角的集合,其中β=2kπ+α,k∈Z。

2.三角函数是x、y、r三个量的比值,共有六种定义。

3.三角函数的符号口诀为“一正二弦,三切四余弦”。

4.三角函数线包括正弦线MP=sinα、余弦线OM=cosα和正切线AT=tanα。

5.同角三角函数的关系包括平方关系、商数关系和倒数关系,可以用“凑一拆一,切割化弦,化异为同”的口诀记忆。

6.诱导公式口诀为“奇变偶不变,符号看象限”,其中包括正弦、余弦、正切和余切的公式。

7.两角和与差的三角函数包括正弦、余弦、正切和余切的公式,以及三角函数的和差化积公式。

8.二倍角公式包括sin2α=2sinαcosα、cos2α=2cos2α-1=1-2sin2α=cosα-sinα、tan2α=2tanα/1-tan2α,以及对应的cos、tan公式。

9.三角函数的图象和性质,包括函数y=sinx、y=cosx和y=tanx的定义和定义域。

总之,三角函数是数学中的重要概念,掌握其基础知识对于研究高等数学和其他相关学科都有很大的帮助。

对于函数 $y=\sin x$,其定义域为 $[-\pi/2,\pi/2]$,值域为$[-1,1]$。

当 $x=2k\pi+\pi/2$ 时,函数取最大值 $1$;当$x=2k\pi-\pi/2$ 时,函数取最小值$-1$。

函数的周期为$2\pi$,是奇函数。

在区间 $[2k\pi-\pi/2,2k\pi+\pi/2]$ 上是增函数,在区间$[2k\pi-\pi,2k\pi]$ 上也是增函数,其中$k\in\mathbb{Z}$。

在区间 $[2k\pi,2k\pi+\pi]$ 上是减函数。

对于函数 $y=Asin(\omega x+\phi)$,当 $A>0$ 且$\omega>0$ 时,函数图像可以通过将横坐标缩短到原来的$\dfrac{1}{\omega}$ 倍,纵坐标伸长为原来的 $A$ 倍,再将图像左移$\dfrac{\phi}{\omega}$ 个单位得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学三角函数重点考点归纳
由解析式研究函数的性质
常见的考点:
求函数的最小正周期,求函数在某区间上的最值,求函数的单调区间,判定函数的奇
偶性,求对称中心,对称轴方程,以及所给函数与y=sinx的图像之间的变换关系等等。

对于这些问题,一般要利用三角恒变换公式将函数解析式化为y=Asinωx+φ的形式,然后再求相应的结果即可。

在这一过程中,一般要先利用诱导公式、二倍角公式、两角和与差的恒等式等将函数
化为asinωx+bcosωx形式其中常见的是两个系数a、b的比为1:1,1:1,然后再利用辅助角公式,化为y=Asinωx+φ即可。

根据条件确定函数解析式
这一类题目经常会给出函数的图像,求函数解析式y=Asinωx+φ+B。

A=最大值-最小值/2;
B=最大值+最小值/2;
通过观察得到函数的周期T主要是通过最大值点、最小值点、“平衡点”的横坐标之
间的距离来确定,然后利用周期公式T=2π/ω来求得ω;
利用特殊点例如最高点,最低点,与x轴的交点,图像上特别标明坐标的点等求出某
一φ';
最后利用诱导公式化为符合要求的解析式。

考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。

重点考查集合间关系的理解和认识。

近年的
试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。

在解决这
些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。

简易逻辑考查
有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中
深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数一次和二次函数、指数、对数
、幂函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。

导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求
函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是
导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一
些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。

小题一道考查平面向量有关概念及运算等,另一
道对三角知识点的补充。

大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道
和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向
量为主的试题,要注意数形结合思想在解题中的应用。

向量重点考查平面向量数量积的概
念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、
共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基
本不等式的应用等,通常会在小题中设置1到2道题。

对不等式的工具性穿插在数列、解
析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、
性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合
运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
考点五:立体几何与空间向量
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的
位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等文科不要求.在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

考点六:解析几何
一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的
方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,
解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等
式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

考点七:算法复数推理与证明
高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的
热点是流程图的识别与算法语言的阅读理解.
算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、
复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。

对于理科,数学归纳法可能作为解答题的一小问.
猜你感兴趣:
感谢您的阅读,祝您生活愉快。

相关文档
最新文档