利用三视图求体积表面积
立体几何三视图及体积表面积的求解
![立体几何三视图及体积表面积的求解](https://img.taocdn.com/s3/m/ca5ff11e6c175f0e7cd137e4.png)
立体几何三视图及体积表面积的求解一、空间几何体与三视图1. (吉林省实验中学2013—2014年度高三上学期第四次阶段检测)一个长方体截去两个三棱锥,得到的几何体如图1所示,则该几何体的三视图为( )A B C D【答案】C【解析】正视图是含有一条左下到右上实对角线的矩形;侧视图是含有一条从左上到右下的实对角线的矩形,故选C2. (广州2014届高三七校第二次联考)如图为几何体的三视图,根据三视图可以判断这个几何体为( ) A .圆锥B .三棱锥C .三棱柱D .三棱台【答案】C【解析】由三视图知,这是一个横放的三棱柱3.(黄冈中学2014届高三十月月考数学试卷)如图,一个棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为( )【答案】:D【解析】为。
4. (江西省稳派名校学术联盟2014届高三12月调研考试)如图所示是一个几何体的三视图,若该几何体的体积为,则主视图中三角形的高x 的值为( )212 2A32B32 C22 D2A. B. C. 1 D.【答案】C 【解析】5.(石家庄2014届高三第一次教学质量检测)用一个平面去截正方体,有可能截得的是以下平面图形中的 .(写出满足条件的图形序号)(1)正三角形 (2)梯形 (3)直角三角形 (4)矩形 【答案】(1)(2)(4) 【解析】6.(黄冈中学2014届高三十月月考数学试卷)一个底面是等腰直角三角形的直棱柱,侧棱长与底面三角形的腰长相等,其体积为4,它的三视图中俯视图如右图所示,侧视图是一个矩形,则这个矩形的对角线长为 .【答案】123432【解析】:设底面的等腰直角三角形的腰长为,则侧棱长也为,则,解得,则其,宽为。
二、空间几何体的体积和表面积1.(湖北省黄冈中学2014届高三数学(文)期末考试)某空间组合体的三视图如图所示,则该组合体的体积为()A .48 B .56 C .64 D .72【答案】C【解析】该组合体由两个棱柱组成,上面的棱柱体积为24540创=,下面的棱柱体积为46124创=,故组合体的体积为642.(四川省泸州市2014届高三数学第一次教学质量诊断性考试)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( ) A .B .C .D .a a 3142V a ==2a =2=3. (2014年福建宁德市普通高中毕业班单科质量检查)一个几何体的三视图如图所示,则该几何体的侧面积为()A.8+B.10C.8+.123. (承德市联校2013-2014年第一学期期末联考)把边长为2的正方形ABCD沿对角线BD折起,连结AC,得到三棱锥C-ABD,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.32B.12C.1 D.22【答案】B【解析】由两个视图可以得到三棱锥如图:其侧视图的面积即t R ACEV的面积,由正方形的边长为2得==1AE CE,故侧视图面积为125.(安徽省六校教育研究会2014届高三2月联考)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是()(A) (B)(C)(D)8【答案】D【解析】由三视图可得三棱锥如图所示:底面是边长为4的正三角形,AD BDC ^平面,故四个面的面积中,最大的面积是ABC V 的面积为142创4. (宁夏银川一中2014届高三年级月考)如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( )A .2+3.2+2.8+5.6+3【答案】A【解析】由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积.5. (湖南省2014届高三第五次联考数学)已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A. 16pB. 4pC. 8pD. 2pπ+π+π+π+1212(1)2S ππ=⨯⨯++32π=+7.(西安铁一中2014届高三11月模拟考试试题)一个几何体的三视图如图所示,则其外接球的表面积是( )A. B.【答案】B【解析】由三视图知:该几何体为长方体,长方体的棱长分别为3、4、5,所以长方体的体对角线为,所以外接球的半径为,所以外接球的表面积为。
空间几何体的表面积与体积
![空间几何体的表面积与体积](https://img.taocdn.com/s3/m/f91d9744f4335a8102d276a20029bd64783e6205.png)
V柱 = pR2·2R
面积, 再减去渗水孔的面积.
组合体的体积怎样计算?
柱体、锥体、台体 京沪铁路全长1462 km,
球的表面积公式是怎样的? 是用什么方法得到的?
京沪高铁全长1318 km. 0230568 (kg),
的表面积与体积
∴ h(a+c)>bh,
≈1197 (cm2).
球的体积和表面积
柱体、锥体、台体 的表面积与体积
12
解: 这个零件的表面积为
S = S棱柱表+S圆柱侧
p = 2 [ 6 3 ( 2 + 1 4 )+ 6 2 ] 1 5 + 2 6 25
≈1579.485 (mm2),
10000个零件的表面积约为15794850 mm2,
约合15.795平方米.
2. 如图是一种机器零件, 零件
下面是六棱柱 (底面是正六边形, 侧
种零件需要用锌, 已知每平方米用锌 0.
某街心花园有许多钢球(钢的密度是7.
在△SBC中, 边长为 a,
五棱台的上、下底面均是正五边形, 边长分别是 8 cm 和 18 cm, 侧面是全等的等腰梯形, 侧棱长是 13 cm, 求它的侧面面积.
≈2956 (mm3)
圆柱、圆锥、圆台的表面积
当半球切得的片数无限多,
2. 圆柱、圆锥、圆台的表面积 底面积加侧面积.
底面积: S底=p r2. 圆柱侧面积: S柱侧=2p rh. 圆锥侧面积: S锥侧=p rl. 圆台侧面积: S台侧=p l (r+r).
【课时小结】
3. 柱体、锥体、台体体积
柱体体积: V柱 = Sh.
锥体体积:
V锥
=
2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案
![2019数学(理)二轮精选讲义专题五 立体几何 第一讲空间几何体的三视图、表面积与体积 含答案](https://img.taocdn.com/s3/m/39bd9e70302b3169a45177232f60ddccda38e6ca.png)
专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。
[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。
[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。
[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。
[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误![快速审题](1)看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。
第8讲三视图
![第8讲三视图](https://img.taocdn.com/s3/m/0cb8fd97e009581b6ad9eb78.png)
第8讲三视图,体积与表面积的计算[知识梳理]1.空间几何体的结构特征2.空间几何体的三视图1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的表面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积3.常见几何体的侧面展开图及侧面积题型一空间几何体的三视图(高频考点题,多角度突破)考向一已知几何体,识别三视图1.(东北四市联考)如图,在正方体ABCDA1B1C1C1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为()考向二已知三视图,判断几何体的形状2.一个几何体的三视图如图所示,则该几何体的直观图可以是()考向三已知三视图中的两个视图,判断第三个视图3.(石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该棱锥的侧视图可能为()【针对补偿】1.(济南模拟)如图,多面体ABCDEFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是()2.(北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.32B.2 3 C.22D.23.(南昌一模)如图,在正四棱柱ABCDA1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的正视图与侧视图的面积之比为()A.1∶1 B.2∶1 C.2∶3 D.3∶2[知识自测]1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π2.(全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π3.正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A B 1DC 1的体积为______.题型一 空间几何体的表面积与侧面积(基础拿分题,自主练透)(1)(课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为______.【针对补偿】1.(全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A.17π B.18π C.20π D.28π2.(黑龙江省大庆中学期中)一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.6 3 B.8 C.8 3 D.12题型二空间几何体的体积(高频考点题,多角突破)考向一求以三视图为背景的几何体的体积1.(课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90π B.63π C.42π D.36π考向二不规则几何体的体积3.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.23 B.33 C.43 D.32考向三 柱体与锥体的内接问题4.(2015·湖南卷)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为⎝ ⎛⎭⎪⎫材料利用率=新工件的体积原工件的体积( )A.89πB.827π C.24(2-1)3π D.8(2-1)3π【针对补偿】3.(新课标全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.134.(山东)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为______.题型三 球与几何体的切接问题 考向一 正方体(长方体)的外接球1.(天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.考向二 直三棱柱的外接球2.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310【针对补偿】5.(广州市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20π B.205π3C .5πD.55π6[A 基础巩固练]1.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 2.(山西省高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为37,则侧视图中线段的长度x 的值是( )A.7 B .27 C .4D .53.(课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π45.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+125。
人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积
![人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积](https://img.taocdn.com/s3/m/1fedba1abcd126fff7050b9f.png)
2. 如图是一个几何体的三视图,则这个几何体
的A侧.18面cm积2 是( A )
B.20cm2
C. 18 6
3 4
10 2
2
cm
D. 18
75 2
3
解析:由三视图可得,几何体是三棱柱,几何体的侧面积 是三个矩形的面积和,矩形的长为3cm,宽为2cm,∴侧面 积为3×3×2=18cm2.
=
300
240
1 2
=36000(cm2
)
S侧面面积= 300 200=60000(cm2 )
S帐篷表面积=36000 +60000 =96000(cm2)
课堂小结
由三视图确定几何体的表面积或体积,一般步骤为: ① 想象:根据各视图想象从各个方向看到的几何体形状; ② 定形:综合确定几何体(或实物原型)的形状; ③ 展开图:画出展开图,求展开面积。
由三视图描述实物形状,画出物体表面展开图
由三视图确定几何体的表面积或是体积, 首先要确定该几何体的形状。
1.根据下列几何体的三视图,画出它们的展开图。
(1)
(2)
(3)
典例解析
例1 某工厂要加工一批密封罐,设计者给出了密封
罐的三视图,请你按照三视图确定制作每个密封罐所
需钢板的面积.
50
100 50
第3课时 由三视图确定几何体的 表面积或体积
R·九年级下册
复习导入
由三视图描述几何体(或实物原型),一般先根据各视图想象从 各个方向看到的几何体形状, 然后综合起来确定几何体(或实物原 型)的形状, 再根据三视图“长对正、高平齐、宽相等”的关系, 确定轮廓线的位置,以及各个方向的尺寸.
高中数学必修二 空间几何体的三视图如何求其表面积和体积
![高中数学必修二 空间几何体的三视图如何求其表面积和体积](https://img.taocdn.com/s3/m/8d23bf2687c24028915fc3c6.png)
高中数学必修二空间几何体的三视图如何求其表面积和体积【教学目标】一、知识目标熟练掌握已知空间几何体的三视图如何求其表面积和体积。
二、能力目标先介绍由空间三视图求其表面积和体积,然后引导学生讨论和探讨问题。
三、德育目标1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力。
2.通过研究性学习,培养学生的整体性思维。
【教学重点】观察、实践、猜想和归纳的探究过程。
【教学难点】如何引导学生进行合理的探究。
【教学方法】电教法、讲述法、分析推理法、讲练法【教学用具】多媒体、实物投影仪【教学过程】[投影]本节课的教学目标1.熟练掌握已知空间几何体的三视图如何求其表面积和体积。
【学习目标完成过程】一、复习提问1.如何求空间几何体的表面积和体积(例如:球、棱柱、棱台等)?2.三视图与其几何体如何转化?二、新课讲解[设置问题]例1:(如下图1),这是一个奖杯的三视图,试根据奖杯的三视图计算出它的表面积和体积(尺寸如图1,单位:cm,π取314,结果精确到1cm3)。
[提出问题]1.空间几何体的表面积和体积分别是什么?2.怎样运用柱体、锥体、台体、球体的表面积与体积的公式计算几何体的表面积和体积?[学生思考、总结板书]空间几何体的表面积是几何体表面的面积,它表示几何体表面的大小,体积是几何体所占空间的大小;先将直观图的各个要素弄清楚,然后再代公式进行计算。
[承转过渡]求空间几何体的表面积是将几何体的各个面的面积相加求得;求体积是将几何体各个部分的体积相加求得,那请同学们动脑筋想一想,假设没有给出几何体的直观图,只是给出一个几何体的三视图,我们怎样解决求该几何体的表面积和体积?在例1有没有给出几何体的直观图?[学生讨论、总结板书]例1没有直接给出几何体的直观图,只是给出实物几何体的三视图,要求该几何体的表面积和体积,应首先将该三视图转化为几何体的直观图,然后弄清给出直观图的各个要素,再代公式进行计算。
[设问]请问例1的三视图转化为实物几何体是由那几个部分构成?怎样求出该几何体的表面积和体积?[讨论、板书]该实物几何体是由一个球体、一个四棱柱和一个四棱台构成;应先分别求出一个球体、一个四棱柱和一个四棱台的表面积和体积。
专题 由三视图求表面积和体积
![专题 由三视图求表面积和体积](https://img.taocdn.com/s3/m/4ba42ec05022aaea998f0f35.png)
由三视图求表面积和体积一、方法与技巧二、常见几何体1.(2016•益阳模拟)若某空间几何体的三视图如图所示,则该几何体的表面积是()A.60 B.54 C.48 D.24【解答】解:由三视图知:几何体是一个侧面向下放置的直三棱柱,侧棱长为4,底面三角形为直角三角形,直角边长分别为3,4,斜边长为5.∴几何体的表面积S=S棱柱侧+S底面=(3+4+5)×4+2××3×4=48+12=60.故选:A.2.(2016•凉山州模拟)一个棱锥的三视图如图所示,则这个棱锥的体积是()A.6 B.12 C.24 D.36【解答】解:由已知的三视图可得该棱锥是以俯视图为底面的四棱锥其底面长和宽分别为3,4,棱锥的高是3故棱锥的体积V=Sh=×3×4×3=12故选B3.(2016•衡水校级一模)已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.27﹣3πD.18﹣3π【解答】解:由三视图可知,该几何体为放到的直四棱柱,且中间挖去半个圆柱,由三视图中的数据可得:四棱柱的高为3,底面为等腰梯形,梯形的上、下底边分别为2、4,高为2,圆柱的高为3,圆柱底面的半径都是1,∴几何体的体积V==,故选:B.4.(2016•广元二模)一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3【解答】解:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4 体积V=Sh==48cm3故选A5.(2016•江门模拟)一个几何体的三视图及其尺寸如下,则该几何体的表面积为()A.12πB.15πC.24πD.36π【解答】解:由三视图可知该几何体为一个圆锥,底面直径为6,母线长为5,底面圆的面积S1=π×()2=9π.侧面积S2=π×3×5=15π,表面积为S1+S2=24π.故选C.6.(2016•安康二模)一空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:三视图复原的几何体是三棱锥,底面是底边长为2,高为2的等腰三角形,三棱锥的一条侧棱垂直底面,高为2.三棱锥的体积为:==.故选D.7.(2016•杭州模拟)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.8.(2016•呼伦贝尔一模)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形.若该几何体的体积为V,并且可以用n个这样的几何体拼成一个棱长为4的正方体,则V,n的值是()A.V=32,n=2 B.C.D.V=16,n=4【解答】解:由三视图可知,几何体为底面是正方形的四棱锥,所以V=,边长为4的正方体V=64,所以n=3.故选B9.(2016•广东模拟)一空间几何体的三视图如图所示,则该几何体的体积为()A.12 B.6 C.4 D.2【解答】解:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2,∴四棱锥的体积是=2,故选D.10.(2016•延边州模拟)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.B.C. D.4【解答】解:由题意知三棱柱的侧视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是2×=,∴侧视图的面积是2.故选A.11.(2016•江西校级一模)如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是()A.π+24 B.π+20 C.2π+24 D.2π+20【解答】解:该器皿的表面积可分为两部分:去掉一个圆的正方体的表面积s1和半球的表面积s2,s1=6×2×2﹣π×12=24﹣π,s2==2π,故s=s1+s2=π+24故选:A.12.(2016•太原二模)某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是()A.B.C.D.【解答】解:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示:所以该几何体的体积为23﹣×22×1=.故选A.13.(2016•太原校级二模)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.3【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ADE==,S△ACD==,故选:B.14.(2016•河西区模拟)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A.B. C.D.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形∴r=1,h=∴故选:D.15.(2016•岳阳二模)一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.【解答】解:三视图复原的几何体是底面为边长5,6的矩形,一条侧棱垂直底面高为h,所以四棱锥的体积为:,所以h=.故选B.16.(2016•汉中二模)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.4【解答】解:由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为=2由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形由于此侧棱长为,对角线长为2,故棱锥的高为=3此棱锥的体积为=2故选B.17.(2016•榆林一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A.80 B.40 C.D.【解答】解:由三视图可知该几何体是如图所示的三棱锥:PO⊥平面ABC,PO=4,AO=2,CO=3,BC⊥AC,BC=4.从图中可知,三棱锥的底是两直角边分别为4和5的直角三角形,高为4,体积为V=.故选D.18.(2016•揭阳一模)已知某空间几何体的三视图如图所示,则该几何体的体积是48.【解答】解:由三视图可知原几何体如图所示,可看作以直角梯形ABDE为底面,BC为高的四棱锥,由三棱锥的体积公式可得V=××(2+6)×6×6=48,故答案为:48.三、常见几何体的组合体19.(2016•佛山模拟)已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C. D.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.20.(2016•乐山模拟)一个几何体的三视图如图所示,则此几何体的体积是()A.112 B.80 C.72 D.64【解答】解:由三视图可知,此几何体是由一个棱柱和一个棱锥构成的组合体,棱柱的体积为4×4×4=64;棱锥的体积为×4×4×3=16;则此几何体的体积为80;故选B.四、常见几何体的切割体21.(2016•茂名一模)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.22.(2016•威海一模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为()A.7 B.C.D.【解答】解:依题意可知该几何体的直观图如图示,其体积为正方体的体积去掉两个三棱锥的体积.即:,故选D.23.(2016•张掖校级模拟)某几何体的三视图如图所示,则该几何体的体积为26【解答】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.∴几何体的体积V==26.故答案为:26.24.(2016•商洛模拟)已知一个几何体的三视图是三个全等的边长为l的正方形,如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体是正方体削去一个角,体积为1﹣=1﹣=.故选:D.25.(2016•银川校级一模)如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则被截去部分的几何体的表面积为54+18.【解答】解:由三视图可知正方体边长为6,截去部分为三棱锥,作出几何体的直观图如图所示:∴被截去的几何体的表面积S=+×(6)2=54+18.故答案为54+18.26.(2016•哈尔滨校级二模)一个空间几何体的三视图如图所示,则这个几何体的体积为.【解答】解:根据已知中的三视图,可得几何体的直观图如下图所示:该几何是由一个以俯视图为底面的四棱锥,切去两个棱锥所得的组合体,四棱柱的体积为:×(2+4)×4×4=48,四棱锥F﹣EHIJ的体积为:×(2+4)×4×2=8,中棱锥F﹣HGJ的体积为:=,故组合体的体积V=,故答案为:4.(2011•北京模拟)已知一个几何体的三视图如所示,则该几何体的体积为()A.6 B.5.5 C.5 D.4.5【考点】由三视图求面积、体积.【分析】由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积可以做出,高是3,做出截去得到三棱锥的体积,长方体的体积也可以做出.【解答】解:由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积是×1×1=,高是3,∴截去得到三棱锥的体积是2××=1,长方体的体积是3×2×1=6∴几何体的体积是6﹣1=5故选C.。
高中数学简单几何体的表面积与体积考点及例题讲解
![高中数学简单几何体的表面积与体积考点及例题讲解](https://img.taocdn.com/s3/m/bc4ba57b28ea81c759f57878.png)
简单几何体的表面积与体积考纲解读 1.结合三视图求几何体的表面积与体积;2.利用几何体的线面关系求表面积和体积;3.求常见组合体的表面积或体积.[基础梳理]1.多面体的表面积与侧面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表面积与侧面积名称侧面积 表面积 圆柱(底面半径r ,母线长l ) 2πrl 2πr (l +r ) 圆锥(底面半径r ,母线长l ) πrl πr (l +r ) 圆台(上、下底面半径r 1,r 2,母线长l )π(r 1+r 2)lπ(r 1+r 2)l +π(r 21+r 22) 球(半径为R )4πR 23.空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh .特别地,V 圆柱=πr 2h (r 为底面半径). (2)V 锥体=13Sh .特别地,V 圆锥=13πr 2h (r 为底面半径).(3)V 台体=13h (S +SS ′+S ′).特别地,V 圆台=13πh (r 2+rr ′+r ′2)(r ,r ′分别为上、下底面半径).(4)V 球=43πR 3(球半径是R ).[三基自测]1.正六棱柱的高为6,底面边长为4,则它的表面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144答案:A2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案:1∶473.一直角三角形的三边长分别为6 cm,8 cm,10 cm ,绕斜边旋转一周所得几何体的表面积为________.答案:3365π cm 24.(必修2·1.3A 组改编)球内接正方体的棱长为1,则球的表面积为________. 答案:3π5.(2017·高考全国卷Ⅰ改编)所有棱长都为2的三棱锥的体积为________. 答案:223考点一 几何体的表面积与侧面积|易错突破[例1] (1)(2018·九江模拟)如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+23B .8+42C .6+6 2D .6+22+43(2)某品牌香水瓶的三视图如图(单位:cm),则该几何体的表面积为( )A.⎝⎛⎭⎫95-π2cm 2 B.⎝⎛⎭⎫94-π2cm 2 C.⎝⎛⎭⎫94+π2cm 2 D.⎝⎛⎭⎫95+π2cm 2 (3)一个几何体的三视图如图所示,则该几何体的表面积为________.[解析] (1)直观图是四棱锥P ABCD ,如图所示,S △P AB =S △P AD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故此棱锥的表面积为6+42+23,故选A.(2)该几何体的上下为长方体,中间为圆柱. S 表面积=S 下长方体+S 上长方体+S 圆柱侧-2S 圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π×12×1-2×π⎝⎛⎭⎫122=94+π2(cm 2). (3)由三视图可知,该几何体是一个长方体内挖去一个圆柱体,如图所示.长方体的长、宽、高分别为4,3,1,表面积为4×3×2+3×1×2+4×1×2=38, 圆柱的底面圆直径为2,母线长为1, 侧面积为2π×1=2π,圆柱的两个底面面积和为2×π×12=2π. 故该几何体的表面积为38+2π-2π=38. [答案] (1)A (2)C (3)38 [易错提醒]1.以三视图为载体的几何体的表面积或侧面积问题,要分清三视图中的量是否为各表面计算面积所用的量.2.几何体切、割后的图形的表面,不一定是减少,甚至可能增加.3.组合体的表面积,要注意衔接部分分散在哪个面中来计算.[纠错训练]1.已知某斜三棱柱的三视图如图所示,求该斜三棱柱的表面积.解析:由题意知,斜三棱柱的直观图如图中ABC A 1B 1C 1所示.易知正方体的棱长为2.斜三棱柱的两个底面积的和为2S △ABC =2×12×AB ×AC =2,侧面ABB 1A 1的面积S 侧面ABB 1A 1=2×1=2,侧面ACC 1A 1为矩形,S 侧面ACC 1A 1=AA 1·AC =25,侧面BCC 1B 1是边长为5的菱形,连接CB 1、BC 1,易得CB 1=23,BC 1=22,且CB 1⊥BC 1,所以S 侧面BCC 1B 1=12CB 1·BC 1=12×23×22=26,所以斜三棱柱ABC A 1B 1C 1的表面积为4+2(5+6).2.(2016·高考全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,求它的表面积.解析:该几何体是一个球体挖掉18剩下的部分,如图所示,依题意得78×43πR 3=28π3,解得R =2,所以该几何体的表面积为4π×22×78+34π×22=17π.考点二 空间几何体的体积|方法突破[例2] (1)(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2)正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥C 1B 1DA 的体积为( )A .3 B.32 C .1D.32(3)(2017·高考山东卷)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.[解析] (1)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:依题意,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π,选择B.(2) 在正△ABC 中,D 为BC 中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A B 1DC 1底面上的高.∴VC 1B 1DA =VA C 1B 1D =13S △DB 1C 1·AD =13×3×3=1.(3)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.[答案] (1)B (2)C (3)2+π2[方法提升]求几何体的体积的方法 方法解读适合题型 直接法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解 规则 几何体割补法当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体不规则 几何体 等积转换法 利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.求体积时,可选择“容易计算”的方式来计算三棱锥[跟踪训练]1.(2018·大连双基检测)如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的体积为( )A .15B .13C .12D .9解析:几何体的直观图如图所示,其中底面ABCD 是一个矩形(其中AB =5,BC =2),棱EF ∥底面ABCD ,且EF =3,直线EF 到底面ABCD 的距离是3.连接EB ,EC ,则题中的多面体的体积等于四棱锥E ABCD 与三棱锥E FBC 的体积之和,而四棱锥E ABCD 的体积等于13×(5×2)×3=10,三棱锥E FBC 的体积等于13×⎝⎛⎭⎫12×3×3×2=3,因此题中的多面体的体积等于10+3=13,选B.答案:B2.如图所示(单位:cm),则图中的阴影部分绕AB 所在直线旋转一周所形成的几何体的体积为________.解析:由题图中数据,根据圆台和球的体积公式,得 V圆台=13×(π×AD 2+π×AD 2×π×BC 2+π×BC 2)×AB =13×π×(AD 2+AD ×BC +BC 2)×AB=13×π×(22+2×5+52)×4=52π(cm 3), V 半球=43π×AD 3×12=43π×23×12=163π(cm 3),所以旋转所形成几何体的体积V =V 圆台-V半球=52π-163π=1403π(cm 3).答案:1403π(cm 3)考点三 有关球的组合体及面积、体积最值问题|思维突破[例3] (1)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A .33 B.3 C .2 6D .23(2)(2017·高考全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.(3)正四棱柱ABCD A 1B 1C 1D 1的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为________.[解析] (1)设正六棱柱的底面边长为a ,高为h ,则可得a 2+h 24=9,即a 2=9-h 24,那么正六棱柱的体积V =⎝⎛⎭⎫6×34a 2×h =332(9-h 24)h =332(-h 34+9h ). 令y =h 34+9h ,∴y ′=-3h 24+9.令y ′=0,∴h =2 3.易知当h =23时,正六棱柱的体积最大,故选D.(2)设球O 的半径为R ,∵SC 为球O 的直径,∴点O 为SC 的中点,连接AO ,OB (图略),∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,∴V SABC =V ASBC =13×S △SBC×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.(3)如图,截面图为长方形ACC 1A 1和其外接圆.球心为EE 1的中点O , 则R =OA .设正四棱柱的侧棱长为b ,底面边长为a ,则AC =2a ,AE =22a ,OE =b2,R 2=⎝⎛⎭⎫22a 2+⎝⎛⎭⎫b 22, ∴4R 2=2a 2+b 2,则正四棱柱的侧面积: S =4ab =2·2a ·2b ≤2(a 2+2b 2)=42R 2,故侧面积有最大值,为42R 2,当且仅当a =2b 时等号成立. [答案] (1)D (2)36π (3)大 42R 2 [思维升华]1.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形问题,再利用平面几何知识寻找几何中元素间的关系求解.2.解决几何体最值问题的方法 方法解读适合题型基本不等式法根据条件建立两个变量的和或积为定值,然后利用基本不等式求体积的最值(1)求棱长或高为定值的几何体的体积或表面积的最值;(2)求表面积一定的空间几何体的体积最大值和求体积一定的空间几何体的表面积的最小值函数法通过建立相关函数式,将所求的组合体中的最值问题最值问题转化为函数的最值问题求解,此法应用最为广泛几何法 由图形的特殊位置确定最值,如垂直图形位置变化中的最值[跟踪训练](2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:△AOB 的面积为定值,当OC 垂直于平面AOB 时,三棱锥O ABC 的体积取得最大值.由16R 3=36得R =6.从而球O 的表面积S =4πR 2=144π.故选C.答案:C1.[考点二](2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:球心到圆柱的底面的距离为圆柱高的12,球的半径为1,则圆柱底面圆的半径r=1-(12)2=32,故该圆柱的体积V =π×(32)2×1=3π4,故选B.答案:B2.[考点一](2016·高考全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:由三视图知圆锥的高为23,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.答案:C3.[考点二](2015·高考全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×13πR 2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62×3≈22(斛).故选B.答案:B4.[考点一、三](2017·高考全国卷Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π.答案:14π5.[考点一、三](2017·高考全国卷Ⅰ改编)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,求所得三棱锥体积(单位:cm 3)的最大值.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时,设△ABC 的边长为a (a >0)cm ,则△ABC 的面积为34a 2,△DBC 的高为5-36a ,则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0,∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312×25a 4-533a 5.令t =25a 4-533a 5,则t ′=100a 3-2533a 4,由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,∴OG 的长度与BC 的长度成正比.设OG =x ,则BC =23x ,DG =5-x ,S △ABC =23x ·3x ·12=33x 2,则所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2,则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80,∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.。
2019年全国版高考数学必刷题:第十二单元 空间几何体的结构特征
![2019年全国版高考数学必刷题:第十二单元 空间几何体的结构特征](https://img.taocdn.com/s3/m/a92e2173227916888586d767.png)
第十二单元空间几何体的结构特征考点一根据三视图求简单多面体、切割体等的体积或表面积1.(2017年全国Ⅰ卷)某多面体的三视图如图所示,其中正(主)视图和侧(左)视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为().A.10B.12C.14D.16【解析】观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边边长为2的等腰直角三角形,高为2,如图所示.因此该多面体的各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2××(2+4)×2=12.故选B.【答案】B2.(2017年全国Ⅱ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为().A.90πB.63πC.42πD.36π【解析】由几何体的三视图可知,该几何体是一个圆柱被一个平面截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A处水平分成上下两部分.由图可知,该几何体的体积等于上部分圆柱体积的加上下部分圆柱的体积,所以该几何体的体积V=π×32×4+π×32×6×=63π.故选B.【答案】B3.(2016年全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是().A.17πB.18πC.20πD.28π【解析】由几何体的三视图可知,该几何体是一个球体去掉上半球的,得到的几何体如图.设球的半径为R,则πR3-·πR3=π,解得R=2.因此它的表面积为·4πR2+πR2=17π.故选A.【答案】A4.(2015年全国Ⅰ卷)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正(主)视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=().A.1B.2C.4D.8【解析】如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=·4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.【答案】B5.(2016年北京卷)某三棱锥的三视图如图所示,则该三棱锥的体积为().A. B. C. D.1【解析】通过三视图可还原几何体为如图所示的三棱锥P-ABC,通过侧(左)视图得高h=1,底面积S=×1×1=,所以体积V=Sh=××1=.【答案】A6.(2016年全国Ⅱ卷)如图所示的是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为().A.20πB.24πC.28πD.32π【解析】由三视图可知圆柱的底面直径为4,母线长(高)为4,所以圆柱的侧面积为2π×2×4=16π,底面积为π×22=4π;圆锥的底面直径为4,高为2,所以圆锥的母线长为=4,所以圆锥的侧面积为π×2×4=8π.所以该几何体的表面积为S=16π+4π+8π=28π.【答案】C7.(2016年全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为().A.18+36B.54+18C.90D.81【解析】由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则该几何体的表面积为(3×3+3×6+3×3)×2=54+18.故选B.【答案】B考点二简单几何体的内切球或外接球的有关问题8.(2017年全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为().A.πB.C.D.【解析】设圆柱的底面半径为r,球的半径为R,且R=1,由圆柱两个底面的圆周在同一个球的球面上可知,r,R及圆柱的高的一半构成直角三角形.∴r=-=.∴圆柱的体积V=πr2h=π×1=.故选B.【答案】B9.(2015年全国Ⅱ卷)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O 的表面积为().A.36πB.64πC.144πD.256π【解析】如图,设球的半径为R,∵∠AOB=90°,∴S△AOB=R2.∵V O-ABC=V C-AOB,而△AOB的面积为定值,∴当点C到平面AOB的距离最大时,V O-ABC最大,∴当C为与球的大圆面AOB垂直的直径的端点时,体积V O-ABC最大,最大值为·R2·R=36,∴R=6,∴球O的表面积为4πR2=4π×62=144π.故选C.【答案】C10.(2017年天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【解析】设正方体的棱长为a,则6a2=18,∴a=.设球的半径为R,则由题意知2R==3,∴R=.故球的体积V=R3=×=.【答案】高频考点:三视图还原几何体,求空间几何体的体积、表面积,几何体外接球、内切球的体积和表面积.命题特点:一般是两个小题,选择题或填空题,常常是一个考查三视图,另一个考查球的组合体,题目注重空间想象能力的考查,属中档题.§12.1空间几何体的三视图及其应用一空间几何体的结构特征1.简单多面体的结构特征(1)棱柱的侧棱都,上下底面是的多边形.(2)棱锥的底面是任意多边形,侧面都是有一个的三角形.(3)棱台可由于棱锥底面的平面截棱锥得到,其上下底面是的多边形.2.旋转体的结构特征(1)圆柱由绕其所在直线旋转而成.(2)圆锥由绕其所在直线旋转而成.(3)圆台由绕其所在直线旋转而成.二空间几何体的三视图几何体的三视图包括:、、,分别是从几何体的、、观察到的几何体的正投影图.三表面积和体积1.圆柱、圆锥、圆台的表面积S圆柱=;S圆锥=;S圆台=.2.柱体、锥体、台体的体积(1)柱体:.(2)锥体:.(3)台体:.☞左学右考判断下列结论是否正确,正确的在括号里画“√”,错误的画“×”.(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)圆锥的三视图中,三个视图均相同.()(4)锥体的体积等于底面面积与高之积.()某几何体的正(主)视图是三角形,则该几何体不可能是().A.圆柱B.圆锥C.四面体D.三棱柱圆台一个底面周长是另一个底面周长的3倍,母线长为15,若圆台的侧面积为420π,求圆台较小底面的半径.知识清单一、1.(1)平行且相等全等(2)公共顶点(3)平行相似2.(1)矩形一边(2)直角三角形任一直角边(3)直角梯形直角腰二、正(主)视图侧(左)视图俯视图正前方正左方正上方三、1.2πr(r+h)πr(r+l)π(r2+rl+Rl+R2)2.(1)V=Sh(2)V=Sh(3)V=(S'++S)h基础训练1.【解析】(1)错,因为两个共底面的棱柱叠放时就不一定是棱柱.(2)错,各侧面三角形必须共顶点.(3)错,圆锥的三个视图不相同.(4)错,还应该乘以.【答案】(1)×(2)×(3)×(4)×2.【解析】圆柱无论如何摆放,其正(主)视图都不可能是三角形.【答案】A3.【解析】设圆台较小底面半径为r,则另一个底面半径为3r,由S=π(r+3r)·15=420π,解得r=7.题型一由空间几何体的直观图判断三视图【例1】某几何体的直观图如图所示,下列给出的四个俯视图中正确的是().【解析】几何体的俯视图轮廓是矩形,几何体的上部分的棱都是可以看见的线段,所以C,D不正确;几何体的上部分中间的棱与正(主)视图方向垂直,所以A不正确.故选B.【答案】B此类题目比较简单,解题的关键是选准视点,弄清楚轮廓线,看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示.【变式训练1】将正方体(如图①)截去两个三棱锥,得到如图②所示的几何体,则该几何体的侧(左)视图为().【解析】还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.【答案】B题型二根据给出的三视图还原几何体【例2】一个几何体的三视图如图所示,则组成该几何体的简单几何体为().A.圆柱与圆台B.圆柱与四棱台C.四棱柱与四棱台D.四棱柱与圆台【解析】由三视图可得该几何体是一个组合体,由几何体上部的三视图均为矩形可知上部是四棱柱,由下部的三视图中有两个梯形可得下部是四棱台,故组成该几何体的简单几何体为四棱柱与四棱台,故选C.【答案】C由三视图还原几何体,要遵循以下三步:(1)看视图,明关系;(2)分部分,想整体;(3)综合起来,定整体.【变式训练2】(1)如图所示的是一个几何体的三视图,则据此可知该几何体的直观图是().(2)如图所示的是一个简单几何体的三视图,则其对应的几何体是().【解析】(1)由三视图知该组合体的上面是锥体,下面是圆柱.(2)对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正(主)视图的矩形中,对角线是虚线,故不符合题意;对于C,该几何体的正(主)视图的矩形中,对角线是从左上到右下的方向,故不符合题意;对于D,该几何体的侧(左)视图的矩形中,对角线是虚线,故不符合题意.故选A.【答案】(1)D(2)A题型三根据三视图求几何体的表面积【例3】某几何体的三视图如图所示,则它的表面积为().A.2+πB.2+πC.2+(1+)πD.2+π【解析】由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,圆锥的母线长为,∴所求几何体的表面积S=S底面+S侧面=×π×12+×2×2+×π×1×=2+π.故选A.【答案】A组合体的表面积是组成它的简单几何体的表面积之和减去公共部分的面积的两倍,要注意重叠的面的面积不能算.【变式训练3】(1)如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为().A.36+3B.36+6C.54D.27(2)如图所示的是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为8的矩形,则该几何体的表面积是().A.20+8B.24+8C.8D.16【解析】(1)由三视图可得该几何体是一个以正(主)视图为底面的四棱柱,其底面积为×(2+4)×3=9,底面周长为2+4+2=6+2,高h=3,故棱柱的表面积S=2×9+(6+2)×3=36+6,故选B.(2)此几何体是一个三棱柱,且高为=4,因为底面是一个等腰直角三角形,直角边长为2,所以其面积为×2×2=2,故其侧面积为(2+2+2)×4=16+8,表面积为2×2+16+8=20+8.故选A.【答案】(1)B(2)A题型四根据三视图求几何体的体积【例4】某几何体的三视图如图所示,则该几何体的体积为().A.+8πB.+8πC.+16πD.+16π【解析】由三视图可得该几何体是一个三棱锥与半圆柱的组合体.半圆柱的底面半径为2,高为4,故其体积为×π×22×4=8π;三棱锥的底面积为×4×2=4,高为2,故其体积为.所以所求组合体的体积V=+8π,故选A.【答案】A求组合体的体积时,关键是弄清楚几何体是由哪几种简单几何体组合而成的,然后由相应几何体的体积公式得出.【变式训练4】如图所示的是某几何体的三视图,则这个几何体的体积是().A.2+B.2+C.4+D.4+【解析】由三视图可知,该几何体是由一个半圆柱与一个三棱柱组成的几何体.这个几何体的体积V=×π×12×1+×()2×2=2+.故选B.【答案】B方法一空间几何体表面积的求法多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.已知三视图求几何体的表面积时,首先根据三视图还原出几何体,此时需要利用线与线的位置关系以及线与面的位置关系分析表面的相对位置关系,然后根据三视图中数据确定对应线段的长度,进而求出表面积.【突破训练1】(2017大石桥学业考试)下图为某几何体的三视图,则该几何体的表面积为().A.32B.16+16C.48D.16+32【解析】由几何体的三视图,得该几何体是底面边长为4,高为2的正四棱锥,所以该四棱锥的斜高为=2.所以该四棱锥的侧面积为4××4×2=16,底面积为4×4=16,所以几何体的表面积为16+16.故选B.【答案】B方法二空间几何体体积的求法1.求简单几何体的体积.若所给的几何体是柱体、锥体或台体,则可直接利用公式求解.2.求组合体的体积.若所给的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等方法进行求解,特别是三棱锥的体积常用等体积法求解.3.求以三视图为背景的几何体的体积,应先根据三视图得到几何体的直观图,然后根据条件求解.【突破训练2】(2017枝江模拟)某几何体的三视图如图所示,则该几何体的体积为().A.+B.1+C.+D.1+【解析】根据已知条件可得该几何体是一个四分之一圆锥与三棱柱的组合体.四分之一圆锥的底面半径为1,高为1,故其体积为××1=;三棱柱的底面是两直角边分别为1和2的直角三角形,高为1,故其体积为×1×2×1=1,故组合体的体积V=1+,选B.【答案】B1.(2017西安一模)某几何体的三视图如图所示,且该几何体的体积是3,则正(主)视图中的x的值是().A.2B.C.D.3【解析】根据三视图判断该几何体为四棱锥,其直观图如图所示,∵V四棱锥=××2×x=3,∴x=3.【答案】D2.(2017洛阳二模)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为().A.B.C.D.3【解析】由三视图可知,该几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A-BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED=×1×1=,S△ABC=S△ABE=×1×=,S△ACD=×1×=,故选B.【答案】B3.(2017楚雄州一模)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为().A.96B.80+4πC.96+4(-1)πD.96+4(2-1)π【解析】由三视图可知该几何体是由边长为4的正方体挖去一个圆锥得到的,圆锥的底面半径为2,高为2,∴圆锥的母线长为2.∴几何体的表面积为6×42-π×22+π×2×2=96-4π+4π.故选C.【答案】C4.(2017江西二模)圆锥的底面半径为a,侧面展开图是半圆面,那么此圆锥的侧面积是().A.2πa2B.4πa2C.πa2D.3πa2【解析】若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍.因为圆锥的底面半径为a,所以圆锥的母线长为2a,故圆锥的侧面积S=2πa2.【答案】A5.(2017福建模拟)某三棱锥的三视图是三个边长相等的正方形及对角线,如图所示,若该三棱锥的体积是,则它的表面积是().A.1B.2C.2D.2【解析】如图所示,该三棱锥是正方体的面对角线构成的正三棱锥.设正方体的棱长为a,则几何体的体积是a3-4××a3=a3=,∴a=1,∴三棱锥的棱长为,因此该三棱锥的表面积S=4××2=2,故选D.【答案】D6.(2017西宁二模)某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是等腰三角形,俯视图是正方形,则该四棱锥的体积是().A.8B.C.4D.【解析】由三视图可知,该四棱锥是一个底面为正方形的四棱锥,且一条侧棱垂直于底面.由题意知底面正方形对角线的长为2,面积S=×22=2,四棱锥的高h=2,所以它的体积是×2×2=,故选D.【答案】D7.(2017山东二模)已知一几何体的三视图如图所示,俯视图由一个直角三角形和一个半圆组成,则该几何体的体积为().A.6π+12B.6π+24C.12π+12D.24π+12【解析】由三视图可知该几何体为半圆柱与直三棱柱的组合体,V=×π×22×3+×2×4×3=6π+12,故选A.【答案】A8.(2017商丘二模)如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为().A. B.3 C.D.4【解析】如图所示,由三视图可知该几何体为四棱锥P-ABCD,连接BD,其体积V=V B-PAD+V B-PCD=××1×3×3+××1×3×3=3.故选B.【答案】B9.(2017大理州一模)某几何体的三视图如图所示,则它的体积是().A.8+B.8+C.8+D.【解析】根据三视图可知,该几何体是组合体,下面是正方体,棱长为2,体积为8;上面是斜高为2,底面边长为2的正四棱锥,所以底面积为4,高为-=,体积为.所以该几何体的体积为8+.故选A.【答案】A10.(2017湘西州模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的体积为().A.40B.C.D.【解析】由几何体的三视图得,该几何体是三棱柱BCE-AGF割去一个三棱锥A-BCD所得的图形,如图所示.∴V几何体×4=.故选B.CDEFGA=×4×4×4-××【答案】B11.(2017合肥一模)一个几何体的三视图如图所示(其中正(主)视图的弧线为四分之一圆周),则该几何体的表面积为().A.72+6πB.72+4πC.48+6πD.48+4π【解析】由三视图,可得该几何体是一个以正(主)视图为底面的柱体,其底面积为4×4-2×2+π×22=12+π,底面周长为4+4+2+2+×2×π×2=12+π,柱体的高为4,故柱体的表面积S=(12+π)×2+(12+π)×4=72+6π.【答案】A12.(2017沈阳三模)《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体(如图):底面ABCD 为矩形,棱EF∥AB.在此几何体中,AB=4,EF=2,△ADE和△BCF都是边长为2的等边三角形,则此几何体的表面积为().A.8B.8+8C.6+2D.8+6+2【解析】过点F作FO⊥平面ABCD,垂足为O,取BC的中点P,连接PF,OP,过点F作FQ⊥AB,垂足为Q,连接OQ.∵△ADE和△BCF 都是边长为2的等边三角形,∴OP=(AB-EF)=1,PF=,OQ=BC=1,∴OF=-=,FQ==,∴S梯形EFBA=S梯形EFCD=×(2+4)×=3.又S△BCF=S△ADE=×22=,S矩形ABCD=4×2=8,∴该几何体的表面积S=3×2+×2+8=8+8.【答案】B13.(2017衡水一模)某几何体的三视图如图所示,则该几何体的体积为().A. B.C.D.【解析】该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S1=×1×2=1,高为1,故三棱柱的体积V1=1×1=1.三棱锥的底面是等腰直角三角形,其面积S2=×1×2=1,高为1,故三棱锥的体积V2=×1×1=.故该几何体的体积V=V1+V2=.【答案】A14.(2017贵阳二模)某几何体的三视图如图所示,则该几何体的体积为().A.16π-B.16π-C.8π-D.8π-【解析】由三视图可知,该几何体为一个半圆柱挖去一个倒立的四棱锥.∴该几何体的体积V=×π×22×4-×42×2=8π-.故选D.【答案】D15.(2017临翔区校级三模)某三棱锥的三视图如图所示,则该三棱锥的表面积为().A.4+8+2B.4+8+4C.8+8+4D.8+8+2【解析】由三视图可知该三棱锥底面是边长为4的正三角形,面积为4,两个侧面是全等的三角形,三边分别为2,2,4,面积之和为4,另一个侧面为等腰三角形,面积是×4×4=8,该三棱锥的表面积为4+8+4.【答案】B§12.2球的体积与表面积一球的结构、球的体积与表面积1.球由绕其直径所在直线旋转一周而成.2.球的体积与表面积公式(1)球的体积公式.(2)球的表面积公式.二球体的截面的特点球既是中心对称的几何体,又是对称的几何体,它的任何截面均为,它的三视图都是.☞左学右考一个球的表面积是16π,则它的体积是.三棱锥P-ABC三条侧棱两两垂直,三个侧面的面积分别为,,,则该三棱锥的外接球表面积为().A.4πB.6πC.8πD.10π知识清单一、1.半圆面2.(1)V=πR3(2)S=4πR2二、轴圆面圆基础训练1.【解析】由4πR2=16π得R=2,所以球的体积为V=πR3=.【答案】2.【解析】三棱锥P-ABC的三条侧棱PA、PB、PC两两垂直,它的外接球就是其扩充为长方体的外接球,设PA=a,PB=b,PC=c,则ab=,bc=,ca=,解得a=,b=1,c=.故长方体的体对角线的长为=.所以球的直径是,半径R=,则球的表面积S=4πR2=6π.【答案】B题型一柱体的外接球【例1】已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=,DE垂直于平面ABCD交球O于点E,则棱锥E-ABCD的体积为.【解析】如图所示,BE过球心,∴DE=--=2,∴V E-ABCD=×3××2=2.【答案】2棱柱的外接球半径的求法:明确球心、球的半径与棱柱底面的外接圆半径的关系是解决问题的关键.【变式训练1】体积为8的正方体的顶点都在同一球面上,则该球面的表面积为().A.8πB.πC.12πD.4π【解析】正方体的体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以球的半径为,所以球的表面积为4π×()2=12π.故选C.【答案】C题型二锥体的外接球【例2】已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,BC⊥CD,AC⊥平面BCD,且AC=2,BC=CD=2,则球O的表面积为().A.4πB.8πC.16πD.2π【解析】∵AC⊥平面BCD,BC⊂平面BCD,∴AC⊥BC,∵BC⊥CD,AC∩CD=C,∴BC⊥平面ACD,∴三棱锥A-BCD可以扩充为以AC,BC,DC为棱的长方体,外接球的直径为该长方体的体对角线,∴4R2=AC2+BC2+CD2=16,∴R=2,∴球O的表面积为4πR2=16π.【答案】C抓住棱锥的线面关系是解决棱锥的外接球问题的关键,三条侧棱两两垂直或对棱相等的三棱锥可放入正方体(或长方体)中考【变式训练2】(2017广西模拟)某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥外接球的表面积为().A.50πB.50πC.40πD.40π【解析】由三视图可得,该几何体是一个以俯视图为底面的三棱锥,其外接球相当于以俯视图为底面的三棱柱的外接球,由底面三边长为3,4,5,得底面外接圆的半径r=,球心到底面的距离d=,故球的半径R=,故该三棱锥外接球的表面积S=4πR2=50π.【答案】A题型三多面体的内切球【例3】(2016年全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是().A.4πB.C.6πD.【解析】由题意知,底面三角形的内切圆直径为4,三棱柱的高为3,所以球的最大直径为3,即V的最大值为.【答案】B通过三棱柱底面三角形的内切圆直径与三棱柱的高比较来确定球的最大直径.【变式训练3】已知一个三棱柱,其底面是正三角形,且侧棱与底面垂直,一个体积为的球体与棱柱的所有面均相切,则这个三棱柱的表面积是().A.6B.12C.18D.24【解析】由球的体积公式,得πR3=,∴R=1.∴正三棱柱的高h=2R=2.设正三棱柱的底面边长为a,则其内切圆的半径为×a=1,∴a=2.∴该正三棱柱的表面积为3a×2R+2×a2=18.【答案】C方法球中的最值问题求几何体外接球体积、表面积的最值的问题,主要考查二次函数的配方法和基本不等式的运用.【突破训练】(1)(2017南昌月考)已知矩形ABCD的周长为18,把它沿图中的虚线折成正四棱柱(线段BC四等分),则这个正四棱柱外接球的表面积的最小值为.【解析】设正四棱柱的底面边长为x,高为y,则8x+2y=18,即4x+y=9,0<x<,正四棱柱的外接球半径为=-,当且仅当x=2时,半径的最小值为,∴外接球的表面积的最小值为9π.【答案】9π1.(2017乌鲁木齐期末)球的表面积与它的内接正方体的表面积之比是().A.B.C.D.π【解析】设正方体的边长为a,则球的半径为,所以球的表面积S1=4πR2=4π×a2=3πa2,而正方体的表面积S2=6a2,所以比值=.【答案】C2.(2017江西二模)一个几何体的三视图如图所示,则该几何体的外接球的表面积为().A.36πB.8πC.D.【解析】由几何体的三视图得,该几何体是底面为等腰直角三角形,高为2的直三棱锥,如图所示.该直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R,∵底面是等腰直角三角形,∴底面外接圆的半径为1,∴R2=1+1=2,∴外接球的表面积是4πR2=8π.故选B.【答案】B3.(2016天津期末)直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB⊥AC,AA1=12,AB=3,AC=4,则球O的半径为().A.B.2C.D.3【解析】因为三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,AB=3,AC=4,AB⊥AC,AA1=12,所以三棱柱的底面是直角三角形,侧棱与底面垂直,侧面B1BCC1经过球的球心,且球的直径是其对角线的长.因为AB=3,AC=4,所以BC=5,所以BC1=13,所以球的半径为.故选C.【答案】C4.(2017宝清县一模)一个几何体的三视图如图所示,其中正(主)视图是一个正三角形,则这个几何体的外接球的表面积为().A.B.C.4D.2π【解析】由三视图知,该几何体是有一个侧面PAC垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如图所示.这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,故这个几何体的外接球的半径R=PD=.所以这个几何体的外接球的表面积为S=4πR2=4π×=.【答案】A5.(2016安康三模)一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的半径为().A.B.C.D.3【解析】正三棱柱的两个底面的中心的连线的中点就是外接球的球心,球心与顶点的连线长就是半径,所以r==.故选A.【答案】A6.(2017郑州三模)四面体ABCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体ABCD外接球的表面积为().A.50πB.100πC.200πD.300π【解析】由题意可采用构造法,考虑到四面体ABCD的四个面为全等的三角形,故构造一个长、宽、高分别x、y、z的长方体,使得过同一顶点的三个面的面对角线长分别为10,2,2,则三棱锥A-BCD为长方体中的一个内嵌三棱锥,如图所示,所以x2+y2=100,x2+z2=136,y2+z2=164,设外接球的半径为R,则有(2R)2=x2+y2+z2=200,所以4R2=200,所以外接球的表面积为S=4πR2=200π.故选C.【答案】C7.(2017福建模拟)已知三棱锥P-ABC的三条侧棱两两垂直,且AB=,BC=,AC=2,则此三棱锥的外接球的体积为().A.B.C.D.【解析】∵AB=,BC=,AC=2,∴PA=1,PC=,PB=2.以PA、PB、PC为过同一顶点的三条棱,作长方体如图所示,则长方体的外接球同时也是三棱锥P-ABC的外接球.∵长方体的体对角线长为=2,∴球的直径为2,半径R=.因此,三棱锥P-ABC的外接球的体积是R3=×()3=,故选B.【答案】B8.(2017张家口模拟)已知一个空间几何体的三视图如图所示,这个空间几何体的顶点均在同一个球面上,则此球的体积与表面积之比为().A.1∶3B.3∶1C.4∶1D.3∶2【解析】由三视图知几何体是一个正四棱锥,四棱锥的底面是一个边长为的正方形.因为四棱锥的高为1,所以球心在高所在的直线上,易知球心在底面四边形的中心,故此几何体外接球的半径为1,故球的体积为×π×13=,表面积为4×π×12=4π,所以球的体积与表面积之比为1∶3,故选A.【答案】A9.(2017江南十校联考)一个正方体削去一个角所得到的几何体的三视图如图所示,则该几何体外接球的体积为.。
三视图体积面积计算教师版
![三视图体积面积计算教师版](https://img.taocdn.com/s3/m/1464c39ada38376baf1fae5f.png)
..高一直观图三视图及体积面积计算学校:___________姓名:___________班级:___________考号:___________一、选择题1.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为【答案】D【解析】试题分析:左视图是指从几何体的左边看几何体的投影,如图A的投影为D,E的投影为G,B的投影为C,线段AF的投影为DF,故选D.考点:三视图2.如图为某几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥 B.三棱锥C.三棱柱 D.三棱台【答案】C【解析】试题分析:该几何体的主视图和俯视图都为矩形,左视图为三角形,可以得到该几何体是一个横着放的三棱柱。
考点:三视图的还原图3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()【答案】D【解析】试题分析:由正视图和侧视图知,几何体可能是两个圆柱的组合体时,俯视图为A,几何体是圆柱与正四棱柱的组合时,俯视图为B,几何体是圆柱与底面为等腰直角三角形的直三棱柱的组合时,俯视图为C,如果俯图是D,正视图和侧视图不可能相同.故选D.考点:三视图.4.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 B.8 C.2+.2+【答案】B【解析】试题分析:根据题目给出的直观图的形状,画出对应的原平面图形的形状,求出相应的边长,则问题可求.作出该直观图的原图形,因为直观图中的线段C′B′∥x′轴,所以在原图形中对应的线段平行于x轴且长度不变,点C和B′在原图形中对应的点C和B的纵坐标是O′B′的2倍,则OB OC=3,则四边形OABC的长度为8.故选B.考点:平面图形的直观图5.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()试卷第2页,总20页..【答案】A 【解析】试题分析:根据斜二测画法知, 平行于x 轴的线段长度不变,平行于y 的线段变为原来的12,∵O ′C ′=1,O ′A ′,∴OC=O ′C ′=1,OA=2O ′A ′= 由此得出原来的图形是A . 考点:斜二测画法6.一个四面体的三视图如图所示,则该四面体的表面积是A.1+.2+.1+.【答案】B 【解析】试题分析:由三视图可知,该几何体是如下图所示的三棱锥,其中平面PAC ⊥平面ABC,PA PC PD AC ==⊥,且1PD =,BA BA ==,所以112AB CAP S S ∆∆===,PAB ∆与PBC ∆,所以1sin 6022PAB PBC S S ∆∆==︒=,故该三棱锥的表面各为12222⨯+⨯=+B .试卷第4页,总20页AC考点:1.三视图;2.多面体的表面积与体积.7.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .15【答案】D 【解析】试题分析:设正方体棱长为1,由题意得,剩余几何体为一个正方体被一个平面截去一个角,其截去体积为211111326⨯⨯⨯=,因此剩余部分体积为15166-=,比值为15,选D .考点:三视图,三棱锥体积8.一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112 【答案】C 【解析】试题分析:根据三视图可该几何体为三棱锥与立方体的组合,如下图所示,故所求体积314443803V =+⨯⨯⨯=,故选C ...考点:1.三视图;2.空间几何体的体积计算.9.已知某几何体的三视图如右图所示,则该几何体的外接球表面积为( )A .83πB .32πC .8π D. 【答案】C 【解析】何体的外接球的表面积248S r ππ== ,故答案为:C .考点:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,求出其外接球的半径,代入表面积公式,可得答案.10.一个几何体的三视图如图,则该几何体的体积为( )A .πB .2πC .3πD .6π 【答案】D试卷第6页,总20页【解析】试题分析:由三视图可知,该几何体是一个底面半径为1,高为1的圆锥的半个圆锥,故该几何体的体积为21111236ππ⨯⨯⨯⨯=,故选D . 考点:空间几何体的三视图.11. 三棱锥S ABC 及其三视图中的正视图和侧视图如图所示,则棱SB 的长为( )A .B .C .D .【答案】A 【解析】试题分析:由三视图知,在三棱锥S ABC 中,SC平面ABC ,AB=BC=4,SC=4,所以.故选A .考点:三视图的应用. 12.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为 ( )ABD【答案】A 【解析】试题分析::∵边长为1=∴侧视图的底边长为故所求的面积为:12S ==考点:三视图13.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是 ( )..A .2B .4C .6D .12 【答案】B 【解析】试题分析:由三视图可知此棱锥是底面为直角梯形,高为2的四棱锥.所以()112422432V ⎡⎤=⨯+⨯⨯=⎢⎥⎣⎦.故B 正确.考点:三视图. 14.一个棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是( )A 、13BD【答案】D【解析】试题分析:由三视图可得四棱锥的底面是边长为1的正方形,四棱锥的高为h =,且底面积111S =⨯=,所以11133V Sh ==⨯=,故选D . 考点:三视图.15.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( )A .24-32π B .24-3π C .24-π D .24-2π 【答案】A试卷第8页,总20页【解析】试题分析:该几何体是棱柱,棱柱的高为3,底面为长4宽2的矩形去掉半径为1的半圆,因此底面积为21241822s ππ=⨯-⨯=-,所以体积为3242V sh π==-考点:三视图与棱柱体积16.一个体积为A .36B .8C .38D .12 【答案】A 【解析】试题分析:设棱柱的高为h,由左视图可知,底面的正三角形高为角形的边长为4,所以底面积为142⨯⨯=以有13h ⨯=3h =,可得左视图的面积为3=,故选择A考点:三视图17.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .31cm B .32cm C .33cm D .36cm 【答案】A 【解析】试题分析:该三棱锥的体积是313212131cm V =⨯⨯⨯⨯=. 考点:三视图18.已知几何体的三视图(如图),则该几何体的体积为 ( )..A .34B .4C .324D .334【答案】C【解析】=2的正方形,故体积为21233⨯=选C . 考点:三视图19.如图是一个四棱锥的三视图,则该几何体的体积为( )(A )403 (B )323 (C )163 (D )283【答案】A【解析】试题分析:由三视图得到其直观图(上图所示),则体积为1140[(14)4]4323⨯+⨯⨯=,故选A .考点:三视图.试卷第10页,总20页20.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100 cm 3C .92cm 3D .84cm 3【答案】B 【解析】试题分析:由三视图可知原几何体如图所示:故几何体的体积1004)3421(31636=⨯⨯⨯⨯-⨯⨯=V ,答案选B . 考点:空间几何体的三视图与体积21.一个几何体的三视图如图所示,已知这个几何体的体积为h =( )AC..【答案】B 【解析】试题分析:根据题中所给的三视图,可知该几何体为底面为边长为5和6的长方形,顶点在底面上的摄影是左前方的顶点,所以有1563V h =⋅⋅⋅=,解得h =选B .考点:根据所给的几何体的三视图,还原几何体,求其体积及其他量. 22.某几何体的三视图如图所示,则它的体积是.A .283π-B .83π-C .82π-D .23π 【答案】A【解析】试题分析:此几何体是正方体挖了一个圆锥,所以体积ππ32821312222-=⨯⨯-⨯⨯=V .考点:1.三视图;2.几何体的体积.23.如图是正方体的平面展开图,则在这个正方体中N MFE DCB A①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 是异面直线以上四个结论中,正确结论的序号是( )A .①②③B .②④C .③④D .①③④ 【答案】C 【解析】试题分析:把展开图还原为正方体,由图可知:①BM 与ED 是异面直线,所以错误;②CN 与BE 是平行直线,所以错误; ③连接图中AN ,AC 知三角形ANC 是等边三角形,所以AN 与CN 夹角为︒60,所以CN 与BM 所成角也为︒60,正确;④因为CN 与AF 垂直,所以DM 与BN 是异面直线.考点:线面位置关系、空间想象能力、异面直线所成的角. 24.(2014•未央区二模)已知三棱锥的正视图与俯视图如图,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )A. B. C.D.【答案】B【解析】试题分析:利用俯视图与正视图,由三视图的画法可判断三棱锥的侧视图.解:由俯视图可知三棱锥的底面是个边长为2的正三角形,由正视图可知三棱锥的一条侧棱垂直于底面,且其长度为2故其侧视图为直角边长为2和的直角三角形,故选B.点评:本题主要考查空间几何体的直观图,以及学生的空间想象能力,是个基础题.二、填空题25.水平放置的某三角形的直观图是直角边为2的等腰直角三角形,如图,则原三角形的面积是.【答案】【解析】试题分析:根据斜二测画法的规则,分别判断原三角形对应的边长关系,即可求出三角形的面积.解:∵三角形的直观图是直角边为2的等腰直角三角形,∴根据斜二测画法的规则可知,原三角形为直角三角形,直角边分别为2,4,∴面积为=4,故答案为:..点评:本题主要考查斜二测画法的应用,熟练掌握斜二测画法的基本原则,灵活应用其中的数量关系..26.三棱柱的三视图如图所示,则该棱柱的体积等于.【答案】3【解析】试题分析:由三视图可知,此三棱柱是直三棱柱,其高为3,底面是底边长2,底边上的高为1的等腰三角形,所以该棱柱的体积等于12133创?.2考点:三视图27.已知某几何体的三视图如右,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是 cm3.1【答案】6【解析】试题分析:由三视图可知该几何体是三棱锥,底面三角形是等腰三角形,底边为1,高为1,棱锥的高为1,因此体积为61 考点:三视图及棱锥体积28.设某几何体的三视图如下(尺寸的长度单位为m )则该几何体的体积为________3m【答案】4 【解析】试题分析:由三视图可知几何体为三棱锥,底面积63421=⨯⨯=S ,高2=h ,因此体积431==Sh V ,故答案为4. 考点:几何体的体积.29.如图是某几何体的三视图(单位:cm ),则该几何体的表面积是__ ___cm 2,体积为_ __ cm 3.【答案】14+ 【解析】试题分析:解:根据三视图得出:该几何体是三棱锥,2354AB BC DB CD ====,,,,AB ⊥面BCD ,BC ⊥CD ,∴几何体的表面积是.34325124141112222⨯⨯+⨯⨯+⨯⨯+⨯=+其体积:1113424332S CBD AB ⨯⨯=⨯⨯⨯⨯=,故答案为:14+. 考点:空间几何体的三视图.30.如图,网格纸上正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为 .【解析】试题分析:该多面体为一个三棱锥ABCD,如图,其中12AB BC CD BD AD ===,,考点:三视图31.某三棱锥的主视图与俯视图如图所示,则其左视图的面积为___________.【答案】2 【解析】试题分析:三棱锥左视图为三角形,由三棱锥的主视图可知:三棱锥的高为2,所以左视图的高为2,三棱锥的俯视图宽为为2,所以左视图三角形的底面边长为2 所以左视图的面积22221=⨯⨯=s ,所以选A 考点: 三视图32.某几何体的三视图(单位:cm )如图所示,则该几何体最长棱的棱长为 cm .【答案】34【解析】由三视图还原成如图所示的几何体,该几何体为四棱锥,其中,底面是边长为3与4的矩形,且⊥1VC 平面1111D C B A ,31=VC ,由图形,可知1VA 最长,在11C VA Rt ∆中,344332221=++=VA .11B 1考点:三视图.33.一个几何体的三视图如图所示,其中正视图中ABC ∆是边长为2的正三角形,俯视图为正六边形,那么该几何体的表面积为________________ .正(主)视图俯视图侧(左)视图.【答案】()21533+ 【解析】试题分析:由条件知原几何体是正六棱锥,底面是边长为1的正六边形,侧棱长为2,h ==,一个侧面面积为1112S =⨯=,∴表面积01(11sin 60)662S =⨯⨯⨯⨯+=.考点:三视图.34.下图是一个几何体的三视图,根据图中数据可得 该几何体的表面积是_________;【答案】251π【解析】试题分析:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,<br />其表面为S=25142322)23()23(422ππππ=⨯⨯+⨯⨯+⨯ 故答案为:251π.考点:由三视图求面积、体积.三、解答题35.一个多面体的直观图及三视图如图所示,其中 M ,N 分别是 AF 、BC 的中点(1)求证:MN ∥平面CDEF ; (2)求多面体A-CDEF 的体积.【解析】试题分析:由三视图可知,该多面体是底面为直角三角形的直三棱柱ADE-BCF ,且底面是一个直角三角形,由三视图中所标数据易计算出三棱柱中各棱长的值.(1)取BF 的中点G ,连接MG 、NG ,利用中位线的性质结合线面平行的充要条件,易证明结论(2)多面体A-CDEF 的体积是一个四棱锥,由三视图易求出棱锥的底面面积和高,进而得到棱锥的体积. 试题解析:解(1)证明:由三视图知,该多面体是底面为直角三角形的直三棱柱ADE-BCF ,且AB=BC=BF=4,DE=CF=,90CBF ∠=︒ ,连结BE ,M 在BE 上,连结CEEM=BM ,CN=BN ,所以MN ∥,CE CE CDEF ⊂面,所以//MN 平面CDEF (2)取DE 的中点H . ∵AD=AE ,∴AH ⊥DE , 在直三棱柱ADE-BCF 中, 平面ADE ⊥平面CDEF ,平面ADE∩平面CDEF=DE .∴AH ⊥平面CDEF .36.如图,某多面体的直观图及三视图如图所示: E,F 分别为PC,BD 的中点.(1)求证:PAD EF 平面// (2)求证:PAD PDC 平面平面⊥ (3)求此多面体的体积【答案】(1)四棱锥ABCD P -的底面是边长为2的正方形,侧面PAD 是等腰三角形,2==PD PA ,且ABCD PAD 平面平面⊥.连结AC ,则F 是AC 的中点。
三视图与体积、表面积(例、练及答案)
![三视图与体积、表面积(例、练及答案)](https://img.taocdn.com/s3/m/948fd05887c24028915fc368.png)
专题十三:三视图与体积、表面积(例、练及答案)1.由三视图求面积例1:一个几何体的三视图如图所示,则该几何体的表面积为_________.2.由三视图求体积例2:某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A .4B .C .D .8练习一、单选题1.某几何体的三视图如图所示,若该几何体的表面积为 ,则俯视图中圆的半径为()A .1B .2C .3D .42.正方体中,为棱的中点(如图)用过点的平面截去该正方体的上半部分,则剩余几何体的左视图为()A .B .C .D .3.如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为()A .B .C .D .44.一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积为()1111ABCD A B C D E 1AA 1B E D 、、2367276A .B .C .D .5.若某三棱柱截去一个三棱锥后所剩几何体的三视图如图所示,则所截去的三棱锥......的外接球的表面积等于()A .B .C .D .6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为()A .B .C .D .7.一个四棱锥的三视图如图所示,则该几何体的表面积为())21+π21⎫+π⎪⎪⎝⎭122⎫+π⎪⎪⎝⎭12⎫π⎪⎪⎝⎭34π32π17π172π32π16π36π72πA .B .C .D .8.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,,,且,则此三棱锥外接球表面积的最小值为()A .B .C .D .9.在四棱锥中,底面,底面为正方形,,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A .B .C .D.10.如图,画出的是某四棱锥的三视图,网格纸上小正方形的边长为1,则该几何体的体积为()6+8+6+8+a b ()520,02a b a b +=>>174π214π4π5πP ABCD -PA ⊥ABCD ABCD PA AB =12131415A .15B .16C .D .11.某几何体的三视图如图(虚线刻画的小正方形边长为1)所示,则这个几何体的体积为()A .B .C .12D .12.如图为一个多面体的三视图,则该多面体的体积为()A .B .7C .D .二、填空题13.网格纸上小正方形的边长为1,粗虚、实线画出的是某个长方体挖去一个几何体得到的几何图形的三视图,则该被挖去的几何体的体积为__________.5035339438320322323314.已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为_______与_______.15.某四棱锥的三视图如图所示,则该四棱锥的体积为_________.16.已知某几何体的三视图如图所示,三视图的轮廓均为正方形,则该几何体的体积为__________.参考答案1.【答案】【解析】由三视图可得该几何体由一个半球和一个圆锥组成,其表面积为半球面积和圆锥侧面积的和.球的半径为3, ∴半球的面积,圆锥的底面半径为3,母线长为5,∴圆锥的侧面积为,∴表面积为.2.【答案】D【解析】由于长方体被平面所截,∴很难直接求出几何体的体积,可以考虑沿着截面再接上一个一模一样的几何体, 从而拼成了一个长方体,∵长方体由两个完全一样的几何体拼成, ∴所求体积为长方体体积的一半。
2020届高三理数一轮讲义:8.2-空间几何体的表面积和体积(含答案)
![2020届高三理数一轮讲义:8.2-空间几何体的表面积和体积(含答案)](https://img.taocdn.com/s3/m/d0607b111711cc7931b716db.png)
第2节空间几何体的表面积和体积最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式.知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l3.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h锥体(棱锥和圆锥)S表面积=S侧+S底V=13S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3[微点提醒]1.正方体与球的切、接常用结论正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.3.正四面体的外接球与内切球的半径之比为3∶1.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)锥体的体积等于底面面积与高之积.()(2)两个球的体积之比等于它们的半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2.(必修2P27练习1改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm解析由题意,得S表=πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm).答案 B3.(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V球∶V柱为()A.1∶2B.2∶3C.3∶4D.1∶3解析设球的半径为R,则V球V柱=43πR3πR2×2R=23.答案B4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323π C.8π D.4π解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π.答案 A5.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4 C.π2 D.π4解析如图画出圆柱的轴截面ABCD,O为球心.球半径R=OA=1,球心到底面圆的距离为OM=1 2.∴底面圆半径r=OA2-OM2=32,故圆柱体积V=π·r2·h=π·⎝⎛⎭⎪⎫322×1=3π4.答案 B6.(2018·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)为________.解析 由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6. 答案 6考点一 空间几何体的表面积【例1】 (1)(2019·南昌模拟)一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是( )A.4 3B.4 5C.4(5+1)D.8(2)(2018·洛阳模拟)某几何体的三视图如图所示,则其表面积为( )A.17π2B.9πC.19π2D.10π解析 (1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.由题意知底面正方形的边长为2,正四棱锥的高为2,则正四棱锥的斜高PE=22+12= 5.所以该四棱锥的侧面积S=4×12×2×5=4 5.故选B.(2)由三视图可知该几何体由一个圆柱与四分之一个球组合而成. 圆柱的底面半径为1,高为3,球的半径为1,所以几何体的表面积为π×12+2π×1×3+4π×12×14+12π×12+12π×12=9π.故选B.答案(1)B(2)B规律方法 1.由几何体的三视图求其表面积:(1)关键是分析三视图确定几何体中各元素之间的位置关系及度量大小.(2)还原几何体的直观图,套用相应的面积公式.2.(1)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(2)旋转体的表面积问题注意其侧面展开图的应用.【训练1】(1)(2019·西安模拟)如图,网格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π(2)(2018·烟台二模)某几何体的三视图如图所示,其中俯视图右侧曲线为半圆弧,则几何体的表面积为( )A.3π+42-2B.3π+22-2C.3π2+22-2D.3π2+22+2解析 (1)由三视图知,该几何体由一圆锥和一个圆柱构成的组合体, ∵S 圆锥侧=π×3×32+42=15π,S 圆柱侧=2π×1×2=4π,S 圆锥底=π×32=9π.故几何体的表面积S =15π+4π+9π=28π.(2)由三视图,该几何体是一个半圆柱挖去一直三棱柱,由对称性,几何体的底面面积S 底=π×12-(2)2=π-2.∴几何体表面积S =2(2×2)+12(2π×1×2)+S 底 =42+2π+π-2=3π+42-2. 答案 (1)C (2)A考点二 空间几何体的体积多维探究角度1 以三视图为背景的几何体的体积【例2-1】 (2019·河北衡水中学调研)某几何体的三视图如图所示,则该几何体的体积为( )A.6B.4C.223D.203解析 由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是等腰直角三角形,等腰直角三角形的直角边长为2.故几何体体积V =23-12×2×2×1=6.答案 A角度2 简单几何体的体积【例2-2】 (2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.解析 连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =12AC .因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =12AC .所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形.又点M 到平面EHGF 的距离为12,所以四棱锥M -EFGH 的体积为13×⎝ ⎛⎭⎪⎫222×12=112.答案 112角度3 不规则几何体的体积【例2-3】 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12, AG =GD =BH =HC =32,取AD 的中点O ,连接GO ,易得GO =22, ∴S △AGD =S △BHC =12×22×1=24,∴多面体的体积V =V 三棱锥E -ADG +V 三棱锥F -BCH +V 三棱柱AGD -BHC =2V 三棱锥E -ADG +V 三棱柱AGD -BHC =13×24×12×2+24×1=23.故选A. 答案 A规律方法 1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.【训练2】 (1)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A.3B.32C.1D.32(2)某几何体的三视图如图所示,则该几何体的体积为( )A.8π-163B.4π-163C.8π-4D.4π+83解析(1)如题图,在正△ABC中,D为BC中点,则有AD=32AB=3,又∵平面BB1C1C⊥平面ABC,平面BB1C1∩平面ABC=BC,AD⊥BC,AD⊂平面ABC,由面面垂直的性质定理可得AD⊥平面BB1C1C,即AD为三棱锥A-B1DC1的底面B1DC1上的高,∴V A-B1DC1=13S△B1DC1·AD=13×12×2×3×3=1.(2)该几何体为一个半圆柱中间挖去一个四面体,∴体积V=12π×22×4-13×12×2×4×4=8π-163.答案(1)C(2)A考点三多面体与球的切、接问题典例迁移【例3】(经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2 C.6π D.32π3解析由AB⊥BC,AB=6,BC=8,得AC=10.要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则12×6×8=12×(6+8+10)·r,所以r=2.2r=4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=3 2.故球的最大体积V=43πR3=92π.答案 B【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 解 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1,则球O 是长方体ABEC -A 1B 1E 1C 1的外接球.∴体对角线BC 1的长为球O 的直径.因此2R =32+42+122=13.故S 球=4πR 2=169π.【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”,试求该几何体外接球的表面积.解 设外接球的半径为R ,由三视图可知该几何体是两个正四棱锥的组合体(底面重合),上、下两顶点之间的距离为2R ,正四棱锥的底面是边长为2R 的正方形,由R 2+⎝ ⎛⎭⎪⎫22R 2=32解得R 2=6,故该球的表面积S =4πR 2=24π. 规律方法 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练3】 (2019·广州模拟)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( )A.23πB.234πC.64πD.643π解析如图,设O′为正△PAC的中心,D为Rt△ABC斜边的中点,H为AC中点.由平面PAC⊥平面ABC.则O′H⊥平面ABC.作O′O∥HD,OD∥O′H,则交点O为三棱锥外接球的球心,连接OP,又O′P=23PH=23×32×2=233,OO′=DH=12AB=2.∴R2=OP2=O′P2+O′O2=43+4=163.故几何体外接球的表面积S=4πR2=64 3π.答案 D[思维升华]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错防范]1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.直观想象——简单几何体的外接球与内切球问题1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与球有关的问题对该素养有较高的要求.2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O的位置问题,其中球心的确定是关键.类型1外接球的问题1.必备知识:(1)简单多面体外接球的球心的结论.结论1:正方体或长方体的外接球的球心是其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.(2)构造正方体或长方体确定球心.(3)利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.2.方法技巧:几何体补成正方体或长方体.【例1-1】某几何体的三视图如图所示,则该几何体的外接球的表面积为()A.25πB.26πC.32πD.36π解析由三视图可知,该几何体是以俯视图的图形为底面,一条侧棱与底面垂直的三棱锥.如图,三棱锥A-BCD即为该几何体,且AB=BD=4,CD=2,BC=23,则BD2=BC2+CD2,即∠BCD=90°,故底面外接圆的直径2r=BD=4.易知AD 为三棱锥A -BCD 的外接球的直径.设球的半径为R ,则由勾股定理得4R 2=AB 2+4r 2=32,故该几何体的外接球的表面积为4πR 2=32π.答案 C【例1-2】 (2019·东北三省四市模拟)已知边长为2的等边三角形ABC ,D 为BC的中点,沿AD 进行折叠,使折叠后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A.3πB.4πC.5πD.6π解析 连接BC ,由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD ⊥AD ,CD ⊥AD ,BD ⊥CD ,将折叠后的图形补成一个长、宽、高分别是3,1,1的长方体,其体对角线长为1+1+3=5,故该三棱锥外接球的半径是52,其表面积为5π.答案 C【例1-3】 (2019·广州二测)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,PA ⊥平面ABC ,PA =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773πB.2873πC.19193π D.76193π 解析 设AB =c ,BC =a ,AC =b ,由题可得3=13×S △ABC ×2,解得S △ABC =332.因为∠ABC =120°,S △ABC =332=12ac sin 120°,所以ac =6,由余弦定理可得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min=3 2.设△ABC外接圆的半径为r,则bsin 120°=2r(b最小,则外接圆半径最小),故3232=2r min,所以r min= 6.如图,设O1为△ABC外接圆的圆心,D为PA的中点,R为球的半径,连接O1A,O1O,OA,OD,PO,易得OO1=1,R2=r2+OO21=r2+1,当r min=6时,R2min=6+1=7,R min=7,故球O体积的最小值为43πR3min=43π×(7)3=287π3.答案 B类型2内切球问题1.必备知识:(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(2)正多面体的内切球和外接球的球心重合.(3)正棱锥的内切球和外接球球心都在高线上,但不一定重合.2.方法技巧:体积分割是求内切球半径的通用做法.【例2】体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为________. 解析设球的半径为R,由4π3R3=4π3,得R=1,所以正三棱柱的高h=2.设底面边长为a,则13×32a=1,所以a=2 3.所以V=34×(23)2×2=6 3.答案6 3基础巩固题组(建议用时:40分钟)一、选择题1.一个球的表面积是16π,那么这个球的体积为( )A.163πB.323πC.16πD.24π解析 设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3=323π.答案 B2.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛解析 设米堆的底面半径为r 尺,则π2r =8,所以r =16π.所以米堆的体积为V =14×13π·r 2·5=π12·⎝ ⎛⎭⎪⎫16π2·5≈3209(立方尺). 故堆放的米约有3209÷1.62≈22(斛).答案 B3.(2018·茂名模拟)一个几何体的三视图如图所示,则该几何体的体积是( )A.7B.152C.233D.476解析 由三视图可知,该几何体是正方体去掉一个三棱锥,正方体的棱长为2,三棱锥的三个侧棱长为1,则该几何体的体积V =23-13×12×1×1×1=8-16=476.答案 D4.(2019·安徽皖南八校二联)榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积与表面积分别为( )A.24+52π,34+52πB.24+52π,36+54πC.24+54π,36+54πD.24+54π,34+52π解析 由三视图可知,这榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V =4×2×3+π×32×6=24+54π,表面积S =2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.答案 C5.(2019·商丘模拟)一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10 cm的正方形,将该材料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3 cmB.4 cmC.5 cmD.6 cm解析由题意,知该硬质材料为三棱柱(底面为等腰直角三角形),所以最大球的半径等于侧视图直角三角形内切圆的半径,设为r cm,则10-r+10-r=10 2. ∴r=10-52≈3(cm).答案 A二、填空题6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析设新的底面半径为r,由题意得13πr2·4+πr2·8=13π×52×4+π×22×8,解得r=7.答案77.如图,三棱柱ABC-A1B1C1的体积为1,P为侧棱B1B上的一点,则四棱锥P-ACC1A1的体积为________.解析 设点P 到平面ABC 、平面A 1B 1C 1的距离分别为h 1,h 2,则棱柱的高为h =h 1+h 2,又记S =S △ABC =S △A 1B 1C 1,则三棱柱的体积为V =Sh =1.而从三棱柱中去掉四棱锥P -ACC 1A 1的剩余体积为V ′=V P -ABC +VP -A 1B 1C 1=13Sh 1+13Sh 2=13S (h 1+h 2)=13,从而VP -ACC 1A 1=V -V ′=1-13=23.答案 238.(2018·广州调研)如图是一个几何体的三视图,其中正视图和侧视图均是高为2,底边长为22的等腰三角形,俯视图是边长为2的正方形,则该几何体的外接球的体积是________.解析 如图所示,由三视图可得该几何体是三棱锥A -BCD ,其中点A ,B ,C ,D 均是该三棱锥所在长方体的棱的中点,AB =CD =22,长方体的高为2,易得该三棱锥的外接球的半径R =12+(2)2=3,因此该三棱锥的外接球的体积为4πR 33=43π.答案 43π三、解答题9.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解 由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).故仓库的容积是312 m 3.10.如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解 (1)交线围成的正方形EHGF 如图所示.(2)如图,作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,AH =10,HB =6.故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. 能力提升题组(建议用时:20分钟)11.(2018·德阳模拟)已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A.3π+6B.6π+6C.3π+12D.12解析 由三视图还原几何体如图,该几何体为组合体,左半部分是四分之一圆锥,右半部分是三棱锥,则其体积V =14×13×π×32×4+13×12×3×3×4=3π+6.故选A.答案 A12.用长度分别为2,3,5,6,9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为()A.258 cm2B.414 cm2C.416 cm2D.418 cm2解析设长方体从同一顶点出发的三条棱的长分别为a,b,c,则长方体的表面积S=2(ab+bc+ac)≤12[(a+b)2+(b+c)2+(a+c)2],当且仅当a=b=c时上式“=”成立.由题意可知,a,b,c,不可能相等,故当a,b,c的大小最接近时,长方体的表面积最大,此时从同一顶点出发的三条棱的长为8,8,9,用长度为2,6的木棒连接,长度为3,5的木棒连接各为一条棱,长度为9的木棒为第三条棱,组成长方体,此时能够得到的长方体的最大表面积为2×(8×8+8×9+8×9)=416(cm2).答案 C13.(2019·合肥一检)如图,已知平面四边形ABCD满足AB=AD=2,∠A=60°,∠C=90°,将△ABD沿对角线BD翻折,使平面ABD⊥平面CBD,则四面体ABCD外接球的体积为________.解析在四面体ABCD中,∵AB=AD=2,∠A=60°,∴△ABD为正三角形.设BD的中点为M,连接AM,则AM⊥BD,又平面ABD⊥平面CBD,平面ABD∩平面CBD=BD,∴AM⊥平面CBD.∵△CBD为直角三角形,∴其外接圆的圆心是斜边BD的中点M,由球的性质知,四面体ABCD外接球的球心必在线段AM上.又△ABD为正三角形,∴球心是△ABD的中心,则外接球的半径为23×32×2=233,∴四面体ABCD外接球的体积为43×π×⎝⎛⎭⎪⎫2333=323π27.答案323π2714.(2018·沈阳质检)在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.(1)证明:A1O⊥平面ABC;(2)求三棱锥C1-ABC的体积.(1)证明因为AA1=A1C,且O为AC的中点,所以A1O⊥AC,又平面AA1C1C⊥平面ABC,平面AA1C1C∩平面ABC=AC,且A1O⊂平面AA1C1C,∴A1O⊥平面ABC.(2)解∵A1C1∥AC,A1C1⊄平面ABC,AC⊂平面ABC,∴A1C1∥平面ABC,即C1到平面ABC的距离等于A1到平面ABC的距离.由(1)知A1O⊥平面ABC且A1O=AA21-AO2=3,∴V C1-ABC =V A1-ABC=13S△ABC·A1O=13×12×2×3×3=1.。
高考数学立体几何专题1空间立体几何的三视图、表面积和体积
![高考数学立体几何专题1空间立体几何的三视图、表面积和体积](https://img.taocdn.com/s3/m/f7c68668915f804d2b16c140.png)
专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥PABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥PABC 可看作由正方体PADCBEFG 截得,如图所示,PF 为三棱锥PABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。
2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理
![2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理](https://img.taocdn.com/s3/m/8d164d6f0a1c59eef8c75fbfc77da26925c59619.png)
§8.1空间几何体的三视图、直观图、表面积与体积1.多面体的结构特点2.3.空间几何体的直观图经常使用斜二测画法来画,其规那么:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中维持原长度不变,平行于y轴的线段长度在直观图中长度为原先的一半.4.空间几何体的三视图(1)三视图的主视图、俯视图、左视图别离是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.(2)三视图的特点:三视图知足“长对正、高平齐、宽相等”或说“主左一样高、主俯一样长、俯左一样宽”.5.柱、锥、台和球的侧面积和体积1. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,假设∠A 的两边别离平行于x 轴和y 轴,且∠A =90°,那么在直观图中,∠A =45°.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × ) (5)圆柱的侧面展开图是矩形.( √ ) (6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2. (2021·四川)一个几何体的三视图如下图,那么该几何体的直观图能够是 ( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2021·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若是不计容器的厚度,那么球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图象如下图,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5, 因此V =43πR 3=500π3. 4. 一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,因此原三角形的面积为62.5. 假设一个圆锥的侧面展开图是面积为2π的半圆面,那么该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一 空间几何体的结构特点 例1 (1)以下说法正确的选项是( )A .有两个平面相互平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都能够是直角三角形C .有两个平面相互平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不必然交于一点 (2)给出以下命题:①在圆柱的上、下底面的圆周上各取一点,那么这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面能够不相似,但侧棱长必然相等. 其中正确命题的个数是( )A .0B .1C .2D .3思维启发 从多面体、旋转体的概念入手,能够借助实例或几何模型明白得几何体的结构特点. 答案 (1)B (2)A解析 (1)A 错,如图1;B 正确,如图2,其中底面ABCD 是矩形,可证明∠PAB ,∠PCB 都是直角,如此四个侧面都是直角三角形;C 错,如图3;D 错,由棱台的概念知,其侧棱必相交于同一点.(2)①不必然,只有这两点的连线平行于轴时才是母线;②不必然,因为“其余各面都是三角形”并非等价于“其余各面都是有一个公共极点的三角形”,如图1所示;③不必然,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,可是侧棱长不必然相等. 思维升华 (1)有两个面相互平行,其余各面都是平行四边形的几何体不必然是棱柱. (2)既然棱台是由棱锥概念的,因此在解决棱台问题时,要注意“还台为锥”的解题策略. (3)旋转体的形成不仅要看由何种图形旋转取得,还要看旋转轴是哪条直线.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,那么在正方体盒子中,∠ABC 的值为 ( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如下图,连接AB ,BC ,AC ,可得△ABC 是正三角形,那么∠ABC =60°. 题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,那么该几何体的俯视图能够是( )(2)正三角形AOB 的边长为a ,成立如下图的直角坐标系xOy ,那么它的直观图的面积是________.思维启发 (1)由主视图和左视图可知该几何体的高是1,由体积是12可求出底面积.由底面积的大小可判定其俯视图是哪个.(2)依照直观图画法规那么确信平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,应选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一样在已知图形中成立直角坐标系,尽可能运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(1)(2021·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,那么该正方体的主视图的面积不可能等于( )A .1 B.2 C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,那么原图形是 ( ) A .正方形 B .矩形C .菱形D .一样的平行四边形答案 (1)C (2)C解析 (1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.(2)如图,在原图形OABC 中, 应有OD =2O ′D ′=2×22=42 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形. 题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如下图,那么该几何体的表面积为 ( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如下图,其中主视图、左视图均由直角三角形与半圆组成,俯视图由圆与内接三角形组成,依照图中的数据可得几何体的体积为 ( ) A.2π3+12B.4π3+16 C.2π6+16D.2π3+12思维启发 先由三视图确信几何体的组成及气宇,然后求表面积或体积. 答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如下图,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.因此S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确信该几何体是一个半球体与三棱锥组成的组合体,如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1,故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,因此三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt△ABC 是半球底面的内接三角形,因此球的直径2R =BC =2,解得R =22,因此半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.思维升华 解决此类问题需先由三视图确信几何体的结构特点,判定是不是为组合体,由哪些简单几何体组成,并准确判定这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.(2021·课标全国)已知三棱锥S -ABC 的所有极点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,那么此棱锥的体积为 ( ) A.26 B.36 C.23 D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,因此三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如下图, S △ABC =34×AB 2=34,高OD = 12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿 棱柱侧面通过棱CC ′到M 的最短线路长为29,设这条最短线路与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长;(3)三棱锥C —MNP 的体积.思维启发 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现如何的形式;(3)三棱锥以谁做底好. 标准解答解 (1)该三棱柱的侧面展开图为一边长别离为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如以下图,设PC =x ,那么MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3,∴x =2,即PC =2.又NC ∥AM ,故PC PA =NCAM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332.∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分] 温馨提示 (1)解决空间几何体表面上的最值问题的全然思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)若是已知的空间几何体是多面体,那么依照问题的具体情形能够将那个多面体沿多面体中某条棱或两个面的交线展开,把不在一个平面上的问题转化到一个平面上.若是是圆柱、圆锥那么可沿母线展开,把曲面上的问题转化为平面上的问题.(3)此题的易错点是,不明白从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方式与技术1.棱柱、棱锥要把握各部份的结构特点,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界限和可见轮廓线用实线,看不见的轮廓线用虚线;(2)明白得“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规那么的几何体通过度割或补形将其转化为规那么的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确信有关元素间的数量关系,并作出适合的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体能够看成是由锥体截得的,但必然强调截面与底面平行.2.注意空间几何体的不同放置对三视图的阻碍.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时刻:40分钟)一、选择题1.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案D解析如图,在正五棱柱ABCDE-A1B1C1D1E1中,从极点A动身的对角线有两条:AC1,AD1,同理从B,C,D,E点动身的对角线均有两条,共2×5=10(条).2.(2021·福建)一个几何体的三视图形状都相同、大小均相等,那么那个几何体不能够是( )A .球B .三棱锥C .正方体D .圆柱答案 D解析 考虑选项中几何体的三视图的形状、大小,分析可得. 球、正方体的三视图形状都相同、大小均相等,第一排除选项A 和C. 关于如下图三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都可不能完全相同, 故答案选D.3. (2021·重庆)某几何体的三视图如下图,那么该几何体的体积为( )A.5603B.5803 C .200 D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =2+8×42=20.又棱柱的高为10,因此体积V =Sh =20×10=200.4. 如图是一个物体的三视图,那么此三视图所描述物体的直观图是( ) 答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5. 某几何体的三视图如下图,其中俯视图是个半圆,那么该几何体的表面积为( )A.32π B .π+3C.32π+ 3D.52π+3答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.二、填空题6. 如下图,E 、F 别离为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,那么四边形BFD 1E 在该正方体的面DCC 1D 1上的正投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的正投影为②:B 在面DCC 1D 1上的正投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7. 已知三棱锥A —BCD 的所有棱长都为2,那么该三棱锥的外接球的表面积为________. 答案 3π 解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,因此正方体ANDM —FBEC 的棱长为1.因此该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球确实是正方体ANDM —FBEC 的外接球,因此三棱锥A —BCD 的外接球的半径为32.因此三棱锥A —BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎪⎫322=3π. 8. (2021·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 别离是AB ,AC ,AA 1的中点,设三棱锥F -ADE的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,那么V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝ ⎛⎭⎪⎫12AD ·AE ·sin∠DAE 2h 122AD 2AE sin∠DAE=124. 三、解答题9.一个几何体的三视图及其相关数据如下图,求那个几何体的表面积.解 那个几何体是一个圆台被轴截面割出来的一半.依照图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故那个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个正三棱台的两底面边长别离为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如下图,三棱台ABC —A 1B 1C 1中,O 、O 1别离为两底面中心,D 、D 1别离为BC和B 1C 1的中点,那么DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,因此棱台的高为4 3 cm. B 组 专项能力提升(时刻:30分钟)1. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25VB.13VC.23VD.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD .因为M 是AE 的中点,因此V M —ABCD =12V . 因此V E —MBC =12V -V E —MDC . 而V E —MBC =V B —EMC ,V E —MDC =V D —EMC ,因此V E —MBCV E —MDC =V B —EMC V D —EMC =h 1h 2.因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,因此h 1h 2=32. 因此V E —MBC =V M -EBC =310V .2. 某三棱锥的三视图如下图,该三棱锥的表面积是( ) A .28+6 5 B .30+65C .56+125 D .60+125 答案 B 解析 由几何体的三视图可知,该三棱锥的直观图如下图,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,因此AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =25. 在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+65. 3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .那么12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)依照图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD ,因此在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.5. 在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,假设在那个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,那么把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面别离为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等, 得13r (2+2)a 2=13a 3,解得r =12(2-2)a .。
利用三视图求几何体的表面积和体积
![利用三视图求几何体的表面积和体积](https://img.taocdn.com/s3/m/e005a031f4335a8102d276a20029bd64783e62d0.png)
6
5
由三视图求几何体的体积和表面积的思路
1、由三视图确定几何体的形状 (1)由俯视图确定几何体的底面 (2)根据正视图或侧视图确定几何体侧棱与侧面特征,调整 实线和虚线所对应的棱、面的位置 (3)确定几何体直观图形状 2、由题目中的数据进行代入公式求解
布置作业:
《优化设计》p22-基础巩固3,4,6,7 P24例2,变式训练2, P25-基础巩固7,9
积等于
.
解析:该几何体如图所示,挖去的圆锥的母线长为
62 22 2 10
则圆锥的侧面积等于 4 10 圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面 积为 22 4 ,所以组合体的表面积
为 4 10 24 4 4 10 28 .
答案: 4 10 28
题型二:三视图有关的体积计算
1 3Байду номын сангаас
(S
SS' S')h
题型一:三视图有关面积计算
例1.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )
A.72 B.66 C.60 D.30
解析:由所给三视图可知该几何体为一个三棱柱,且底面为
直角三角形,直角边长分别为3和4,斜边长为5,三棱柱的高为5,
如图所示,所以表面积为
2
温故知新
1、三视图
画三视图的三大原则
正俯一样长,正侧一样高,侧俯一样宽
温故知新
面积
圆柱的表面积:S圆柱 2r(r l) 圆锥的表面积:S圆锥 r(r l) 圆台的表面积:S圆台 (r 2 r'2 rl r'l)
体积
柱体的体积:V柱 Sh
锥体的体积:V锥
1 Sh 3
台体的体积:V台
三视图+求表面积
![三视图+求表面积](https://img.taocdn.com/s3/m/d912bf12f705cc17542709b5.png)
自学检测1(5分钟)
1.用若干大小相同的小立方块搭一个几何体,使得从正面和上面看 到的这个几何体的形状图如下图所示,画出你所搭建的几何体从左 面看到它的形状图。你还能搭出满足条件的其他几何体吗?(至少搭 出5种)
3、棱长均为a的正方体摆成如图的形状,问: ①共有 多少个正方体? ②摆放成如图形状后,求表面积?
解:(1)图中有10个正方体;
(2)根据以上分析该物体的表面积为6×6×a2=36a2.
4、右图是棱长为2厘米的小正方体堆成的图形,求它的表面积和 体积.
解:1)图中几何体露出的面有: 9×2+6×2+7×2, =18+12+14 =44(个) 表面积是:2×2×44=176(平方厘米) 2)这个几何体共有小正方体的个数为:9+3+2=14(个) 体积为:2×2×2×14=112(立方厘米);
6米 8米
当堂训练(10) 1、如图,是用若干个小立方块搭成的几何体的主视图和 俯视图,则搭成这个几何体最少需要 多少个小立方块?
搭成这个几何体最少需要6个小立方块
பைடு நூலகம்
2、用小立方块搭成的几何体,主视图和俯视图如图, 问这样的几何体有多少可能?它最多需要多少小立方块,最少需要
多少小立方块.
最多为3+4+1=8个小立方块,最少为个2+4+1=7小立方块.
立体图形的所能触摸到的面积之和叫做它的表面积
怎么算表面积呢?
提示:
1、从左面看能看到几个小正方形?从右面 看呢?从前面看呢?从后面看呢?从上面 看呢?
2、一共能看到几个小正方形?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中,
————苏 轼《题西林壁》
由三视图求空间几何体的 表50考,2015年15卷9考 考纲内容:1、认识柱、锥、台、球及其简单组合体的结构特 征,并能运用这些特征描述现实生活中简单物体。
2、能画出简单空间图形(长方体、球、圆柱、圆锥 、棱柱等的简易组合)的三视图,能识别上述三视图所表示的 立体模型,会用斜二侧画法画出它们的直观图。
A 1 3 B 12 2 C 2 3D 2 2
小结:
一、本节课复习了: 1、三视图的相关知识。 2、空间几何体的表面积和体积
二、练习了“由三视图求空间几何体的表面积和体积 ”。
方 1、法根总据结三视:图猜想其对应的空间几何体。
2、结合三视图检验猜想的空间几何体是否正确。
3、根据“长对正,高平齐,宽相等”这一原则,读 出几何体的长、宽、高、半径等元素。
大家好
由三视图求空间几何体的表面积体积 【考纲解读】
考点分频:5年50考,2015年15卷9考 考纲内容:1、认识柱、锥、台、球及其简单组合体的结构特 征,并能运用这些特征描述现实生活中简单物体。
2、能画出简单空间图形(长方体、球、圆柱、圆锥 、棱柱等的简易组合)的三视图,能识别上述三视图所表示的 立体模型,会用斜二侧画法画出它们的直观图。
二、知识点回顾
1、三视图
(1)几何体的三视图包括 正(主)视图、侧(左)视图、 俯视图 。 分别是从几何体的 正前方 、 正左方 、 正上方 。
观察几何体画出的轮廓线。
(2)三视图的画法要求: ①三视图的位置分布: 侧视图安排在正视图的正右方,
俯视图安排在正视图的正下方.
②画三视图的三大原则:长对正,高平齐,宽相等
3、会用平行投影画出简单空间图形的三视图与直观 图,了解空间图形的不同表示形式。
4、了解球、棱柱、棱锥、台的表面积和体积的计算 公式。 命题趋势:1、空间几何体的结构特征、三视图、直观图在高 考中几乎年年考查。特别是常见几何体与简单几何体组合的三 视图。
2、空间几何体的表面积与体积常与三视图、直观 图相结合
4、根据相应的表面积、体积公式进行求解。
与半球(半径为r)组成一个几何体,该几何体的正视
图,俯视图如图,若该几何体的表面积为16+20 ,则 r=( )B
A1 B2
C4 D8
6、(2015 全国Ⅱ 6)一个正方体被一个平面
截去一部分后剩余部分的三视图如图,则截去
部分体积与剩余部分体积的比值为(D)
A1
8
B1
7
1
1
C 6 D5
7、(2015 安徽 9)一个四面体的三视图 如图所示,则该四面体的表面积为(C)
三、例题解析:(2014 安徽 8)
一个多面体的三视图如图所示,这该多面
体的表面积为( ) 1 1
11
1
1
1
1
正(主)视图
侧(左)视图
1 1
11
俯视图
四、自主练习:
一、快速说出下列三视图所对应的空间几何体
1、(2015 浙江 2)某空间几何体 的三视图如图所示(单位:cm )这该几何体的体积是()
3、会用平行投影画出简单空间图形的三视图与直观 图,了解空间图形的不同表示形式。
4、了解球、棱柱、棱锥、台的表面积和体积的计算 公式。 命题趋势:1、空间几何体的结构特征、三视图、直观图在高 考中几乎年年考查。特别是常见几何体与简单几何体组合的三 视图。
2、空间几何体的表面积与体积常与三视图、直观 图相结合
③看得见的轮廓线画实线,看不见的轮廓线画虚线。
俯
左 圆台 主
长对正 高平齐 宽相等
2、空间几何体的表面积体积公式:
(1)表面积:侧面积+底面积
(2)体积
球体的表面积:S 4R2 球
柱体的体积:V柱 Sh
锥体的体积:V锥
1 Sh 3
台体的体积:V台1 3(S SS 'S')h
球的体积:V
4R3
球
3
与半球(半径为r)组成一个几何体,该几何体的正视
图,俯视图如图,若该几何体的表面积为16+20 ,则 r=( )
A1 B2
C4 D8
二、动手算一算
4、(2015 重庆 5)某几何体的三视图如图所
示,该几何体的体积为(B)
A 1 2 B 13
3
6
C
7 3
D
5 2
5、(2015 全国Ⅰ 11)圆柱被一个平面截去一部分后
2、(2015 陕西 5)一个几 何体的三视图如图所示,则 该几何体的表面积为( )
3、(2015 天津 10)一个
几何体的三视图如图所示
(单位:cm)则该几何体的
体积为
m3
4、(2015 重庆 5)某几何
体的三视图如图所示,该几
何体的体积为( )
A 1 2 B 13
3
6
C
7 3
D
5 2
5、(2015 全国Ⅰ 11)圆柱被一个平面截去一部分后