高中数学三角函数的图象与性质题型归纳总结
高中数学三角函数及反三角函数图像性质、知识点总结
高中数学三角函数及反三角函数图像性质、知识点总结高中数学中,三角函数及反三角函数是重要的内容之一。
在学习这一部分知识时,需要掌握其图像性质以及相关的知识点。
下面将对这些内容进行总结。
一、三角函数的图像性质1. 正弦函数(sin)的图像性质:- 周期性:sin函数的周期为2π,即在每个周期内,函数的图像重复出现;- 奇函数性质:sin函数关于原点对称;- 取值范围:sin函数的取值范围为[-1,1],即函数的值始终在该区间内波动。
2. 余弦函数(cos)的图像性质:- 周期性:cos函数的周期为2π;- 偶函数性质:cos函数关于y轴对称;- 取值范围:cos函数的取值范围也为[-1,1]。
3. 正切函数(tan)的图像性质:- 周期性:tan函数的周期为π;- 奇函数性质:tan函数关于原点对称;- 无界性:tan函数的值域为实数集,即函数在某些点无界。
二、三角函数的知识点1. 基本正弦函数的性质:- 特殊角的正弦值:0°、90°、180°、270°和360°对应的正弦值分别为0、1、0、-1和0;- 正弦函数的增减性:在0°到180°的区间上,sin函数是单调递增的;- 正弦函数的奇偶性:sin(-x)=-sin(x),即sin函数关于原点对称。
2. 基本余弦函数的性质:- 特殊角的余弦值:0°、90°、180°、270°和360°对应的余弦值分别为1、0、-1、0和1;- 余弦函数的增减性:在0°到180°的区间上,cos函数是单调递减的;- 余弦函数的奇偶性:cos(-x)=cos(x),即cos函数关于y轴对称。
3. 基本正切函数的性质:- 特殊角的正切值:0°、90°、180°和270°对应的正切值分别为0、无穷大、0和无穷大;- 正切函数的周期性:tan(x+π)=tan(x),即tan函数的周期是π。
高三数学专题复习-三角函数图像及其性质
三角函数及其图像性质精讲精练〔2〕【知识点回忆】【考向一】三角函数的定义域【例1】函数)3sin 2lg(cos 21+++=x x y 的定义域是_____。
【精练1】.函数y =tan ⎝⎛⎭⎫π4-x 的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠kπ-π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠2kπ-π4,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠kπ+π4,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠2kπ+π4,k ∈Z【解析】 ∵π4-x ≠π2+kπ,∴x ≠-π4-kπ,又∵k ∈Z ,∴A 正确.【答案】 A【考向二】三角函数的单调性【思路点拨】 y =A sin(ωx +φ)+B 解析式确实定与性质的研究借助图象或文字表达,先求A 、ω、φ、B 的值后,再依据解析式研究三角函数的单调性、值域、最值及周期性、奇偶性等性质是高考的常见题型.【例1】〔2012湖南文18〕已知函数()()⎪⎭⎫ ⎝⎛<<>∈+=20,0,sin πϕωϕωR x x A x f 的部分图像如图5所示。
〔Ⅰ〕求函数()x f 的解析式; 〔Ⅱ〕求函数()⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛-=1212ππx f x f x g 的单调递增区间。
【精练1】3.(2013·佛山模拟)函数y =2sin ⎝⎛⎭⎫π6-2x x ∈[0,π]为增函数的区间为( )A.⎣⎡⎦⎤0,π3B.⎣⎡⎦⎤π12,712πC.⎣⎡⎦⎤π3,56πD.⎣⎡⎦⎤56π,π 【解析】 因为y =-2sin ⎝⎛⎭⎫2x -π6,由π2+2k π≤2x -π6≤32π+2k π,k ∈Z 得π3+k π≤x ≤56π+k π,k ∈Z ,即函数在R 上的增区间为⎣⎡⎦⎤π3+k π,56π+k πk ∈Z ,当k =0时增区间为⎣⎡⎦⎤π3,56π.故选C. 【答案】 C【精练1】〔2012全国新课标9〕已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
高中数学总复习:三角函数的图象与性质
π
π
π
= + k π, k ∈Z得 x = + , k ∈Z,∴ f ( x )图象的对称中
2
4
2
π
π
心为( + ,1), k ∈Z.
4
2
目录
高中总复习·数学(提升版)
解题技法
三角函数的奇偶性、周期性和对称性问题的解题思路
(1)奇偶性的判断方法:三角函数中奇函数一般可化为 y = A sin
ω x 或 y = A tan ω x 的形式,而偶函数一般可化为 y = A cos
6
=1.
π
解析:∵ f ( x )的最小正周期 T = =π,∴ω=1.
目录
高中总复习·数学(提升版)
4. 函数 y = sin
π
( x + )的单调递增区间为
6
2π
π
[- +2 k π, +2 k
3
3
π]( k ∈Z) .
π
π
解析:令- +2 k π≤ x +
2
6
≤
π
+2 k π, k ∈Z,∴ y =
,且-
2
2≤t≤
2
1
1
2 .∴ y =- + t + =- ( t -
2
2
2
1)2+1, t ∈[- 2, 2 ].当 t =1时, y max=1;当 t =- 2 时, y
1
min=- 2
−
1
2 .∴函数的值域为[- −
2
2 ,1].
目录
高中总复习·数学(提升版)
三角函数的周期性、奇偶性与对称性
2
3
知识 体系构建
考点 分类突破
高中数学三角函数知识点归纳总结
⾼中数学三⾓函数知识点归纳总结《三⾓函数》【知识⽹络】⼀、任意⾓的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作⾓. 逆时针旋转为正⾓,顺时针旋转为负⾓,不旋转为零⾓2、同终边的⾓可表⽰为{}()360k k Z ααβ?=+∈gx 轴上⾓:{}()180k k Z αα=∈o gy 轴上⾓:{}()90180k k Z αα=+∈o o g3、第⼀象限⾓:{}()036090360k k k Z αα?+<<+∈o g g第⼆象限⾓:{}()90360180360k k k Z αα??+<<+∈o o g g第三象限⾓:{}()180360270360k k k Z αα?+<<+∈oo g g第四象限⾓:{}()270360360360k k k Z αα??+<<+∈oo g g4、区分第⼀象限⾓、锐⾓以及⼩于90o的⾓第⼀象限⾓:{}()0360锐⾓:{}090αα<⼩于90o的⾓:{}90αα5、若α为第⼆象限⾓,那么2α为第⼏象限⾓?ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2α在第⼀、三象限 6、弧度制:弧长等于半径时,所对的圆⼼⾓为1弧度的圆⼼⾓,记作1rad . 7、⾓度与弧度的转化:01745.01801≈=?π815730.571801'?=?≈?=π9、弧长与⾯积计算公式弧长:l R α=?;⾯积:21122S l R R α=?=?,注意:这⾥的α均为弧度制.⼆、任意⾓的三⾓函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=其中(),x y 为⾓α终边上任意点坐标,r =2、三⾓函数值对应表:3、三⾓函数在各象限中的符号⼝诀:⼀全正,⼆正弦,三正切,四余弦.(简记为“全s t c ”)sin α tan α cos α第⼀象限:0,0.>>y x sin α>0,cos α>0,tan α>0, 第⼆象限:0,0.>0,cos α<0,tan α<0, 第三象限:0,0.<0, 第四象限:0,0.<>y x sin α<0,cos α>0,tan α<0,4、三⾓函数线设任意⾓α的顶点在原点O ,始边与x 轴⾮负半轴重合,终边与单位圆相交与P (,)x y ,过P 作x 轴的垂线,垂⾜为M ;过点(1,0)A 作单位圆的切线,它与⾓α的终边或其反向延长线交于点T.由四个图看出:当⾓α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x xx OM r α====, tan y MP ATAT x OM OAα====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
三角函数的图象、性质及应用(高中数学知识点讲解)
(5)不能认为y=tan
x在定义域上为增函数,应在区间
kπ-
π 2
,kπ
+
π 2
(k∈Z)内
为增函数.
知能拓展
考法一 关于三角函数图象的问题
例1 (1)(2018广东茂名化州二模,9)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<
φ<π)的部分图象如图所示,且f(α)=1,α∈
求φ及ω,从而
得到f(x)的解析式,由f(α)=1求α,进而得cos
2α
+
5π 6
.
A = 5,
(2)①根据已知表格中的数据可得方程组
π 3
ω
+
φ
=
π 2
,
解之可得函数f(x)的
5π 6
ω
+
φ
=
3π 2
,
解析式,进而可补全表格.
②由①并结合函数图象平移可得,g(x)=5sin
2
x
+
2θ -
π 3
-2x
实质上是y=tan
x与y=
π 3
-2x的复合,应
按复合函数单调性求解.
方法总结 三角函数的单调性问题的常见类型及解题策略
1.已知三角函数解析式求单调区间
(1)求函数的单调区间应遵循简单化原则,将解析式进行化简,并注意复合
函数单调性规律“同增异减”.
(2)求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的单调区间时,要视“ωx
2π ω
=4×
7π 12
-
π 3
=π,得ω=2,故f(x)=3sin(2x+φ),将
高中数学三角函数图像和性质易错点梳理(附例题详解)
3π 2
;
“第五点”为ωx+φ=2π.
题组一:三角函数的图像与性质
1.(2011 新课标)设函数 f (x) sin(2x ) cos(2x ) ,则( )
4
4
A. y f (x) 在 (0, ) 单调递增,其图象关于直线 x 对称
2
4
B. y f (x) 在 (0, ) 单调递增,其图象关于直线 x 对称
12
个
单位长度,得到曲线 C2
【解析】把C2 的解析式运用诱导公式变为余弦,
C2
:
y
sin(2x
2 3
)
cos[
2
(2x
2 3
)]
cos[(2x
6
)]
cos(2x
6
)
则由
C1
图象横坐标缩短为原来的
1 2
,再把得到的曲线向左平移
12
个单位长度,得到曲线
C2 .选 D
9.(2016 全国 II)若将函数 y 2sin 2x 的图像向左平移 个单位长度,则平移后图象的对
4
D. π
【解析】解法一 f (x) cos x sin x 2 cos(x π) ,且函数 y cos x 在区间
4
[0, ]上单调递减,则由 0 ≤ x ≤ ,得 ≤ x ≤ 3 .
4
4
4
因为
f
(x)
在[a,
a]
上是减函数,所以
aa≤≥344
,解得
a
≤
4
,
解法二 因为 f (x) cos x sin x ,所以 f (x) sin x cos x ,
2
y sin(2x ) 的图象重合,则 _________.
高中数学三角函数知识点归纳总结
高中数学三角函数知识点归纳总结知识网络】三角函数是数学中的一种基本函数,广泛应用于各个领域。
在研究三角函数时,需要掌握弧长公式、同角三角函数的基本关系式、三角函数的角度制与任意角的概念、图像和性质、弧度制三角函数和角公式、倍角公式、差角公式等知识。
任意角的概念与弧度制】角是由沿x轴正向的射线围绕原点旋转所形成的图形,逆时针旋转为正角,顺时针旋转为负角,不旋转为零角。
同终边的角可表示为计算与化简的形式,也可以用证明恒等式的方式进行表达。
已知三角函数值求角时,可以利用如下公式:α=β+k360°(k为整数)在x轴上的角为α=k180°(k为整数),在y轴上的角为α=90°+k180°(k为整数)。
第一象限角、第二象限角、第三象限角和第四象限角的定义和表示方式不同。
需要区分第一象限角、锐角以及小于90的角。
弧度制】弧度制是一种角度表示方法,弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad。
角度与弧度的转化公式为1°=π/180 rad。
角度与弧度对应表可以帮助我们更好地理解它们之间的关系。
弧长和面积的计算公式分别为l=α×R和S=1/2×α×R^2.任意角的三角函数】三角函数包括正弦、余弦和正切。
它们的值可以通过终边上任意点的坐标和半径来计算。
三角函数值对应表可以帮助我们更好地理解它们的取值范围和变化规律。
三角函数在各象限中的符号:在第一象限,x、y坐标都为正,所以sinα>0,cosα>0,tanα>0.在第二象限,x坐标为负,y坐标为正,所以sinα>0,cosα<0,tanα<0.在第三象限,x、y坐标都为负,所以sinα0.在第四象限,x坐标为正,y坐标为负,所以sinα0,tanα<0.三角函数线:设任意角α的顶点在原点O,始边与x轴非负半轴重合,终边与单位圆相交于P(x,y),过P作x轴的垂线,垂足为M;过点A(1,0)作单位圆的切线,它与角α的终边或其反向延长线交于点T。
高中数学知识点总结_三角函数公式大全
高中数学知识点总结_三角函数公式大全高中数学知识点总结_三角函数公式大全要点重温之三角函数的图象、性质1.研究一个含三角式的函数的性质时一般先将函数化为y=Asin(ωx+φ)+B 或y=Acos(ωx+φ)+B的形式。
[注意]:函数y=|Asin(ωx+φ)|的周期是函数y=Asin(ωx+φ)周期的一半。
[举例]函数ysin(x)cos(x)在x2时有最大值,则的一个值是,22A、4B、2C、1223D、342解析:原函数可变为:y=(k-1)+4sin(x2),它在x2时有最大值,即22=2k+,k∈Z,选A。
(万不可分别去研究sin(2x)和cos(2。
x)的最大值)[巩固]①函数y=sin2xcos2x的最小正周期是;②函数y=tanx—cotx的周期为;③函数y=|12+simx2|的周期为。
2.在解决函数y=Asin(ωx+φ)的相关问题时,一般对ωx+φ作“整体化”处理。
如:用“五3点法”作函数y=Asin(ωx+φ)的图象时,应取ωx+φ=0、、、、2等,而不是取22x等于它们;求函数y=Asin(ωx+φ)的取值范围时,应由x的范围确定ωx+φ的范围,再观察三角函数的图象(或单位圆上的三角函数线),注意:只需作出y=sin(把ωx+φ视为一个整体,即)的草图,而无需画y=Asin(ωx+φ)的图象;求函数y=Asin(ωx+φ)(ω>0)的单调区间时,也是视ωx+φ为一个整体,先指出ωx+φ的范围,再求x的范围;研究函数y=Asin(ωx+φ)的图象对称性时,则分别令ωx+φ=k+和ωx+φ=k(k∈Z),从而得2到函数y=Asin(ωx+φ)的图象关于直线x,0)对2称(k∈Z),(正、余弦函数图象的对称轴平行于Y轴且过函数图象的最高点或最低点,而对k对称,关于点(k称中心是图象与“平衡轴”的交点);对函数y=Acos(ωx+φ)也作完全类似的处理。
[举例1]画出函数ysin(2x)在[0,]内的图象并指出其有无对称轴、对称中心。
高中数学必修一-三角函数图像性质总结(精华版)
(2) /(航+如型三角函数的奇偶性(i ) g (x ) = /沏(颜+如(x€ R)(x)为偶函数匕鼠U 力(而+ 出=j4sin (-<at + 炉)(x W 氏)0 sin 曲匚*0=。
(工 W R )7Tcos 卯=。
=上7T+一1左 e Z )由此得 2 ,同理,式夫4皿皈+双相的 为奇函数 =顺@=0/3=上网海2)(ii )飙# =+劭SwR]妖N = .Aa 式题+钠为偶函数见双t");就= 式以+如为奇函数7T=中=无产+ — (k e Z)3、周期性(1)基本公式(ii) 〃皈+⑺+氏型三角函数的周期竺y =+ G + 5 =加+中出 的周期为何;(一)三角函数的性质1、定义域与值域2、奇偶性(1)基本函数的奇偶性奇函数:y = sinx y= tanx ; 偶函数:y=cosx.(i )基本三角函数的周期的周期为;丁.y=sinx , y=cosx 的周期为 之并 ;y = tanx , y = cotx4-212yy=cotxy=tanx 3-32X 03 27 3,y=cosx-5-4 .7223 2322 5 2“如血的+朗+9=心服如+沟+用的周期为何.(2)认知⑴A =1/W +创型函数的周期y = |月劭(枷+或)| j = A 匚。
5(西+励|(ii )若函数为,(收斗劭 型两位函数之和,则探求周期适于“最小公倍数法”. (iii )探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明.(3)特殊情形研究JT(i ) y = tanx — cotx 的最小正周期为27T(ii ) y=卜由H+|M 幻的最小正周期为,;7T(iii ) y = sin 4x + cos 4x 的最小正周期为,. _由此领悟“最小公倍数法”的适用类型,以防施错对象 .4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期;②写特解:在所选周期内写出函数的增区问(或减区问);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 .揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域(2) y=/(而+初 型三角函数的单调区问的周期为y = (助+切1_r= |达匚祖(姗+阖| 的周期为 7T(ii) > = 1/(耽+如+同3=0)的周期1y 二|金£血(为工卜8]妣+3)+甘¥ = |例如(而+5+上] J = |总二加侬大+的+. 的周期为祠;,7T的周期为:. 均同它们不加绝对值时的周期相同,即对 数的周期不变.注意这一点与(i )的区别.y=八加+◎+上的解析式施加绝对值后,该函此类三角函数单调区间的寻求“三部曲”为 ①换元、分解:令u =z 中,将所给函数分解为内、外两层:y = f (u) , u =®x+卯;②套用公式:根据对复合函数单调性的认知,确定出 f (u)的单调性,而后利用(1)中公 式写出关于u 的不等式;③还原、结论:将u =^+W 代入②中u 的不等式,解出x 的取值范围,并用集合或区间 形成结论.正弦、余弦、正切、余切函数的图象的性质:/y sinx y cosxy tanxy cotxy Asin x(A 、 >0)定义域 R R x | x R 且 x k 1 ,k Zx| x R 且x k ,k ZR值域 [1, 1][1, 1]R RA, A周期性 2 22奇偶性奇函数 偶函数奇函数 奇函数当 0,非奇非偶 当0,奇函数单调性[2 2k , —2k ] 2上为增函 数; [2 2k ,3——2k ] 2上为减函 数(k Z )[2k 1 , 2k ]上为增函 数[2k , 2k 1 ]上为减函数(k Z )一k ,一 k 2 2 上为增函数(k Z )k , k 1上为减函数(k Z )2k2(A),2k -2( A)上为增函数;2k 一------ 2— (A), 2k------ 2——(A)上为减函数(k Z )注意:①y sinx 与y sinx 的单调性正好相反;y cosx 与y cosx 的单调性也同样相反.一般 地,若y f(x)在[a,b ]上递增(减),则y f (x)在[a,b ]上递减(增)y忖n x 与y cosx 的周期是.-(k Z),对称中心(k ,0); y cos( x )的对称轴方); y tan( x )的对称中心(工,0).,02③ y sin( x )或 y cos( x )0)的周期T 2y tan x 的周期为2 2 (T _ T 2,如图,翻折无效)④y sin( x )的对称轴方程是x k 程是x k (k Z ),对称中心(ky cos2x 原点对称 y cos( 2x) cos2x⑤ 当 tan tan 1, k ,(k Z) ; tan tan 1, k ,(k Z).⑥y cosx 与y s in x _ 2k是同一函数,而y ( x )是偶函数,则2 1 、,、y ( x ) sin( x k ) cos( x).2⑦函数y tanx 在R 上为增函数.(耳[只能在某个单调区间单调递增 .若在整个定义域,y tanx 为增函数,同样也是错误的].⑧定义域关于原点对称是f (x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域 关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f( x) f(x),奇函数:f( x) f(x)) 奇偶性的单调性:奇同偶反.例如:y tanx 是奇函数,y tan(x 1)是非奇非偶.(定义域不 3 关于原点对称)奇函数特有性质:若0 x 的定义域,则f(x)一定有f(0) 0. (0 x 的定义域,则无此性质)⑨y sinx 不是周期函数;y sinx 为周期函数(T ); y cosx 是周期函数(如图);y cosx 为周期函数(T );y cos2x1的周期为(如图),并非所有周期函数都有最小正周期,2y f (x) 5 f (x k),k R . ⑩ y a cos bsinVa 2 b 2sin( ) cos b 有 Va 2 b 2 y .、形如y Asin( x )的函数:11、几个物理量:A 一振幅;f 1—频率(周期的倒数);x 一相包; 一初相;2、函数y Asin( x )表达式的确定:A 由最值确定; 由周期确定; 由图象上的特殊点确定,如 f(x) Asin( x )(A 0,0, | 3.函数 y Asin( x ) B (其中 A 0,0)最大值是A B,最小值是B A,周期是T —,最小正周期T 六频率是f「相位是x,初相是;其图象的对称轴是直线x k 7k Z),凡| "^0的图象如图所小,则f (x)(答:f(x)152sin(-2x -));y=| cos2x+1/2|图象是该图象与直线y B 的交点都是该图象的对称中心4、研究函数y Asin( x )性质的方法:类比于研究y sin x 的性质,只需将y Asin( x ) 中的x 看成y sinx 中的x,但在求y Asin( x )的单调区间时,要特别注意 A 和 的 符号,通过诱导公式先将 化正。
高中数学高考20第四章 三角函数、解三角形 4 3 三角函数的图象与性质
又 x∈0,π2,∴函数的单调递增区间为0,π6.
命题点2 根据单调性求参数
例 4 已知 ω>0,函数 f(x)=sinωx+π4在π2,π上单调递减,则 ω 的取值范围 是 12,45 .
引申探究
本例中,若已知 ω>0,函数 f(x)=cosωx+π4在π2,π上单调递增,则 ω 的取值 范围是 32,47 .
2 题型分类 深度剖析
PART TWO
自主演练
题型一 三角函数的定义域
1.函数 f(x)=-2tan2x+π6的定义域是
A.xx≠π6
B.xx≠-1π2
C.xx≠kπ+π6k∈Z
√D.xx≠k2π+π6k∈Z
解析 由正切函数的定义域,得 2x+π6≠kπ+π2,k∈Z, 即 x≠k2π+π6(k∈Z),
(3)函数
y=12sin
x+
3 2 cos
xx∈0,2π的单调递增区间是
0,π6
.
解析
∵y=12sin
x+
3 2 cos
x=sinx+π3,
由 2kπ-π2≤x+π3≤2kπ+π2(k∈Z),
解得 2kπ-56π≤x≤2kπ+π6(k∈Z).
∴函数的单调递增区间为2kπ-56π,2kπ+π6(k∈Z),
解析 函数 y=cos x 的单调递增区间为[-π+2kπ,2kπ],k∈Z,
则ωω2ππ++4π4π≤≥2-kππ,+2kπ,
k∈Z, 解得 4k-52≤ω≤2k-14,k∈Z,
又由 4k-52-2k-14≤0,k∈Z 且 2k-14>0,k∈Z,
师生共研
题型三 三角函数的周期性与对称性
例2 (1)若函数f(x)=2tan kx+π3 的最小正周期T满足1<T<2,则自然数k的 值为 2或3 .
三角函数的图象与性质6大题型(解析版)--2024高考数学常考题型精华版
三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =,【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=也是以【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称上单调递减,而8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .B .C .D .1-的部分图象知,【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。
高中数学高考三角函数复习专题
高中数学高考三角函数复习专题三角函数复专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:函数性质:y=sinx y=cosx y=tanx图象定义域 R R R\{kπ+π/2|k∈Z}值域 [-1,1] [-1,1] R最值y_max=1 (when x=2kπ) y_max=1 (when x=2kπ+π/2) 无最大值y_min=-1 (when x=2kπ-π) y_min=-1 (when x=2kπ) 无最小值周期性2π 2π π奇偶性奇函数偶函数奇函数单调性在[2kπ-π/2,2kπ+π/2](k∈Z)上是增函数;在[2kπ+π/2,2kπ+3π/2](k∈Z)上是减函数。
在[kπ,kπ+π](k∈Z)上是减函数。
在[kπ-π/2,kπ+π/2](k∈Z)上是增函数;在[kπ+π/2,kπ+3π/2](k∈Z)上是减函数。
对称中心(kπ,0)(k∈Z) 对称中心(kπ+π/2,0)(k∈Z) 无对称中心对称性奇对称偶对称无对称轴对称轴x=kπ+π/2 (k∈Z) 对称轴x=kπ (k∈Z) 无对称轴2.正、余弦定理:在△ABC中有:①正弦定理:a/sinA=b/sinB=c/sinC=2R(R为△ABC外接圆半径)注意变形应用:sinA=2R/asinB=2R/bsinC=2R/c②面积公式:S△ABC=1/2absinC=1/2acsinB=1/2bcsinA ③余弦定理:b²=c²+a²-2accosBc²=a²+b²-2abcosCa²=b²+c²-2bccosA三、例题集锦:考点一:三角函数的概念1.如图,设A是单位圆和x轴正半轴的交点,P、Q是单位圆上的两点,O是坐标原点,∠AOP=π/6,∠AOQ=α,α∈[0,π)。
若Q(√3/2,y),求cos(α-π/6)。
第四章 第5讲 三角函数的图象与性质-2025年高考数学备考
第四章三角函数第5讲三角函数的图象与性质课标要求命题点五年考情命题分析预测1.借助单位圆能画出三角函数(正弦、余弦、正切)的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值.2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在(-π2,π2)上的性质.三角函数的定义域本讲每年必考,主要考查三角函数的定义域、值域(最值)、周期性、单调性、对称性和奇偶性,有时与函数零点和极值点综合命题,题型以选择题和填空题为主,难度中等.预计2025年高考命题趋势变化不大,备考时要注意区分正弦函数和余弦函数的图象与性质,不要混淆,另应关注新角度、新综合问题.三角函数的值域(最值)2021全国卷乙T4三角函数的性质及应用2023新高考卷ⅠT15;2023全国卷乙T6;2023天津T5;2022新高考卷ⅠT6;2022全国卷乙T15;2022全国卷甲T11;2022北京T5;2021新高考卷ⅠT4;2020全国卷ⅢT16;2019全国卷ⅠT11;2019全国卷ⅡT9学生用书P0801.用“五点法”作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,起关键作用的五个点是(0,0),(π2,1),①(π,0),(3π2,-1),②(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,起关键作用的五个点是(0,1),(π2,0),③(π,-1),(3π2,0),④(2π,1).五点法作图有三步:列表、描点、连线(注意光滑).2.正弦、余弦、正切函数的图象与性质三角y =sin xy =cos xy =tan x函数图象定义域R R ⑤{x |x ≠k π+2,k ∈Z}值域⑥[-1,1]⑦[-1,1]R周期性周期是2k π(k ∈Z 且k ≠0),最小正周期是⑧2π.周期是2k π(k ∈Z 且k ≠0),最小正周期是⑨2π.周期是k π(k ∈Z 且k ≠0),最小正周期是⑩π.对称性对称轴方程是⑪x =k π+2(k ∈Z ),对称中心是⑫(k π,0)(k ∈Z ).对称轴方程是⑬x =k π(k ∈Z ),对称中心是⑭(k π+2,0)(k ∈Z ).无对称轴,对称中心是⑮(2,0)(k ∈Z ).奇偶性⑯奇函数⑰偶函数⑱奇函数单调性在⑲[-2+2k π,2+2k π](k ∈Z )上单调递增,在⑳[2+2k π,32+2k π](k ∈Z )上单调递减.在㉑[2k π-π,2k π](k ∈Z )上单调递增,在㉒[2k π,2k π+π](k ∈Z )上单调递减.在㉓(-2+k π,2+k π)(k ∈Z )上单调递增.注意y =tan x 在其定义域内不单调.常用结论1.三角函数的对称性与周期T 的关系(1)相邻的两条对称轴(或两个对称中心)之间的距离为2;(2)相邻的对称中心与对称轴之间的距离为4;(3)相邻的两个最低点(或最高点)之间的距离为T .2.与三角函数奇偶性有关的结论(1)若函数y =A sin (ωx +φ)(x ∈R )是奇函数,则φ=k π(k ∈Z );若为偶函数,则φ=k π+π2(k ∈Z ).(2)若函数y =A cos (ωx +φ)(x ∈R )是奇函数,则φ=k π+π2(k ∈Z );若为偶函数,则φ=k π(k ∈Z ).(3)若y=A tan(ωx+φ)为奇函数,则φ=kπ(k∈Z).1.设A是△ABC最小的内角,则sin A+cos A的取值范围是(D)A.(-2,2)B.[-2,2]C.(1,2)D.(1,2]解析∵A是△ABC最小的内角,∴0<A≤π3,∴π4<A+π4≤7π12,sin(A+π4)≤1,则sin A+cos A=2sin(A+π4)∈(1,2],故选D.2.函数f(x)=tan(-4x+π6)的最小正周期为(A)A.π4B.π2C.πD.2π解析函数f(x)=tan(-4x+π6)的最小正周期T=π||=π|-4|=π4.3.[全国卷Ⅱ]若x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=(A)A.2B.32C.1D.12解析依题意得函数f(x)的最小正周期T=2π=2×(3π4-π4)=π,解得ω=2,选A.4.函数f(x)=sin(x-π4)的图象的一条对称轴的方程是(C)A.x=π4B.x=π2C.x=-π4D.x=-π2解析函数y=sin x的图象的对称轴方程为x=kπ+π2(k∈Z),令x-π4=kπ+π2(k∈Z),得x=kπ+3π4(k∈Z),故函数f(x)=sin(x-π4)的图象的对称轴方程为x=kπ+3π4(k∈Z).令k=-1,得x=-π4.故选C.5.[易错题]函数y=2sin(-x+π3)(x∈[-π,0])的单调递增区间是(A)A.[-π,-π6]B.[-5π6,-π6]C.[-π3,0]D.[-π6,0]解析令π2+2kπ≤-x+π3≤3π2+2kπ,k∈Z,则-7π6-2kπ≤x≤-π6-2kπ,k∈Z.又x∈[-π,0],所以所求单调递增区间为[-π,-π6].6.函数f(x)=tan(3x+π6)的图象的对称中心为(χ6-π18,0)(k∈Z).解析令3x +π6=χ2,k ∈Z ,解得x =χ6-π18,k ∈Z ,所以f (x )的图象的对称中心为(χ6-π18,0),k ∈Z.学生用书P082命题点1三角函数的定义域例1函数y =lg (sin x 的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.解析要使函数有意义,则sin >0,Hs -12≥0,解得2χ<<π+2χ(Ap,-π3+2χ≤≤π3+2χ(Ap,所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.方法技巧求三角函数的定义域实质上是解不等式或不等式组,常借助于三角函数的图象解决.训练1函数f (x )=tanbtan2tan2-tan 的定义域为{x |x ≠χ4,k ∈Z}.解析tan 2x ,tan x 有意义,则≠π2+χ,2≠π2+χ,k ∈Z ,又tan 2x -tan x ≠0,即2tan1-tan 2-tan x ≠0,则tan x ≠0,即x ≠k π,k ∈Z ,综上可得,x ≠χ4,k ∈Z ,则函数f (x )的定义域为{x |x ≠χ4,k ∈Z}.命题点2三角函数的值域(最值)例2(1)[2021全国卷乙]函数f (x )=sin3+cos3的最小正周期和最大值分别是(C)A.3π和2B.3π和2C.6π和2D.6π和2解析因为函数f (x )=sin3+cos 3=2(sin 3cos π4+cos3sin π4)=2sin (3+π4),所以函数f (x )的最小正周期T =2π13=6π,最大值为2.故选C.(2)已知函数f (x )=cos (2x +π3)+2的定义域为[α,π],值域为[52,3],则α的取值范围是(C )A.[2π3,π]B.[0,2π3]C.[2π3,5π6]D.[π2,5π6]解析由题意知,2x+π3∈[2α+π3,7π3],且y=cos(2x+π3)在[α,π]上的值域为[12,1],∴2α+π3≥5π3,且2α+π3≤2π,解得2π3≤α≤5π6,∴α的取值范围是[2π3,5π6],故选C.方法技巧三角函数值域的不同求法1.把所给的三角函数式变换成y=A sin(ωx+φ)+b的形式求值域.2.把sin x或cos x看作一个整体,转换成二次函数求值域.3.利用sin x±cos x和sin x cos x的关系转换成二次函数求值域.训练2(1)[2023四川省模拟]已知函数f(x)=cos2x+sin x-14的定义域为[0,m],值域为[34,1],则实数m的最大值为(A)A.πB.7π6C.4π3D.3π2解析由已知,得f(x)=cos2x+sin x-14=1-sin2x+sin x-14=-sin2x+sin x+34,令t=sin x,函数f(x)可转换为y=-t2+t+34=-(t-12)2+1,因为y∈[34,1],所以根据二次函数的图象与性质可得t∈[0,1],即sin x∈[0,1],又x∈[0,m],所以根据三角函数的图象与性质可得m∈[π2,π],所以实数m的最大值为π,故选A.(2)函数y=sin x-cos x+sin x cos x12解析令sin x-cos x=t,则t=2sin(x-π4),t∈[-2,2],t2=sin2x+cos2x-2sin x cos x,故sin x cos x=1-22,所以y=t+1-22=-12(t-1)2+1,所以当t=1时,函数有最大值1;当t=-2时,函数有最小值-2-12,即值域为[-2-12,1].命题点3三角函数的性质及应用角度1三角函数的周期性例3(1)[2023天津高考]已知函数f(x)图象的一条对称轴为直线x=2,f(x)的一个周期为4,则f(x)的解析式可能为(B)A.f(x)=sin(π2x)B.f(x)=cos(π2x)C.f(x)=sin(π4x)D.f(x)=cos(π4x)解析对于A,f(x)=sin(π2x),其最小正周期为2ππ2=4,因为f(2)=sinπ=0,所以函数f(x)=sin(π2x)的图象不关于直线x=2对称,故排除A;对于B,f(x)=cos(π2x),其最小正周期为2ππ2=4,因为f(2)=cosπ=-1,所以函数f(x)=cos(π2x)的图象关于直线x=2对称,故选项B符合题意;对于C,D,函数y=sin(π4x)和y=cos(π4x)的最小正周期均为2ππ4=8,均不符合题意,故排除C,D.综上,选B.(2)[全国卷Ⅲ]函数f(x)=tG1+B2的最小正周期为(C)A.π4B.π2C.πD.2π解析f(x)=tan1+tan2=sin cos1+sin2cos2=sinvoscos2+sin2=sin x cos x=12sin2x,所以f(x)的最小正周期T=2π2=π.故选C.方法技巧1.求三角函数周期的基本方法(1)定义法.(2)公式法:函数y=A sin(ωx+φ)(或y=A cos(ωx+φ))的最小正周期T=2π||,函数y=A tan(ωx+φ)的最小正周期T=π||.(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y=|A sin(ωx+φ)|,y=|A cos(ωx+φ)|,y=|A tan(ωx+φ)|的最小正周期T均为π||.(2)函数y=|A sin(ωx+φ)+b|(b≠0),y=|A cos(ωx+φ)+b|(b≠0)的最小正周期T均为2π||.角度2三角函数的单调性例4(1)[2022北京高考]已知函数f(x)=cos2x-sin2x,则(C)A.f(x)在(-π2,-π6)上单调递减B.f(x)在(-π4,π12)上单调递增C.f(x)在(0,π3)上单调递减D.f(x)在(π4,7π12)上单调递增解析依题意可知f(x)=cos2x-sin2x=cos2x,对于A,因为x∈(-π2,-π6),所以2x∈(-π,-π3),函数f(x)=cos2x在(-π2,-π6)上单调递增,所以A不正确;对于B,因为x∈(-π4,π12),所以2x∈(-π2,π6),函数f(x)=cos2x在(-π4,π12)上不单调,所以B不正确;对于C,因为x∈(0,π3),所以2x∈(0,2π3),函数f(x)=cos2x在(0,π3)上单调递减,所以C正确;对于D,因为x∈(π4,7π12),所以2x∈(π2,7π6),函数f(x)=cos2x在(π4,7π12)上不单调,所以D不正确.故选C.(2)[全国卷Ⅱ]若f(x)=cos x-sin x在[-a,a]上是减函数,则a的最大值是(A)A.π4B.π2C.3π4D.π解析f(x)=cos x-sin x=2cos(x+π4),因为函数y=cos x在区间[0,π]上单调递减,则由0≤x+π4≤π,得-π4≤x≤3π4.因为f(x)在[-a,a]上是减函数,|-π4|<3π4,所以-a≥-π4,解得a≤π4.又区间[-a,a]有意义时,a>0,所以0<a≤π4,所以a的最大值是π4.方法技巧三角函数单调性问题的常见类型及求解策略常见类型求解策略已知三角函数解析式求单调区间(1)将函数化简为“一角一函数”的形式,如y=A sin(ωx+φ)+b(A>0,ω>0);(2)利用整体思想,视“ωx+φ”为一个整体,根据y=sin x的单调区间列不等式求解.对于y=A cos(ωx+φ),y=A tan(ωx+φ),可以利用类似方法求解.注意求函数y=A sin(ωx+φ)+b的单调区间时要先看A和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.已知三角函数的单调性求参数(1)求出原函数的相应单调区间,由已知区间是求出的单调区间的子集,列不等式(组)求解.(2)由所给区间求出“ωx+φ”的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.角度3三角函数的奇偶性与对称性例5(1)[2022全国卷甲]将函数f(x)=sin(ωx+π3)(ω>0)的图象向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是(C)A.16B.14C.13D.12解析记曲线C的函数解析式为g(x),则g(x)=sin[ω(x+π2)+π3]=sin[ωx+(π2ω+π3)].因为函数g(x)的图象关于y轴对称,所以π2ω+π3=kπ+π2(k∈Z),得ω=2k+13(k∈Z).因为ω>0,所以ωmin=13.故选C.(2)[2022新高考卷Ⅰ]记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T <π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=(A)A.1B.32C.52D.3解析因为2π3<T<π,所以2π3<2π<π,解得2<ω<3.因为y=f(x)的图象关于点(3π2,2)中心对称,所以b=2,且sin(3π2ω+π4)+b=2,即sin(3π2ω+π4)=0,所以3π2ω+π4=kπ(k∈Z),又2<ω<3,所以13π4<3π2ω+π4<19π4,所以3π2ω+π4=4π,解得ω=52,所以f(x)=sin(52x+π4)+2,所以f(π2)=sin(52×π2+π4)+2=sin3π2+2=1.故选A.方法技巧1.三角函数图象的对称轴和对称中心的求解方法:对于函数f(x)=A sin(ωx+φ)(ω≠0),令ωx+φ=kπ+π2,k∈Z,求出对称轴方程;令ωx+φ=kπ,k∈Z,求出对称中心的横坐标(纵坐标为0).对于y=A cos(ωx+φ),y=A tan(ωx+φ),可以利用类似方法求解(注意y=A tan(ωx+φ)的图象无对称轴).说明选择题可以通过验证f(x0)的值进行判断,即f(x0)=±A⇔x=x0是函数f(x)图象的对称轴方程;f(x0)=0⇔点(x0,0)是函数f(x)图象的对称中心.2.三角函数中奇函数一般可化为y=A sinωx或y=A tanωx的形式,而偶函数一般可化为y =A cosωx+b的形式.训练3(1)[2023全国卷乙]已知函数f(x)=sin(ωx+φ)在区间(π6,2π3)单调递增,直线x=π6和x=2π3为函数y=f(x)的图象的两条相邻对称轴,则f(-5π12)=(D)A. B.-12 C.12解析由题意得12×2π||=2π3-π6=π2,解得|ω|=2,易知x=π6是f(x)的最小值点.若ω=2,则π6×2+φ=-π2+2kπ(k∈Z),得φ=-5π6+2kπ(k∈Z),于是f(x)=sin(2x-6π5+2kπ)=sin(2x-5π6),f(-5π12)=sin(-5π12×2-5π6)=sin(-5π3)=sinπ3=ω=-2,则π6×(-2)+φ=-π2+2kπ(k∈Z),得φ=-π6+2kπ(k∈Z),于是f(x)=sin(-2x-π6+2kπ)=sin(-2x-π6)=sin(2x-56π),所以f(-5π12)故选D.(2)在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x+π6),④y=tan(2x-π4)中,最小正周期为π的所有函数为(A)A.①②③B.①③④C.②④D.①③解析对于①,y=cos|2x|=cos2x,其最小正周期为2π2=π;对于②,y=|cos x|的最小正周期为π;对于③,y=cos(2x+π6)的最小正周期为2π2=π;对于④,y=tan(2x-π4)的最小正周期为π2.所以最小正周期为π的所有函数为①②③.(3)函数f(x)=3sin(2x-π3+φ)+1,φ∈(0,π),且f(x)为偶函数,则φ=5π6,f(x)图象的对称中心为(π4+χ2,1),k∈Z.解析∵f(x)=3sin(2x-π3+φ)+1为偶函数,∴-π3+φ=kπ+π2,k∈Z,即φ=5π6+kπ,k∈Z.又φ∈(0,π),∴φ=5π6,∴f(x)=3sin(2x+π2)+1=3cos2x+1.由2x=π2+kπ,k∈Z,得x=π4+χ2,k∈Z,∴f(x)图象的对称中心为(π4+χ2,1),k∈Z.1.[命题点2/2023福建模拟]若对任意x∈R都有f(sin x)=-cos2x+cos2x+2sin x-3,则f(x)的值域为[-4,0].解析易知f(sin x)=2sin2x-1+1-sin2x+2sin x-3=sin2x+2sin x-3,所以f(x)=x2+2x-3(-1≤x≤1),曲线y=x2+2x-3的对称轴为直线x=-1,所以函数f(x)在区间[-1,1]上单调递增,所以f(-1)≤f(x)≤f(1),即-4≤f(x)≤0,所以f(x)的值域为[-4,0].2.[命题点2/2023潍坊市高三统考]已知函数f(x)=3sin x+4cos x,且f(x)≤f(θ)对任意x∈R恒成立,若角θ的终边经过点P(4,m),则m=3.解析因为f(x)=3sin x+4cos x=5sin(x+φ),其中cosφ=35,sinφ=45,则sin(θ+φ)=1,所以θ+φ=π2+2kπ(k∈Z),所以θ=π2-φ+2kπ(k∈Z),所以sinθ=sin(π2-φ)=cosφ=35,同理cosθ=45,所以tanθ=4=sin cos=34,所以m=3.3.[命题点3角度1/多选/2023福建省福州市联考]如图所示,一个质点在半径为2的圆O上以点P为起始点,沿逆时针方向运动,每3s转一圈.该质点到x轴的距离关于时间t的函数记为f(t).下列说法正确的是(AC)A.f(t)=|2sin(2π3t-π4)|B.f(t)=2sin(2π3t-π4)C.f(t)的最小正周期为32D.f(t)的最小正周期为3解析由题可知,质点的角速度为2π3rad/s,因为点P为起始点,沿逆时针方向运动,设经过t s之后所成角为φ,则φ=2π3-π4,根据任意角的三角函数定义有y P=2sin(2π3-π4),所以该质点到x轴的距离为f(t)=|2sin(2π3t-π4)|,故A正确,B错误;因为f(t)=|2sin(2π3t-π4)|,所以f(t)的最小正周期为π2π3=32,故C正确,D错误.故选AC.4.[命题点3/多选/2023河北名校联考]已知函数f(x)=2sin(ωx+π4)+b(ω>0)的最小正周期T满足π2<T<3π2,且P(-π8,1)是f(x)图象的一个对称中心,则(AC)A.ω=2B.f(x)的值域是[-2,2]C.直线x=π8是f(x)图象的一条对称轴D.f(x+π4)是偶函数解析对于A,因为P(-π8,1)是函数f(x)图象的一个对称中心,所以-π8ω+π4=kπ(k∈Z),且b=1,得ω=2-8k(k∈Z).又π2<T<3π2,且ω>0,即π2<2π<3π2,所以43<ω<4,所以ω=2,故A正确.对于B,由对A的分析得f(x)=2sin(2x+π4)+1,因为-1≤sin(2x+π4)≤1,所以f(x)∈[-1,3],故B不正确.对于C,解法一由2x+π4=kπ+π2(k∈Z),得x=χ2+π8(k∈Z),当k=0时,x=π8,所以直线x=π8是函数f(x)图象的一条对称轴,故C正确.解法二将x=π8代入f(x),可得f(π8)=3(f(x)的最大值),所以直线x=π8是f(x)图象的一条对称轴,故C正确.对于D,因为f(x+π4)=2sin[2(x+π4)+π4]+1=2sin(2x+π2+π4)+1=2cos(2x+π4)+1,显然该函数不是偶函数,故D不正确.综上所述,选AC.学生用书·练习帮P2961.函数f(x)=tan(2x+π4)的定义域为(C)A.{x|x≠kπ+π2,k∈Z}B.{x|x≠2kπ+π2,k∈Z}C.{x|x≠χ2+π8,k∈Z}D.{x|x≠kπ+π8,k∈Z}解析由2x+π4≠kπ+π2,k∈Z,得2x≠kπ+π4,k∈Z,∴x≠χ2+π8,k∈Z,∴函数y=tan(2x+π4)的定义域为{x|x≠χ2+π8,k∈Z}.2.[2023天津新华中学统练]下列函数中,最小正周期为π的奇函数是(D)A.y=sin(2x+π2)B.y=tan2xC.y=2sin(π-x)D.y=tan(x+π)解析对于函数y=sin(2x+π2)=cos2x,最小正周期为π,是偶函数,排除A;对于函数y=tan2x,最小正周期为π2,是奇函数,排除B;对于函数y=2sin(π-x)=2sin x,最小正周期为2π,是奇函数,排除C;对于函数y=tan(π+x)=tan x,最小正周期为π,是奇函数,故选D.3.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是(A)A.f(x)=|cos2x|B.f(x)=|sin2x|C.f(x)=cos|x|D.f(x)=sin|x|解析A中,函数f(x)=|cos2x|的最小正周期为π2,当x∈(π4,π2)时,2x∈(π2,π),函数f(x)单调递增,故A正确;B中,函数f(x)=|sin2x|的最小正周期为π2,当x∈(π4,π2)时,2x∈(π2,π),函数f(x)单调递减,故B不正确;C中,函数f(x)=cos|x|=cos x的最小正周期为2π,故C不正确;D中,f(x)=sin|x|=sin,≥0,由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个-sin,<0,定义域上f(x)不是周期函数,故D不正确.故选A.4.已知函数f(x)=sin(ωx+θ)+3cos(ωx+θ)(θ∈[-π2,π2])是偶函数,则θ的值为(B)A.0B.π6C.π4D.π3解析由已知可得f(x)=2sin(ωx+θ+π3),若函数为偶函数,则必有θ+π3=kπ+π2(k∈Z),又由于θ∈[-π2,π2],故有θ+π3=π2,解得θ=π6,经代入检验符合题意.故选B.5.[2023江西月考]已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2)的两个相邻的零点为-13,23,则f(x)的图象的一条对称轴方程是(B)A.x=-16B.x=-56C.x=13D.x=23解析设f(x)的最小正周期为T,则2=23-(-13)=1,得T=2π=2,所以ω=π,又因为-π3+φ=kπ(k∈Z),且0<φ<π2,所以φ=π3,则f(x)=sin(πx+π3),由πx+π3=kπ+π2(k∈Z),解得x=k+16(k∈Z),取k=-1,得一条对称轴方程为x=-56.6.已知函数f(x)=-2tan(2x+φ)(0<φ<π2)的图象的一个对称中心是点(π12,0),则该函数的一个单调递减区间是(D)A.(-5π6,π6)B.(-π6,π3)C.(-π3,π6)D.(-5π12,π12)解析因为函数f(x)=-2tan(2x+φ)的图象的一个对称中心是点(π12,0),所以2×π12+φ=χ2,k∈Z,解得φ=χ2-π6,k∈Z.又0<φ<π2,所以φ=π3,所以f(x)=-2tan(2x+π3).令-π2+kπ<2x+π3<π2+kπ,k∈Z,解得-5π12+χ2<x<π12+χ2,k∈Z,所以函数f(x)的单调递减区间为(-5π12+χ2,π12+χ2),k∈Z.当k=0时,得f(x)的一个单调递减区间为(-5π12,π12).7.[全国卷Ⅰ]设函数f(x)=cos(ωx+π6)在[-π,π]的图象大致如图,则f(x)的最小正周期为(C)A.10π9B.7π6C.4π3D.3π2解析解法一由题图知,f(-4π9)=0,∴-4π9ω+π6=π2+kπ(k∈Z),解得ω=-3+94(k∈Z).设f(x)的最小正周期为T,易知T<2π<2T,∴2π||<2π<4π||,∴1<|ω|<2,当且仅当k=-1时,符合题意,此时ω=32,∴T=2π=4π3.故选C.解法二由题图知,f(-4π9)=0且f(-π)<0,f(0)>0,∴-4π9ω+π6=-π2(ω>0),解得ω=32,经验证符合题意,∴f(x)的最小正周期T=2π=4π3.故选C.8.[2024安徽铜陵模拟]已知函数f(x)=a sin4x+cos4x的图象关于直线x=π12对称,则f(π24)=(A)A.3 C.-12 D.-1解析由题设f(x)=2+1sin(4x+φ)(a≠0)且tanφ=1,又函数图象关于直线x=π12对称,所以π3+φ=π2+kπ,k∈Z⇒φ=π6+kπ,k∈Z,则tanφ=tan(π6+kπ)=tanπ6=1⇒a=3,综上,f(x)=3sin4x+cos4x=2sin(4x+π6),故f(π24)=2sinπ3=3.故选A.9.[多选/2023江苏南京模拟]已知x1,x2是函数f(x)=2sin(ωx-π6)(ω>0)的两个不同零点,且|x1-x2|的最小值是π2,则下列说法正确的是(ABD)A.函数f(x)在[0,π3]上单调递增B.函数f(x)的图象关于直线x=-π6对称C.函数f(x)的图象关于点(π,0)中心对称D.当x∈[π2,π]时,函数f(x)的值域是[-2,1]解析由题意可知,最小正周期T=2π=π,所以ω=2,f(x)=2sin(2x-π6).对于选项A,当x∈[0,π3]时,2x-π6∈[-π6,π2],所以f(x)在[0,π3]上单调递增,故A正确;对于选项B,f(-π6)=2sin[2×(-π6)-π6]=2sin(-π2)=-2,所以f(x)的图象关于直线x =-π6对称,故B正确;对于选项C,f(π)=2sin(2π-π6)=-1≠0,所以f(x)的图象不关于点(π,0)中心对称,故C错误;对于选项D,当x∈[π2,π]时,2x-π6∈[5π6,11π6],sin(2x-π6)∈[-1,12],f(x)∈[-2,1],故D正确.故选ABD.10.定义运算a*b为:a*b=(≤p,(>p,例如,1*2=1,则函数f(x)=sin x*cos x的值域为[-1,22].解析f(x)=sin x*cos x,当x∈[π+2kπ,5π4+2kπ],k∈Z,这时sin x≥cos x,所以f(x)=cos x,这时函数的值域为[-1;当x∈[-3π4+2kπ,π4+2kπ],k∈Z,这时sin x≤cos x,所以f(x)=sin x,这时函数的值域为[-1综上,函数的值域为[-1 11.[2023上海松江二中模拟]若函数y=sin(πx-π6)在[0,m]上单调递增,则m的最大值为23.解析由x∈[0,m],知πx-π6∈[-π6,mπ-π6],因为函数在[0,m]上单调递增,所以-π6<mπ-π6≤π2,即0<m≤23,所以m的最大值为23.12.[2024安徽合肥一中模拟]已知函数f(x)=sin x cos x-3cos2x(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-π6,π4]上的值域.解析(1)因为f(x)=sin x cos x-3cos2x=12sin2x=12sin2x-2x=sin(2x-π3),所以函数f(x)的最小正周期为T=2π2=π.由2kπ+π2≤2x-π3≤2kπ+3π2(k∈Z)可得kπ+5π12≤x≤kπ+11π12(k∈Z),所以函数f(x)的单调递减区间为[kπ+5π12,kπ+11π12](k∈Z).(2)当-π6≤x≤π4时,-2π3≤2x-π3≤π6,则-1≤sin(2x-π3)≤12,因此,函数f(x)在区间[-π6,π4]上的值域为[-1,12].13.设函数f(x)=2cos(12x-π3),若对于任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为(C)A.π2B.πC.2πD.4π解析函数f(x)=2cos(12x-π3),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2),则f(x1)是函数的最小值,f(x2)是函数的最大值,|x1-x2|的最小值就是函数的半个周期,故2=12×2π12=2π,故选C.14.[2023湘潭模拟]若函数f(x)=cos2x+sin(2x+π6)在(0,α)上恰有2个零点,则α的取值范围为(B)A.[5π6,4π3)B.(5π6,4π3]C.[5π3,8π3)D.(5π3,8π3]解析由题意得,函数f(x)=cos2x+sin(2x+π6)=3sin(2x+π3),因为0<x<α,所以π3<2x+π3<2α+π3,又由f(x)在(0,α)上恰有2个零点,可得2π<2α+π3≤3π,解得5π6<α≤4π3,所以α的取值范围为(5π6,4π3].15.[2023福建龙岩模拟]已知函数f(x)=2|sin x|+cos x,则f(x)的最小值为(C)A.-5B.-2C.-1D.0解析解法一f(x)=2|sin x|+cos x,分别作出y=2|sin x|(图1)与y=cos x (图2)的部分图象,如图所示.图1图2从图中可以看出,当x=π时,两个函数同时取得最小值,此时f(π)=2|sinπ|+cosπ=-1最小.解法二因为f(-x)=2|sin(-x)|+cos(-x)=2|sin x|+cos x=f(x),所以f(x)=2|sin x|+cos x为偶函数,又f(x+2π)=2|sin(x+2π)|+cos(x+2π)=2|sin x|+cos x=f(x),所以f(x)的一个周期为2π.当x∈[0,π]时,f(x)=2sin x+cos x,f'(x)=2cos x-sin x,令f'(x)=0,则tan x=2,故存在x0∈(0,π2),使得f'(x0)=0,当x∈[0,x0)时,f'(x)>0,f(x)单调递增;当x∈(x0,π]时,f'(x)<0,f(x)单调递减,又f(0)=1,f(π)=-1,结合f(x)为偶函数,周期为2π,作出f(x)=2|sin x|+cos x的图象如图,由图可知,函数的最小值为-1.故选C.16.[多选/2022新高考卷Ⅱ]已知函数f(x)=sin(2x+φ)(0<φ<π)的图象关于点(2π3,0)中心对称,则(AD)A.f(x)在区间(0,5π12)单调递减B.f(x)在区间(-π12,11π12)有两个极值点C.直线x=7π是曲线y=f(x)的对称轴D.直线y x是曲线y=f(x)的切线解析因为函数f(x)的图象关于点(2π3,0)中心对称,所以sin(2×2π3+φ)=0,可得4π3+φ=kπ(k∈Z),结合0<φ<π,得φ=2π3,所以f(x)=sin(2x+2π3).对于A,解法一由2kπ+π2≤2x+2π3≤2kπ+3π2(k∈Z),得kπ-π12≤x≤kπ+5π12(k∈Z);当k =0时,-π12≤x≤5π12.因为(0,5π12)⊆(-π12,5π12),所以函数f(x)在区间(0,5π12)单调递减,故A正确.解法二当x∈(0,5π12)时,2x+2π3∈(2π3,3π2),所以函数f(x)在区间(0,5π12)单调递减,故A正确.对于B,解法一由2x+2π3=kπ+π2(k∈Z),得x=χ2-π12(k∈Z),当k=0时,x=-π12;当k=1时,x=5π12;当k=2时,x=11π12.所以函数f(x)在区间(-π12,11π12)只有一个极值点,故B不正确.解法二当x∈(-π12,11π12)时,2x+2π3∈(π2,5π2),所以函数f(x)在区间(-π12,11π12)只有一个极值点,故B不正确.对于C,解法一由选项B解法一的分析知,函数f(x)图象的对称轴方程为x=χ2-π12(k∈Z),而方程χ2-π12=7π6(k∈Z)无解,故C不正确.解法二因为f(7π6)=sin(2×7π6+2π3)=sin3π=0,所以x=7π6不是曲线y=f(x)的对称轴,故C不正确.对于D,因为f'(x)=2cos(2x+2π3),若直线y x为曲线y=f(x)的切线,则由2cos(2x+2π3)=-1,得2x+2π3=2kπ+2π3或2x+2π3=2kπ+4π(k∈Z),所以x=kπ或x=kπ+π3(k∈Z).当x=kπ(k∈Z)时,f(x)kπ(k∈Z),解得k=0;当x=kπ+π3(k∈Z)时,f(x)kπ-π3(k∈Z)无解.综上所述,直线y x为曲线y=f(x)的切线,故D正确.综上所述,选AD.17.[条件创新]已知函数f(x)=2sinωx(ω>0)在区间[-3π4,π4]上单调递增,且直线y=-2与函数f(x)的图象在[-2π,0]上有且仅有一个交点,则实数ω的取值范围是[14,23].解析易知f(x)的图象关于点(0,0)对称,则由函数f(x)在[-3π4,π4]上单调递增可得4≥3π4(T为f(x)的最小正周期),即2π4≥3π4,结合ω>0,解得0<ω≤23.因为直线y=-2与函数f(x)的图象在[-2π,0]×2π≤2π,×2π>2π,解得14≤ω<54.综上,ω∈[14,23].18.[2023湖北省部分重点中学联考]已知函数f(x)=4sin2(π4+2)sin x+(cos x+sin x)·(cos x-sin x)-1.(1)求f(x)的解析式及其图象的对称中心;(2)若函数g(x)=12[f(2x)+af(x)-af(π2-x)-a]-1在区间[-π4,π2]上的最大值为2,求实数a的值.解析(1)f(x)=2[1-cos(π2+x)]·sin x+cos2x-sin2x-1=sin x·(2+2sin x)+1-2sin2x-1=2sin x.对称中心为(kπ,0),k∈Z.(2)g(x)=sin2x+a sin x-a cos x-2-1,令sin x-cos x=t,则sin2x=1-t2,(小技巧:函数式中既含正余弦的和或差(sin x-cos x或sin x+cos x),又含二者的乘积(即sin x·cos x),可令sin x-cos x=t或sin x+cos x=t,然后转化为关于t的二次函数求最值)∴y=1-t2+at-2-1=-(t-2)2+2 4-2.∵t=sin x-cos x=2sin(x-π4),x∈[-π4,π2],∴x-π4∈[-π2,π4],∴-2≤t≤1.①当2<-2,即a <-22时,y max =-(-2-2)2+24-2=-2a -2-2.令-2a -2-2=2,解得a .②当-2≤2≤1,即-22≤a ≤2时,y max =24-2,令24-2=2,解得a =-2或a =4(舍去).③当2>1,即a >2时,y max =-(1-2)2+24-2=2-1,由2-1=2,得a =6.综上,a =-2或6.19.[条件创新/多选]已知函数f (x )=cos (2x +φ)(|φ|<π2),F (x )=f (x )+'(x )为奇函数,则下述四个结论正确的是(BC )A.tan φ=3B.若f (x )在[-a ,a ]上存在零点,则a 的最小值为π6C.F (x )在(π4,3π4)上单调递增D.f (x )在(0,π2)上有且仅有一个极大值点解析由f (x )=cos (2x +φ),得f '(x )=-2sin (2x +φ),则F (x )=f (x )+'(x )=cos (2x +φ)-3sin (2x +φ)=-2sin (2x +φ-π6).因为F (x )为奇函数,所以φ-π6=k π(k ∈Z ),所以φ=k π+π6(k ∈Z ).因为|φ|<π2,所以φ=π6.对于A ,由以上可得tan φA 错误;对于B ,令f (x )=cos (2x +π6)=0,得2x +π6=k π+π2(k ∈Z ),则x =χ2+π6(k ∈Z ),即函数f (x )的零点为x =χ2+π6(k ∈Z ),且该函数零点的绝对值的最小值为π6,所以a 的最小值为π6,故B 正确;对于C ,F (x )=-2sin 2x ,当x ∈(π4,3π4)时,2x ∈(π2,3π2),此时函数F (x )单调递增,故C 正确;对于D ,函数f (x )=cos (2x +π6),令2x +π6=2k π(k ∈Z ),得x =k π-π12(k ∈Z ),所以函数f (x )在(0,π2)上无极大值点,故D 错误.。
高中数学三角函数知识点归纳及常考题型分析
高中数学三角函数知识点归纳及常考题型分析三角函数知识点归纳及常考题型分析角的概念及表示角是指由两条射线(或直线段)共同围成的图形,其中一个射线为始边,另一个射线为终边。
正角、负角和零角是角的三种分类。
终边相同的角可以表示为{β|β=k·360+α,k∈Z}。
象限角是指顶点在原点,始边与x轴非负半轴重合的角,其终边落在第几象限就称这个角是第几象限的角。
轴线角是指顶点在原点,始边与x轴非负半轴重合,终边落在坐标轴上的角。
区间角是指角的量数在某个确定的区间内,由若干个区间构成的集合称为区间角的集合。
角度制与弧度制角度制和弧度制是两种常见的角度量方式。
它们之间的互换关系是1rad=180°≈57.30°=57°18ˊ,1°≈0.(rad)。
弧长公式与扇形面积公式弧长公式是指l=|α|·r,其中α是角的量数,r是半径。
扇形面积公式是指s扇形=lr=|α|·r^2/2.三角函数的定义与符号设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y)。
P与原点的距离为r,则sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y。
在各象限中,正弦函数和正切函数在第一象限和第二象限中为正,余弦函数在第一象限和第四象限中为正。
三角函数的图像及基本关系式正弦线是MP,余弦线是OM,正切线是AT。
同角三角函数的基本关系式是sin^2θ+cos^2θ=1,tanθ=sinθ/cosθ。
正弦、余弦的诱导公式正弦、余弦的诱导公式是奇变偶不变,符号看象限。
其中sin(±α)和cos(±α)的值与sinα和cosα的值有关,而sin(α+π)=-sinα,cos(α+π)=-cosα。
和角与差角公式和角与差角公式是sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ∓sinαsinβ,tan(α±β)=(tanα±tanβ)/(1∓tanαtanβ),sin(α+β)sin(α-β)=sin^2α-sin^2β,cos(α+β)cos(α-β)=cos^2α-sin^2β,asinα+bcosα=a^2+b^2sin(α+φ),其中辅助角φ所在象限由点(a,b)的象限决定,tanφ=b/a。
高中数学三角函数知识点总结
高考三角函数1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=3.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。
r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x +(1)正弦sin α=ry 余弦cos α=rx 正切tan α=xy(2)各象限的符号:sin α cos α tan α5.同角三角函数的基本关系:(1)平方关系:sin 2α+ cos 2α=1。
(2)商数关系:ααcos sin =tan α(z k k ∈+≠,2ππα)6.诱导公式:xyOxO—+O—()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质8、三角函数公式:两角和与差的三角函数关系sin(α±β)=sinα·cosβ±cosα·sinβcos(α±β)=cosα·cosβ sinα·倍角公式s in2α=2sinα·cosαcos2α=cos2α-sin2α=2cos2α-1降幂公式: 升幂公式 : 1+cos α=2cos 22αcos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-=9.正弦定理 :2sin sin sin a b cR A B C===.余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===. 1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
最全高中三角函数总结
三角函数做题技巧与方法总结知识点梳理1.正弦函数、余弦函数、正切函数的图像2、三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3、三角函数的诱导公式sin (2kπ+α)=sinα sin (π+α)=-sinα sin (-α)=-sinαcos (2kπ+α)=cosα cos (π+α)=-cosα cos (-α)=cosαtan (2kπ+α)=tanα tan (π+α)=tanα tan (-α)=-tanαsin (π-α)=sinα sin (π/2+α)=cosα sin (π/2-α)=cosαcos (π-α)=-cosα cos (π/2+α)=-sinα cos (π/2-α)=sinαtan (π-α)=-tanα tan (π/2+α)=-cotα tan (π/2-α)=cotαsin 2(α)+cos 2(α)=14、两角和差公式5、 二倍角的正弦、余弦和正切公式sin (α+β)=sinαcosβ+cosαsinβ sin2α=2sinαcosαsin (α-β)=sinαcosβ-cosαsinβ cos2α=cos 2(α)-sin 2(α)=2cos 2(α)-1=1-2sin 2(α)cos (α+β)=cosαcosβ-sinαsinβ tan2α=2tanα/(1-tan 2(α)) cos (α-β)=cosαcosβ+sinαsinβ tan (α+β)=(tanα+tanβ )/(1-tanα ·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 6、半角公式:2cos 12sinαα-±=; 2cos 12cos αα+±=; αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±=7、函数Bx A y ++=)sin(ϕω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ωπ2=T ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心 8、由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
高中数学知识点精讲精析 三角函数的图像与性质
1.3.2 三角函数的图像与性质一、三角函数的性质1. 几何法作图第一步:列表.首先在单位圆中画出正弦线和余弦线.在直角坐标系的x 轴上任取一点,以为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成几等份,过圆上的各分点作x 轴的垂线,可以得到对应于角,,,…,2π的正弦线及余弦线(这等价于描点法中的列表).第二步:描点.我们把x 轴上从0到2π这一段分成几等份,把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点.第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.将y=sinx 的图象向左平移即得y=cosx 的图象2.用五点法作正弦函数和余弦函数的简图(描点法)(1)正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (,1) (π,0) (,-1) (2π,0) 1O 1O 6,0π3π2π2π2π23π(2)余弦函数y=cosx x ∈[0,2π]的图象中,五个关键点是:(0,1) (,0) (π,-1) (,0) (2π,1)3. 正弦函数的性质(1)定义域:正弦函数、余弦函数的定义域都是实数集R分别记作: y =sin x ,x ∈R y =cos x ,x ∈R(2)值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =+2k π,k ∈Z 时,取得最大值1.②当且仅当x =-+2k π,k ∈Z 时,取得最小值-1.而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.(3)周期性正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.函数及函数(其中A ,为常数,且)的周期(4)奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称(5)单调性 正弦函数在每一个闭区间[-+2k π,+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[+2k π,+2k π](k ∈Z )上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.二、正切函数的图象和性质1. 正切函数图象的作法在的区间作出它的图象2π23π2π2πR x ),x sin(A y ∈+=ϕωR x ),x cos(A y ∈+=ϕωωφ0,0A >≠ωωπ2T =2π2π2π23π⎪⎭⎫ ⎝⎛-2,2ππ,且的图象,称“正切曲线”正切函数的性质: 1. 定义域: 2. 值域:R3. 当时,当时4. 周期性:5. 奇偶性:奇函数6. 单调性:在开区间内,函数单调递增h(mm)与时间t(s)之间的函数关系如图所示(1)求该函数的周期;(2)求t =10s 时钟摆的高度.【解析】R x x y ∈=tan ()z k k x ∈+≠ππ2⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππz k k k x ∈⎪⎭⎫ ⎝⎛+∈2,πππ0>y z k k k x ∈⎪⎭⎫ ⎝⎛-∈πππ,20<y π=T ()x x tan tan -=-z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2解:(1)由图象知,周期为1.5s(2)故高度为20mm.2. 利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:;【解析】(1)解:作出正弦函数y=sinx ,x ∈[0,2π]的图象:由图形可以得到,满足条件的x 的集合为:(2)解:作出余弦函数y=cosx ,x ∈[0,2π]的图象:3. 求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么.(1)y =cos x +1,x ∈R ;(2)y =sin2x ,x ∈R .【解析】解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取得最大值的x 的集合{x |x =2k π,k ∈Z }.函数y =cos x +1,x ∈R 的最大值是1+1=2.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且使函数y =sin Z ,Z ∈R 取得最大值的Z 的集合是{Z |Z =+2k π,k ∈Z }由2x =Z =+2k π,得x =+k π即使函数y =sin2x ,x ∈R 取得最大值的x 的集合是{x |x =+k π,k ∈Z }.函数y =sin2x ,x ∈R 的最大值是1.4. 求下列函数的定义域:(1)y = (2)y=【解析】(10)(16 1.5)(1)20f f f =+⨯==21sin )1(≥x 21cos )2(≤x Z k k k ∈⎥⎦⎤⎢⎣⎡++,265,26ππππ2π2π4π4π11sin x +x cos解:(1)由1+sin x ≠0,得sin x ≠-1即x ≠+2k π(k ∈Z )∴原函数的定义域为{x |x ≠+2k π,k ∈Z }(2)由cos x ≥0得-+2k π≤x ≤+2k π(k ∈Z )∴原函数的定义域为[-+2k π,+2k π](k ∈Z )5. (1)函数y =sin(x +)在什么区间上是增函数?(2)函数y =3sin(-2x )在什么区间上是减函数?【解析】解:(1)函数y =sin x 在下列区间上是增函数:2k π-<x <2k π+(k ∈Z )∴函数y =sin(x +)为增函数,当且仅当2k π-<x +<2k π+即2k π-<x <2k π+(k ∈Z )为所求.(2)∵y =3sin(-2x )=-3sin(2x -)由2k π-≤2x -≤2k π+得k π-≤x ≤k π+(k ∈Z )为所求.或:令u =-2x ,则u 是x 的减函数又∵y =sin u在[2k π-,2k π+](k ∈Z )上为增函数,∴原函数y =3sin(-2x )在区间[2k π-,2k π+]上递减.设2k π-≤-2x ≤2k π+解得k π-≤x ≤k π+(k ∈Z )∴原函数y =3sin(-2x )在[k π-,k π+](k ∈Z )上单调递减.23π23π2π2π2π2π4π3π2π2π4π2π4π2π3π4π3π3π2π3π2π12π125π3π2π2π3π2π2π2π3π2π12π125π3π12π125π6. 求函数的定义域、值域,并指出它的周期性、奇偶性、单调性. 【解析】由得, 所求定义域为 值域为R ,周期,是非奇非偶函数在区间上是增函数.7. 观察正切曲线写出满足下列条件的x 的值的范围:tanx >0.【解析】画出y =tanx 在(-,)上的图象,不难看出在此区间上满足tanx >0的x 的范围为:0<x <结合周期性,可知在x ∈R ,且x ≠k π+上满足的x 的取值范围为(k π,k π+)(k ∈Z ) ⎪⎭⎫ ⎝⎛-=33tan πx y 233πππ+≠-k x 1853ππ+≠k x ∴⎭⎬⎫⎩⎨⎧∈+≠∈z k k x R x x ,1853,|ππ且3π=T ()z k k k ∈⎪⎭⎫ ⎝⎛+-1853,183ππππ2π2π2π2π2π。
高中数学题型全面归纳三角函数的图像与性质18改
cos(wx
) cos(wx 3
), x 3
R, (w
0) .
(2)若 f ( x) 的最小正周期为 , x [0, ] ,求 f (x) 的单调递减区间 .
2
2
变式 2 下列函数中,既是 (0, ) 上的增函数,又是以 为周期的偶函数的是(
)
2
A. y cos 2x
B. y sin 2x
C. y cosx
D . y sin x
二、函数的周期性
例 4. 18 函数 y sin( 2x ) cos(2x ) 的最小正周期为(
)
6
6
A.
B.
C. 2
D.
2
4
评注 关于三角函数周期的几个重要结论:
记忆:我们 “想欺负 ”(相一期一幅)三角函数图像,使之变形 .
向左平移 个单位ຫໍສະໝຸດ y sin x的图像3
y sin( x )的图像 3
所有点的横坐标变为原来的 1 2
纵坐标不变
y sin(2x )的图像 3
所有点的纵坐标变为原来的 2 倍 横坐标不变
向上平移 3个单位
y 2 sin( 2x ) 3 3
A. 最小正周期为 的奇函数 B. 最小正周期为 的偶函数 C. 最小正周期为 的奇函数
2
D. 最小正周期为 的偶函数
2
变式 1 若函数 f ( x) sin 2 x 1 ( x R) ,则 f (x) 是( ) 2
A. 偶函数且最小正周期为 B. 奇函数且最小正周期为
C. 偶函数且最小正周期为 2 D. 奇函数且最小正周期为 2
1.形如 Asin( x ) 的函数性质为高考必考内容,可在选择题,填空题中直接
第23讲 三角函数的图像和性质的运用高中数学常见题型解法归纳反馈训练及详细解析
【知识要点】 一、周期函数的概念对于函数()f x ,若是存在一个非零常数T ,使适当x 取概念域内任意一个值时,都有()()f x T f x +=,那么函数()f x T 叫做这个函数的周期,周期函数的周期不唯一,,,0kT k z k ∈≠都是它的周期,所有周期中最小的正数就叫做它的最小正周期.二、sin ,cos ,tan y x y x y x ===正弦函数余弦函数正切函数的图象与性质三、复合函数的单调性设()y f u =,()u g x =[,]x a b ∈,[,]u m n ∈都是单调函数,那么[()]y f g x =在[,]a b 上也是单调函数,其单调性由“同增异减〞来肯定,即“里外〞函数增减性一样,复合函数为增函数,“里外〞函数的增减性相反,复合函数为减函数.如下表:四、利用周期公式,必需先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意必然要注意加绝对值. 五、解答三角函数的问题时,不要漏了“k z ∈〞. 【方式讲评】【例1】函数())cos()(0,0)f x x x πωφωφφω=+-+<<>为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为.2π 〔Ⅰ〕求()8πf 的值;〔Ⅱ〕将函数()y f x =的图象向右平移6π个单位后,再将取得的图象上各点的横坐标愉快长到原来的4倍,纵坐标不变,取得函数()y g x =的图象,求()g x 的单调递减区间.〔Ⅱ〕将()f x 的图象向右平移π6个单位后,取得π6f x ⎛⎫- ⎪⎝⎭的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,取得π46x f ⎛⎫-⎪⎝⎭的图象. 所以πππ()2cos 22cos 464623x x x g x f ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 【点评】〔1〕一般利用复合函数的单调性原理求复合函数的单调区间,首先是对复合函数进展分解,接着是按照复合函数的单调性原理分析出分解出的函数的单调性,最后按照分解函数的单调性求出复合函数的单调区间.〔2〕若是知识比拟熟练,也可以没必要写得这么复杂,直接写出不等式π2π2ππ23x k k -+≤≤〔k ∈Z 〕也可以. 学科*网【反映检测1】函数2()2cos 23sin cos 1f x x x x =+-.〔1〕求()f x 周期和单调递增区间;〔2〕说明()f x 图象可由sin y x =图象通过如何转变取得. 运用二求函数的奇偶性解题步骤一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数;如果函数的定义域关于原点对称,那么继续求()f x -;最后比拟()f x -和()f x 的关系,如果有()f x -=()f x ,那么函数是偶函数,如果有()f x -=-()f x ,那么函数是奇函数,否那么是非奇非偶函数.【例2】函数()2sincos 3cos 442x x x f x =+. 〔Ⅰ〕求函数()f x 的最小正周期及最值;〔Ⅱ〕令π()3g x f x ⎛⎫=+ ⎪⎝⎭,判断函数()g x 的奇偶性,并说明理由.【点评】三角函数的恒等变换在解决三角函数的问题时尤其重要,若是化简出现问题,后面的解答就会犯错.【反映检测2】设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且为偶函数,求函数的解析式.运用三求函数的周期解题步骤一般先利用三角恒等变形把函数化成sin()y A wx h φ=++的形式,再利用周期公式求函数的周期.【例3 】 函数x xx x f sin 2sin 2cos )(22+-=. 〔I 〕求函数)(x f 的最小正周期;〔II 〕当)4,0(0π∈x 且524)(0=x f 时,求)6(0π+x f 的值. 【解析】由题设有()cos sin f x x x =+=π2sin()4x +.〔I 〕函数()f x 的最小正周期是2π.T =〔II 〕由524)(0=x f 0π422),45x +=即0π4sin(),45x += 【点评】〔1〕要利用周期公式,必需先通过三角恒等变形将函数的解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式,再代周期公式.〔2〕正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=,注意必然要注意加绝对值.〔3〕函数sin 2y wx =的最小正周期是2|2|||T w w ππ==,不是2||T w π=.三角函数的周期公式中w 代表的是x 的系数,不是什么地方都是w .函数sin 2y wx =中x 的系数是2w .【反映检测3】函数2π()sin sin 2f x x x x ωωω⎛⎫=+⎪⎝⎭〔0ω>〕的最小正周期为π. 〔Ⅰ〕求ω的值;〔Ⅱ〕求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.【例4】函数()cos(2)2sin()sin()344f x x x x =-+-+〔Ⅰ〕求函数()f x 的最小正周期和图象的对称轴方程;〔Ⅱ〕求函数()f x 在区间[,]122ππ-上的值域.【解析】〔1〕()cos(2)2sin()sin()344f x x x x πππ=-+-+由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈【点评】〔1〕求函数sin()y wx ϕ=+的对称轴一般就是解方程,2wx k k z πϕπ+=+∈,求函数cos()y wx ϕ=+的对称轴一般就是解方程,wx k k z ϕπ+=∈.学科*网【反映检测4】函数⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+=x x y 4cos 4sin 2ππ图象的对称中心是 .高中数学常见题型解法归纳及反映检测第23讲:三角函数的图像和性质(周期性、单调性、奇偶性和对称性)的运用参考答案【反映检测1答案】(1) 单调递增区间为,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;〔2〕将sin y x =图象纵坐标不变, 横坐标综短为原来12倍, 将所得图象向左平稳12π个单位, 再将所得图象横坐标不变, 纵坐标为原来2倍得()f x 图象.【反映检测2答案】()2f x x =【反映检测2详细解析】())4f x wx πϕ=++由题得【反映检测3答案】〔Ⅰ〕1ω=;〔Ⅱ〕302⎡⎤⎢⎥⎣⎦,.【反映检测3详细解析】〔Ⅰ〕1cos 2()222x f x x ωω-=+112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. 【反映检测4答案】(,1)2k π(k z ∈)【反映检测4详细解析】因⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+=x x y 4cos 4sin 2ππ22sin 1cos(2)1sin 242x x x ππ⎛⎫=+=-+=+ ⎪⎝⎭, 2(2k x k k z x ππ=∈∴=令) 所以函数的对称中心为(,1)2k π(k z ∈).。
第7章-7.3.1 三角函数的周期性-7.3.2-三角函数的图象与性质高中数学必修第一册苏教版
2 12
12 12
π
π
5π
2sin 2 − 的单调递增区间为[− + π, + π],
3
12
12
∈ .
子题1 函数 = −2sin 2
π
−
3
[− + , + ], ∈
的单调递减区间为_________________________.
【解析】求函数 =-(切勿忽略此处负号对单调性的影响)2sin 2 −
=
C.0
× −3
3π
+ ]
4
=
3π
4
D.−
=
3π
sin
4
=
2
.
2
)
2
2
3π
2
例1-3 [多选题](2024·河南省南阳市六校联考)在下列函数中,周期为π 的函数为
( CD
)
A. = tan
C. = cos
π
2 −
4
π
2 +
6
→=
→=
π
2
2π
2
B. = cos + 1 → =
π
为[
2
+
3π
2π,
2
3π
(函数
2
π
3
+ 2π], ∈ ,函数 = − 2在上单调递减,结合复合函数单调性可
得该式), ∈ ,
得π
5π
+
12
= 2sin 的单调递减区间
≤ ≤ π
11π
+
,
12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的图象与性质题型归纳总结题型归纳及思路提示题型1 已知函数解析式确定函数性质【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。
一、函数的奇偶性例1 f (x )=sin ()x ϕ+(0≤ϕ<π)是R 上的偶函数,则ϕ等于( )A.0 B .4π C .2πD .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()();y A x k k Z ϕϕπ=+=∈(1)若是奇函数,则sin()+();2y A x k k Z πϕϕπ=+=∈(2)若是偶函数,则 cos()();2y A x k k Z πϕϕπ=+=+∈(3)若是奇函数,则cos()();y A x k k Z ϕϕπ=+=∈(4)若是偶函数,则tan()().2k y A x k Z πϕϕ=+=∈(5)若是奇函数,则.()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( )A.0 B .1 C .1- D .1±2.0()cos()()R f x x x R ϕϕϕ∈==+∈变式设,则“”是“为偶函数”的( )A 充分不必要条件B .必要不充分条C .充要条件D .无关条件3.()sin()0()f x x f x ωϕω=+>变式设,其中,则是偶函数的充要条件是( )A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0f =2.()sin(2)()()2f x x x R f x π=-∈例设,则是( )A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π最小正周期为的奇函数 D .2π最小正周期为的偶函数2()sin 1()()f x x x R f x =-∈变式1.若,则是( )A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数2.(0,)2ππ变式下列函数中,既在递增,又是以为周期的偶函数的是( )A.cos 2y x = B .|sin 2|y x = C .|cos 2|y x = D .|sin |y x =二、函数的周期性3.sin(2)cos(2)66y x x ππ=++例函数的最小正周期为( )A.2π B .4πC .2πD .π【评注】关于三角函数周期的几个重要结论:sin()b,cos()b,tan()b 22,,.||||||y A x y A x y A x ωϕωϕωϕπππωωω=++=++=++(1)函数的周期分别为|sin()|,|cos()|,|tan()|.||y A x y A x y A x πωϕωϕωϕω=+=+=+(2)函数的周期均为2|sin()b |(b 0),|cos()b |(b 0).||y A x y A x πωϕωϕω=++≠=++≠(3)函数的周期均为1.sin(2)cos(2)63y x x ππ=+++变式函数的最小正周期和最大值分别为( )A.,1π B.π C .2,1π D.2π()sin (sin cos ),()f x x x x f x =-变式2.若则的最小正周期是________.()sin 3|sin 3|()f x x x f x =+变式3.若则是( )A.3π最小正周期为的周期函数 B .23π最小正周期为的周期函数 C .π最小正周期为2的周期函数 D .非周期函数三、函数的单调性.sin(2)([0,])6y x x ππ=-∈例4函数的递增区间是( )A.[0,]3π B .7[,]1212ππ C .5[,]36ππD .5[,]6ππ【评注】求三角函数的单调区间:sin()(0,0)y A x A ωϕω=+>>若函数则22()22322()22(3)sin()0,0sin()sin()(4)cos()tan()k x k k Z k x k k Z y A x A y A x y A x y A x y A x πππωϕππππωϕπωϕωωϕωϕωϕωϕ-≤+≤+∈+≤+≤+∈=+><=---=--=+=+(1)函数的递增区间由决定;(2)函数的递减区间由决定;若函数中,可将函数变为则的增区间为原函数的减区间,减区间为原函数的增区间;对于函数和单调性的讨论同上。
31.sin ()[()44y x f x f x ππ=+-变式函数在,]内单调递增,则可以是( )A.1 B .cos x C .sin x D .cos x-()sin()(0)(42f x x ππωωπω=+>变式2.若在,)上单调递增,则的取值范围是( )A.15[,]24 B .13[,]24 C .1(0,]2 D .(0,2]3.()cos()cos()(0)33(1)()(2)(),[0,]()22f x x x x f x f x x f x ππωωωωππ=+++->∈变式已知函数求的值域;若的最小正周期为,的单调递减区间.四、函数的对称性(对称轴、对称中心).sin(2)3y x π=+例5函数图象的对称轴方程可能是( )A.6x π=- B .12x π=- C .6x π= D .12x π=【评注】关于三角函数对称性的几个重要结论:sin (),(,0)();2cos (),(,0)();2tan (,0)();22sin()(),=();2:y x x k k Z k k Z y x x k k Z k k Z k y x k Z k y A x b x k k Z x k Z x k πππππππππϕπωϕωϕπωωϕπ==+∈∈==∈+∈=∈+-=+++=+∈∈+=(1)函数的对称轴为对称中心(2)函数的对称轴为对称中心(3)函数无对称轴,对称中心(4)函数的对称轴的求法:令得对称中心的求法令()=(),(,)()cos()(),=();22:()=(),(,)()2k k k Z x k Z b k Z k y A x b x k k Z x k Z k k x k k Z x k Z b k Z πϕπϕωωπϕωϕωϕπωπππϕπϕπωϕπωω--∈∈∈-=+++=∈∈+-+-+=+∈∈∈得对称中心为;(5)函数的对称轴的求法:令得对称中心的求法令得对称中心为1.sin()(0)()3y x f x πωωπ=+>变式已知函数的最小正周期为,则的图象( )A.(,0)3π关于点对称 B .4x π=关于直线对称C .(,0)4π关于点对称D .3x π=关于直线对称.sin()4y x π=-变式2函数的图象的一个对称中心是( )A.(,0)π- B .3(,0)4π- C .3(,0)4π D .(,0)2π 223.()sin cos .55x xf x =+变式函数的图象中,相邻两条对称轴之间的距离是__________.sin 0x x a a a =>变式4若函数y 的图象向右平移个单位()后的图象关于y 轴对称,则的最小值是( )A.76πB .2πC .6πD .3π 五、三角函数性质的综合【思路提示】三角函数的性质(奇偶性、周期性、单调性、对称性)中,对称性尤为重要;121()()()()(2)224(3)()()sin(),00()[,]f x y f x f x f x T T Tf x f x A x A f x ωωθθ⇒⇒⇒=>>()对称性奇偶性:若函数的图象关于轴对称,则是偶函数;若函数的图象关于原点对称,则是奇函数;对称性周期性:相邻两条对称轴之间的距离为;相邻两个对称中心的距离为;相邻的对称中心与对称轴之间的距离为;对称性单调性:在相邻的对称轴之间,函数单调;特殊的,若,函数在上单调12120[,]{||,}4Tmax θθθθθθ∈=≥,且设,则。
6.()sin 2cos 2,0,()(),6117(1)()0;(2)()();(3)()121052()[,]()63(5)(,)().f x a x b x ab f x f x R f f f f x f x k k k Z a b f x ππππππππ=+≠≤∈=<++∈例设若对任成立则不具奇偶性;(4)的单调递增区间是;存在经过点的直线与函数的图象不相交.以上结论中正确的是__________________7.()4cos()sin cos(2)(0)63(1)()(2)()[,].22f x x x x f x f x πωωωπωππω=--+>-例已知函数求的值域;若在区间为增函数,求的最大值21.()2sin (0),()[,].43f x x f x ππωωω=>-变式已知函数若在上递增,求的取值范围8.()sin()(0),()()(,)=______.36363f x x f f πππππωωω=+>=例若且在上有最小值无最大值,则题型2 根据条件确定解析式方向一:“知图求式”,即已知三角函数的部分图象,求函数解析式。
【思路提示】由图象求得y =A sin(ω x +φ) (A >0,ω>0)的解析式一般不唯一,只有限定φ的取值范围,才能得到唯一解。
依据五点法原理,点的序号与式子的关系是:第一点(即图象上升时与横轴的交点)为0x ωϕ+=,第二点(即图象最高点)为2x πωϕ+=,第三点(即图象下降时与横轴的交点)为x ωϕπ+=,第四点(即图象最低点)为32x πωϕ+=,第五点(即图象上升时与横轴的交点)为2.x ωϕπ+=。
.()sin(2)(,)(0)f x A x A R f ϕϕ=+∈=例9函数部分图象如下图所示,则( )A.12-B .1-C .32-D .31.()sin()(0,0)(0)________.f x A x A f ωϕω=+>>=变式函数部分图象如下图所示,则2.()cos()()(0)________.23f x A x f f πωϕ=+=-=变式2部分图象如下图所示,,则.()sin()(0,0,||)()f x A x A f x ωϕωϕπ=+>><例10已知函数部分图象如下图所示,求的解析式。
变式1.已知)(cos )(2ϕω+=x x f (ω,ϕ为常数),如果存在正整数ω和实数ϕ使得函数()f x 的图象如图所示(图象经过点(1,0)),求ω的值.方向二:知性质(如奇偶性、单调性、对称性、最值)求函数解析式。