根据三视图求几何体的表面积和体积 PPT
高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A
=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.
《三视图》_PPT1
是(
)
第二十九章 投影与视图
4.(4分)(菏泽中考)一个几何体的三视图如图所示,则这个几何体的表面积是(
)
A.青 B.春 C.梦 D.想
解:该几何体一个圆柱叠放在一个长方体上面,所以该几何体的体积为3.
解:该几何体一个圆柱叠放在一个长方体上面,所以该几何体的体积为3.
4.(4分)(菏泽中考)一个几何体的三视图如图所示,则这个几何体的表
)
5.(4分)(随州中考)如图是一个几何体的三视图,则这个几何体的表面积为( )
14×(20÷2)2×20+25×30×40=36280(mm3);
3.(4分)(济宁中考)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是(
)
A.青 B.春 C.梦 D.想
9.(山西中考)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与”点”字所在面相对的面上的汉字
数学
九年级下册
第二十九章 投影与视图
人教版
29.2 三视图
第3课时 由三视图确定几何体的表面积或体积
1.(4分)(深圳中考)下列哪个图形是正方体的展开图( B )
2.(4分)(毕节中考)某正方体的平面展开图如下,由此可知,原正方 体“中”字所在面的对面的汉字是( B )
A.国 B.的 C.中 D.梦
21π m3 3B..30(π4m分3 )C(.济45π宁m3中D考.6)3π如m3图,一个几何体上半部为正四棱锥,下半部为
21π m3 B.30π m3 C.45π m3 D.63π m3
(72.)根(4立据分所)(方金示华数体中据考计,)算如且这图个为有几一何一个体长个的方表体面面,积涂则;该有几何颜体色主视,图的该面几积为何___体_cm的2. 表面展开图是( B )
三视图课件
B
A. 32 B. 16 16 2 C. 48 D. 16 32 2
5.2010湖南高考
4
6. (2007宁夏理•8) 已知某个几何体的三视图 如下,根据图中标出的尺寸(单位:cm), 可得这个几何体的体积是( B)
24
柱体
夯实基础 1.棱柱 (1)定义:有两个面互相平行,而且夹在这两个平行 平面间的每相邻两个面的交线都 互相平行,由这些面所 围成的多面体叫做棱柱. 稳固根基
(如图)
1° 球面被经过球心的平面截得的圆叫做大圆. 2° 不过球心的截面截得的圆叫做球的小圆.
(3)球面距离: 1° 定义:在球面上两点之间的最短距离,就是经过这 两点的 大圆 在这两点间的一段 劣弧 的长度, 这个弧长 叫做两点的球面距离. 2° 地球上的经纬线 当把地球看作一个球时, 经线是球面上从北极到南极 的半个大圆,纬线是与地轴垂直的平面与球面的交线,其 中赤道是一个大圆,其余纬线都是一个小圆.
5.球的概念与性质 (1)定义: 半圆绕它的直径所在直线旋转所成的曲面叫 做球面,球面所围成的几何体叫做球.球面也可以看作空 间中到定点的距离等于定长的点的集合. (2)球的截面性质 ①用一个平面去截球,截面是圆面.
②球心到截面的距离 d 与球的半径 R 及截面的半径 r,有下面的关系:
r= R2-d2
空间几何体的结构、三 视图和直观图、表面积 和体积
椎体
2
2.棱锥及其分类 (1)定义: 有一个面是多边形, 其余各面是 有一个公共顶点 的三 角形.由这些面所围成的几何体叫做棱锥. (2)正棱锥 如果棱锥的底面是正多边形, 顶点在过底面中心且与 底面垂直的直线上,则这个棱锥叫做正棱锥.
正棱锥的性质: ①各侧棱相等, 各侧面都是全等的等腰三角形. 这些 等腰三角形的高叫做棱锥的斜高. ②棱锥的高、 斜高和斜高在底面内的射影组成一个直 角三角形; 棱锥的高、 侧棱和侧棱在底面内的射影也组成 一个直角三角形.
2020届高考数学(理)课标版二轮课件:重难考点专题三第1讲 空间几何体的三视图、表面积与体积
为 7 ,SA与圆锥底面所成角为45°.若△SAB的面积为5 15,则该圆锥的侧面积
8
为
.
答案 40 2 π
解析 因为母线SA与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直
角三角形.设底面圆的半径为r,则母线长l= 2 r.在△SAB中,cos∠ASB= 7 ,所以
8
sin∠ASB= 15 .因为△SAB的面积为5 15,即 1 SA·SBsin∠ASB=1 · 2 r·2 r×
A.20π C.28π
B.24π D.32π
答案 C 由三视图知圆锥的高为2 3,底面半径为2,则圆锥的母线长为4,所
以圆锥的侧面积为 1 ×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=
2
16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.
2.(2018课标全国Ⅱ,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值
BC=3,AA1=5.设△ABC内切圆半径为r,则S△ABC=
1 2
×3×4=
1 2
×(3+4+5)r,解得r=1,
所以内切球最大半径为1,直径为2,由AA1=5得,最多可加工出2个球.
2.(2019洛阳联考)已知球O与棱长为4的正四面体的各棱相切,则球O的体积 为( A )
A.8 2 π
3
B.8 3 π
在△ACD中,AD⊥CD,S△ACD= 5 ;
2
在△BCD中,BD⊥CD,S△BCD=1 ,
2
所以表面积为 3 + 2 + 5 .故选A.
2
2
命题角度二 空间几何体的体积
1.(2018课标全国Ⅱ文,16,5分)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与
人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积
2. 如图是一个几何体的三视图,则这个几何体
的A侧.18面cm积2 是( A )
B.20cm2
C. 18 6
3 4
10 2
2
cm
D. 18
75 2
3
解析:由三视图可得,几何体是三棱柱,几何体的侧面积 是三个矩形的面积和,矩形的长为3cm,宽为2cm,∴侧面 积为3×3×2=18cm2.
=
300
240
1 2
=36000(cm2
)
S侧面面积= 300 200=60000(cm2 )
S帐篷表面积=36000 +60000 =96000(cm2)
课堂小结
由三视图确定几何体的表面积或体积,一般步骤为: ① 想象:根据各视图想象从各个方向看到的几何体形状; ② 定形:综合确定几何体(或实物原型)的形状; ③ 展开图:画出展开图,求展开面积。
由三视图描述实物形状,画出物体表面展开图
由三视图确定几何体的表面积或是体积, 首先要确定该几何体的形状。
1.根据下列几何体的三视图,画出它们的展开图。
(1)
(2)
(3)
典例解析
例1 某工厂要加工一批密封罐,设计者给出了密封
罐的三视图,请你按照三视图确定制作每个密封罐所
需钢板的面积.
50
100 50
第3课时 由三视图确定几何体的 表面积或体积
R·九年级下册
复习导入
由三视图描述几何体(或实物原型),一般先根据各视图想象从 各个方向看到的几何体形状, 然后综合起来确定几何体(或实物原 型)的形状, 再根据三视图“长对正、高平齐、宽相等”的关系, 确定轮廓线的位置,以及各个方向的尺寸.
高考数学二轮复习第2部分专题篇素养提升文理专题3立体几何文科第1讲空间几何体三视图表面积与体积文理
表面两两垂直的平面共有
(C )
A.3对
B.4对
C.5对
D.6对
23
【解析】 根据几何体的三视图转换为直观图为:该几何体为四 棱锥体.如图所示:平面与平面的位置关系:平面ABCD⊥平面PBC、 平面ABCD⊥平面PCD、平面PBC⊥平面PCD、平面PAB⊥平面PBC、 平面PAD⊥平面PCD.故选C.
Ⅲ卷
题号 3、12 11、 20(2)
9
考查角度
分值
与棱锥有关的计算;求球的表面积 10
在求点到面的距离时涉及球的表面积;
求四棱锥的体积
11
由三视图求几何体的表面积
5
9
年份 2019
2018
卷别 Ⅰ卷 Ⅱ卷 Ⅲ卷 Ⅰ卷 Ⅱ卷
Ⅲ卷
题号 16 16 16 9 16
3、12
考查角度 点到平面的距离 多面体的棱长与面的个数
21
(3)已知图形中平行于x轴的线段,在直观图中长度保持不变,平 行于y轴的线段,长度变为原来的一半.
(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的 z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直 观图中仍平行于z′轴且长度不变.
22
1.(2020·浙江模拟)一个几何体的三视图如图所示,则该几何体
38
考向2 空间几何体的体积
典例3 (1)(2020·葫芦岛模拟)正方体ABCD-A1B1C1D1的棱
长为2,在A,B,C,D,C1,D1这六个顶点中,选择两个点与A1,B1构
成正三棱锥P,在剩下的四个顶点中选择两个点与A1,B1构成正三棱锥
Q,M表示P与Q的公共部分,则M的体积为
( A)
A.13
人教版九年级下册数学《由三视图确定几何体的面积或体积》投影与视图教学说课复习课件
知1-讲
知1-讲
例1〈泸州〉如图所示的几何体的左视图是( C )
导引: 左视图是从物体的左面看到的视图,从圆柱的左 边向右边看,看到的是一个矩形,故选C.
总结
知1-讲
单个几何体的三视图直接根据常见的几何体三 视图中识别.
知1-练
1 把图中的几何体与它们对应的三视图用线连接起来.
知1-练
2 【中考·海南】如图是由四个相同的小正方体组成 的几何体,则它的主视图为( A )
分析:支架的形状是由两个大 小不等的长方体 构成的 组合体.画三视图时要注 意这两个长方体的上 下、 前后位置关系.
解:下图是支架的三视图.
知2-讲
总结
知2-讲
画组合体的三视图时,构成组合体的各部分的视图也要遵 守“长对正,高平齐, 宽相等”的规律.
知2-练
1 画出如图所示的正三棱柱、圆锥、半球的三视图.
(2) 请指出三视图、立体图形、展开图之间的对应边.
讲授新课
三视图的有关计算 合作探究
例1 某工厂要加工一批密封罐,设计者给出了密封罐的三视图,请你按照三 视图确定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).
分析: 1. 应先体__形__状____; 2. 画出物体的 展开图 .
1. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为
()
B
A. 6
B. 8
C. 12
D. 24
2. 如图是一个几何体的三视图,根据图中提供的数据 (单位:cm),可求得
这个几何体的体积为3 cm3 .
3 主视图
1 1 左视图 俯视图
2π 3. 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为
2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)
(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形
球
半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.
根据三视图求几何体的表面积和体积
想象
医学资料
• 仅供参考,用药方面谨遵医嘱
根据三视图求几何体的表面 积和体积
学习目标
• 1、能想象出几何体的展开图 •描述实物形状,画出物体表面展开图
由三视图描述实物形状,画出物体表面展开图
练习
根据几何体的三视图画出它的表面展开图:
实 物
展 开 图
展
开
实
图
物
实 物
展 开 图
C
2.一个机器零件的三视图如图所示(单位:cm),这个机器零件 是一个什么样的立体图形?它的表面积是多少?
15
15
10 主视图
12 左视图
10 俯视图
圆柱的表面积: S圆柱 2r22π rh
柱体的体积: V柱S底h
S 圆锥的表面积: 圆锥 r2 r母 l
锥体的体积:
V锥
1 3S底h
C A
例6 某工厂要加工一批密封罐,设计者给出了密封 罐的三视图,请你按照三视图确定制作每个密封罐 所需钢板的面积.
50
50
100
100
解:由三视图可知,密封罐的形状是正六棱柱.
密封罐的高为50mm,店面正六边形的直径为 100mm,边长为50mm,图是它的展开图. 由展开图可知,制作一个密封罐所需钢板的面积 为
空间几何体的三视图直观图表面积与体积
必修2 空间几何体的三视图、直观图、表面积与体积(2月22日)(一)空间几何体的三视图和直观图1.空间几何体的结构特征(1)多面体的结构特征(2)旋转体的形成2.空间几何体的三视图(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图.(2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上2.一几何体的直观图如图,下列给出的四个俯视图中正确的是()3.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()4.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm25.如图,在正四棱柱ABCD -A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为()A.1∶1 B.2∶1C.2∶3 D.3∶2突破点(二)空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r+r′)l2.空间几何体的表面积与体积公式名称几何体表面积体积柱体S表面积=S侧+2S底V=Sh(棱柱和圆柱)锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3空间几何体的表面积[例1](1)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为()A.4π+16+4 3 B.5π+16+4 3C.4π+16+2 3 D.5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+ 3 B.2+ 3C.1+2 2 D.2 2空间几何体的体积柱体、锥体、台体体积间的关系[例2](1)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16 B.13 C.12D.1(2)某几何体的三视图如图所示,则该几何体的体积为()A.13+2π B.13π6 C.7π3 D.5π21.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A.13+23π B.13+23πC.13+26π D.1+26π2.已知一个几何体的三视图如图所示,则该几何体的体积为()A.5π3cm3B.2π cm3 C.7π3cm3D.3π cm33.某几何体的三视图如图所示,则它的表面积为()A.125+20 B.242+20C.44 D.12 54.某几何体的三视图如图所示,则该几何体的表面积等于()A .8+2 2B .11+2 2C .14+2 2D .155.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2](1)已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210 C.132D.310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.81π4B.16πC.9π D.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.1.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1 B.2 C.3 D.42.如图是某几何体的三视图,则该几何体的外接球的表面积为()A.200πB.150π C.100π D.50π3.如图,平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD的顶点在同一个球面上,则该球的表面积为()A.3π B.32π C.4π D.34π4.设一个球的表面积为S1,它的内接正方体的表面积为S2,则S1S2的值等于()A.2π B.6π C.π6 D.π2全国卷5年真题集中演练——明规律1.(2016·全国卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π2.(2016·全国卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB ⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4π B.9π2C.6π D.32π33.(2015·全国卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18 B.17 C.16 D.154.(2015·全国卷)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O -ABC体积的最大值为36,则球O的表面积为() A.36π B.64π C.144π D.256π5.(2015·全国卷)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2C.4 D.86.(2015全国卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有() A.14斛B.22斛C.36斛D.66斛7.(2014·全国卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59 C.1027 D.138.(2013·全国卷)某几何体的三视图如图所示,则该几何体的体积为()A.16+8π B.8+8πC.16+16π D.8+16π9.(2012·全国卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36 C.23 D.22。
初中数学 人教版九年级下册 29.2 三视图 课件
则V圆柱=π,上部 1 球的半径为1,则 1V球= ,故此几
何体的体积为
.
4
4
4
3
3
综合各视图可知,物体的形状是正五棱柱.
左
视
图
解:物体是正五棱柱形状的,如图所示.
【方法总结】由三视图想象立体图形时,先分别根据主视图、 俯视图和左视图想象立体图形的前面、上面和左侧面的局部形 状,然后再综合起来考虑整体图形.
巩固练习
2.根据下列物体的三视图,填出几何体的名称: (1) 如图①所示的几何体是__六__棱__柱____; (2) 如图②所示的几何体是___圆__台____.
情景引入
题西林壁 横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。
你知道这是为什么吗?
探索与思考
下图为某飞机的设计图,你能指出这些设计图是从哪几个方向 来描绘物体的吗?
探索与思考
下图为某汽车的设计图,你能指出这些设计图是从哪几个方向 来描绘物体的吗?
探索与思考
下图为某相机的设计图,你能指出这些设计图是从哪几个方向 来描绘物体的吗?
课后回顾
01
02
03
学习目标
第2课时 由三视图确定几何体
情景导入
下面是哪个几何体的三视图?
主视图
左视图
俯视图
A
B
C
D
探究新知
新知 由三视图确定几何体 考点探究1 根据三视图描述较简单物体的形状 例1 如图,分别根据三视图(1) (2)说出立体图形的名称.
图(1)
图(2)
分析:由三视图想象立体图形时,要先分别根据主视图、 俯视图和左视图想象立体图形的前面、上面和左侧面,然 后再综合起来考虑整体图形.
《三视图》PPT教学课文课件
【例题1】一个几何体的三视图如图所示,其中主视图和左视图都是边长
为4的等边三角形,则这个几何体的侧面积为_________.
分析: 该几何体是底面直径和母线长都是4的圆锥.
圆锥侧面展开图
∴ 侧= 扇=
扇形
1
×
2
弧长
圆锥底面圆周长
半径
圆锥母线长
4 × 4 = 8.
4
4
【例题2】如图是某几何体的三视图,根据图中所标的数据,该几何体的
主视图
图和俯视图宽相等,知俯视图是长和宽分别为
4cm和3的矩形(如图).
所以俯视图的面积为:4 × 3 = 12(2).
俯视图
左视图
1.如图,是一个工件的三视图,则此工件的全面积
是( )
A. 85πcm2
B. 90πcm2 C. 155πcm2
D. 165πcm2
2.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是( )
三视图
由三视图确定几何体的形状以后,根据尺寸就可以进行有关的计算.
根据三视图的有关计算
根据三视图的有关计算
1. 根据三视图求与几何体有关的面积、体积:
(1)根据三视图还原出几何体;
(2)根据三视图“长对正,高平齐,宽相等”的关系确定几何体的尺寸;
(3)根据几何体的面积、体积等公式进行有关的计算.
体积为__________.
136
分析:由三视图知道,该几何体
是两个圆柱的组合体(如图).
∴ 体= 22 × 2 + 42 × 8
= 136.
8
2
4
8
根据三视图的有关计算
2. 求组合体的表面积:
柱体、锥体、台体的表面积和体积 课件
[知识提炼Байду номын сангаас梳理]
1.棱柱、棱锥、棱台的表面积 棱柱、棱锥、棱台都是由多个平面图形围成的多面 体,因此它们的表面积等于各个面的面积之和,也就是 展开图的面积.
2.圆柱、圆锥、圆台的表面积
底面积:S 底=πr2 圆
侧面积:S 侧=2πrl 柱
表面积:S=2πrl+2πr2 底面积:S 底=πr2 圆 侧面积:S 侧=2πrl 锥 表面积:S=πrl+πr2
所以 r=4.则 h=4. 故圆锥的体积 V 圆锥=13πr2h=634π. 答案:A
[迁移探究 1] (变换条件,改变问法) 将典例 2 中 第(2)题的条件“侧面积是 16 2π”改为“若其体积为 3 π”,求该圆锥的侧面积.
解:设圆锥的底面半径为 r,则高 h=r,母线 l=PB
= 2r.
[变式训练] 圆台的上、下底面半径分别是 10 cm 和 20 cm,它的侧面展开图的扇环的圆心角是 180°,求圆 台的表面积.
解:如图所示,设圆台的上底面周长为 c cm,由于 扇环的圆心角是 180°,则 c=π·SA=2π×10,解得 SA= 20(cm).
同理可得 SB=40(cm), 所以 AB=SB-SA=20(cm). 所以 S 表=S 侧+S 上+S 下= π×(10+20)×20+π×102+π×202= 1 100π(cm2).
2+5 则 S 底= 2 ×4=14,高 h=4. 所以 V 四棱柱=S 底·h=56.
归纳升华 1.求解柱体体积的关键是根据条件找出相应的底面 积和高,对于旋转体要充分利用旋转体的轴截面,将待求 的量转化到轴截面内求. 2.求解锥体体积的关键是明确锥体的底面是什么图 形,特别是三棱锥,哪个三角形作为底面是解题的关键点.
高中数学立体几何三视图课件
正 视 图 反 映 了 物 体 的 高 度 和 长 度
侧 视 图 反 映 了 物 体 的 高 度 和 宽 度
俯 视 图 反 映 了 物 体 的 长 度 和 宽 度
c(高) b(宽) a(长)
判断下列三视图的正误:
长未对正
宽不相等
高不平齐
例1: 圆柱的三视图
俯
正视图
侧视图
侧
俯视图
圆柱 正
例2: 圆锥的三视图
侧视图 四 棱 台
正视图
俯 视 图
正
不同的几何体可能有某一,两个视图相同.所以我们 只有通过全部三个视图才能全面准确的反映一个几 何体的特征。
三视图还原立体几何简单与否因人而 异,空间想象力强的人,一眼便能看出是什么 样的图形.我就觉得这种题目还是挺简单的, 哈哈. 首先我给你几个最常见的例子.1.三面都是 长方,就是长方体;2.上面看圆,两个侧面看 长方,就是圆柱;3.上面看圆,两侧面看三角, 就是圆锥;4.上面看多边形,两侧面看三角, 就是棱锥;5.上面看多边形,两侧看长方,就 是棱柱;6.上面看圆,两侧看梯形,就是圆台 ;7.三面都是圆,就是球.
①圆柱可以由 矩形 绕其一边所在直线旋转得到.
②圆锥可以由直角三角形绕其 直角边 所在直线旋转得到. 直角腰 ③圆台可以由直角梯形绕 所在直线或等腰梯形绕上、下 底中点连线所在直线旋转得到,也可由平行于底面的平面截 圆锥得到. ④球可以由半圆或圆绕直径 所在直线旋转得到.
答案
2.空间几何体的三视图 空间几何体的三视图是 正投影 得到,这种投影下与投影面
•
其次要注意的是,三视图显示了图形的 长宽高,从上方看的图显示了长宽或者直 径之类的东西,从侧面看的图显示了长和 高,或者宽和高,或者直径和高之类的. 第三要是你空间想象力不强,那么就得 多练习.至于方法,我觉得多锻炼逆向思维 能力是最好的.你可以随便想象出一个立 体图形,然后自己给那个图形画三视图,然 后再只看你的三视图想象你刚才想的图形 ,反复练习,多总结,我想你会有启发、收获 的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
2.一个机器零件的三视图如图所示(单位:cm),这个机器零件 是一个什么样的立体图形?它的表面积是多少?
15
15
10 主视图
12 左视图
10 俯视图
圆柱的表面积: S圆柱 2r22π rh
柱体的体积: V柱S底h
S 圆锥的表面积: 圆锥 r2 r母 l
锥体的体积:
V锥
1 3S底h
C A
例6 某工厂要加工一批密封罐,设计者给出了密封 罐的三视图,请你按照三视图确定制作每个密封罐 所需钢板的面积.
50
50
100
100
解:由三视图可知,密封罐的形状是正六棱柱.
密封罐的高为50mm,店面正六边形的直径为 100mm,边长为50mm,图是它的展开图. 由展开图可知,制作一个密封罐所需钢板的面积 为
根据三视图求几何体的表面积和体积
学习目标
• 1、能想象出几何体的展开图 • 2、根据三视图求几何体的表面积和体积。
1、由三视图描述实物形状,画出物体表面展开图
由三视图描述实物形状,画出物体表面展开图
练习
根据几何体的三视图画出它的表面展开图:
实 物
展 开 图
展
开
实
图大家应该也有点累了,稍作休息