高中数学新课标测试题及答案

合集下载

2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)

2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)

2024年普通高等学校招生全国统一考试(新课标II 卷)数 学本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知1i z =--,则z =( )A. 0B. 1C. 2D. 22. 已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A. p 和q 都是真命题 B. p ⌝和q 都是真命题 C. p 和q ⌝都是真命题D. p ⌝和q ⌝都是真命题3. 已知向量,a b r r满足1,22a a b =+=r r r ,且()2b a b -⊥r r r ,则b =r ( )A. 12B.22C.32D. 14. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表 亩产量 [900,950) [950,1000) [1000,1050) [1100,1150) [1150,1200) 频数612182410据表中数据,结论中正确的是( ) A. 100块稻田亩产量的中位数小于1050kgB. 100块稻田中亩产量低于1100kg 稻田所占比例超过80%C. 100块稻田亩产量的极差介于200kg 至300kg 之间D. 100块稻田亩产量的平均值介于900kg 至1000kg 之间5. 已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A. 221164x y +=(0y >)B. 221168x y +=(0y >)C. 221164y x +=(0y >)D. 221168y x +=(0y >)6. 设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ( ) A. 1-B. 12C. 1D. 27. 已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A. 12B. 1C. 2D. 38. 设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A.18B.14C. 12D. 1二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9. 对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有( ) A. ()f x 与()g x 有相同零点 B. ()f x 与()g x 有相同最大值 C. ()f x 与()g x 有相同的最小正周期D. ()f x 与()g x 的图像有相同的对称轴10. 抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A. l 与A e 相切B. 当P ,A ,B 三点共线时,||15PQ =的⊥;(1)证明:EF PD(2)求面PCD与面PBF所成的二面角的正弦值.18. 某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为A. 0B. 1C. 2D. 2【答案】C 【解析】【分析】由复数模的计算公式直接计算即可. 【详解】若1i z =--,则()()22112z =-+-=.故选:C2. 已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A. p 和q 都是真命题 B. p ⌝和q 都是真命题 C. p 和q ⌝都是真命题 D. p ⌝和q ⌝都是真命题【答案】B 【解析】【分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解. 【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题, 对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题, 综上,p ⌝和q 都是真命题. 故选:B.3. 已知向量,a b r r满足1,22a a b =+=r r r ,且()2b a b -⊥r r r ,则b =r ( )A. 12 B.22C.32D. 1【答案】B 【解析】【分析】由()2b a b -⊥r r r 得22b a b =⋅r r r ,结合1,22a a b =+=r r r ,得22144164a b b b +⋅+=+=r r r r ,由此即可得解.【详解】因为()2b a b -⊥r r r ,所以()20b a b -⋅=r r r ,即22b a b =⋅r r r,又因为1,22a a b =+=r r r,所以22144164a b b b +⋅+=+=r r r r ,.从而22=r b .故选:B.4. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表 亩产量 [900,950) [950,1000) [1000,1050) [1100,1150) [1150,1200) 频数612182410据表中数据,结论中正确的是( ) A. 100块稻田亩产量的中位数小于1050kgB. 100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C. 100块稻田亩产量的极差介于200kg 至300kg 之间D. 100块稻田亩产量的平均值介于900kg 至1000kg 之间 【答案】C 【解析】【分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D.【详解】对于 A, 根据频数分布表可知, 612183650++=<, 所以亩产量的中位数不小于 1050kg , 故 A 错误; 对于B ,亩产量不低于1100kg 的频数为341024=+, 所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确; 对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误. 故选;C.5. 已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A. 221164x y +=(0y >)B. 221168x y +=(0y >)C. 221164y x +=(0y >)D. 221168y x +=(0y >)【答案】A 【解析】【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解. 【详解】设点(,)M x y ,则0(,),(,0)P x y P x ', 因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>, 即点M 的轨迹方程为221(0)164x y y +=>. 故选:A 6. 设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ( ) A. 1- B. 12C. 1D. 2【答案】D 【解析】【分析】解法一:令()()21,cos a x F x ax G x =-=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =-∈-,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+, 令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点, 注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =, 若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立, 可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点, 所以2a =符合题意; 综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=, 则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0, 即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因220,1cos 0x x ≥-≥当且仅当0x =时,等号成立, 可得()0h x ≥,当且仅当0x =时,等号成立, 即()h x 有且仅有一个零点0,所以2a =符合题意; 故选:D.7. 已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A. 12 B. 1 C. 2 D. 3【答案】B 【解析】【分析】解法一:根据台体的体积公式可得三棱台的高433h =,做辅助线,结合正三棱台的结构特征求为则2211AA AM A M =+=可得2211DD DN D N =+则1A A 与平面ABC 所成角即为因为11113PA A B PA AB ==,则P P V V -可知1112627ABC A B C P ABC V V --==若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<, 此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >; 当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥; 可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>, 此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞, 令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=, 则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立, 所以22a b +的最小值为12. 故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分. 9. 对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有( )A. ()f x 与()g x 有相同零点B. ()f x 与()g x 有相同最大值C. ()f x 与()g x 有相同的最小正周期D. ()f x 与()g x 的图像有相同的对称轴【答案】BC 【解析】【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可. 【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点, 令π()sin(2)04g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点, 显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确; D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z , ()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误. 故选:BC10. 抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A. l 与A e 相切B. 当P ,A ,B 三点共线时,||15PQ =C. 当||2PB =时,PA AB ⊥D. 满足||||PA PB =的点P 有且仅有2个 【答案】ABD 【解析】【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x =的准线为=1x -,A e 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A e 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长22224115PQ PA r =-=-=,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)ABk -==--, 不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--, 不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误; D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=, 于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=, 2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确. 方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,根据两点间的距离公式,422(4)1164t t t +-=+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确. 故选:ABD11. 设函数32()231f x x ax =-+,则( ) A. 当1a >时,()f x 有三个零点 B. 当0a <时,0x =是()f x 的极大值点C. 存在a ,b ,使得x b =为曲线()y f x =的对称轴D. 存在a ,使得点()()1,1f 为曲线()y f x =的对称中心 【答案】AD 【解析】【分析】A 选项,先分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<, 则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴, 即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为33332C (2)()2b x x -=-, 于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33bb f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12. 记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________. 【答案】95 【解析】【分析】利用等差数列通项公式得到方程组,解出1,a d ,再利用等差数列求和公式节即可得到答案.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=. 故答案:95.13. 已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 21αβ=+,则sin()αβ+=_______. 【答案】223- 【解析】【分析】法一:根据两角和与差正切公式得()tan 22αβ+=-,再缩小αβ+的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案. 【详解】法一:由题意得()()tan tan 4tan 221tan tan 121αβαβαβ++===---+,因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪ ⎪⎝⎭⎝⎭,,Z k m ∈, 则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,的为的则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42), (12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40), (13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40), (15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=. 故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 3cos 2A A +=. (1)求A .(2)若2a =,2sin sin 2b C c B =,求ABC V 的周长. 【答案】(1)π6A =(2)2632++ 【解析】【分析】(1)根据辅助角公式对条件sin 3cos 2A A +=进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决; (2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长. 【小问1详解】方法一:常规方法(辅助角公式) 由sin 3cos 2A A +=可得13sin cos 122A A +=,即sin()1π3A +=, 由于ππ4π(0,π)(,)333A A ∈⇒+∈,故ππ32A +=,解得π6A = 方法二:常规方法(同角三角函数的基本关系)由sin 3cos 2A A +=,又22sin cos 1A A +=,消去sin A 得到:224cos 43cos 30(2cos 3)0A A A -+=⇔-=,解得3cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin 3cos (0π)f x x x x =+<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭, 显然π6x =时,max ()2f x =,注意到π()sin 3cos 22sin()3f A A A A =+==+, max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos 3sin f A A A '==-,即3tan 3A =, 又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(1,3),(sin ,cos )a b A A ==r r ,由题意,sin 3cos 2a b A A ⋅=+=r r, 根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==r r r rr r r r ,则2cos ,2cos ,1a b a b =⇔=r r r r ,此时,0a b =rr ,即,a b r r 同向共线,根据向量共线条件,31cos 3sin tan 3A A A ⋅=⋅⇔=, 又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22223(1)sin 3cos 211t t A A t t-+==+++, 整理可得,2222(23)(23)0((23))t t t --+-==--, 解得tan232A t ==-,根据二倍角公式,223tan 13t A t ==-, 又(0,π)A ∈,故π6A = 【小问2详解】由题设条件和正弦定理2sin sin 22sin sin 2sin sin cos b C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而2cos 2B =,得到π4B =,于是7ππ12C A B =--=, 26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A +=--=+=+=, 由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412bc==, 解得22,62b c ==+,故ABC V 的周长为2632++ 16. 已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程; (2)若()f x 有极小值,且极小值小于0,求a 的取值范围. 【答案】(1)()e 110x y ---= (2)()1,+∞ 【解析】【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a ≤和0a >两种情况,利用导数判断单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可;解法二:求导,可知()e '=-xf x a 有零点,可得0a >,进而利用导数求()f x 的单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可. 【小问1详解】当1a =时,则()e 1x f x x =--,()e 1x f x '=-, 可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=. 【小问2详解】解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立, 可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <; 可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>, 可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >, 所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a , 若()f x 有极小值,则()e '=-x f x a 有零点, 令()e 0x f x a '=-=,可得e x a =, 可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <; 可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,∞+内单调递增, 可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >, 所以a 的取值范围为()1,+∞.⊥;(1)证明:EF PD(2)求面PCD与面PBF所成的二面角的正弦值.【答案】(1)证明见解析865(2)18. 某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为阶段,由该队的另一名队员投篮总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为相互独立.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛? (ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛? 【答案】(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛; 【解析】【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q ⎡⎤=--⎣⎦甲,331(1)P q p ⎡⎤=--⋅⎣⎦乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可. 【小问1详解】甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.【小问2详解】(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q <<Q ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦, 32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦, 3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦, 33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q ⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15, 同理()32()1533E Y q q q p =-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+--- 15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<, 则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.19. 已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y . (1)若12k =,求22,x y ; (2)证明:数列{}n n x y -是公比为11kk+-的等比数列; (3)设n S 为12n n n P P P ++V 的面积,证明:对任意的正整数n ,1n n S S +=. 【答案】(1)23x =,20y = (2)证明见解析 (3)证明见解析 【解析】【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可; (2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可. 【小问1详解】由已知有22549m =-=,故当12k =时,过()15,4P 且斜率为解得3x =-或5x =,所以该直线与故()3,0P ,从而3x =,所以2211222211n n n n n nn n x k x ky y k y kx x y k k+++-+--=--- ()()222222221211111n n n n n n n n n n x k x kx y k y ky k k kx y x y k k k k+++++++=-=-=-----. 再由22119x y -=,就知道110x y -≠,所以数列{}n n x y -是公比为11kk+-的等比数列. 【小问3详解】方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b =u u u r ,(),UW c d =u u u u r,则12UVW S ad bc =-V .(若,,U V W 在同一条直线上,约定0UVW S =V ) 证明:211sin ,1cos ,22UVW S UV UW UV UW UV UW UV UW =⋅=⋅-V u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r()222211122UV UWUV UW UV UW UV UW UV UW ⎛⎫⋅ ⎪=⋅-=⋅-⋅ ⎪⋅⎝⎭u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r()()()2222212a b c d ac bd =++-+ 222222222222122a c a dbc bd a c b d abcd =+++--- ()222221112222a dbc abcd ad bc ad bc =+-=-=-. 证毕,回到原题.由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n n n y k y kx y k ++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+. 再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk-+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+----- ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+- ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211m mn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211m mk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭. 而又有()()()111,n n n n n n P P x x y y +++=----u u u u u u r ,()122121,n n n n n n P P x x y y ++++++=--u u u u u u u r,故利用前面已经证明的结论即得()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==---+--V ()()()()12112112n n n n n n n n x x y y y y x x ++++++=----- ()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=-+--- 2219119119112211211211k k k k k k k k k k k k ⎛⎫-+-+-+⎛⎫⎛⎫⎛⎫⎛⎫=-+--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+-+-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n n n y k y kx y k ++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+. 再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk-+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+----- ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+- ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++-+⎛⎫-=-=- ⎪+-⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫-+⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭. 两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++---=---. 移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++--+=--+. 故()()()()321213n n n n n n n n y y x x y y x x ++++++--=--.而()333,n n n n n n P P x x y y +++=--u u u u u u r ,()122121,n n n n n n P P x x y y ++++++=--u u u u u u u r.所以3n n P P +u u u u u u r 和12n n P P ++u u u u u u u r平行,这就得到12123n n n n n n P P P P P P S S +++++=V V ,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.。

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析1.直线l过点P(1,3),且与x、y轴正半轴所围成的三角形的面积等于6,则l的方程是( )A.3x+y-6=0B.x+3y-10=0C.3x-y=0D.x-3y+8=0【答案】A【解析】设y=kx+b,由题意得k<0,b>0,且解得【考点】点斜式方程及三角形的面积.2.已知,且满足,那么的最小值为()A.B.C.D.【答案】B【解析】由题意得,当且仅当,即时等号的成立的,所以的最小值为,故选B.【考点】基本不等式的应用.3.某港口要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西且与该港口相距20海里的处,并以30海里/时的航行速度沿正东方向匀速行驶,假设该小船沿直线方向以海里/时的航行速度匀速行驶,经过小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.=10,此时v==30【答案】(1)当t=时,Smin(2)航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.【解析】(1)设相遇时小艇的航行距离为海里,则由余弦定理得,再由二次函数的性质求得最值;(2)根据题意,要用时最小,则首先速度最高,即为海里/小时,然后是距离最短,则,解得,再解得相应角.试题解析:(1)设相遇时小艇的航行距离为海里,则故当时,即小艇以海里/小时的速度航行,相遇小艇的航行距离最小(2)设小艇与轮船在处相遇.则,故∵,∴,即,解得又时,,故时,取得最小值,且最小值等于此时,在中,有,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时【考点】函数模型的选择与应用.4.执行如图所示的程序框图,输出的结果是()A.55B.65C.78D.89【答案】A【解析】第一次执行循环体时,,满足判断框的条件,第二次执行循环体时,,满足判断框的条件,第三次执行循环体时,,满足判断框的条件,第四次执行循环体时,,满足判断框的条件,第五次执行循环体时,,满足判断框的条件,第六次执行循环体时,,满足判断框的条件,第七次执行循环体时,,,满足判断框的条件,第八次执行循环体时,,不满足判断框的条件,退出循环体,输出,故答案为A.【考点】程序框图的应用.5.设向量,满足及.(1)求,夹角的大小;(2)求的值.【答案】(1) .(2)|3a+b|=.【解析】(1)根据(3a-2b)2=7,9|a|2+4|b|2-12a·b=7,可得a·b=,再根据数量积的定义可求出cos θ=,进而得到夹角.(2)先求(3a+b)2=9|a|2+6a·b+|b|2=9+3+1=13,从而得到|3a+b|=.(1)设a与b夹角为θ,(3a-2b)2=7,9|a|2+4|b|2-12a·b=7,而|a|=|b|=1,∴a·b=,∴|a||b|cos θ=,即cos θ=又θ∈[0,π],∴a,b所成的角为.(2)(3a+b)2=9|a|2+6a·b+|b|2=9+3+1=13,∴|3a+b|=..【考点】考查了向量的数量积,以及利用数量积求模,夹角等知识.点评:掌握数量积的定义:,求模可利用: 来求解.6.已知向量,若与平行,则实数= .【答案】【解析】由题意得:,解得:.【考点】1.向量平行;7.正方体的全面积是,它的顶点都在一个球面上,则这个球的表面积是_________。

2019版高中数学新课程标准测试题及答案

2019版高中数学新课程标准测试题及答案

高中数学新课标测试题一选择题:1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。

普通高级中学新数学课程标准试题(含答案)

普通高级中学新数学课程标准试题(含答案)

普通高级中学新数学课程标准试题(含答案)第一部分:选择题1. 以下哪个是二次方程的解?A. x = 2B. x = -3C. x = 1D. x = 0答案:B2. 一条直线的斜率是2,过点(3, 4),则直线方程为:A. y = 2x - 6B. y = 2x + 2C. y = 4x + 1D. y = 2x + 4答案:D3. 若a = 3,b = 4,c = 5,则直角三角形的斜边长度为:A. 6B. 8C. 10D. 12答案:C4. 已知函数f(x) = x^2 + 3x + 2,求f(1)的值。

A. 2B. 4C. 6D. 8答案:65. 一辆汽车以每小时60公里的速度行驶,2小时后行驶的距离为:A. 30公里B. 60公里C. 90公里D. 120公里答案:120公里第二部分:填空题1. 一个等差数列的公差是3,首项是4,第5项是__。

答案:162. 一个等比数列的公比是2,首项是3,第4项是__。

答案:243. 设两个数的和是8,差是2,则这两个数分别为__和__。

答案:5和34. 已知直角三角形的直角边长分别为3和4,则斜边长为__。

答案:55. 若a = 3,b = 4,则a^2 + b^2 = __。

答案:25第三部分:解答题1. 解方程:2x + 5 = 15解答:2x + 5 = 152x = 15 - 52x = 10x = 10 / 2x = 52. 计算下列算式的值:(3 + 4) × 2 - 5解答:(3 + 4) × 2 - 57 × 2 - 514 - 593. 求直角三角形的斜边长。

已知直角边长分别为6和8。

解答:斜边长= √(6^2 + 8^2)斜边长= √(36 + 64)斜边长= √100斜边长 = 104. 若函数f(x) = 2x + 3,求f(4)的值。

解答:f(x) = 2x + 3f(4) = 2(4) + 3f(4) = 8 + 3f(4) = 115. 求一个等差数列的第10项,已知公差为3,首项为2。

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析1.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为.【答案】y-1=-(x-2).【解析】根据题意可知:直线l1的斜率为−1,所以l1的点斜式方程为y-1=-(x-2).【考点】两直线垂直的斜率关系.2.已知直角梯形中,是腰上的动点,则的最小值为__________.【答案】5【解析】以D为原点建系,设长为,,最小为5【考点】向量运算3.某港口要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西且与该港口相距20海里的处,并以30海里/时的航行速度沿正东方向匀速行驶,假设该小船沿直线方向以海里/时的航行速度匀速行驶,经过小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.【答案】(1)当t=时,Smin=10,此时v==30(2)航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.【解析】(1)设相遇时小艇的航行距离为海里,则由余弦定理得,再由二次函数的性质求得最值;(2)根据题意,要用时最小,则首先速度最高,即为海里/小时,然后是距离最短,则,解得,再解得相应角.试题解析:(1)设相遇时小艇的航行距离为海里,则故当时,即小艇以海里/小时的速度航行,相遇小艇的航行距离最小(2)设小艇与轮船在处相遇.则,故∵,∴,即,解得又时,,故时,取得最小值,且最小值等于此时,在中,有,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时【考点】函数模型的选择与应用.4.已知点,,,,则向量在方向上的投影为__________.【答案】【解析】由题意可得,由于,所以,所以,应填答案。

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析

高二数学高中数学新课标人教A版试题答案及解析1.执行如图1所示的程序框图,如果输入的,则输出的属于()A.B.C.D.【答案】D【解析】当时,运行程序如下,,当时,,则,故选D.【考点】程序框图二次函数2.过点引直线分别交轴正半轴于两点,当面积最小时,直线的方程是__________.【答案】【解析】设直线方程为(当且仅当即时取等号 ) .【点晴】本题主要考查直线方程和重要不等式,属于中档题型.但是本题比较容易犯错,使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图像,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型.3.如图,输入时,则输出的________.【答案】【解析】由算法流程图提供的算法程序可知:当时,输出,应选答案C。

4.二项式的展开式中常数项是()A.-28B.-7C.7D.28【答案】C【解析】常数项,故选B.【考点】二项式的展开式.5.设是复数,则下列命题中的假命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】对于A中,若,则,所以是正确的;对于B中,若,则和互为共轭复数,所以是正确的;对于C中,设,若,则,,所以是正确的;对于D中,若,则,而,所以不正确,故选D.【考点】复数的概念与运算.6.设函数(1)若时,解不等式;(2)若不等式的对一切恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)当时,||+||,利用零点分段法解不等式或者利用图象解不等式;(2)若不等式的对一切恒成立,则,因为时,,故恒成立,,.试题解析:(1)解:||+||,即或或或或所以原不等式的解集为[](2)||+||对一切恒成立,,恒成立,即恒成立,当时,,【考点】1、绝对值不等式解法;2、函数的最值.7.已知函数,设为的导函数,根据以上结果,推断_____________.【答案】【解析】.8.用反证法证明命题“设为实数,则方程没有实数根”时,要做的假设是A.方程至多有一个实根B.方程至少有一个实根C.方程至多有两个实根D.方程恰好有两个实根【答案】A【解析】至少有一个实根的反面为没有实根 ,所以选A.9.若,则的值是()A.6B.4C.3D.2【答案】D【解析】略10.某长方体的三视图如右图,长度为的体对角线在正视图中的投影长度为,在侧视图中的投影长度为,则该长方体的全面积为()A.B.C.6D.10【答案】B【解析】由三视图设长方体中同一顶点出发的三条棱长为、、,则有,解方程组得到,所以该长方体的面积为,故选B.【考点】1、空间几何体的三视图;2、空间几何体的表面积.11.利用数学归纳法证明不等式的过程中,由变成时,左边增加了()A.1项B.项C.项D.项【答案】D【解析】由题意得,当时,不等式的左侧为,当时,不等式的左侧为,所以变成时,左边增加了,共有项,故选D.【考点】数学归纳法.12.已知圆与圆的公共点的轨迹为曲线,且曲线与轴的正半轴相交于点.若曲线上相异两点满足直线的斜率之积为.(1)求的方程;(2)证明直线恒过定点,并求定点的坐标.【答案】(1);(2)证明见解析,.【解析】(1)确定,可得曲线是长轴长,焦距的椭圆,即可求解椭圆的方程;(2)分类讨论,设出直线的方程,代入椭圆的方程,利用韦达定理,结合直线的斜率之积为,即可证直线恒过定点,并求出定点的坐标.试题解析:(1)设⊙,⊙的公共点为,由已知得,,故,因此曲线是长轴长,焦距的椭圆,所以曲线;(2)由曲线的方程得,上顶点,记,若直线的斜率不存在,则直线的方程为,故,且,因此,与已知不符,因此直线AB的斜率存在,设直线,代入椭圆:①因为直线与曲线有公共点,所以方程①有两个非零不等实根,故,又,,由,得即所以化简得:,故或,结合知,即直线恒过定点.【考点】椭圆的标准方程;直线与椭圆的位置关系的应用.【方法点晴】本题主要考查了椭圆的标准方程、直线与椭圆的位置关系的应用、判定直线过定点问题等知识点的综合考查,解答中设出直线的方程,代入椭圆的方程,利用判别式和根与系数的关系及韦达定理,结合直线的斜率之积为是解答本题的关键,注重考查了分析问题和解答问题的能力及转化与化归思想的应用,试题有一定的难度,属于中档试题.13.在△ABC中,角A,B,C的对边分别为a,b,c,cos=.(1)求cos B的值;(2)若,b=2,求a和c的值.【答案】(1)(2)【解析】解:(1)∵cos=,∴sin=, 2分∴cos B=1-2sin2=. 5分(2)由可得a·c·cos B=2,又cos B=,故ac=6, 6分由b2=a2+c2-2ac cos B可得a2+c2=12, 8分∴(a-c)2=0,故a=c,∴a=c=10分【考点】解三角形点评:解决的关键是根据诱导公式以及二倍角公式和向量的数量积结合余弦定理来求解,属于中档题。

普通高中新数学课程标准的测试题(包括答案)

普通高中新数学课程标准的测试题(包括答案)

普通高中新数学课程标准的测试题(包括答案)第一题已知直线AB与直线CD垂直交于点E,且AE=8cm,BE=6cm,CE=12cm,求ED的长度是多少?答案:根据直角三角形的勾股定理可得,ED的长度为10cm。

第二题已知函数f(x) = 2x^2 + 3x - 5,求f(x)的最小值点的横坐标是多少?答案:首先,可以通过求导数的方法找到f(x)的最小值点。

对f(x)求导得到f'(x) = 4x + 3。

令f'(x) = 0,解得x = -3/4。

所以,f(x)的最小值点的横坐标为-3/4。

第三题已知集合A = {1, 2, 3, 4, 5},集合B = {3, 4, 5, 6, 7},求A与B的交集和并集分别是哪些元素?答案:A与B的交集是{3, 4, 5},并集是{1, 2, 3, 4, 5, 6, 7}。

第四题已知三角形ABC的三个内角分别为30°,60°,90°,求三角形ABC的周长。

答案:根据三角形的性质可知,三角形ABC是一个特殊的30°-60°-90°三角形。

设BC = x,则AC = x√3,AB = 2x。

所以,三角形ABC的周长为x + x√3 + 2x = (3 + √3)x。

第五题已知函数f(x) = 3x^2 - 2x + 4,求f(x)的对称轴方程。

答案:对称轴方程可以通过求函数f(x)的一阶导数的零点得到。

对f(x)求导得到f'(x) = 6x - 2。

令f'(x) = 0,解得x = 1/3。

所以,f(x)的对称轴方程为x = 1/3。

第六题已知等差数列的首项是2,公差是5,求该等差数列的前10项之和。

答案:等差数列的前n项和可以通过公式Sn = (n/2)(a + l)得到,其中Sn表示前n项和,a表示首项,l表示末项。

根据已知条件,首项a = 2,公差d = 5,所以末项l = a + (n-1)d = 2 + 9*5 = 47。

新课标高一上学期期末考试数学试卷含答案

新课标高一上学期期末考试数学试卷含答案

高一数学第一学期期末考试试题卷选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A {}24x x ==,B {}2280x x x =--=,则AB =( ▲ ) A .{}4B .{}2C .{}2- D. ∅ 2.函数2()log (2)f x x =++的定义域是( ▲ ) A .[2,1]-B .(2,1]-C .[2,1)-D .(2,1)- 3.函数()ln 2f x x x =+-的零点所在的一个区间是( ▲ )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4.已知12log 5a =,0.314b ⎛⎫= ⎪⎝⎭,312=c ,则a ,b ,c 的大小关系是( ▲ ) A .c b a << B .c b a << C .c a b << D .b a c <<5.已知角α的终边过点(1,)P y ,若1cos 3=α,则y 的值是( ▲ )A B .± C . - D .6.下列函数中,周期为π的偶函数是( ▲ )A .tan y x =B .sin y x =C .cos 2x y = D .sin cos y x x =⋅ 7.已知扇形的周长为4,面积为1,则该扇形的圆心角是( ▲ )A .1B .2C .2π D .π 8. 函数2cos sin 1y x x =-+的值域是( ▲ ) A .[0,2] B .9[2,]4 C .[1,3] D .9[0,]49. 已知向量=a (,)12,=b (,)k 1,且a 与b 的夹角为锐角,则实数k 的取值范围是( ▲ )A .(2,)-+∞ B.11(2,)(,)22-+∞ C .(,2)-∞- D .(2,2)-10.函数ln ()x f x e =的图像大致是( ▲ )A. B. C. D.11. 已知函数()x x f x e e -=-,()x x g x e e -=+,则以下结论正确的是( ▲ )A .任意的12,x x ∈R 且12x x ≠,都有1212()()0f x f x x x -<- B .任意的12,x x ∈R 且12x x ≠,都有1212()()0g x g x x x -<- C .()f x 有最小值,无最大值D .()g x 有最小值,无最大值12.已知e 是单位向量,向量a 满足-⋅-=2230a a e ,则-4a e 的取值范围是( ▲ )A .[1,3]B .[3,5]C .[1,5]D .[1,25] 非选择题部分(共90分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共34分.13.计算:33log 362log 2-= ▲;138π+= ▲ . 14.已知函数⎩⎨⎧≥+-<+=0),1(log 0,2)(22x x x x x x f ,则((3))f f = ▲ ;若()3f a =,则 实数a = ▲ .15.已知函数(),1f x x x a x =--∈R 有三个零点1x 、2x 、3x ,则实数a 的取值范围是 ▲ ;123x x x 的取值范围是 ▲ . 16.已知1cos()63πα-=-,则sin()3+=πα ▲ . 17.若函数()2sin()f x x m ωϕ=++,对任意实数t 都有()()44f t f t ππ+=-,且()34f π=-,则实数m =▲ .18.在Rt ABC ∆中,已知A ∠=60,斜边AB =4,D 是AB 的中点,M 是线段CD 上的动点,则AM AB ⋅的取值范围是 ▲ .19.已知函数2()2f x x bx =-,若(())f f x 的最小值与()f x 的最小值相等,则实数b 的取值范围是▲ .三、解答题:本大题共4小题,共56分.解答应写出文字说明,证明过程或演算步骤.20.(本题满分14分)已知向量a (sin ,1)=α,b (1,cos )=α. (Ⅰ)若34πα=,求+a b 的值; (Ⅱ)若⋅a b 1,(0,)5απ=-∈,求sin()2sin()2ππαα+++的值.21.(本题满分14分)已知函数2()ln(3)f x x ax =-+.(Ⅰ)若)(x f 在(,1]-∞上单调递减,求实数a 的取值范围;(Ⅱ)当3a =时,解不等式()x f e x ≥.22.(本题满分14分)已知函数()sin()(f x A x x =+∈ωϕR ,0,0,0)2A >><<πωϕ的部分图象如图所示,P 、Q 分别是图象的最高点与相邻的最低点,且1(1),OP =,4OP OQ +=,O 为坐标原点.(Ⅰ)求函数()y f x =的解析式;(Ⅱ)将函数()y f x =的图象向左平移1个单位后得到函数()y g x =的图象,求函数(),[y g x x =∈-23.(本题满分14分)已知函数2()1f x x x =-+,,m n 为实数.(Ⅰ)当[,1]x m m ∈+时,求()f x 的最小值()g m ;(Ⅱ)若存在实数t ,使得对任意实数[1,]x n ∈都有()f x t x +≤成立,求n 的取值范围.第一学期普通高中教学质量监控高一数学参考答案一、选择题(本题有12小题,每小题5分,共60分,每题所给的四个选项中,有且只有一个选项符合题目要求)1—5CDBAB 6—10ABDBC 11—12 DC二、填空题(本题有7个小题,多空题每小题6分,单空题每小题4分,共34分)13.214.0;3- 15.a <<104;(,322 16.13- 17.--51或 18.[,]48 19.b b ≤-≥10或三、解答题:(本题有4个小题,共56分)20.解:(Ⅰ) +=2222a b (1)+(1,-)=(1,1-),∴+=a b --------------------------------6分 (Ⅱ) ⋅a b 15=-, sin cos αα∴+=-15, 又sin cos 221αα+=,sin cos 3545αα⎧=⎪⎪∴⎨⎪=-⎪⎩或sin cos 4535αα⎧=-⎪⎪∴⎨⎪=⎪⎩ 又(0,)∈απ sin ,cos αα∴==-3455, 11sin()2sin()sin 2cos 25ππαααα∴+++=-+=-.-----------14分 21.解:(Ⅰ)()f x 在(,1]-∞上单调递减,a a ⎧≥⎪∴⎨⎪-+>⎩12130得a ≤<24. ---------------------------------7分 (Ⅱ)原不等式等价于2(e )430x x e -+≥,ln x x ∴≤≥03或,所以原不等式的解集为{}0ln3或x x x ≤≥. --------------------------------14分22.(Ⅰ) ()sin()33f x x ππ=+; --------------------------------7分 (Ⅱ) 2g()sin()33x x ππ=+, [1,2]x ∈-,243333x ππππ∴+∈[,],()[g x ∴∈. --------------------------------14分 23.解:(Ⅰ) (ⅰ)当12m ≤-时,2min ()(1)1f x f m m m =+=++, (ⅱ)当1122m -<≤时,min 13()()24f x f ==, (ⅲ)当12m >时,2min ()()1f x f m m m ==-+. 综上,2211,2311(),42211,2m m m g m m m m m ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩. --------------------------------7分(Ⅱ)由()f x t x +≤得22()(22)10h x x t x t t =+-+-+≤,(1)0()0h h n ≤⎧∴⎨≤⎩ ∴关于t 的不等式组2220(21)210t t t n t n n ⎧+≤⎨+-+-+≤⎩有解, 22(21)210t n t n n ∴+-+-+≤在t [1,0]∈-上有解,22112430n n n -⎧-≤-⎪∴⎨⎪-+≤⎩或2221102(2n 1)4(n 2n 1)0n -⎧-≤-≤⎪⎨⎪---+≥⎩, 解得3333242n n ≤≤≤<或, 即334n ≤≤ 又1n > , n ∴的取值范围是13n <≤. ------------------------------14分 (注:第(Ⅱ)小题,由数形结合得正确答案可给满分)。

新课标高中数学同步测试题含答案

新课标高中数学同步测试题含答案

新课标高二数学期末同步测试题说明:本试卷分第一卷和第二卷两部分,第一卷50分,第二卷100分,共150分;答题时间120分钟。

第Ⅰ卷(选择题共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.设a >0, b >0,则以下不等式中不恒成立....的是 ( )A .)11)((b a b a ++≥4B .33b a +≥22abC .222++b a ≥b a 22+D .b a -≥b a -2.△ABC 中,BC=1,B A ∠=∠2,则AC 的长度的取值范围为 ( )A .(1,21) B .(23,1)C .[1,21] D .[23,1] 3.下列四个结论中正确的个数有( )①y = sin|x |的图象关于原点对称;②y = sin(|x |+2)的图象是把y = sin|x |的图象向左平移2个单位而得; ③y = sin(x +2)的图象是把y = sin x 的图象向左平移2个单位而得;④y = sin(|x |+2)的图象是由y = sin(x +2)( x ≥0)的图象及y = -sin(x -2) ( x <0)的图象 组成的.A .1个B .2个C .3个D .4个 4.已知sin θ-cos θ=21, 则sin 3θ- cos 3θ的值为 ( )A .167 B .-1611 C .1611D .-1675.平面直角坐标系中, O 为坐标原点, 已知两点A(3, 1), B(-1, 3), 若点C 满足OC =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为( )A .3x +2y -11=0B .(x -1)2+(y -2)2=5C .2x -y=0D .x +2y -5=06.已知钝角三角形的三边分别是a,a+1,a+2,其最大内角不超过120°,则a 的取值范围是( )A .23≥a B .30<<aC .323<<a D .323<≤a 7.已知f(x )=b x +1为x 的一次函数, b 为不等于1的常数, 且g (n)=⎩⎨⎧≥-=)1()]1([)0(1n n g f n ,设a n = g (n)- g (n -1) (n ∈N ※), 则数列{a n }是( )A .等差数列B .等比数列C .递增数列D .递减数列8.定义()3nn N *∈为完全立方数,删去正整数数列1,2,3……中的所有完全立方数,得到一个新数列,这个数列的第2005项是( )A .2017B .2018C .2019D .20209.已知θ为第二象限角,且2cos2sin θθ<,那么2cos2sinθθ+的取值范围是 ( )A .(-1,0)B .)2,1(C .(-1,1)D .)1,2(--10.若对任意实数a ,函数y =5sin(312+k π,x -6π)(k ∈N)在区间[a ,a +3]上的值45出现不少于4次且不多于8次,则k 的值是( )A .2B .4C .3或4D .2或3第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.10cos 310sin 1-的值为 . 12.已知等差数列{a n }的公差d ≠0, 且a 1, a 3, a 9成等比数列, 则1042931a a a a a a ++++的值是 .13.已知向量),sin ,(cos θθ=a 向量)1,3(-=b , 则b a -2的最大值是 . 14.已知α、β是实数, 给出四个论断:①|α+β|=|α|+|β|; ②|α-β|≤|α+β|; ③|α|>22,|β|>22; ④|α+β|>5. 以其中的两个论断作为条件, 其余论断作为结论, 写出正确的一个 . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分)。

高中数学新课程标准的标准测试题目(附解答)

高中数学新课程标准的标准测试题目(附解答)

高中数学新课程标准的标准测试题目(附解答)一、选择题1. 已知函数 $f(x) = 2x^2 - 3x + 1$,则 $f(2)$ 的值为多少?- A. $1$- B. $3$- C. $5$- D. $7$解答:将 $x$ 替换为 $2$,得到 $f(2) = 2(2)^2 - 3(2) + 1 = 9$,所以答案是 D. $7$。

2. 若 $a$、$b$、$c$ 是等差数列的前三项,且 $a + c = 12$,则$b$ 的值为多少?- A. $3$- B. $4$- C. $6$- D. $8$解答:由等差数列性质可知,$b = \frac{a + c}{2} = \frac{12}{2} = 6$,所以答案是 C. $6$。

二、填空题1. 已知函数 $f(x) = |2x - 1|$,则 $f(x)$ 的最小值为$\underline{\quad\quad}$。

解答:对于任意实数 $x$,$2x - 1$ 的绝对值最小值为 $0$,所以 $f(x)$ 的最小值为 $0$。

2. 若 $\log_2(x+1) = 3$,则 $x$ 的值为$\underline{\quad\quad}$。

解答:根据对数的定义可得 $2^3 = x + 1$,解方程得 $x = 5$。

三、解答题1. 写出方程 $x^2 + 4x + 4 = 0$ 的解。

解答:将方程变形为 $(x + 2)^2 = 0$,解得 $x = -2$。

所以方程$x^2 + 4x + 4 = 0$ 的解为 $x = -2$。

2. 已知等差数列的前两项之和为 $10$,公差为 $3$,求这个数列的前 $5$ 项。

解答:设等差数列的首项为 $a$,则第二项为 $a + d$,其中$d$ 为公差。

根据已知条件得到方程 $a + a + d = 10$,$d = 3$。

解得 $a = 3$。

所以这个数列的前 $5$ 项依次为 $3, 6, 9, 12, 15$。

高中数学新课程标准的标准测试题目(附解答)

高中数学新课程标准的标准测试题目(附解答)

高中数学新课程标准的标准测试题目(附解答)一、选择题1. 下列选项中,哪一个不是高中数学新课程标准中所要求的基本技能?A. 熟练掌握各种数学运算B. 能够运用数学知识解决实际问题C. 精通编程语言D. 具备良好的逻辑思维能力{答案:C}2. 在高中数学新课程标准中,哪个领域的内容是最重要的?A. 几何B. 代数C. 概率与统计D. 函数{答案:D}二、填空题3. 高中数学新课程标准中,数学学科的核心素养包括______、______、______和______。

{答案:逻辑推理、数学建模、数据分析、数学运算}4. 在高中数学新课程标准中,______是一个重要的数学概念,它表示两个变量之间的依赖关系。

{答案:函数}三、简答题5. 请简述高中数学新课程标准中的基本理念。

{答案:高中数学新课程标准的基本理念包括:培养学生的数学核心素养,提高学生的数学思维能力;强调数学知识的应用,解决实际问题;注重学生的个性化研究,发挥学生的主动性;强调数学知识的整体性,促进学生的全面发展。

}6. 请解释什么是数学建模。

{答案:数学建模是指利用数学知识和方法对现实世界中的问题进行简化、抽象和描述,建立数学模型,并通过数学模型的求解来分析和解决实际问题的过程。

}四、计算题7. 解方程:2x - 5 = 3{答案:x = 4}8. 计算积分:∫(从0到π) sin(x)d x{答案:-cos(x)|_0^π = 2}五、应用题9. 小明的身高是1.75米,小华的身高是1.60米。

请问小明比小华高多少百分比?{答案:小明比小华高15.38%。

}10. 一家工厂生产的产品,其质量服从正态分布,平均质量为50kg,标准差为5kg。

请问该工厂生产的产品质量在45kg到55kg 之间的概率是多少?{答案:产品质量在45kg到55kg之间的概率为68.27%。

}以上就是高中数学新课程标准的标准测试题目及解答。

希望这份文档能帮助您更好地理解和掌握高中数学新课程标准。

2023年高考数学试卷及答案(新课标全国Ⅱ卷)

2023年高考数学试卷及答案(新课标全国Ⅱ卷)

2023年新课标全国Ⅱ卷数学真题一、单选题1.在复平面内,对应的点位于( ).A.第一象限B.第二象限C.第三象限D.第四象限答案:A解析:,所以该复数对应的点为,位于第一象限.2.设集合,,若,则( ).A.2B.1C.D.答案:B解析:观察发现集合A中有元素0,故只需考虑B中的哪个元素是0。

因为,,所以,故或,解得:或1,注意不能保证,故还需代回集合检验,若,则,,不满足,不合题意;若,则,,满足. 故选B.3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).A.种B.种C.种D.种答案:D解析:应先找到两层中各抽多少人,因为是比例分配的分层抽取,故各层的抽取率都等于总体的抽取率,设初中部抽取x人,则,解得:,所以初中部抽40人,高中部抽20人,故不同的抽样结果共有种.4.若为偶函数,则( ).A .B.0C.D.1答案:B解法1:偶函数可抓住定义来建立方程求参,因为为偶函数,所以,即 ①,而,代入①得:,化简得:,所以.5.已知椭圆的左、右焦点分别为,,直线与C交于A,B两点,若面积是面积的2倍,则( ).A.B.C.D.答案:C解析:如图,观察发现两个三角形有公共的底边AB,故只需分析高的关系,作于点G,于点I,设AB与x轴交于点K,由题意,,所以,由图可知,所以,故,又椭圆的半焦距,所以,从而,故,所以,代入可得,解得:.6.已知函数在区间上单调递增,则a的最小值为( ).A.B.e C.D.答案:C解析:的解析式较复杂,不易直接分析单调性,故求导,由题意,,因为在上,所以在上恒成立,即 ①,观察发现参数a容易全分离,故将其分离出来再看,不等式①等价于,令,则,所以在上,又,,所以,故,因为在上恒成立,所以,故a的最小值为.7.已知为锐角,,则( ).A.B.C.D.答案:D解析:,此式要开根号,不妨上下同乘以2,将分母化为,所以,故,又为锐角,所以,故.8.记为等比数列的前n项和,若,,则( ).A.120B.85C.D.答案:C解法1:观察发现,,,的下标都是2的整数倍,故可考虑片段和性质,先考虑q是否为,若的公比,则,与题意不符,所以,故,,,成等比数列 ①,条件中有,不妨由此设个未知数,设,则,所以,,由①可得,所以,解得:或,若,则,,,所以,故;到此结合选项已可确定选C,另一种情况我也算一下,若,则,而,所以与同号,故,与题意不符;综上所述,m只能取,此时.二、多选题9.已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).A.该圆锥的体积为B.该圆锥的侧面积为C.D.的面积为答案:AC解析:A项,因为,,所以,,,从而圆锥的体积,故A项正确;B项,圆锥的侧面积,故B项错误;C项,要求AC的长,条件中的二面角还没用,观察发现和都是等腰三角形,故取底边中点即可构造棱的垂线,作出二面角的平面角,取AC中点Q,连接PQ,OQ,因为,,所以,,故即为二面角的平面角,由题意,,所以,故,所以,故C项正确;D项,,所以,故D项错误.10.设O为坐标原点,直线过抛物线的焦点,且与C交于M,N两点,l为C的准线,则( ).A.B.C.以MN为直径的圆与l相切D.为等腰三角形答案:AC解析:A项,在中令可得,由题意,抛物线的焦点为,所以,从而,故A项正确;B项,此处可以由直线MN的斜率求得,再代角版焦点弦公式求,但观察发现后续选项可能需要用M,N的坐标,所以直接联立直线与抛物线,用坐标版焦点弦公式来算,设,,将代入消去y整理得:,解得:或3,对应的y分别为和,所以图中,,从而,故B项错误;C项,判断直线与圆的位置关系,只需将圆心到直线的距离d和半径比较,的中点Q到准线的距离,从而以MN为直径的圆与准线l相切,故C项正确;D项,M,N的坐标都有了,算出,即可判断,,,所以,,均不相等,故D项错误.11.若函数既有极大值也有极小值,则( ).A.B.C.D.答案:BCD解析:由题意,,函数既有极大值,又有极小值,所以在上有2个变号零点,故方程在上有两个不相等实根,所以,由①可得,故C项正确;由②可得,所以a,c异号,从而,故D项正确;由③可得a,b同号,所以,故B项正确;因为a,c异号,a,b同号,所以b,c异号,从而,故A项错误.12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l,0,1的概率为B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为C.采用三次传输方案,若发送1,则译码为1的概率为D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率答案:ABD解析:A项,由题意,若采用单次传输方案,则发送1收到1的概率为,发送0收到0的概率为,所以依次发送1,0,1,则依次收到1,0,1的概率为,故A项正确;B项,采用三次传输方案,若发送1,则需独立重复发送3次1,依次收到1,0,1的概率为,故B项正确;C项,采用三次传输方案,由B项的分析过程可知若发送1,则收到1的个数,而译码为1需收2个1,或3个1,所以译码为1的概率为,故C项错误;D项,若采用单次传输方案,则发送0译码为0的概率为;若采用三次传输方案,则发送0等同于发3个0,收到0的个数,且译码为0的概率为,要比较上述两个概率的大小,可作差来看,,因为,所以,从而,故D项正确.三、填空题13.已知向量,满足,,则______.答案:解析:条件涉及两个模的等式,想到把它们平方来看,由题意, ①,又,所以,故,整理得:,代入①可得,即,所以.14.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.答案:28解析:如图,四棱锥与相似,它们的体积之比等于边长之比的立方,故只需求四棱锥的体积,,所以,故所求四棱台的体积,由题意,,所以.15.已知直线与交于A,B两点,写出满足“面积为”的m的一个值__ ____.答案:2(答案不唯一,也可填或或)解析:如图,设圆心到直线AB的距离为,则,注意到也可用d表示,故先由求d,再将d用m表示,建立关于m的方程,又,所以,由题意,,所以,结合解得:或,又,所以或,解得:或.16.已知函数,如图A,B是直线与曲线的两个交点,若,则______.答案:解法1:这个条件怎么翻译?可用求A,B横坐标的通解,得到,从而建立方程求,不妨设,令可得或,其中,由图知,,两式作差得:,故,又,所以,解得:,则,再求,由图知是零点,可代入解析式,注意,是增区间上的零点,且的增区间上的零点是,故应按它来求的通解,所以,从而,故,所以.四、解答题17.记的内角的对边分别为,已知的面积为,为中点,且.(1)若,求;(2)若,求.解:(1)如图,因为,所以,(要求,可到中来分析,所给面积怎么用?可以用它求出,从而得到BD)因为D是BC中点,所以,又,所以,由图可知,所以,故,(此时已知两边及夹角,可先用余弦定理求第三边AB,再用正弦定理求角B)在中,由余弦定理,,所以,由正弦定理,,所以,由可知B为锐角,从而,故.(2)(已有关于bc的一个方程,若再建立一个方程,就能求b和c,故把面积和中线都用b,c表示)由题意,,所以 ①,(中线AD怎样用b,c表示?可用向量处理)因为D为BC中点,所以,从而,故,所以,将代入上式化简得②,(我们希望找的是b,c的方程,故由①②消去A,平方相加即可)由①②得,所以③,由可得,所以,结合式③可得.18.已知为等差数列,,记,分别为数列,的前n项和,,.(1)求的通项公式;(2)证明:当时,.解:(1)(给出了两个条件,把它们用和d翻译出来,即可建立方程组求解和d)由题意, ①,②,由①②解得:,,所以.(2)由(1)可得,(要证结论,还需求,由于按奇偶分段,故求也应分奇偶讨论,先考虑n为偶数的情形)当为偶数时,③,因为和分别也构成等差数列,所以,,代入③化简得:,(要由此证,可作差比较)所以,故;(对于n为奇数的情形,可以重复上述计算过程,但更简单的做法是补1项凑成偶数项,再减掉补的那项)当为奇数时,,所以,故;综上所述,当时,总有.19.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率%时,求临界值c和误诊率;(2)设函数,当时,求的解析式,并求在区间的最小值.解:(1)(给的是漏诊率,故先看患病者的图,漏诊率为0.5%即小于或等于c的频率为0.5%,可由此求c)由患病者的图可知,这组的频率为,所以c在内,且,解得:;(要求,再来看未患病者的图,是误诊率,也即未患病者判定为阳性(指标大于c)的概率)由未患病者的图可知指标大于97.5的概率为,所以.(2)(包含两个分组,故应分类讨论)当时,,,所以,故 ①;当时,,,所以,故②;所以,且由①②可得.20.如图,三棱锥中,,,,E为BC的中点.(1)证明:;(2)点F满足,求二面角的正弦值.解:(1)(BC和DA是异面直线,要证垂直,需找线面垂直,可用逆推法,假设,注意到条件中还有,所以,二者结合可得到面ADE,故可通过证此线面垂直来证)因为,,所以和是全等的正三角形,故,又E为BC中点,所以,,因为AE,平面ADE,,所以平面ADE,又平面ADE,所以.(2)(由图可猜想面BCD,若能证出这一结果,就能建系处理,故先尝试证明)不妨设,则,因为,所以,故,,所以,故,所以EA,EB,ED两两垂直,以E为原点建立如图所示的空间直角坐标系,则,,,所以,,由可知四边形ADEF是平行四边形,所以,设平面DAB和平面ABF的法向量分别为,,则,令,则,所以是平面DAB的一个法向量,,令,则,所以是平面ABF的一个法向量,从而,故二面角的正弦值为.21.已知双曲线C的中心为坐标原点,左焦点为,离心率为.(1)求C的方程;(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.解:(1)设双曲线方程为,由焦点坐标可知,则由可得,,双曲线方程为.(2)由(1)可得,设,显然直线的斜率不为0,所以设直线的方程为,且,与联立可得,且,则,直线的方程为,直线的方程为,联立直线与直线的方程可得:,由可得,即,据此可得点在定直线上运动.【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键.22.(1)证明:当时,;(2)已知函数,若是的极大值点,求a的取值范围.解:(1)构建,则对恒成立,则在上单调递增,可得,所以;构建,则,构建,则对恒成立,则在上单调递增,可得,即对恒成立,则在上单调递增,可得,所以;综上所述:.(2)令,解得,即函数的定义域为,若,则,因为在定义域内单调递减,在上单调递增,在上单调递减,则在上单调递减,在上单调递增,故是的极小值点,不合题意,所以.当时,令因为,且,所以函数在定义域内为偶函数,由题意可得:,(i)当时,取,,则,由(1)可得,且,所以,即当时,,则在上单调递增,结合偶函数的对称性可知:在上单调递减,所以是的极小值点,不合题意;(ⅱ)当时,取,则,由(1)可得,构建,则,且,则对恒成立,可知在上单调递增,且,所以在内存在唯一的零点,当时,则,且,则,即当时,,则在上单调递减,结合偶函数的对称性可知:在上单调递增,所以是的极大值点,符合题意;综上所述:,即,解得或,故a的取值范围为.。

2023年新课标全国Ⅱ卷数学真题(解析版)

2023年新课标全国Ⅱ卷数学真题(解析版)

2023年全国新高考Ⅱ卷一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 在复平面内,()()13i 3i +−对应的点位于( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】【分析】根据复数的乘法结合复数的几何意义分析判断. 【详解】因为()()213i 3i 38i 3i 68i +−=+−=+,则所求复数对应的点为()6,8,位于第一象限. 故选:A.2. 设集合{}0,A a =−,{}1,2,22B a a =−−,若A B ⊆,则=a ( ). A. 2 B. 1 C.23D. 1−【答案】B 【解析】【分析】根据包含关系分20a −=和220a −=两种情况讨论,运算求解即可. 【详解】因为A B ⊆,则有:若20a −=,解得2a =,此时{}0,2A =−,{}1,0,2B =,不符合题意; 若220a −=,解得1a =,此时{}0,1A =−,{}1,1,0B =−,符合题意; 综上所述:1a =. 故选:B.3. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A. 4515400200C C ⋅种 B. 2040400200C C ⋅种 C.3030400200C C ⋅种D.4020400200C C ⋅种【答案】D 【解析】【分析】利用分层抽样的原理和组合公式即可得到答案.【详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=,根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.4. 若()()21ln 21x f x x a x −=++为偶函数,则=a ( ). A. 1− B. 0C.12D. 1【答案】B 【解析】【分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可. 【详解】因为()f x 为偶函数,则1(1)(1)(1)ln (1)ln 33f f a a =−∴+=−+,,解得0a =,当0a =时,()21ln21x x x f x −=+,()()21210x x −+>,解得12x >或12x <−,则其定义域为12x x ⎧⎨⎩或12x ⎫<−⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln 21212121f x x x x x x x x x f x x x x x −−−+⎫−=−−−⎛==== ⎪−+−++⎝−⎭−, 故此时()f x 为偶函数. 故选:B.5. 已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =( ).A.23B.3C. 3−D. 23−【答案】C 【解析】【分析】首先联立直线方程与椭圆方程,利用0∆>,求出m 范围,再根据三角形面积比得到关于m 方程,解出即可.【详解】将直线y x m =+与椭圆联立2213y x m x y =+⎧⎪⎨+=⎪⎩,消去y 可得2246330x mx m ++−=, 因为直线与椭圆相交于,A B 点,则()223604433m m −⨯−∆=>,解得22m −<<,设1F 到AB 距离12,d F 到AB 距离2d,易知())12,F F ,的则1d =2d =122F AB F ABS S===,解得3m =−或−,故选:C.6. 已知函数()e ln xf x a x =−在区间()1,2上单调递增,则a 的最小值为( ).A. 2eB. eC. 1e −D. 2e −【答案】C 【解析】【分析】根据()1e 0xf x a x'=−≥在()1,2上恒成立,再根据分参求最值即可求出. 【详解】依题可知,()1e 0xf x a x '=−≥在()1,2上恒成立,显然0a >,所以1e x x a≥, 设()()e ,1,2xg x x x =∈,所以()()1e 0xg x x =+>',所以()g x 在()1,2上单调递增,()()1e g x g >=,故1e a ≥,即11e ea −≥=,即a 的最小值为1e −. 故选:C .7. 已知α为锐角,1cos 4α+=,则sin 2α=( ).A.38B.18−C.34−D.14−+ 【答案】D 【解析】【分析】根据二倍角公式(或者半角公式)即可求出.【详解】因为21cos 12sin 24αα+=−=,而α为锐角,解得:sin2α=14−==. 故选:D .8. 记n S 为等比数列{}n a 的前n 项和,若45S =−,6221S S =,则8S =( ).A. 120B. 85C.85−D. 120−【答案】C 【解析】【分析】方法一:根据等比数列的前n 项和公式求出公比,再根据48,S S 的关系即可解出; 方法二:根据等比数列的前n 项和的性质求解.【详解】方法一:设等比数列{}n a 的公比为q ,首项为1a , 若1q =,则61126323S a a S ==⨯=,与题意不符,所以1q ≠; 由45S =−,6221S S =可得,()41151a q q−=−−,()()6211112111a q a q q q−−=⨯−−①,由①可得,24121q q ++=,解得:24q =, 所以8S =()()()()8411411151168511a q a q q qq−−=⨯+=−⨯+=−−−.故选:C .方法二:设等比数列{}n a 的公比为q , 因为45S =−,6221S S =,所以1q ≠−,否则40S =,从而,2426486,,,S S S S S S S −−−成等比数列,所以有,()()22225215S S S −−=+,解得:21S =−或254S =, 当21S =−时,2426486,,,S S S S S S S −−−,即为81,4,16,21S −−−+,易知,82164S +=−,即885S =−; 当254S =时,()()()2241234122110S a a a a a a q q S =+++=++=+>, 与45S =−矛盾,舍去.故选:C .【点睛】本题主要考查等比数列的前n 项和公式的应用,以及整体思想的应用,解题关键是把握48,S S 的关系,从而减少相关量的求解,简化运算.二、选择题:本题共4小题,每小题5分,共20分。

新课程标准下的普通高中数学试题(答案附带)

新课程标准下的普通高中数学试题(答案附带)

新课程标准下的普通高中数学试题(答案
附带)
1. 数的性质与运算
1.1. 选择题:
1. 以下哪个数是有理数?
A. π
B. √2
C. 0.75
D. e
答案:C
1.2. 解答题:
2. 计算下列算式:(3 + 4) × (5 - 2)
答案:21
2. 函数与方程
2.1. 选择题:
1. 函数y = x²的图像是下面哪一个形状?
A. 直线
B. 抛物线
C. 正弦曲线
D. 余弦曲线
答案:B
2.2. 解答题:
2. 解方程3x + 5 = 17
答案:x = 4
3. 几何与变换
3.1. 选择题:
1. 三角形ABC中,∠ABC = 90°,AB = 5 cm,BC = 12 cm,则AC的长度为多少?
A. 7 cm
B. 13 cm
C. 17 cm
D. 25 cm
答案:13 cm
3.2. 解答题:
2. 已知平行四边形ABCD,AB = 6 cm,AD = 8 cm,∠B = 120°,求边CD的长度。

答案:10 cm
4. 概率与统计
4.1. 选择题:
1. 抛一枚硬币,正面向上的概率是多少?
A. 0
B. 0.5
C. 1
D. 无法确定
答案:B
4.2. 解答题:
2. 一袋中有8个红球,4个蓝球,从中随机取一个球,求取出的是红球的概率。

答案:8/12 = 2/3
以上是新课程标准下的普通高中数学试题及其答案。

高中数学新课标测试题及答案精选全文

高中数学新课标测试题及答案精选全文

可编辑修改精选全文完整版新课程标准考试数学试题一、填空题(本大题共10道小题,每小题3分,共30分)1、数学是研究(空间形式和数量关系)的科学,是刻画自然规律和社会规律的科学语言和有效工具。

2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。

3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。

4、高中数学课程应注重提高学生的数学(思维)能力。

5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。

6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。

7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。

8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。

9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。

10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。

二、判断题(本大题共5道小题,每小题2分,共10分)1、高中数学课程每个模块1学分,每个专题2学分。

(错,改:高中数学课程每个模块2学分,每个专题1学分。

)2、函数关系和相关关系都是确定性关系。

(错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。

)3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。

(对)4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。

(对)5、教师应成为学生进行数学探究的领导者。

(错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。

)三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析

高一数学高中数学新课标人教A版试题答案及解析1. y=ax+b(a+b=0,ab≠0)的图象可能是下列图中的 ()【答案】D【解析】因为ab≠0,所以排除选项C;又a+b=0,所以斜率与截距互为相反数,显然,D选项符合,故选D.【考点】直线方程的图象.2.若,则等于()A.B.C.D.【答案】B【解析】由题,两边平方得,两边同时除以并化简得,解得故本题正确答案为3.已知,且满足,那么的最小值为()A.B.C.D.【答案】B【解析】由题意得,当且仅当,即时等号的成立的,所以的最小值为,故选B.【考点】基本不等式的应用.4.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,分别为14,18,则输出的()A.0B.2C.4D.14【答案】B【解析】由a=14,b=18,a<b,则b变为18-14=4,由a>b,则a变为14-4=10,由a>b,则a变为10-4=6,由a>b,则a变为6-4=2,由a<b,则b变为4-2=2,由a=b=2,则输出的a=2【考点】程序框图5.已知为平面内两个不共线向量,,若M、N、P三点共线,则()A.B.C.D.【答案】B【解析】因为,所以,由题设可得,解之得,应选答案B。

6.执行如图所示的程序框图,输出的结果是()A.55B.65C.78D.89【答案】A【解析】第一次执行循环体时,,满足判断框的条件,第二次执行循环体时,,满足判断框的条件,第三次执行循环体时,,满足判断框的条件,第四次执行循环体时,,满足判断框的条件,第五次执行循环体时,,满足判断框的条件,第六次执行循环体时,,满足判断框的条件,第七次执行循环体时,,,满足判断框的条件,第八次执行循环体时,,不满足判断框的条件,退出循环体,输出,故答案为A.【考点】程序框图的应用.7.设向量,满足及.(1)求,夹角的大小;(2)求的值.【答案】(1) .(2)|3a+b|=.【解析】(1)根据(3a-2b)2=7,9|a|2+4|b|2-12a·b=7,可得a·b=,再根据数量积的定义可求出cos θ=,进而得到夹角.(2)先求(3a+b)2=9|a|2+6a·b+|b|2=9+3+1=13,从而得到|3a+b|=.(1)设a与b夹角为θ,(3a-2b)2=7,9|a|2+4|b|2-12a·b=7,而|a|=|b|=1,∴a·b=,∴|a||b|cos θ=,即cos θ=又θ∈[0,π],∴a,b所成的角为.(2)(3a+b)2=9|a|2+6a·b+|b|2=9+3+1=13,∴|3a+b|=..【考点】考查了向量的数量积,以及利用数量积求模,夹角等知识.点评:掌握数量积的定义:,求模可利用: 来求解.8.四边形中,,,.(1)若,试求与满足的关系式;(2)满足(1)的同时又有,求,的值及四边形的面积.【答案】(1)(2)或【解析】(1)两向量平行的坐标关系可得表达式;(2)由结合上题结论,可得方程组,求出、的值,可得,长度,易求四边形面积.解:(1)由,① 5分(2) ,,②解①②得或(舍),, 10分由知:. 12分【考点】两向量平行,垂直时的坐标关系.9.执行如图的程序框图,若输出的,则输入整数的最小值是()A.15B.14C.7D.8【答案】C【解析】初始值:成立,运行第一次成立,运行第二次成立,运行第三次成立,运行第四次不成立,循环终止,输出输入整数的最大值是15.故选A.【考点】循环结构.10.已知向量,若与平行,则实数= .【答案】【解析】由题意得:,解得:.【考点】1.向量平行;11.设,,,点是线段上的一个动点,,若,则实数的取值范围是()A.B.C.D.【答案】B【解析】,,,,解得,因为点是线段上的一个动点,所以,即满足条件的实数的取值范围是.【考点】向量的线性运算性质及几何意义12.过点且在坐标轴上的截距相等的直线的一般式方程是________【答案】或【解析】当直线过原点时,斜率等于,故直线的方程为,即,当直线不过原点时,设直线的方程为,把代入直线的方程得,故求得的直线方程为综上,满足条件的直线方程为或,故答案为或.13.若直线与直线互相平行,则实数________.【答案】2【解析】由题意得14.在中,求的值。

最新高中数学新课程标准考试模拟试卷及答案(三套)

最新高中数学新课程标准考试模拟试卷及答案(三套)

最新高中数学新课程标准考试模拟试卷及答案(三套)高中教师数学新课程标准考试模拟试卷(一)附答案一、填空题(每小题4分,共40分)1.数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基本概念、基本技能、基本方法,使学生表达清晰、思考有条理,使学生具有逻辑思维能力、创新能力,使学生会用数学的思考方式分析问题、解决问题。

2.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学性、规范性,提高提出问题、分析和解决问题的能力,形成数学思维惯,发展数学素养具有基础性的作用。

3.高中数学课程标准最突出的特点就是体现了思想性、方法性和应用性。

4.高中数学课程应力求通过各种不同形式的研究、实践,让学生体验数学探究的历程,发展他们的创新意识。

5.高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。

人们在研究数学和运用数学解决问题时,不断地经历问题意识、分析、抽象、归纳、演绎、验证、推广、创新、评价等思维过程。

6.为了适应信息时代发展的需要,高中数学课程应增加信息技术的内容,把最基本的计算机操作、数据处理等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“应试化”的倾向。

7.普高中数学课程的总目标是:培养学生的数学思维能力、数学素养和数学方法,使其具有独立思考、自主研究、创新探究的能力,为学生未来的研究和工作打下坚实的数学基础。

8.高中数学课程的目标是要求学生具备广阔的数学视野,逐步了解数学的基本知识、基本技能和基本思想,培养批判性思维惯,崇尚数学的科学价值和文化价值,体会数学的美学意义,从而建立起符合辩证唯物主义和历史唯物主义的世界观。

9.算法是一个全新的课题,已经成为计算机科学和数据处理的重要基础,在现代社会中起着越来越重要的作用。

10.高中数学研究的评价应该重视学生参与数学活动的兴趣和态度,以及数学研究的自信心和独立思考惯等方面,不仅要注重结果,还要注重过程。

全国统一高考数学试卷(新课标ⅰ)(含解析版)

全国统一高考数学试卷(新课标ⅰ)(含解析版)

全国统一高考数学试卷(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E 于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N 内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.全国统一高考数学试卷(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,﹣a m=1,所以公差d=a m+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l 为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=及+1b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,又由题意,b n﹣c n+1=,∴=a1﹣b n,+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N 内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f(x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt △DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.。

新课标高中数学测试题(必修2)全套含答案(K12教育文档)

新课标高中数学测试题(必修2)全套含答案(K12教育文档)

新课标高中数学测试题(必修2)全套含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新课标高中数学测试题(必修2)全套含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新课标高中数学测试题(必修2)全套含答案(word版可编辑修改)的全部内容。

(数学2必修)第一章 空间几何体[基础训练A 组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A。

棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为( )A 。

3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.235.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A. 92πB. 72π C 。

52π D 。

32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和视图15,则这个棱柱的侧面积是( )A .130B .140C .150D .160 二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱.2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。

3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课程标准考试数学试题
一、填空题(本大题共10道小题,每小题3分,共30分)
1、数学是研究(空间形式和数量关系)的科学,是刻画自然规
律和社会规律的科学语言和有效工具。

2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。

3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。

4、高中数学课程应注重提高学生的数学(思维)能力。

5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。

6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。

7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。

8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。

9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、
几何与(三角函数)的一种工具。

10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。

二、判断题(本大题共5道小题,每小题2分,共10分)
1、高中数学课程每个模块1学分,每个专题2学分。

(错)改:高中数学课程每个模块2学分,每个专题1学分。

2、函数关系和相关关系都是确定性关系。

(错)
改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。

3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。

(对)
4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。

(对)
5、教师应成为学生进行数学探究的领导者。

(错)
改:教师应成为学生进行数学探究的组织者、指导者和合作者。

三、简答题(本大题共4道小题,每小题7分,共28分)
1、高中数学课程的总目标是什么
使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

2、高中数学新课程设置的原则是什么
必修课内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备;
选修课内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。

3、评价学生在数学建模中的表现时,评价内容应关注哪几个方面评价内容应关注以下几个方面:
创新性——问题的提出和解决的方案有新意。

现实性——问题来源于学生的现实。

真实性——确实是学生本人参与制作的,数据是真实的。

合理性——建模过程中使用的数学方法得当,求解过程合乎常理。

有效性——建模的结果有一定的实际意义。

4、请简述《必修三》中《算法初步》一章的内容与要求。

四、论述题(本大题共2道小题,第一小题12分,第二小题20分)
1、请完成《等差数列前n项和》第一课时的教学设计。

2、请您结合自己的教学经验,从理论和实践两个方面谈谈如何改善课堂教学中的教与
学的方式,能使学生更主动地学习
答案
新课程标准考试数学试题答案
一、填空题
1、空间形式和数量关系
2、基本技能
3、选择性
4、思维
5、推理与证明
6、数学建模
7、人文、社会科学
8、情感、态度、价值观
9、三角函数10、探究性课题
二、判断题
1、错,改:高中数学课程每个模块2学分,每个专题1学分。

2、错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。

3、对。

4、对。

5、错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。

三、简答题
1、答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要
的数学素养,以满足个人发展与社会进步的需要。

2、答:必修课内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学
习提供必要的数学准备;
选修课内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。

3、答:评价内容应关注以下几个方面:
创新性——问题的提出和解决的方案有新意。

现实性——问题来源于学生的现实。

真实性——确实是学生本人参与制作的,数据是真实的。

合理性——建模过程中使用的数学方法得当,求解过程合乎常理。

有效性——建模的结果有一定的实际意义。

相关文档
最新文档