2019版高中数学新课程标准测试题及答案
(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

第七章综合测试一、选择题(每小题5分,共40分) 1.下列事件是随机事件的是( )①同种电荷,互相排斥;②明天是晴天;③自由下落的物体做匀速直线运动;④函数01xy a a a =≠(>且)在定义域上是增函数. A .①③B .①④C .②④D .③④2.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的( ) A .①②B .①③C .②③D .①②③3.西周初数学家商高在公元前1000年发现勾股定理的一个特例,勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年,我们把可以构成一个直角三角形三边的一组正整数(a ,b ,c )称为勾股数.现从(3,4,5),(5,12,13),(6,8,10),(7,24,25),(8,15,17),(9,40,41),(9,12,15),(10,24,26),(15,20,25),(15,36,39)这几组勾股数中随机抽取1组,则被抽出的这组勾股数满足2b a c =+的概率为( ) A .25B .79C .78D .9104.抛掷一枚质地均匀的骰子,观察掷出的点数,设事件A 为“出现奇数点”,事件B 为“出现2点”,已知()12P A =,()16P B =,则“出现奇数点或2点”的概率为( ) A .16B .13C .12D .235.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,取出的球为红色的概率; ②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数; A .0个B .1个C .2个D .3个6.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A .23B .25C .35D .9107.某运动会期间,从来自A 大学的2名志愿者和来自B 大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿者的概率是( ) A .115B .25C .35D .14158.一位家长送孩子去幼儿园的路上要经过4个有红绿灯的路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min .则这位家长送孩子上学到第三个路口时首次遇到红灯的概率为( ) A .13B .227C .427D .527二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.在一个古典概型中,若两个不同的随机事件A ,B 发生的概率相等,则称A 和B 是“等概率事件”,如:随机抛掷一枚骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”.关于“等概率事件”,以下判断正确的是( )A .在同一个古典概型中,所有的样本点之间都是“等概率事件”B .若一个古典概型的事件总数大于2,则在这个古典概型中除样本点外没有其他“等概率事件”C .因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件”D .同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”10.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成统计表,其中“√”表示购买,“×”表示未购买.A .顾客购买乙商品的概率最大B .顾客同时购买乙和丙的概率约为0.2C .顾客在甲、乙、丙、丁中同时购买3种商品的概率约为0.3D .顾客仅购买1种商品的概率不大于0.311.某篮球运动员在最近几次参加的比赛中的得分情况如表:C ,用频率估计概率的方法,得到的下述结论中,正确的是( ) A .()0.55P A =B .()0.18P B =C .()0.27P C =D .()0.55P B C +=12.一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( ) A .任取2件,则取出的2件中恰有1件次品的概率是12B .每次抽取1件,不放回抽取两次,样本点总数为16C .每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D .每次抽取1件,有放回抽取两次,样本点总数为16 三、填空题(每小题5分,共20分) 13.若A ,B 是相互独立事件,且()12P A =,()23P B =,则()P AB =________,()P AB =________.14.《九章算术》是中国古代数学专著,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中“均赋粟”问题讲的是古代劳动人民的赋税问题.现拟编试题如下:已知甲、乙、丙、丁四县向国家交税,则甲必须第一个交且乙不是第三个交的概率为________.15.用红、黄、蓝三种不同颜色给图中的3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形颜色都相同的概率是________,3个矩形颜色都不同的概率是________.16.在一次数学考试中,第.设4名学生选做这两题的可能性均为12.则其中甲、乙2名学生选做同一道题的概率为________;甲、乙2名学生都选做第22题的概率为________.四、解答题(共70分)17.(10分)某校在教师外出培训学习活动中,在一个月派出的培训人数及其概率如表所示:(1(2)求至少有3个人培训的概率.18.(12分)用一台自动机床加工一批螺母,从中抽出100个逐个进行直径(单位:cm)检验,结果如表:从这100(1)事件A:螺母的直径在(6.93,6.95]内;(2)事件B:螺母的直径在(6.91,6.95]内;(3)事件C :螺母的直径大于6.96.19.(12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢. (1)若以A 表示和为6的事件,求P (A );(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.20.(12分)A ,B 两个箱子分别装有标号为0,1,2的三种卡片,每种卡片的张数如表所示.(1)从A ,B 箱中各取12x =的概率;(2)从A ,B 箱中各取1张卡片,用y 表示取出的2张卡片的数字之和,求0x =且2y =的概率.21.(12分)某产品的三个质量指标分别为x ,y ,z ,用综合指标S x y z =++评价该产品的等级.若4S ≤,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标如表:(1)利用表中提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品.①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.22.(12分)某重点中学为了解高一年级学生身体发育情况,对全校700名高一年级学生按性别进行分层随机抽样检查,测得身高(单位:cm)频数分布表如表1、表2.表1:男生身高频数分布表表2(1(2)估计该校学生身高在[165,180)的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,求这2人中至少有1人的身高在[165,180)内的概率.第七章综合测试答案解析一、 1.【答案】C【解析】②④是随机事件,①是必然事件,③是不可能事件. 2.【答案】A【解析】从装有红球、白球和黑球各2个的口袋内一次取出2个球,所有的样本点为:白白,白红,白黑,红红,红黑,黑黑.除“两球都不是白球”外,还有其他事件如白红可能发生,故①与“两球都为白球”互斥但不对立.除“两球都为白球”和“两球恰有一白球”外,还有其他事件,如无白球,故②与“两球都为白球”互斥但不对立.③两球至少有一个白球,其中包含两个都是白球,故不互斥. 3.【答案】A【解析】从这10组勾股数随机抽取1组,共10种抽取方法,其中满足2b a c =+的有:(3,4,5),(6,8,10),(9,12,15),(15,20,25),共4种,故所求概率为42105P ==. 4.【答案】D【解析】因为“出现奇数点”与“出现2点”两事件互斥,所以()()111263P P A P B =+=+=. 5.【答案】B【解析】古典概型的两个基本特征是有限性和等可能性,①符合两个特征,是古典概型;②中的样本点的个数无限多;对于③,出现“两正”“两反”“一正一反”的可能性不相等,故不是古典概型. 6.【答案】D【解析】事件“甲或乙被录用”的对立事件是“甲和乙都未被录用”,从五位学生中选三人的总的样本点的个数为10,“甲和乙都未被录用”只有1种情况,根据古典概型和对立事件的概率公式可得,甲或乙被录用的概率1911010P =-=. 7.【答案】C【解析】用列举法可得样本空间中样本点的总数为15,所求概率的事件包括的样本点的个数为9,所以93155P ==. 8.【答案】C【解析】设“这位家长送孩子上学到第三个路口时首次遇到红灯”为事件A ,因为事件A 等于事件“这位家长送孩子在第一个路口和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()111433327P A ⨯⨯==(1-)(1-). 二、9.【答案】AD【解析】对于A ,由古典概型的定义知,所有样本点的概率都相等,故所有样本点之间都是“等概率事件”,故A 正确;对于B ,如在1,3,5,7,9五个数中,任取两个数,所得和为8和10这两个事件发生的概率相等,故B 错误;对于C ,由题可知“等概率事件”是针对同一个古典概型的,故C 不正确;对于D ,同时抛掷三枚硬币一次共有8种不同的结果,其中“仅有一个正面”包含3种结果,其概率为38,“仅有两个正面”包含3种结果,其概率为38,故这两个事件是“等概率事件”,故D 正确. 10.【答案】BCD【解析】对于A ,由于购买甲商品的顾客有685位,购买乙商品的顾客有515位,故A 错误;对于B ,因为从统计表可以看出,在这1 000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=,故B 正确;对于C ,因为从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=,故C 正确;对于D ,因为从统计表可以看出,在这1000位顾客中,有183位顾客仅购买1种商品,所以顾客仅购买1种商品的概率可以估计为0.1830.2<,故D 正确. 11.【答案】ABC【解析】由题意可知,()550.55100P A ==,()180.18100P B ==,事件A B +与事件C 为对立事件,且事件A ,B ,C 互斥,所以()()()()110.27P C P A B P A P B =+==---,()()()0.45P B C P B P C +=+=. 12.【答案】ACD【解析】记4件产品分别为1,2,3,a ,其中a 表示次品.A 选项,样本空间Ω={(1,2),(1,3),(1,a ),(2,3),(2,a ),(3,a )},“恰有1件次品”的样本点为(1,a ),(2,a ),(3,a ),因此其概率3162P ==,A 正确;B 选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a ),(2,1),(2,3),(2,a ),(3,1),(3,2),(3,a ),(a ,1),(a ,2),(a ,3)},因此()12n Ω=,B 错误;C 选项,“取出的2件中恰有1件次品”的样本点数为6,其概率为12,C 正确;D 选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2),(1,3),(1,a ),(2,1),(2,2),(2,3),(2,a ),(3,1),(3,2),(3,3),(3,a ),(a ,1),(a ,2),(a ,3),(a ,a )},因此()16n Ω=,D 正确. 三、 13.【答案】16 16【解析】因为()()1223P A P B ==,,所以()()11122P A P A =-=-=1,()21133P B =-=.因为A ,B 相互独立,所以A 与B ,A 与B 相互独立,所以()()()111236P AB P A P B ==⨯=,()()()111236P AB P A P B ==⨯=.14.【答案】16【解析】依题意,所有的样本点为:甲—乙—丙—丁,甲—乙—丁—丙,甲—丙—乙—丁,甲—丙—丁—乙,甲—丁—丙—乙,甲—丁—乙—丙,乙、丙、丁第一个交的情况也各有6种,故总的样本点数有24种,其中满足条件的样本点为:甲—乙—丁—丙,甲—乙—丙—丁,甲—丙—丁—乙,甲—丁—丙—乙,共4种,故所求概率为41246=. 15.【答案】19 29【解析】以“红黄蓝”表示从左到右三个矩形所涂的颜色,则所有的样本点有:红红红、红红黄、红红蓝、红黄红、红黄黄、红黄蓝、红蓝红、红蓝黄、红蓝蓝、黄红红、黄红黄、黄红蓝、黄黄红、黄黄黄、黄黄蓝、黄蓝红、黄蓝黄、黄蓝蓝、蓝红红、蓝红黄、蓝红蓝、蓝黄红、蓝黄黄、蓝黄蓝、蓝蓝红、蓝蓝黄、蓝蓝蓝,共27个样本点,事件“3个矩形颜色都相同”所包含的样本点有:红红红、黄黄黄、蓝蓝蓝,共3个,所以3个矩形颜色都相同的概率是31279=.事件“3个矩形颜色都不同”所包含的样本点有:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝黄红、蓝红黄,共6个,所以3个矩形颜色都不同的概率是62279=. 16.【答案】12 14【解析】设事件A 表示“甲选做第22题”,事件B 表示“乙选做第22题”,则甲,乙2名学生选做同一道题的事件为“AB AB +”,且事件A ,B 相互独立,所以()()()()()111111122222P AB AB P A P B P A P B +=+=⨯+-⨯-=()().所以甲、乙2名学生选做同一道题的概率为12;因为()()111224P A P B =⨯=,所以甲、乙2名学生都选做第22题的概率为14. 四、17.【答案】(1)设“有2人及以下培训”为事件A ,“有3人培训”为事件B ,“有4人培训”为事件C ,“有5人培训”为事件D ,“有6人及以上培训”为事件E ,所以“有4个人或5个人培训”的事件为事件C 或事件D ,A ,B ,C ,D ,E 为互斥事件,根据互斥事件的概率加法公式可知()()()0.30.10.4P C D P C P D =+=+=.(2)“至少有3个人培训”的对立事件为“有2人及以下培训”,所以由对立事件的概率可知()110.10.9P P A =-=-=.18.【答案】(1)螺母的直径在(6.93,6.95]内的频数为261541A n =+=,所以事件A 的频率为410.41100=. (2)螺母的直径在(6.91,6.95]内的频数为1717261575B n =+++=.所以事件B 的频率为750.75100=.(3)螺母的直径大于6.96的频数为224C n =+=,所以事件C 的频率为40.04100=.19.【答案】(1)甲、乙出手指都有5种可能,因此样本点的总数为5525⨯=,事件A 包括甲、乙出的手指的情况有(1,5),(5,1),(2,4),(4,2),(3,3)共5种情况,所以()51255P A ==. (2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件.(3)这种游戏规则不公平.和为偶数的样本点的个数为13个,(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲赢的概率为1325,乙赢的概率为1325.所以这种游戏规则不公平. 20.【答案】(1)记事件A ={从A ,B 箱中各取1张卡片,2张卡片的数字之积等于2}.样本点的总个数为6530⨯=,事件A 包含样本点的个数为5.由古典概型的概率公式得()51306P A ==.则2x =的概率为16. (2)记事件B ={从A ,B 箱中各取1张卡片,其数字之和为2且积为0}.事件B 包含的样本点的个数为10.由古典概型的概率公式得()101303P B ==.则0x =且2y =的概率为13. 21.【答案】(1)计算10件产品的综合指标S ,如表:其中4S ≤的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为0.610=,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4},{A 2,A 5},{A 2,A 7},{A 2,A 9},{A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7},共6种.所以()62155P B ==. 22.【答案】(1)设高一女生人数为x ,由题中表1和表2可得样本中男、女生人数分别为40,30,则7004030x x -=,解得300x =.因此高一女生的人数为300.(2)由题中表1和表2可得样本中身高在[165,180)的男、女生人数分别为32,10,其和为42.样本容量为70.所以样本中该校学生身高在[165,180)的概率为423705=.估计该校学生身高在[165,180)的概率为35. (3)由题中表格可知:女生身高在[165,180)的概率为13.男生身高在[165,180)的概率为45,所以这2人中至少有1人的身高在[165,180)内的概率为414141131153535315⨯-+-⨯+⨯=()().。
2019年数学新课标1卷高考真题

因为 ,所以 =0,所以 ,所以 = ,所以 与 的夹角为 ,故选B.
【点睛】
对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为 .
8.A
【解析】
【分析】
本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.
【详解】
法一:如图,由已知可设 ,则 ,由椭圆的定义有 .在 中,由余弦定理推论得 .在 中,由余弦定理得 ,解得 .
所求椭圆方程为 ,故选B.
法二:由已知可设 ,则 ,由椭圆的定义有 .在 和 中,由余弦定理得 ,又 互补, ,两式消去 ,得 ,解得 . 所求椭圆方程为 ,故选B.
【点睛】
本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.
又OA与OB都是渐近线,得 又 ,得 .又渐近线OB的斜率为 ,所以该双曲线的离心率为 .
【点睛】
本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题.
17.(1) ;(2) .
【解析】
【分析】
(1)利用正弦定理化简已知边角关系式可得: ,从而可整理出 ,根据 可求得结果;(2)利用正弦定理可得 ,利用 、两角和差正弦公式可得关于 和 的方程,结合同角三角函数关系解方程可求得结果.
【点睛】
对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。
2019年(理科数学)(新课标Ⅲ)试卷真题+参考答案+详细解析

2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合{1,0,1,2}A =-,2{|1}B x x =,则(A B = )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}2.(5分)若(1)2z i i +=,则(z = ) A .1i --B .1i -+C .1i -D .1i +3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.84.(5分)24(12)(1)x x ++的展开式中3x 的系数为( ) A .12B .16C .20D .245.(5分)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a = ) A .16B .8C .4D .26.(5分)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则( ) A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-7.(5分)函数3222x xx y -=+在[6,6]-的图象大致为( )A .B .C .D .8.(5分)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED的中点,则( )A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线9.(5分)执行如图的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A .4122-B .5122-C .6122-D .7122-10.(5分)双曲线22:142x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若||||PO PF =,则PFO ∆的面积为( )A 32B 32C .22D .3211.(5分)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A .233231(log )(2)(2)4f f f -->> B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->> D .233231(2)(2)(log )4f f f -->>12.(5分)设函数()sin()(0)5f x x πωω=+>,已知()f x 在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0,)10π单调递增④ω的取值范围是1229[,)510其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

M2 2M13α r绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z 对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB =(2,3),AC =(3,t),BC =1,则AB ⋅BC =A.-3 B.-2C.2 D.34.2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:M1 +M2 = (R +r)M1 .(R +r)2r2R3α=r α3α3+ 3α4+α5≈3设,由于R 的值很小,因此在近似计算中(1+α)2,则的近似值为A.M2 RM1B.RD .3M2 R 3M15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉1 个最高分、1 个最低分,得到7 个有效评分.7 个有效评分与9 个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差6.若a>b,则A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆x y2+=1 的一个焦点,则p= 3 p pA.2 B.3 C.4 D.8π 9.下列函数中,以2ππ为周期且在区间( ,4 2)单调递增的是A.f(x)=│cos 2x│B.f(x)=│sin 2x│C.f(x)=cos│x│D.f(x)= sin│x│π10.已知α∈(0,2 A.15),2sin 2α=cos 2α+1,则sin α=B.5C.3x2 y2 D.2 5511.设F 为双曲线C:a2 -=1(a > 0, b > 0) 的右焦点,O 为坐标原点,以OF 为直径的b2圆与圆x2+y2=a2交于P,Q 两点.若PQ =OF A.,则C 的离心率为B.C.3 3M2 RM15 3232C.2 D.12.设函数f (x) 的定义域为R,满足f (x +1) = 2 f (x) ,且当x ∈ (0,1] 时,f (x) =x(x -1) .若对任意x ∈(-∞, m] ,都有f (x) ≥-8,则m 的取值范围是9A.⎛-∞,9 ⎤B.⎛-∞,7 ⎤4 ⎥ 3 ⎥ ⎝⎦C.⎛-∞,5 ⎤⎝⎦D.⎛-∞,8 ⎤2 ⎥ 3⎥ ⎝⎦⎝⎦二、填空题:本题共4 小题,每小题5 分,共20 分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97,有20 个车次的正点率为0.98,有10 个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.14.已知f (x) 是奇函数,且当x < 0 时,f (x) =-e ax.若f (ln 2) = 8 ,则a =.15.△ABC 的内角A, B, C 的对边分别为a, b, c .若b = 6, a = 2c, B =π,则△ABC 的面积3为.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2 是一个棱数为48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(.本题第一空2 分,第二空3 分.)三、解答题:共70 分。
2019年版数学课程标准测试题及答案

2019年版数学课程标准测试题及答案1、数学是研究数量和空间的科学。
2、数学是人类文化的重要组成部分,数学是现代社会每一个公民应该具备的基本素质。
作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握必备的基础知识和基本技能,更要发挥数学在培养人的逻辑思维和创新能力方面的不可替代的作用。
3、义务教育阶段的数学课程是基础课程。
数学课程能使学生掌握必备的基础知识和基本技能,培养学生的数学思维,培养学生的数学兴趣,促进学生在情感、态度与价值观等方面的发展。
义务教育的数学课程能为学生的未来研究、工作、生活奠定重要的基础。
4、数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得每个学生都能够受益。
5、课程内容要反映社会的需求、数学的内在逻辑,具有可操作性和实用性。
它不仅包括数学的结果,也包括数学的方法和思想。
课程内容的选择要贴近学生的实际,有利于学生理解和应用。
课程内容的组织要重视知识的融通处理好数学的基础和拓展;要重视方法的灵活运用,处理好知识的系统性和完整性;要重视思想的启迪,处理好知识的深度和广度。
课程内容的呈现应注意生动性和趣味性。
6、教学活动是师生互动、合作、交流的过程。
学生是主体。
7、数学教学活动,特别是课堂教学应激发学生的好奇心,调动学生的积极性,引发学生的兴趣,鼓励学生的创造性;要注重培养学生良好的数学研究惯,使学生掌握恰当的研究方法。
8、学生研究应当是一个生动活泼的、主动的和富有个性的过程。
课堂讨论、小组合作、实验探究、课外拓展等,都是研究数学的重要方式。
学生应当有足够的时间和空间经历数学实践、探究、创新、交流、分享等活动过程。
9、教师教学应该以学生的需求和发展为基础,面向全体学生,注重个性化和差异化。
教师要发挥引导作用,处理好知识与能力的关系,引导学生探究、发现、创新,使学生理解和掌握基本的数学知识,体会和运用数学思想,获得基本的数学技能。
10、评价学生的主要目的是促进学生的发展,激励学生的研究兴趣和动力,改进教学方法和内容。
2019年全国新课标II卷试题及解析

2019高考数学试题+完美解析!2019全国新课标II卷试题+解析一.选择题:本题共12道,每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
【解析】考察一元二次不等式,一元一次不等式的解法,集合的运算【解析】考察复数的共轭,及其坐标表示【解析】考察向量的坐标运算,向量的减法,求模,数量积等基本公式,此题只要依题意进行公式套入即可。
【解析】考察统计中各个数据的含义,此题需理解中位数的求法即可。
【详解】9个数的中位数去掉两端的两个数据后,新7个数的中位数和原来相同,故选A【解析】此题看似不等式,实则是考察函数的单调性,通过函数单调性比较函数值的大小关系。
【解析】此题考察面面平行的判定定理。
【详解】判定定理:如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。
故选B【解析】圆锥曲线,考察抛物线和椭圆的焦点坐标,代入焦点坐标公式中即可求解,难度中等。
注意识别焦点位置。
【解析】考察图像变换中的含绝对值的图像变换,则利用图像判断函数单调区间【解析】考察三角函数的恒等变换,利用二倍角公式,可化简求tanα,进而求sinα【解析】此题考察双曲线的离心率的求法,根据题意做出图像,已知条件中的PQ=OF ,寻找关于a,b,c的等量关系,变形整理出离心率,是难题【解析】此题是“类周期函数”函数每向右一个单位,纵坐标总扩大2倍,做出函数图像,解出相应的函数解析式,再根据恒成立的条件,可求m的取值范围。
【解析】统计问题,考察频率分布中的平均值的求法,方法:频率乘相应数据再求和【解析】考察函数的奇偶性,及指数对数的计算。
根据已知区间的函数值,利用奇函数性质转换到未知区间的函数值,可求参数a【解析】此题考查解三角形中余弦定理,面积公式的应用。
应用余弦定理课解出a和c,在用面积公式可解【解析】本题考察数学文化,注重社会主义核心价值观,并将5分拆成2+3分两部分,利于学生拿分;第一空,应用题中“对称”二字,可数出面数;第二空,恰当做出截面是关键,把立体图形的放在平面几何中研究,是解决立体几何的重要手段1【解析】(1)问考察线面垂直的判定定理,找到与BE垂直的两条相交直线(2)问考察空间向量中二面角的求法,注意此题问的是正弦值,还需将余弦值转化为正弦值。
2019版高中数学新课程标准测试题及答案

高中数学新课标测试题一选择题:1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学新课标测试题一选择题:1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。
A.①②⑤⑧B.②③⑥⑦C.①④⑥⑧D.②③⑦⑧9.实现课程目标、实施教学的重要资源是( )A.课程资源B.教师C.教材D.仪器设备10.新课程教学改革要求我们首先确立起( )A.先进的教学观念B.与新课程相适应的、体现素质教育精神的教学观念C.教师为主导,学生为主体的教学观念D.以课堂教学为中心教学观念11.高中数学课程的基础性是指( )A.只有必修课程是基础B.必修和选修课程是所有高中生的基础C.高中数学课程为全体高中学生提供必要的数学基础,高中数学课程为不同学生提供不同的基础D.必修课程是基础,选修课程不是基础12.培养学生的学习习惯对今后发展至关重要,下面说法中不正确的是( )A.自学成才,无需培养B.培养学生会提问题、勤于思考的习惯C.培养学生用图形描述、刻画和解决问题的习惯D.培养学生及时反思和总结的习惯13.对于函数的教学以下说法不正确的是( )A.对函数的学习不能停留在抽象的讨论,要突出函数图形的地位B.函数是最重要、最基本的数学模型,要加深对函数思想的理解与应用C.在学生头脑中留下几个具体的最基本的函数模型就可以了D.结合具体的数学内容采用多种模式,让学生经历函数知识的形式与应用过程14.整体把握高中数学课程是理解高中数学课程的基点。
请根据培训内容说说看,高中数学课程内容的主线可大致分为( )A.函数思想、几何思想、算法思想、运算思想、随机思想与统计思想B.数形结合思想、分类讨论思想、函数与方程思想、概率与统计思想C.函数与方程的思想、数形结合思想、向量和坐标思想D.函数思想、算法思想、数形结合思想、分类讨论思想15.高中课程改革追求基本的目标是由应试教育向素质教育的转轨,真正实施( )A.全民教育B.大众教育C.素质教育D.精英教育16.《普通高中数学课程标准》提出的新课程基本理念,下面各组选项中说法不正确的是( )①构建共同基础,提供发展平台;②提供针对课程,适应个性选择;③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力;⑤发展学生的数学思维能力;⑥与时俱进地认识双基;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系; A.①③④⑦ B.②④⑤⑧ C.③⑤⑥⑨D.①⑤⑨⑩17.运算与推理的关系是( )A.运算与推理无关B.运算与推理是不同的思维形式C.运算本身就是一种推理,推理是运算的一种D.推理是运算18.任何新课程的研制,一般都要经过哪几个阶段进行( ) A.准备、研制、编写、推广B.研制、编写、实验、推广 C.准备、研制、实验、推广 D.准备、研制、编写、实验、推广19.从以下选项看,确定教学目标和教学要求的主要依据是( )A.课程标准B.教科书C.考试大纲D.教辅资料20.与社会、科技的进步紧密相连,体现时代精神的课程时代性的选择是指( )A.课程安排B.课程内容C.课程管理D.课程评价二填空:1.高中数学课程应力求通过各种不同形式的自主学习,探究活动,让学生体验数学发现和创造的历程,发展他们的___创新意识________。
2.高中数学课程应注重提高学生的数学思维能力,这是__数学教育______的基本目标之一。
3.数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生会用___数学的思考方式_____________解决问题、认识世界。
4.人们在学习数学和______运用数学解决问题____时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。
5.高中数学课程标准最突出的特点就是体现了___基础性________、多样性和选择性。
6.为了适应___信息时代__________发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。
7.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展____.智力和创新意识_______具有基础性的作用。
8.数学学习的评价既要重视结果,也要重视过程。
对学生_数学学习过程______________的评价,包括学生参加数学活动的兴趣和态度、数学学习的自信、独立思考的习惯、合作交流的意识、数学认知的发展水平等方面。
9.解析几何是17世纪数学发展的重大成果之一,其本质是__.用代数方法研究图形的几何性质___________________,体现了数形结合的重要数学思想。
10.数学是研究__空间形式和数量关系_____的科学,是刻画自然规律和社会规律的科学语言和有效工具。
11.普通高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的__数学素养_________,以满足个人发展与社会进步的需要。
12.高中数学课程要求把数学探究、_数学建模_______的思想以不同的形式渗透在各个模块和专题内容之中。
13.选修课程系列1是为希望在__.人文、社会科学_________等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。
14.数学探究即数学____探究性课题______学习,是指学生围绕某个数学问题,自主探究、学习的过程。
15.算法是一个全新的课题,己经成为计算机科学的重要基础,它在科学技术和____社会发展_______中起着越来起重要的作用。
16.课程目标要求学生具有一定的数学视野,逐步认识数学的科学价值、应用______价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
17.新课程标准的目标要求包括三个方面:知识与技能,__过程与方法________________和情感、态度、价值观18.高中数学选修2-2的内容包括:导数及其应用、推理与证明_______、数系的扩充与复数的引入。
19.向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与___三角函数______的一种工具,有着极其丰富的实际背景。
20.用空间向量处理立体几何问题,提供了新的视角。
空间向量的引入,为解决三维空间中图形的位置关系与__度量______问题提供了一个十分有效的工具。
三简答:1.简述高中数学课程标准课程的基本理念。
<<普通高中数学课程标准>>提出的基本理念有:1.构建共同基础,提供发展平台。
2.提供多样课程,适应个性选择。
3.倡导积极主动,用于探索的学习方式。
4.注重提高学生的数学思维能力。
5.发展学生的数学应用意识。
6.与时俱进地认识“双基”。
7.强调本质,注意适度形式化。
8.体现数学的文化价值。
9.注意信息技术与数学课程的整合。
10.建立合理、科学的评价体系。
2.<<普通高中数学课程标准>>提出的这些基本理念,对我们理解和把握新课程启发可以从以下几个方面来看:1.教师和学生地位的把握在以前的学习中我就了解到,新课改下,教师不该再是课堂的主宰者,而应当是学生学习的引导者。
而学生也不应当再被动的接受知识,应该成为课堂的主体,老师要善于引导学生积极、自觉、自主的去发现生活中存在的数学,并鼓励、引领他们去探究、去学习。
新课改下的课堂应该是以教师引导、学生自主学习为主的,富有生机和活力的课堂!2.学习目标的变化过去的应试教育迫使教师和学生只注重双基,而忽略了学生的能力和情感价值的培养,而新课程标准理念强调学习的三维发展目标,不仅要求双基,更强调学生的能力目标和情感价值观目标。
这样就引起了我的深思:作为一名教师,我能交给我的学生什么?经过反复思考,我认为教师不应该只传授给学生知识、解题方法和技巧,而应当主动给学生创造机会,培养学生的实践能力和应用能力,让他们在学习数学的过程中发现数学的美,从意识上彻底的植入数学的“根”,这样才能让他们学好数学这一门课。
3.学生思维的培养我觉得数学课堂不应该再是老师满堂教,学生埋头听这种沉闷的气氛。
这种气氛下,学生的思维很容易受到限制、得不到发展,学生成绩自然不会有所长进。
在新课程理念下,我觉得教师应该有针对性的课堂情景的创设,好的情景能充分调动绝大多数学生的学习的积极性,也能激起他们对本课程的兴趣,充分的使他们的注意力高度集中,老师再层层递进的引导学生去大胆、积极的思考,最终达到对问题的解决,老师再从一般到特殊,特殊到一般的举一反三的给学生进行总结。