2019版高中数学新课程标准测试题及答案

合集下载

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

第七章综合测试一、选择题(每小题5分,共40分) 1.下列事件是随机事件的是( )①同种电荷,互相排斥;②明天是晴天;③自由下落的物体做匀速直线运动;④函数01xy a a a =≠(>且)在定义域上是增函数. A .①③B .①④C .②④D .③④2.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的( ) A .①②B .①③C .②③D .①②③3.西周初数学家商高在公元前1000年发现勾股定理的一个特例,勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年,我们把可以构成一个直角三角形三边的一组正整数(a ,b ,c )称为勾股数.现从(3,4,5),(5,12,13),(6,8,10),(7,24,25),(8,15,17),(9,40,41),(9,12,15),(10,24,26),(15,20,25),(15,36,39)这几组勾股数中随机抽取1组,则被抽出的这组勾股数满足2b a c =+的概率为( ) A .25B .79C .78D .9104.抛掷一枚质地均匀的骰子,观察掷出的点数,设事件A 为“出现奇数点”,事件B 为“出现2点”,已知()12P A =,()16P B =,则“出现奇数点或2点”的概率为( ) A .16B .13C .12D .235.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,取出的球为红色的概率; ②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数; A .0个B .1个C .2个D .3个6.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A .23B .25C .35D .9107.某运动会期间,从来自A 大学的2名志愿者和来自B 大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿者的概率是( ) A .115B .25C .35D .14158.一位家长送孩子去幼儿园的路上要经过4个有红绿灯的路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min .则这位家长送孩子上学到第三个路口时首次遇到红灯的概率为( ) A .13B .227C .427D .527二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.在一个古典概型中,若两个不同的随机事件A ,B 发生的概率相等,则称A 和B 是“等概率事件”,如:随机抛掷一枚骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”.关于“等概率事件”,以下判断正确的是( )A .在同一个古典概型中,所有的样本点之间都是“等概率事件”B .若一个古典概型的事件总数大于2,则在这个古典概型中除样本点外没有其他“等概率事件”C .因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件”D .同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”10.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成统计表,其中“√”表示购买,“×”表示未购买.A .顾客购买乙商品的概率最大B .顾客同时购买乙和丙的概率约为0.2C .顾客在甲、乙、丙、丁中同时购买3种商品的概率约为0.3D .顾客仅购买1种商品的概率不大于0.311.某篮球运动员在最近几次参加的比赛中的得分情况如表:C ,用频率估计概率的方法,得到的下述结论中,正确的是( ) A .()0.55P A =B .()0.18P B =C .()0.27P C =D .()0.55P B C +=12.一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( ) A .任取2件,则取出的2件中恰有1件次品的概率是12B .每次抽取1件,不放回抽取两次,样本点总数为16C .每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D .每次抽取1件,有放回抽取两次,样本点总数为16 三、填空题(每小题5分,共20分) 13.若A ,B 是相互独立事件,且()12P A =,()23P B =,则()P AB =________,()P AB =________.14.《九章算术》是中国古代数学专著,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中“均赋粟”问题讲的是古代劳动人民的赋税问题.现拟编试题如下:已知甲、乙、丙、丁四县向国家交税,则甲必须第一个交且乙不是第三个交的概率为________.15.用红、黄、蓝三种不同颜色给图中的3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形颜色都相同的概率是________,3个矩形颜色都不同的概率是________.16.在一次数学考试中,第.设4名学生选做这两题的可能性均为12.则其中甲、乙2名学生选做同一道题的概率为________;甲、乙2名学生都选做第22题的概率为________.四、解答题(共70分)17.(10分)某校在教师外出培训学习活动中,在一个月派出的培训人数及其概率如表所示:(1(2)求至少有3个人培训的概率.18.(12分)用一台自动机床加工一批螺母,从中抽出100个逐个进行直径(单位:cm)检验,结果如表:从这100(1)事件A:螺母的直径在(6.93,6.95]内;(2)事件B:螺母的直径在(6.91,6.95]内;(3)事件C :螺母的直径大于6.96.19.(12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢. (1)若以A 表示和为6的事件,求P (A );(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.20.(12分)A ,B 两个箱子分别装有标号为0,1,2的三种卡片,每种卡片的张数如表所示.(1)从A ,B 箱中各取12x =的概率;(2)从A ,B 箱中各取1张卡片,用y 表示取出的2张卡片的数字之和,求0x =且2y =的概率.21.(12分)某产品的三个质量指标分别为x ,y ,z ,用综合指标S x y z =++评价该产品的等级.若4S ≤,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标如表:(1)利用表中提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品.①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.22.(12分)某重点中学为了解高一年级学生身体发育情况,对全校700名高一年级学生按性别进行分层随机抽样检查,测得身高(单位:cm)频数分布表如表1、表2.表1:男生身高频数分布表表2(1(2)估计该校学生身高在[165,180)的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,求这2人中至少有1人的身高在[165,180)内的概率.第七章综合测试答案解析一、 1.【答案】C【解析】②④是随机事件,①是必然事件,③是不可能事件. 2.【答案】A【解析】从装有红球、白球和黑球各2个的口袋内一次取出2个球,所有的样本点为:白白,白红,白黑,红红,红黑,黑黑.除“两球都不是白球”外,还有其他事件如白红可能发生,故①与“两球都为白球”互斥但不对立.除“两球都为白球”和“两球恰有一白球”外,还有其他事件,如无白球,故②与“两球都为白球”互斥但不对立.③两球至少有一个白球,其中包含两个都是白球,故不互斥. 3.【答案】A【解析】从这10组勾股数随机抽取1组,共10种抽取方法,其中满足2b a c =+的有:(3,4,5),(6,8,10),(9,12,15),(15,20,25),共4种,故所求概率为42105P ==. 4.【答案】D【解析】因为“出现奇数点”与“出现2点”两事件互斥,所以()()111263P P A P B =+=+=. 5.【答案】B【解析】古典概型的两个基本特征是有限性和等可能性,①符合两个特征,是古典概型;②中的样本点的个数无限多;对于③,出现“两正”“两反”“一正一反”的可能性不相等,故不是古典概型. 6.【答案】D【解析】事件“甲或乙被录用”的对立事件是“甲和乙都未被录用”,从五位学生中选三人的总的样本点的个数为10,“甲和乙都未被录用”只有1种情况,根据古典概型和对立事件的概率公式可得,甲或乙被录用的概率1911010P =-=. 7.【答案】C【解析】用列举法可得样本空间中样本点的总数为15,所求概率的事件包括的样本点的个数为9,所以93155P ==. 8.【答案】C【解析】设“这位家长送孩子上学到第三个路口时首次遇到红灯”为事件A ,因为事件A 等于事件“这位家长送孩子在第一个路口和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()111433327P A ⨯⨯==(1-)(1-). 二、9.【答案】AD【解析】对于A ,由古典概型的定义知,所有样本点的概率都相等,故所有样本点之间都是“等概率事件”,故A 正确;对于B ,如在1,3,5,7,9五个数中,任取两个数,所得和为8和10这两个事件发生的概率相等,故B 错误;对于C ,由题可知“等概率事件”是针对同一个古典概型的,故C 不正确;对于D ,同时抛掷三枚硬币一次共有8种不同的结果,其中“仅有一个正面”包含3种结果,其概率为38,“仅有两个正面”包含3种结果,其概率为38,故这两个事件是“等概率事件”,故D 正确. 10.【答案】BCD【解析】对于A ,由于购买甲商品的顾客有685位,购买乙商品的顾客有515位,故A 错误;对于B ,因为从统计表可以看出,在这1 000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=,故B 正确;对于C ,因为从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=,故C 正确;对于D ,因为从统计表可以看出,在这1000位顾客中,有183位顾客仅购买1种商品,所以顾客仅购买1种商品的概率可以估计为0.1830.2<,故D 正确. 11.【答案】ABC【解析】由题意可知,()550.55100P A ==,()180.18100P B ==,事件A B +与事件C 为对立事件,且事件A ,B ,C 互斥,所以()()()()110.27P C P A B P A P B =+==---,()()()0.45P B C P B P C +=+=. 12.【答案】ACD【解析】记4件产品分别为1,2,3,a ,其中a 表示次品.A 选项,样本空间Ω={(1,2),(1,3),(1,a ),(2,3),(2,a ),(3,a )},“恰有1件次品”的样本点为(1,a ),(2,a ),(3,a ),因此其概率3162P ==,A 正确;B 选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a ),(2,1),(2,3),(2,a ),(3,1),(3,2),(3,a ),(a ,1),(a ,2),(a ,3)},因此()12n Ω=,B 错误;C 选项,“取出的2件中恰有1件次品”的样本点数为6,其概率为12,C 正确;D 选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2),(1,3),(1,a ),(2,1),(2,2),(2,3),(2,a ),(3,1),(3,2),(3,3),(3,a ),(a ,1),(a ,2),(a ,3),(a ,a )},因此()16n Ω=,D 正确. 三、 13.【答案】16 16【解析】因为()()1223P A P B ==,,所以()()11122P A P A =-=-=1,()21133P B =-=.因为A ,B 相互独立,所以A 与B ,A 与B 相互独立,所以()()()111236P AB P A P B ==⨯=,()()()111236P AB P A P B ==⨯=.14.【答案】16【解析】依题意,所有的样本点为:甲—乙—丙—丁,甲—乙—丁—丙,甲—丙—乙—丁,甲—丙—丁—乙,甲—丁—丙—乙,甲—丁—乙—丙,乙、丙、丁第一个交的情况也各有6种,故总的样本点数有24种,其中满足条件的样本点为:甲—乙—丁—丙,甲—乙—丙—丁,甲—丙—丁—乙,甲—丁—丙—乙,共4种,故所求概率为41246=. 15.【答案】19 29【解析】以“红黄蓝”表示从左到右三个矩形所涂的颜色,则所有的样本点有:红红红、红红黄、红红蓝、红黄红、红黄黄、红黄蓝、红蓝红、红蓝黄、红蓝蓝、黄红红、黄红黄、黄红蓝、黄黄红、黄黄黄、黄黄蓝、黄蓝红、黄蓝黄、黄蓝蓝、蓝红红、蓝红黄、蓝红蓝、蓝黄红、蓝黄黄、蓝黄蓝、蓝蓝红、蓝蓝黄、蓝蓝蓝,共27个样本点,事件“3个矩形颜色都相同”所包含的样本点有:红红红、黄黄黄、蓝蓝蓝,共3个,所以3个矩形颜色都相同的概率是31279=.事件“3个矩形颜色都不同”所包含的样本点有:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝黄红、蓝红黄,共6个,所以3个矩形颜色都不同的概率是62279=. 16.【答案】12 14【解析】设事件A 表示“甲选做第22题”,事件B 表示“乙选做第22题”,则甲,乙2名学生选做同一道题的事件为“AB AB +”,且事件A ,B 相互独立,所以()()()()()111111122222P AB AB P A P B P A P B +=+=⨯+-⨯-=()().所以甲、乙2名学生选做同一道题的概率为12;因为()()111224P A P B =⨯=,所以甲、乙2名学生都选做第22题的概率为14. 四、17.【答案】(1)设“有2人及以下培训”为事件A ,“有3人培训”为事件B ,“有4人培训”为事件C ,“有5人培训”为事件D ,“有6人及以上培训”为事件E ,所以“有4个人或5个人培训”的事件为事件C 或事件D ,A ,B ,C ,D ,E 为互斥事件,根据互斥事件的概率加法公式可知()()()0.30.10.4P C D P C P D =+=+=.(2)“至少有3个人培训”的对立事件为“有2人及以下培训”,所以由对立事件的概率可知()110.10.9P P A =-=-=.18.【答案】(1)螺母的直径在(6.93,6.95]内的频数为261541A n =+=,所以事件A 的频率为410.41100=. (2)螺母的直径在(6.91,6.95]内的频数为1717261575B n =+++=.所以事件B 的频率为750.75100=.(3)螺母的直径大于6.96的频数为224C n =+=,所以事件C 的频率为40.04100=.19.【答案】(1)甲、乙出手指都有5种可能,因此样本点的总数为5525⨯=,事件A 包括甲、乙出的手指的情况有(1,5),(5,1),(2,4),(4,2),(3,3)共5种情况,所以()51255P A ==. (2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件.(3)这种游戏规则不公平.和为偶数的样本点的个数为13个,(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲赢的概率为1325,乙赢的概率为1325.所以这种游戏规则不公平. 20.【答案】(1)记事件A ={从A ,B 箱中各取1张卡片,2张卡片的数字之积等于2}.样本点的总个数为6530⨯=,事件A 包含样本点的个数为5.由古典概型的概率公式得()51306P A ==.则2x =的概率为16. (2)记事件B ={从A ,B 箱中各取1张卡片,其数字之和为2且积为0}.事件B 包含的样本点的个数为10.由古典概型的概率公式得()101303P B ==.则0x =且2y =的概率为13. 21.【答案】(1)计算10件产品的综合指标S ,如表:其中4S ≤的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为0.610=,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4},{A 2,A 5},{A 2,A 7},{A 2,A 9},{A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7},共6种.所以()62155P B ==. 22.【答案】(1)设高一女生人数为x ,由题中表1和表2可得样本中男、女生人数分别为40,30,则7004030x x -=,解得300x =.因此高一女生的人数为300.(2)由题中表1和表2可得样本中身高在[165,180)的男、女生人数分别为32,10,其和为42.样本容量为70.所以样本中该校学生身高在[165,180)的概率为423705=.估计该校学生身高在[165,180)的概率为35. (3)由题中表格可知:女生身高在[165,180)的概率为13.男生身高在[165,180)的概率为45,所以这2人中至少有1人的身高在[165,180)内的概率为414141131153535315⨯-+-⨯+⨯=()().。

2019年数学新课标1卷高考真题

2019年数学新课标1卷高考真题
【详解】
因为 ,所以 =0,所以 ,所以 = ,所以 与 的夹角为 ,故选B.
【点睛】
对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为 .
8.A
【解析】
【分析】
本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.
【详解】
法一:如图,由已知可设 ,则 ,由椭圆的定义有 .在 中,由余弦定理推论得 .在 中,由余弦定理得 ,解得 .
所求椭圆方程为 ,故选B.
法二:由已知可设 ,则 ,由椭圆的定义有 .在 和 中,由余弦定理得 ,又 互补, ,两式消去 ,得 ,解得 . 所求椭圆方程为 ,故选B.
【点睛】
本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.
又OA与OB都是渐近线,得 又 ,得 .又渐近线OB的斜率为 ,所以该双曲线的离心率为 .
【点睛】
本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题.
17.(1) ;(2) .
【解析】
【分析】
(1)利用正弦定理化简已知边角关系式可得: ,从而可整理出 ,根据 可求得结果;(2)利用正弦定理可得 ,利用 、两角和差正弦公式可得关于 和 的方程,结合同角三角函数关系解方程可求得结果.
【点睛】
对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)-含详细答案

2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。

2019年(理科数学)(新课标Ⅲ)试卷真题+参考答案+详细解析

2019年(理科数学)(新课标Ⅲ)试卷真题+参考答案+详细解析

2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合{1,0,1,2}A =-,2{|1}B x x =,则(A B = )A .{1,0,1}-B .{0,1}C .{1,1}-D .{0,1,2}2.(5分)若(1)2z i i +=,则(z = ) A .1i --B .1i -+C .1i -D .1i +3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.84.(5分)24(12)(1)x x ++的展开式中3x 的系数为( ) A .12B .16C .20D .245.(5分)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a = ) A .16B .8C .4D .26.(5分)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则( ) A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-7.(5分)函数3222x xx y -=+在[6,6]-的图象大致为( )A .B .C .D .8.(5分)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED的中点,则( )A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线9.(5分)执行如图的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A .4122-B .5122-C .6122-D .7122-10.(5分)双曲线22:142x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若||||PO PF =,则PFO ∆的面积为( )A 32B 32C .22D .3211.(5分)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A .233231(log )(2)(2)4f f f -->> B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->> D .233231(2)(2)(log )4f f f -->>12.(5分)设函数()sin()(0)5f x x πωω=+>,已知()f x 在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0,)10π单调递增④ω的取值范围是1229[,)510其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2019年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

M2 2M13α r绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z 对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB =(2,3),AC =(3,t),BC =1,则AB ⋅BC =A.-3 B.-2C.2 D.34.2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2 点到月球的距离为r,根据牛顿运动定律和万有引力定律,r 满足方程:M1 +M2 = (R +r)M1 .(R +r)2r2R3α=r α3α3+ 3α4+α5≈3设,由于R 的值很小,因此在近似计算中(1+α)2,则的近似值为A.M2 RM1B.RD .3M2 R 3M15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉1 个最高分、1 个最低分,得到7 个有效评分.7 个有效评分与9 个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差6.若a>b,则A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆x y2+=1 的一个焦点,则p= 3 p pA.2 B.3 C.4 D.8π 9.下列函数中,以2ππ为周期且在区间( ,4 2)单调递增的是A.f(x)=│cos 2x│B.f(x)=│sin 2x│C.f(x)=cos│x│D.f(x)= sin│x│π10.已知α∈(0,2 A.15),2sin 2α=cos 2α+1,则sin α=B.5C.3x2 y2 D.2 5511.设F 为双曲线C:a2 -=1(a > 0, b > 0) 的右焦点,O 为坐标原点,以OF 为直径的b2圆与圆x2+y2=a2交于P,Q 两点.若PQ =OF A.,则C 的离心率为B.C.3 3M2 RM15 3232C.2 D.12.设函数f (x) 的定义域为R,满足f (x +1) = 2 f (x) ,且当x ∈ (0,1] 时,f (x) =x(x -1) .若对任意x ∈(-∞, m] ,都有f (x) ≥-8,则m 的取值范围是9A.⎛-∞,9 ⎤B.⎛-∞,7 ⎤4 ⎥ 3 ⎥ ⎝⎦C.⎛-∞,5 ⎤⎝⎦D.⎛-∞,8 ⎤2 ⎥ 3⎥ ⎝⎦⎝⎦二、填空题:本题共4 小题,每小题5 分,共20 分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97,有20 个车次的正点率为0.98,有10 个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.14.已知f (x) 是奇函数,且当x < 0 时,f (x) =-e ax.若f (ln 2) = 8 ,则a =.15.△ABC 的内角A, B, C 的对边分别为a, b, c .若b = 6, a = 2c, B =π,则△ABC 的面积3为.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2 是一个棱数为48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(.本题第一空2 分,第二空3 分.)三、解答题:共70 分。

2019年版数学课程标准测试题及答案

2019年版数学课程标准测试题及答案

2019年版数学课程标准测试题及答案1、数学是研究数量和空间的科学。

2、数学是人类文化的重要组成部分,数学是现代社会每一个公民应该具备的基本素质。

作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握必备的基础知识和基本技能,更要发挥数学在培养人的逻辑思维和创新能力方面的不可替代的作用。

3、义务教育阶段的数学课程是基础课程。

数学课程能使学生掌握必备的基础知识和基本技能,培养学生的数学思维,培养学生的数学兴趣,促进学生在情感、态度与价值观等方面的发展。

义务教育的数学课程能为学生的未来研究、工作、生活奠定重要的基础。

4、数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得每个学生都能够受益。

5、课程内容要反映社会的需求、数学的内在逻辑,具有可操作性和实用性。

它不仅包括数学的结果,也包括数学的方法和思想。

课程内容的选择要贴近学生的实际,有利于学生理解和应用。

课程内容的组织要重视知识的融通处理好数学的基础和拓展;要重视方法的灵活运用,处理好知识的系统性和完整性;要重视思想的启迪,处理好知识的深度和广度。

课程内容的呈现应注意生动性和趣味性。

6、教学活动是师生互动、合作、交流的过程。

学生是主体。

7、数学教学活动,特别是课堂教学应激发学生的好奇心,调动学生的积极性,引发学生的兴趣,鼓励学生的创造性;要注重培养学生良好的数学研究惯,使学生掌握恰当的研究方法。

8、学生研究应当是一个生动活泼的、主动的和富有个性的过程。

课堂讨论、小组合作、实验探究、课外拓展等,都是研究数学的重要方式。

学生应当有足够的时间和空间经历数学实践、探究、创新、交流、分享等活动过程。

9、教师教学应该以学生的需求和发展为基础,面向全体学生,注重个性化和差异化。

教师要发挥引导作用,处理好知识与能力的关系,引导学生探究、发现、创新,使学生理解和掌握基本的数学知识,体会和运用数学思想,获得基本的数学技能。

10、评价学生的主要目的是促进学生的发展,激励学生的研究兴趣和动力,改进教学方法和内容。

2019年全国新课标II卷试题及解析

2019年全国新课标II卷试题及解析

2019高考数学试题+完美解析!2019全国新课标II卷试题+解析一.选择题:本题共12道,每小题5分,共60分。

在每小题给出的四个选项中,只有一个项是符合题目要求的。

【解析】考察一元二次不等式,一元一次不等式的解法,集合的运算【解析】考察复数的共轭,及其坐标表示【解析】考察向量的坐标运算,向量的减法,求模,数量积等基本公式,此题只要依题意进行公式套入即可。

【解析】考察统计中各个数据的含义,此题需理解中位数的求法即可。

【详解】9个数的中位数去掉两端的两个数据后,新7个数的中位数和原来相同,故选A【解析】此题看似不等式,实则是考察函数的单调性,通过函数单调性比较函数值的大小关系。

【解析】此题考察面面平行的判定定理。

【详解】判定定理:如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。

故选B【解析】圆锥曲线,考察抛物线和椭圆的焦点坐标,代入焦点坐标公式中即可求解,难度中等。

注意识别焦点位置。

【解析】考察图像变换中的含绝对值的图像变换,则利用图像判断函数单调区间【解析】考察三角函数的恒等变换,利用二倍角公式,可化简求tanα,进而求sinα【解析】此题考察双曲线的离心率的求法,根据题意做出图像,已知条件中的PQ=OF ,寻找关于a,b,c的等量关系,变形整理出离心率,是难题【解析】此题是“类周期函数”函数每向右一个单位,纵坐标总扩大2倍,做出函数图像,解出相应的函数解析式,再根据恒成立的条件,可求m的取值范围。

【解析】统计问题,考察频率分布中的平均值的求法,方法:频率乘相应数据再求和【解析】考察函数的奇偶性,及指数对数的计算。

根据已知区间的函数值,利用奇函数性质转换到未知区间的函数值,可求参数a【解析】此题考查解三角形中余弦定理,面积公式的应用。

应用余弦定理课解出a和c,在用面积公式可解【解析】本题考察数学文化,注重社会主义核心价值观,并将5分拆成2+3分两部分,利于学生拿分;第一空,应用题中“对称”二字,可数出面数;第二空,恰当做出截面是关键,把立体图形的放在平面几何中研究,是解决立体几何的重要手段1【解析】(1)问考察线面垂直的判定定理,找到与BE垂直的两条相交直线(2)问考察空间向量中二面角的求法,注意此题问的是正弦值,还需将余弦值转化为正弦值。

2019版高中数学新课程标准测试题及答案

2019版高中数学新课程标准测试题及答案

高中数学新课标测试题一选择题:1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。

2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

 2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2019年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学一、选择题1.已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N等于()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}答案 C解析∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.x2+(y+1)2=1答案 C解析∵z在复平面内对应的点为(x,y),∴z=x+y i(x,y∈R).∵|z-i|=1,∴|x+(y-1)i|=1,∴x2+(y-1)2=1.故选C.3.已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a答案 B解析∵a=log20.2<0,b=20.2>1,c=0.20.3∈(0,1),∴a<c<b.故选B.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cm B.175 cm C.185 cm D.190 cm答案 B 解析若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B.5.函数f(x)=在[-π,π]上的图象大致为()A. B.C. D.答案 D解析∵f(-x)==-=-f(x),∴f(x)为奇函数,排除A;∵f(π)==>0,∴排除C;∵f(1)=,且sin 1>cos 1,∴f(1)>1,∴排除B,故选D.6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A.7.已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.答案 B解析设a与b的夹角为α,∵(a-b)⊥b,∴(a-b)·b=0,∴a·b=b2,∴|a|·|b|cos α=|b|2,又|a|=2|b|,∴cos α=,∵α∈[0,π],∴α=,故选B.8.如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+答案 A解析A=,k=1,1≤2成立,执行循环体;A=,k=2,2≤2成立,执行循环体;A=,k=3,3≤2不成立,结束循环,输出A.故空白框中应填入A=.故选A.9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5 B.a n=3n-10C.S n=2n2-8n D.S n=n2-2n答案 A解析设等差数列{a n}的公差为d,∵∴解得∴a n=a1+(n-1)d=-3+2(n-1)=2n-5,S n=na1+d=n2-4n.故选A.10.已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.11.关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数;②f(x)在区间上单调递增;③f(x)在[-π,π]上有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是()A.①②④ B.②④ C.①④ D.①③答案 C解析f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),∴f(x)为偶函数,故①正确;当<x<π时,f(x)=sin x+sin x=2sin x,∴f(x)在上单调递减,故②不正确;f(x)在[-π,π]上的图象如图所示,由图可知函数f(x)在[-π,π]上只有3个零点,故③不正确;∵y=sin|x|与y=|sin x|的最大值都为1且可以同时取到,∴f(x)可以取到最大值2,故④正确.综上,正确结论的编号是①④.故选C.12.已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8π B.4π C.2π D.π答案 D解析因为点E,F分别为P A,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面P AC,所以PB⊥平面P AC,所以PB⊥P A,PB⊥PC,因为P A=PB=PC,△ABC为正三角形,所以P A⊥PC,即P A,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为,所以该正方体的体对角线长为,所以三棱锥P-ABC的外接球的半径R=,所以球O的体积V=πR3=π3=π,故选D.二、填空题13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.答案y=3x解析因为y′=3(2x+1)e x+3(x2+x)e x=3(x2+3x+1)e x,所以曲线在点(0,0)处的切线的斜率k=y′|x=0=3,所以所求的切线方程为y=3x.14.记S n为等比数列{a n}的前n项和.若a1=,=a6,则S5=________.答案解析设等比数列{a n}的公比为q,因为=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=,所以q=3,所以S5===.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.16.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为________.答案 2解析因为F1B·F2B=0,所以F1B⊥F2B,如图.因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.三、解答题17.△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若a+b=2c,求sin C.解(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc,由余弦定理得cos A==,因为0°<A<180°,所以A=60°. (2)由(1)知B=120°-C,由题设及正弦定理得sin A+sin(120°-C)=2sin C,即+cos C+sin C=2sinC,可得cos(C+60°)=-.由于0°<C<120°,所以sin(C+60°)=,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=.18.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.(1)证明连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D.由题设知A1B1∥DC且A1B1=DC,可得B1C∥A1D且B1C=A1D,故ME∥ND且ME=ND,因此四边形MNDE 为平行四边形,MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.(2)解由已知可得DE⊥DA,以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(2,0,0),A1(2,0,4),M(1,,2),N(1,0,2),=(0,0,-4),=(-1,,-2),=(-1,0,-2),=(0,-,0).设m=(x,y,z)为平面A1MA的一个法向量,则所以可得m=(,1,0).设n=(p,q,r)为平面A1MN的一个法向量,则所以可取n=(2,0,-1).于是cos〈m,n〉===,所以二面角A-MA1-N的正弦值为.19.已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,令Δ>0,得t<,则x1+x2=-.从而-=,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2,由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得x1=3,x2=,即A(3,3),B,故|AB|=. 20.已知函数f(x)=sin x-ln(1+x),f′(x)为f(x)的导数,证明:(1)f′(x)的区间上存在唯一极大值点;(2)f(x)有且仅有2个零点.证明(1)设g(x)=f′(x),则g(x)=cos x-,g′(x)=-sin x+.当x∈时,g′(x)单调递减,而g′(0)>0,g′<0,可得g′(x)在有唯一零点,设为α.则当x∈(-1,α)时,g′(x)>0;当x∈时,g′(x)<0.所以g(x)在(-1,α)上单调递增,在上单调递减,故g(x)在上存在唯一极大值点,即f′(x)在上存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f′(x)在(-1,0)上单调递增.而f′(0)=0,所以当x∈(-1,0)时,f′(x)<0,故f(x)在(-1,0)上单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点;②当x∈时,由(1)知,f′(x)在(0,α)上单调递增,在上单调递减,而f′(0)=0,f′<0,所以存在β∈,使得f′(β)=0,且当x∈(0,β)时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在(0,β)上单调递增,在上单调递减.又f(0)=0,f=1-ln>0,所以当x∈时,f(x)>0.从而,f(x)在上没有零点;③当x∈时,f′(x)<0,所以f(x)在上单调递减.而f>0,f(π)<0,所以f(x)在上有唯一零点;④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcos θ+ρsin θ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解(1)因为-1<≤1,且x2+2=2+=1,所以C的直角坐标方程为x2+=1(x≠-1).l的直角坐标方程为2x+y+11=0.(2)由(1)可设C的参数方程为 (α为参数,-π<α<π).C上的点到l的距离为=. 当α=-时,4cos+11取得最小值7,故C上的点到l距离的最小值为.23.[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.祝福语祝你考试成功!。

(完整word版)2019全国统一高考数学试卷(课标1)

(完整word版)2019全国统一高考数学试卷(课标1)
13.曲线 在点 处的切线方程为___________.
14.记Sn为等比数列{an}的前n项和.若 ,则S4=___________.
15.函数 的最小值为___________.
16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为 ,那么P到平面ABC的距离为___________.
A.165 cmB.175 cmC.185 cmD.190cm
5.函数f(x)= 在[—π,π]的图像大致为
A. B.
C. D.
6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是
(2)求C上的点到l距离的最小值.
23.[选修4-5:不等式选讲]
已知a,b,c为正数,且满足abc=1.证明:
(1) ;
(2先由复数的除法运算(分母实数化),求得 ,再求 .
【详解】
因为 ,所以 ,所以 ,故选C.
【点睛】
本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.
2.C
【解析】
【分析】
先求 ,再求 .
【详解】
由已知得 ,所以 ,故选C.
【点睛】
本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.
3.B
【解析】
【分析】
运用中间量 比较 ,运用中间量 比较
【详解】
则 .故选B.
【点睛】
本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

第七章综合测试一、选择题1.已知甲射击命中目标的概率为12,乙射击命中日标的概率为13,甲、乙是否命中目标相互之间无影响,现在甲、乙两人同时射击目标一次,则目标被击中的概率是()A.16B.13C.23D.562.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为()A.0.2484B.0.25C.0.90D.0.39243.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,如果他记得密码的最后一位是偶数,则他不超过2次就按对的概率是()A.45B.35C.25D.154.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.12B.512C.14D.165.如图,A B C,,表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是()A.0.994B.0.686C.0.504D.0.4966.甲乙两名射击运动员进行射击比赛,甲中靶的概率为0.8,乙中靶的概率为0.9.甲乙各射击一次,则两人都中靶的概率为()A.0.26B.0.72C.0.8D.0.987.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是()A.0.18B.0.21C.0.39D.0.428.根据天气预报,某一天A城市和B城市降雨的概率均为0.6,假定这一天两城市是否降雨相互之间没有影响,则该天这两个城市中,至少有一个城市降雨的概率为()A.0.16B.0.48C.0.52D.0.849.甲乙两人投球命中率分别为23,35,且是否投中互不影响,两人各投球一次,恰好有一人命中的概率为( )A .12B .25C .715D .81510.若事件A 与B 相互独立,()23P A =,()14P B =,则P AB( ) A .16 B .712 C .34D .111211.5G 指的是第五代移动通信技术,是最新一代蜂窝移动通信技术,某公司研发5G 项目时遇到一项技术难题,由甲、乙两个部门分别独立攻关,已知甲部门攻克该技术难题的概率为0.8,乙部门攻克该技术难题的概率为0.7,则该公司攻克这项技术难题的概率为( ) A .0.56B .0.86C .0.94D .0.9612.甲、乙、丙三人参加学业水平测试,已知他们通过测试的概率分别为112323,,,且每人是否通过测试相互独立,则这三人中至少有一人通过测试的概率为( ) A .19B .12C .78D .89二、填空题13.世卫组织就新型冠状病毒感染的肺炎疫情称,新型病毒可能造成“持续人传人”.通俗点说就是存在A 传B ,B 又传C ,C 又传D ,这就是“持续人传人”.那么A 、B 、C 就会被称为第一代、第二代、第三代传播者.假设一个身体健康的人被第一代、第二代、第三代传播者感染的概率分别为0.9,0.8,0.7,健康的小明参加了一次多人宴会,事后知道,参加宴会的人有5名第一代传播者,3名第二代传播者,2名第三代传播者,试计算,小明参加聚会,仅和感染的10个人其中一个接触,感染的概率有多大________.14.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是________.15.在一段线路中有4个自动控制的常用开关A 、B 、C 、D ,如图连接在一起,假定在2019年9月份开关A ,D 能够闭合的概率都是0.7,开关B ,C 能够闭合的概率都是0.8,则在9月份这段线路能正常工作的概率为________.16.每次同时抛掷质地均匀的硬币4枚,抛n 次()*2n n N ,∈,各次结果相互独立,记出现至少有1枚硬币面朝上的次数为X ,若()5E X >,则n 的最小值为________.三、解答题17.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?18.袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.(1)求取球3次即终止的概率;(2)求甲取到白球的概率.19.某学校就学生对端午节文化习俗的了解情况,进行了一次20道题的问卷调查,每位同学都是独立答题,在回收的试卷中发现甲同学答对了12个,乙同学答对了16个.假设答对每道题都是等可能的,试求:(1)任选一道题目,甲乙都没有答对的概率;(2)任选一道题目,恰有一人答对的概率.20.溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为23,乙队每人回答问题正确的概率分别为123234,,,且两队各人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.2020年6月28日上午,未成年人保护法修订草案二审稿提请十三届全国人大常委第二十次会议审议,修改草案二审稿针对监护缺失、校园欺凌研究损害、网络沉迷等问题,进一步压实监护人、学校住宿经营者网络服务提供者等主体,加大对未成年人保护力度我校为宣传未成年保护法,特举行一次未成年人保护法知识竞赛,两人一组,每一轮竞赛中,小组两人分别答两题,若答对题数不少于3题,被称为“优秀小组”,已知甲乙两位同学组成一组,且同学甲和同学乙答对题的概率分为1p ,2p .(1)若134p =,223p =,则在第一轮竞赛中,求他们获“优秀小组”的概率;(2)若1265p p +=,且每轮比赛互不影响,则在竞赛中甲乙同学要想获得“优秀小组”次数为9次,则理论上至少要进行多少轮竞赛才行?并求此时1p ,2p 的值.22.某高校的入学面试中有4道不同的题目,每位面试者都要回答这4道题目.已知李明答对第1题、第2题、第3题、第4题的概率分别为11112345,,,,假设对这4道题目能否答对是独立的,该高校要求至少答对其中的3道题才能通过面试.用i A 表示事件“李明答对第i 道题”(1234i ,,,). (1)写出所有的样本点;(2)求李明通过面试的概率.第七章综合测试答案解析一、 1.【答案】C【解析】先转化对立事件,根据独立事件概率乘法公式以及对立事件概率公式求解,即得结果.因为目标被击中,指甲、乙两人至少有一人命中目标,其对立事件为甲、乙两人都未命中目标,所以目标被击中的概率是1121(1)(1)233---=, 故选:C本题考查独立事件概率乘法公式以及对立事件概率公式,考查基本分析求解能力,属基础题. 2.【答案】D【解析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案.由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=; 两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D .本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题. 3.【答案】C【解析】任意按最后一位数字,不超过2次就按对有两种情形,一种是按1次就按对和第一次没有按对,第二次按对,求两种情形的概率和即可;密码的最后一个数是偶数,可以为0,2,4,6,8. 按一次就按对的概率:115P =, 第一次没有按对,第二次按对的概率:2411545P =⨯= 则不超过两次就按对的概率:1225P P P =+=, 故选:C .本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式的运用,是基础题.4.【答案】B【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(1A )与仅第二个实习生加工一等品(2A )两种情况, 则1221135+=343412P A P A P A . 故选B . 5.【答案】B【解析】由题中意思可知,当A 、B 元件至少有一个在工作,且C 元件在工作时,该系统正常工作,再利用独立事件的概率乘法公式可得出所求事件的概率.由题意可知,该系统正常工作时,A 、B 元件至少有一个在工作,且C 元件在工作, 当A 、B 元件至少有一个在工作时,其概率为()()110.910.80.98--⨯-=, 由独立事件的概率乘法公式可知,该系统正常工作的概率为0.980.70.686⨯=, 故选B .本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题. 6.【答案】B【解析】利用独立事件的概率乘法公式可求得所求事件的概率. 甲乙各射击一次,则“甲中靶”与“乙中靶”相互独立, 所以,甲乙各射击一次,则两人都中靶的概率为0.80.90.72⨯=. 故选:B .本题考查利用独立事件的概率的乘法公式计算事件的概率,考查计算能力,属于基础题. 7.【答案】C【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解.解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束). 根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=.甲队以3:0获胜的概率是:20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中等题. 8.【答案】D【解析】求其对立事件两城市均未降雨的概率,进而可得结果.记A 城市和B 城市降雨分别为事件A 和事件B ,故()0.6P A =,()0.6P B =, 可得()0.4P A =,()0.4P B =,两城市均未降雨的概率为()0.40.40.16P A B ⋅=⨯=, 故至少有一个城市降雨的概率为10.160.84-=, 故选:D .本题主要考查了相互独立事件的概率公式的应用,以及对立事件的应用,属于基础题. 9.【答案】C【解析】恰有一人命中有两种情形:甲中乙不中和甲不中乙中甲命中的概率为23,不命中的概率为21133-=; 乙命中的概率为35,不命中的概率为32155-=;设恰好有一人命中的概率为P ,则22137353515P =⨯+⨯=.故选:C此题为基本概念题,考查独立事件发生的概率算法. 10.【答案】C【解析】根据事件A 与B 相互独立,则P AB P A P B ,再由P AB P A P BP AB 求解.因为事件A 与B 相互独立,且23P A ,14P B , 所以16P AB P A P B , 所以21133464P A BP AP BP AB故选:C本题主要考查独立事件的概率以及并集事件的概率,属于基础题. 11.【答案】C【解析】计算不能攻克的概率,得到答案. 根据题意:()()110.810.70.94P =---=. 故选:C .本题考查了概率的计算,意在考查学生的计算能力和应用能力. 12.【答案】D【解析】先求得三人都没通过测试的概率,由此求得三人中至少有一人通过测试的概率. 所求事件的对立事件为“三人均未通过测试”,概率为21113239⨯⨯=,故至少一人通过测试的概率为18199-=. 故选:D本小题主要考查相互独立事件概率计算,属于基础题. 二、13.【答案】0.83【解析】求出小明与第一代、第二代、第三代传播者接触的概率,利用独立事件、互斥事件的概率公式求解即可.设事件A ,B ,C 为第一代、第二代、第三代传播者接触, 事件D 为小明被感染,由已知得:()0.5P A =,()0.3P B =,()0.2P C =,()|0.9P D A =,()|0.8P D B =,()|0.7P D C =, ()()()()()()()|+||0.90.50.80.30.70.20.83P D P D A P A P D B P B P D C P C +==⨯+⨯+⨯=.∴小明参加聚会,仅和感染的10个人其中一个接触,感染的概率为0.83.故答案为:0.83.本题考查概率的求法,考查独立事件、互斥事件的概率公式以及条件概率的性质等基础知识,考查运算求解能力,是基础题. 14.【答案】0.18【解析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查. 前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108⨯⨯⨯=, 前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072⨯⨯⨯=,综上所述,甲队以4:1获胜的概率是0.1080.0720.18q =+=.由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 15.【答案】0.967 6【解析】先计算线路不能正常工作的概率,用1减去这个概率,求得正常工作的概率.B C ,段不能正常工作的概率为10.80.80.36-⨯=.线路不能正常工作的概率为0.30.30.36⨯⨯,故能正常工作的概率为10.30.30.360.9676-⨯⨯=.本小题主要考查相互独立事件概率计算,考查对立事件的方法计算概率,属于基础题. 16.【答案】6【解析】先计算出实验一次,至少有1枚硬币正面朝上的概率,根据二项分布期望公式列不等式,解不等式求得n 的最小值.实验一次,至少有1枚硬币正面朝上的概率为41151216⎛⎫-= ⎪⎝⎭,由题知15~,16X B n ⎛⎫ ⎪⎝⎭,则15516EX n =>,即163n >,所以正整数n 的最小值为6. 故答案为:6本小题主要考查二项分布的识别和二项分布期望的有关计算,属于中等题. 三、17.【答案】解:(1)设事件M 为“甲和乙先赛且共进行4场比赛”,则有两类:第一种是甲和乙比赛,甲胜乙,再甲与丙比赛,丙胜甲,再丙与乙比赛,乙胜丙,再进行第四场比赛; 第二种是甲和乙比赛,乙胜甲,再乙与丙比赛,丙胜乙,再丙与甲比赛,甲胜丙,再进行第四场比赛; 故所求概率()231213711135232530P M ⎛⎫⎛⎫⎛⎫=⨯-⨯+-⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以甲和乙先赛且共进行4场比赛的概率为730; (2)设事件A 表示甲与乙先赛且甲获得冠军;事件B 表示甲与丙先赛且甲获得冠军;事件C 表示乙与丙先赛且甲获得冠军, 则()2323122132511135352332539P A ⎛⎫⎛⎫⎛⎫=⨯+⨯-⨯⨯+-⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ()323213312327111535325523550P B ⎛⎫⎛⎫⎛⎫=⨯+⨯-⨯-⨯+-⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;()123132212352535P C ⎛⎫=⨯⨯+-⨯⨯= ⎪⎝⎭;因为52729505>>, 所以甲与乙进行首场比赛时,甲获得冠军的概率最大.【解析】(1)将情况按照第一场比赛甲胜乙、乙胜甲分类,由独立事件的乘法公式计算出概率,再由互斥事件概率的加法公式即可得解;(2)由独立事件的乘法公式计算出概率,再由互斥事件概率的加法公式分别计算出三种情况下甲获得冠军的概率,比较大小即可得解.本题考查了互斥事件概率加法公式及独立事件概率乘法公式的应用,考查了运算求解能力与分类讨论思想,属于中等题.18.【答案】解:(1)设事件A 为“取球3次即终止”.即甲第一次取到的是黑球,接着乙取到的是黑球,甲取到的是白球,因此,()433765635P A ⨯⨯==⨯⨯(2)设事件B 为“甲取到白球”,“第i 次取到白球”为事件i A ,1,2,3,4,5i =,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球, 所以()()()()()131355P B P A A A P A P A P A ==++343343213776576543⨯⨯⨯⨯⨯⨯=++⨯⨯⨯⨯⨯⨯ 361227353535=++=. 【解析】(1)依题意甲第一次取到的是黑球,接着乙取到的是黑球,第三次取球甲取到的是白球,即可求出概率;(2)依题意甲只可能在第1次,第3次和第5次取到白球,再根据互斥事件的概率公式计算可得; 考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.属于中等题.19.【答案】记“任选一道题目,甲答对”为事件A ,“任选一道题目,乙答对”为事件B , 根据古典概型概率计算公式,得()123205P A ==,()164205P B == 所以()25P A =,()15P B =(1)“两人都没答对记为AB , 所以()()()2125525P AB P A P B ==⨯=. (2)“恰有一人答对”AB AB =所以()()()()()()()312411555525P ABAB P AB P AB P A P B P A P B =+=+=⨯+⨯=.【解析】根据古典概型求出任选一道题目,甲答对和乙答对的概率,再利用相互独立事件和互斥事件的概率,求出(1)和(2)中的每一个事件的概率.本题主要考查了古典概型,概率的加法公式和乘法公式,属于基础题.20.【答案】解:(1)记“甲队总得分为3分”为事件A ,记“甲队总得分为1分”为事件B , 甲队得3分,即三人都回答正确,其概率为()222833327P A =⨯⨯=, 甲队得1分,即三人中只有1人回答正确,其余两人都答错, 其概率为()2222222222(1)(1)(1)(1)(1)(1)3333333339P B =⨯-⨯-+-⨯⨯-+-⨯-⨯=. ∴甲队总得分为3分与1分的概率分别为827,29.(2)记“甲队得分为2分”为事件C ,记“乙队得分为1分”为事件D , 事件C 即甲队三人中有2人答对,其余1人答错, 则()2222222224(1)(1)(1)3333333339P C =⨯⨯-+⨯-⨯+-⨯⨯=, 事件D 即乙队3人中只有1人答对,其余2人答错, 则()1231231231(1)(1)(1)(1)(1)(1)2342342344P D =⨯-⨯-+-⨯⨯-+-⨯-⨯=, 由题意得事件C 与事件D 相互独立,∴甲队总得分为2分且乙队总得分为1分的概率:()()()411949P CD P C P D ==⨯=.【解析】(1)记“甲队总得分为3分”为事件A ,记“甲队总得分为1分”为事件B ,甲队得3分,即三人都回答正确,甲队得1分,即三人中只有1人回答正确,其余两人都答错,由此利用相互独立事件概率乘法公式能求出甲队总得分为3分与1分的概率.(2)记“甲队得分为2分”为事件C ,记“乙队得分为1分”为事件D ,事件C 即甲队三人中有2人答对,其余1人答错,事件D 即乙队3人中只有1人答对,其余2人答错,由题意得事件C 与事件D 相互独立,由此利用相互独立事件概率乘法公式能求出甲队总得分为2分且乙队总得分为1分的概率. 本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中等题.21.【答案】(1)由题可知,所以可能的情况有①同学甲答对1次,同学乙答对2次; ②同学甲答对2次,同学乙答对1次;③同学甲答对2次,同学乙答对2次.故所求概率2222122122222222312321322443433433P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅+⋅⋅+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)他们在轮竞赛中获“优秀小组”的概率为()()()()()()()()22222122122211222122221221212121123P C p p C p C p C p p C p C p p p p p p p =-+-+=+-因为1265p p +=,所以()212121235P p p p p =- 因为101p ≤≤,201p ≤≤,1265p p +=,所以1115p ≤≤,2115p ≤≤,又212129225p p p p ≤+⎛⎫= ⎪⎝⎭所以12192525p p ≤≤, 令12t p p =,则2212212()335525P h t t t t ⎛⎫==-+=--+ ⎪⎝⎭19,525t ⎡⎤∈⎢⎥⎣⎦ 所以当925t =时,max 297625P =,他们小组在n 竞赛中获“优秀小组”次数ξ满足~(,)B n p ξ由max ()9np =,则96251929733625n ==≈,所以理论上至少要进行19轮比赛. 此时1265p p +=,12925p p =,1235p p ==.【解析】(1)由题意可知获“优秀小组”的情况包含三种情况,分别计算概率,再求和; (2)首先计算甲乙同学获得“优秀小组”的概率()()212121223P p p p p p p =+-,再根据1265p p +=,利用基本不等式求12p p 的范围,再将概率表示为二次函数求P 的最大值,根据()max 9np =,计算n 的最小值.本题考查独立事件概率,二项分布,最值的综合应用,重点考查读懂题意,抽象与概括能力,属于中等题型,本题第二问的关键是求出每次获得“优秀小组”的概率的最大值,并能抽象概括他们小组在n 竞赛中获“优秀小组”次数ξ满足~(,)B n p ξ.22.【答案】(1)李明能通过面试的样本空间中样本点:1231241342341234{}A A A A A A A A A A A A A A A A A ,,,,= (2)由(1)知,李明通过面试的概率()()()()()()1231241342341234P A P X A A A P X A A A P X A A A P X A A A P X A A A A ==+=+=+=+=又这4道题目能否答对是独立的,且李明答对第1题、第2题、第3题、第4题的概率分别为11112345,,,()123124P X A A A ==,()124130P X A A A ==,()134140P X A A A ==,()134160P X A A A ==,()12341120P X A A A A ==即()18P A =【解析】(1)由题意知李明通过面试的样本点有:1231241342341234A A A A A A A A A A A A A A A A ,,,,; (2)由这4道题目能否答对是独立的,且李明答对第1题、第2题、第3题、第4题的概率分别为11112345,,,,即可求得李明通过面试的概率.本题考查了概率的概念及独立事件的概念计算,由题意任意答对3个及以上的题可通过面试即可写出通过面试的所有样本点,根据基本事件的独立性,利用独立事件的乘法概率公式求样本点概率,进而求得通过面试的概率.。

2019年高考新课标(全国卷3)理数真题(word版,含解析)

2019年高考新课标(全国卷3)理数真题(word版,含解析)

2019 年高考新课标全国 3 卷理科数学一、选择题:本题共12 小题,每小题 5 分,共60 分。

1.已知集合 2A { 1,0,1,2},B { x x 1} ,则A BA.1,0,1 B.0,1 C.1,1 D.0,1,22.若z(1 i) 2i ,则z=A. 1 i B.1+i C.1 i D.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著. 某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.824.(1+2 x )(1+x)4 3的展开式中x 的系数为A.12 B.16 C.20 D.24 5.已知各项均为正数的等比数列{ a n}的前 4 项为和为15,且a5=3a3+4a1,则a3=A.16 B.8 C.4 D. 2x6.已知曲线y ae x ln x 在点(1,ae)处的切线方程为y=2x+b,则A.a e,b 1 B.a= e,b=1 C. 1a e ,b 1 D.1a ,b 1e7.函数32xy 在6,6 的图象大致为x x2 2A.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M 是线段ED 的中点,则A.BM =EN,且直线BM、EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线C.BM =EN,且直线BM、EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线9.执行下边的程序框图,如果输入的为0.01,则输出s的值等于1 A. 4221B. 5221C. 6221D. 72210.双曲线C:2 2x y4 2=1 的右焦点为F,点P 在C 的一条渐进线上,O 为坐标原点,若PO = PF ,则△PFO 的面积为A.3 24B.3 22C.2 2 D.3 211.设f x 是定义域为R的偶函数,且在0, 单调递减,则A. f (log3 14 )> f (232)> f (223)B. f (log3 14)> f (223)> f (232)C. f ( 2 32)> f (2 2 3 )> f (log3 14)D. f ( 2 2 3 )> f (2 3 2 )> f (log3 14)12.设函数 f x =sin(x)( >0),已知f x 在0,2 有且仅有 5 个零点,下述四个结论:5① f x 在(0,2 )有且仅有 3 个极大值点;② f x 在(0,2 )有且仅有 2 个极小值点③ f x 在(0,10 )单调递增;④的取值范围是[12 29,) 其中所有正确结论的编号是()5 10A .①④B.②③C.①②③D.①③④二、填空题:本题共 4 小题,每小题 5 分,共20 分。

高中高考新课标全国卷3理数真题word版本,含解析.docx

高中高考新课标全国卷3理数真题word版本,含解析.docx

2019 年高考新课标全国 3 卷理科数学一、选择题:本题共12 小题,每小题 5 分,共60 分。

1.已知集合A{1,0,1,2} , B{ x x 21} ,则A BA .1,0,1B.0,1C.1,1D.0,1,22.若z(1i)2i ,则z=A .i B.1+i C.1i D.1+i13.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A . 0.5B. 0.6C. 0.7D. 0.84.( 1+2x 2)( 1+x )4的展开式中x3的系数为A.12B. 16C. 20D. 24n531,则a3 5.已知各项均为正数的等比数列{ a } 的前 4项为和为15 ,且 a =3a +4a= A. 16B. 8C. 4D. 26.已知曲线y ae x x ln x在点(1,ae)处的切线方程为y=2x+b ,则A B a= e b=1C1D1. a e ,b1.,. a e , b 1. a e, b 17.函数y 2 x 3在 6,6的图象大致为2x 2 xA.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD , M 是线段ED 的中点,则是相交直线A .BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM, ENC.BM =EN,且直线BM、EN是异面直线 D .BM≠EN,且直线BM, EN是异面直线9.执行下边的程序框图,如果输入的为 0.01 ,则输出s 的值等于1111A. 2B. 2C. 2D. 224252627x2y210 .双曲线 C :=1 的右焦点为 F ,点 P 在 C 的一条渐进线上,O 为坐标原点,若42PO = PF ,则△PFO的面积为3 2 3 2D.3 2 A.B.C.2 24211 .设f x 是定义域为R 的偶函数,且在0,单调递减,则A .f( log 31)> f (32B.f( log 312)> f (2)> f(3))> f(34224223)2C.f(321 )D.f(2 f (31)2)> f(3)> f (log3 3 )>2)> f (log322422412 .设函数 f x =sin(x5) (>0),已知f x在0,2有且仅有5个零点,下述四个结论:①f x ③ f x 在(在(0,20,10)有且仅有 3个极大值点;② f x在(0,2)有且仅有 2 个极小值点)单调递增;④的取值范围是1229)其中所有正确结论的编号是()[,510A .①④B .②③C.①②③D.①③④二、填空题:本题共 4 小题,每小题 5 分,共20 分。

(北师大版2019课标)高中数学必修第二册 第六章综合测试(含答案)

(北师大版2019课标)高中数学必修第二册 第六章综合测试(含答案)

第六章综合测试一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线2.在正方体1111ABCD A B C D -中,点Q 是棱DD 1上的动点,则过A ,Q ,B 1三点的截面图形不可能的是( ) A .等边三角形 B .矩形 C .等腰梯形 D .正方形3.若圆柱的轴截面是一个正方形,其面积为4S ,则它的一个底面面积是( ) A .4SB .4S πC .S πD .2S π 4.如果一个正四面体(各个面都是正三角形)的体积为39 cm ,则其表面积为( )A .2B .218 cmC .2D .212 cm5.已知平面α⊥平面β,且l αβ=,要得到直线m ⊥平面β,还需要补充的条件是( )A .m α⊂B .m α∥C .m l ⊥D .m α⊂且m l ⊥6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为13,其四面体的四个顶点在一个球面上,则这个球的表面积为( ) A .16πB .32πC .36πD .64π7.如图,在棱长为4的正方体1111ABCD A B C D -中,P 是11A B 上一点,且11114PB A B =,则多面体11P BCC B -的体积为( )A .83B .163C .4D .58.如图,在边长为1的正方形ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF △沿BF 所在的直线进行翻折,将CDE △沿DE 所在的直线进行翻折,在翻折过程中,下列说法错误的是( )A .无论翻折到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒二、多项选择题(大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知α,β是两个不重合的平面,m 、n 是两条不重合的直线,则下列命题正确的是( ) A .若m n ∥,m α⊥,则n α⊥ B .若m α∥,n αβ=,则m n ∥C .若m α⊥,m β⊥,则αβ∥D .若m α⊥,m n ∥,n β⊥,则αβ∥10.已知m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是( ) A .若m α∥,n β∥且αβ∥,则m n ∥ B .若m n ∥,m α⊥,n β⊥,则αβ∥ C .若m n ∥,n α⊂,αβ∥,m β⊄,则m β∥ D .若m n ∥,n α⊥,αβ⊥,则m β∥11.如图,在四棱锥P —ABCD 中,底面ABCD 为菱形,60DAB ∠=︒,侧面PAD 为正三角形,且平面PAD⊥平面ABCD ,则下列说法正确的是( ) A .在棱AD 上存在点M ,使AD ⊥平面PMB B .异面直线AD 与PB 所成的角为90︒ C .二面角P —BC —A 的大小为45︒ D .BD ⊥平面PAC12.在正方体1111ABCD A B C D -中,N 为底面ABCD 的中心,P 为线段A 1D 1上的动点(不包括两个端点),M 为线段AP 的中点,则( ) A .CM 与PN 是异面直线 B .CM PN >C .平面PAN ⊥平面BDD 1B 1D .过P 、A 、C 三点的正方体的截面一定是等腰梯形三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.14.已知正四棱锥的侧棱长为60︒,则该四棱锥的高为________.15.设α,β,γ是三个不同平面,a ,b 是两条不同直线,有下列三个条件:(1)a γ∥,b β∥;(2)a γ∥,b β⊂;(3)b β∥,a γ⊂,如果命题“a b αβγ=⊂,,且________,则a b ∥”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).16.如图,已知六棱锥P —ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,则下列结论中: ①PB AE ⊥;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④45PDA ∠=︒,其中正确的有________(把所有正确的序号都填上).四、解答题(本题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤) 17.已知正方体1111ABCD A B C D -. (1)证明:1D A ∥平面1C BD ; (2)求异面直线1D A 与BD 所成的角.18.如图,正方体1111ABCD A B C D -的棱长为a ,连接AC A D A B BD BC C D '''''',,,,,,得到一个三棱锥.求:(1)三棱锥—A BC D ''的表面积与正方体表面积的比值; (2)三棱锥—A BC D ''的体积.19.在如图的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD MA ∥,点E ,G ,F 分别为棱MB ,PB ,PC 的中点,且2AD PD MA ==.求证: (1)平面EFG ∥平面PMA ; (2)平面PDC ⊥平面EFG .20.如图平行四边形ABCD 中,BD =,2AB =,4AD =,将BCD △沿BD 折起到EBD △的位置,使平面EBD ⊥平面ABD . (1)求证:AB DE ⊥;(2)求三棱锥E —ABD 的侧面积.21.如图,在正方体1111ABCD A B C D -中,E 是棱1DD 的中点. (1)求直线BE 与平面11ABB A 所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使1B F ∥平面1A BE ?证明你的结论.22.如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90ACB ∠=︒,1AC =,12AA BC ==,点D 在侧棱1AA 上.(1)若D 为1AA 的中点,求证:1C D ⊥平面BCD ;(2)若1A D =1B C D C --的大小.第六章综合测试答案解析一、 1.【答案】D【解析】A 错误,如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,B 错误,如图2,若ABC △不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥,C 错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,D 正确. 2.【答案】D【解析】当点Q 与点D1重合时,截面图形为等边三角形11AB D ,如图(1);当点Q 与点D 重合时,截面图形为矩形11AB C D ,如图(2);当点Q 不与点D 、1D 重合时,令Q 、R 分别为1DD 、11C D 的中点,则截面图形为等腰梯形1AQRB ,如图(3)D 是不可能的. 3.【答案】C【解析】由题意知圆柱的母线长为底面圆的直径2R ,则224R R S ⋅=,得2R S =,所以底面面积为2R S ππ=. 4.【答案】A【解析】设正四面体的棱长为 cm a ,则底面积为22 cm ,易求得高为 cm ,则体积为231934312a ⨯⨯==,解得a =,所以其表面积为)224cm 4⨯=. 5.【答案】D【解析】选项A ,B ,C 的条件都不能得到直线m ⊥平面β,而补充选项D 后,可以得到直线m ⊥平面β,理由如下:若两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面. 6.【答案】A【解析】将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为4=,即球的半径为2,故这个球的表面积为4216r ππ=.7.【答案】B【解析】】V 多面体1113P BCC B S -=正方形21111164133BCC B PB ⋅=⨯⨯=. 8.【答案】D【解析】在A 中,点A 与点C 一定不重合,故A 正确;在B 中,存在某个位置,使得直线AF 与直线CE 所成的角为60︒,故B 正确;在C 中,当平面ABF ⊥平面BEDF ,平面DCE ⊥平面BEDF 时,直线AF 与直线CE 垂直,故C 正确; 在D 中,直线AB 与直线CD 不可能垂直,故D 错误. 二、9.【答案】ACD【解析】若m α⊥,则a ∃,b α⊂且a b P ⋂=使得m α⊥,m b ⊥,又m n ∥,则n a ⊥,n b ⊥,由线面垂直的判定定理得n a ⊥,故A 对;若m α∥,n αβ⋂=,如图,设m AB =,平面1111A B C D 为平面α,m α∥,设平面11ADD A 为平面β,11A D n αβ==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若m α⊥,m n ∥,则n a ⊥,又n β⊥,则αβ∥,故D 对. 10.【答案】BC【解析】若m α∥,n β∥且αβ∥,则可以m n ∥,m ,n 异面,或m ,n 相交,故A 错误;若m n ∥,m α⊥,则n a ⊥,又n β⊥,故α∥β,B 正确;若m n ∥,n α⊂,则m α∥或m α⊂,又αβ∥,m β⊄,故m β∥,C 正确;若m n ∥,n α⊥,则m α⊥,αβ⊥,则m β∥或m β⊂,D 错误. 11.【答案】ABC【解析】对于A ,取AD 的中点M ,连PM ,BM ,则侧面PAD 为正三角形,PM AD ∴⊥,又底面ABCD 是菱形,60DAB ∠=︒,ABD ∴△是等边三角形,AD BM ∴⊥,又PM BM M ⋂=,PM ,BM ⊂平面PMB ,AD ∴⊥平面PBM ,故A 正确,对于B ,AD ⊥平面PBM ,AD PB ∴⊥,即异面直线AD 与PB 所成的角为90︒,故B 正确,对于C ,平面PBC ⋂平面ABCD BC =,BC AD ∥,BC ∴⊥平面PBM ,BC PB ∴⊥,BC BM ⊥,PBM ∴∠是二面角P —BC —A 的平面角,设1AB =,则BM PM =,在Rt PBM △中,tan 1PMPBM RM∠==,即45PBM ∠=︒,故二面角P —BC —A 的大小为45︒,故C 正确,对于D ,因为BD 与PA 不垂直,所以BD 与平面PAC 不垂直,故D 错误. 12.【答案】BCD 【解析】C 、N 、A 共线,即CN 、PM 交于点A ,共面,因此CM 、PN 共面,A 错误; 记PAC θ∠=,则2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+⋅︒-, 2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅,又AP AC <, ()2222304CM PN AC AP -=->,22CM PN >,即 CM PN >,B 正确; 由于正方体中,AN BD ⊥,1BB ⊥平面ABCD ,则1BB AN ⊥,1BB BD B =,可得AN ⊥平面11BB D D ,AN ⊂平面PAN ,从而可得平面PAN ⊥平面11BDD B ,C 正确;取11C D 中点K ,连接KP ,KC ,11A C ,易知11PK AC ∥,又正方体中,11AC AC ∥,PK AC ∴∥,PK 、AC 共面,PKCA 就是过P 、A 、C 三点的正方体的截面,它是等腰梯形,D 正确. 三、13.【答案】3π【解析】设圆锥的底面半径为r ,根据题意,得22r ππ=,解得1r =,根据勾股定理,得圆锥的高为=,所以圆锥的表面积2212132S πππ=⨯⨯+⨯=,体积21133V π=⨯⨯=. 14.【答案】3【解析】如图,过点S 作SO ⊥平面ABCD ,连接OC ,则60SCO ∠=︒,sin 603SO SC ∴=︒=⋅⋅=. 15.【答案】(2)(3)【解析】a γ∥,b β∥,不可以,举出反例如下:使βγ∥,b γ⊂,a β⊂,则此时能有a γ∥,b β∥,但不一定有a b ∥; a γ∥,b β⊂,可以,由a γ∥得a 与γ没有公共点,由b β⊂,a αβ⋂=,b γ⊂知,a ,b 在面β内,且没有公共点,故平行; b β∥,a γ⊂可以,由b β∥,a αβ=知,a ,b 无公共点,再由a γ⊂,b γ⊂,可得两直线平行. 综上可知满足的条件有(2)和(3). 16.【答案】①④【解析】对于①,因为PA ⊥平面ABC ,所以PA AE ⊥,又EA AB ⊥,PA AB A ⋂=,所以EA ⊥平面PAB ,从而可得EA PB ⊥,故①正确;对于②,由于PA ⊥平面ABC ,所以平面ABC 与平面PBC 不可能垂直,故②不正确;对于③,由于在正六边形中BC AD ∥,所以BC 与EA 必有公共点,从而BC 与平面PAE 有公共点,所以直线BC 与平面PAE 不平行,故③不正确;对于④,由条件得PAD △为直角三角形,且PA AD ⊥,又2PA AB AD ==,所以45PDA ∠=︒,故④正确, 综上①④正确. 四、17.【答案】(1)证明:在正方体1111ABCD A B C D -中,11AB D C ∥,11AB D C =, ∴四边形11ABC D 是平行四边形,11AD BC ∴∥,1AD ⊄平面1C BD ,1BC ⊂平面1C BD ,1D A ∴∥平面1C BD ,(2)由(1)知,11AD BC ∥,∴异面直线1D A 与BD 所成的角即为1C BD ∠,易知1C BD △为等边三角形,160C BD ∴∠=︒,即异面直线1D A 与BD 所成的角为60︒, 18.【答案】(1)1111ABCD A B C D -是正方体,A B AC A D BC BD C D a ∴'=''='='=='=,∴三棱锥—A BC D ''的表面积为21422⨯⨯=,而正方体的表面积为26a ,故三棱锥A BC D '-' (2)三棱锥A ABD C BCD D A D C B A B C '-'--'''-''',,,是完全一样的,故 4A BC A ABD V D V V '''-=-正方体三枚维三衫维,332114323a a a a =-⨯⨯⨯=.19.【答案】(1)点E 、G 、F 分别为棱MB 、PB 、PC 的中点,EG PM GF BC ∴∥,∥,又PM ⊂平面PMA ,EG ⊄平面PMA ,EG ∴∥平面PMA , 四边形ABCD 是正方形,BC AD ∴∥,GF AD ∴∥,AD ⊂平面PMA ,GF ⊄平面PMA ,GF ∴∥平面PMA ,又EG GF G =,∴平面EFG ∥平面PMA ,(2)由已知MA ⊥平面ABCD ,PD MA ∥,PD ∴⊥平面ABCD , 又BC ⊂平面ABCD ,PD BC ∴⊥, 四边形ABCD 为正方形,BC DC ∴⊥, 又PDDC D =,BC ∴⊥平面PDC ,在PBC △中,G ,F 分别为PB ,PC 的中点,GF BC ∴∥,GF ∴⊥平面PDC ,又GF ⊂平面EFG ,∴平面PDC ⊥平面EFG .20.【答案】(1)证明:2AB =,BD =,4AD =,222AB BD AD ∴=+,AB BD ∴⊥,平面EBD ⊥平面ABD ,且平面EBD ⋂平面ABD BD =,AB ∴⊥平面EBD ,DE ⊂平面EBD ,AB DE ∴⊥,(2)由(1)知AB BD ⊥,CD AB ∥,CD BD ∴⊥,从而折叠后DE BD ⊥, 在Rt DBE △中,2DB =2DE DC AB ===,12DBE S DB DE ∴=⋅=△ 又AB ⊥平面EBD ,BE ⊂平面EBD ,AB BE ∴⊥, 4BE BC AD ===,412·ABE S AB BE ∴==△, DE BD ⊥,平面EBD ⊥平面ABD ,ED ∴⊥平面ABD , 又AD ⊂平面ABD ,ED AD ∴⊥,142ADE S AD DE ∴=⋅=△,综上,三棱锥E —ABD 的侧面积8S =+21.【答案】(1)如图(1),取1AA 的中点M ,连接EM ,BM , E 是1DD 的中点,四边形11ADD A 为正方形,EM AD ∴∥,在正方体1111-ABCD A B C D 中,AD ⊥平面11ABB A ,EM ∴⊥平面11ABB A ,从而EBM ∠为直线BE 与平面11ABB A 所成的角,设正方体1111-ABCD A B C D 的棱长为2,则2EM AD ==,3BE =, 在Rt BEM △中,2sin 3EM EBM BE ∠==, 即直线BE 与平面11ABB A 所成的角的正弦值为23.(2)在棱11C D 上存在点F ,使1B F ∥平面1A BE , 证明如下:如图(2),分别取11C D 和CD 的中点F 和G ,连接EG ,BG ,1CD ,FG ,1B F1111A D B C BC ∥∥,且11 A D BC =, ∴四边形11A BCD 为平行四边形,11D C A B ∴∥, 又E ,G 分别为D 1D ,CD 的中点,1EG D C ∴∥, 1EG A B ∴∥,1A ∴,B ,G ,E 四点共面,BG ∴⊂平面1A BE , 在正方体1AC 中,F 和G 分别为11C D 和CD 的中点, GF ∴綊1C C 綊1B B ,∴四边形1B BGF 为平行四边形, 1B F BG ∴∥,又1B F ⊄平面1A BE ,BG ⊂平面1A BE ,1B F ∴∥平面1A BE ,22.【答案】(1)证明:由已知,得1AA BC ⊥,AC BC ⊥,则BC ⊥平面11AAC C ,又1C D ⊂平面11AAC C ,则1BC C D ⊥,①因为D 为1AA 的中点,所以1AD AC ==,又AD AC ⊥,则CAD △为等腰直角三角形,所以45ADC ∠=︒,同理1145A DC ∠=︒,所以190CDC ∠=︒,即1CD C D ⊥,② 结合①②得,1C D ⊥平面BCD ,(2)作1CE C D ⊥,垂足为E ,连接BE ,如图, 因为BC ⊥平面11AAC C ,所以1BC C D ⊥,所以1C D ⊥平面BCE , 则1C D BE ⊥,所以BEC ∠为二面角1B C D C --的平面角,因为1111A D A C ==,所以1C D =在1CC D △中,12CC =,1CC 边上的高为1,则其面积为1,所以由112=得CE =,在Rt BCE △中,tan BC BEC CE ∠==,则 60BEC ∠=︒, 所以二面角1B C D C --的大小为60︒.。

高中数学新课标测试题及答案精选全文

高中数学新课标测试题及答案精选全文

可编辑修改精选全文完整版新课程标准考试数学试题一、填空题(本大题共10道小题,每小题3分,共30分)1、数学是研究(空间形式和数量关系)的科学,是刻画自然规律和社会规律的科学语言和有效工具。

2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。

3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。

4、高中数学课程应注重提高学生的数学(思维)能力。

5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。

6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。

7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。

8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。

9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。

10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。

二、判断题(本大题共5道小题,每小题2分,共10分)1、高中数学课程每个模块1学分,每个专题2学分。

(错,改:高中数学课程每个模块2学分,每个专题1学分。

)2、函数关系和相关关系都是确定性关系。

(错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。

)3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。

(对)4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。

(对)5、教师应成为学生进行数学探究的领导者。

(错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。

)三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2019年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

绝密★启用前2019 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知集合A = {-1, 0,1, 2},B = {x x2≤1} ,则AA.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1, 2}2.若z(1+ i) = 2i ,则z=A.-1- iB.-1+iC.1- iD.1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.84.(1+2x2)(1+x)4的展开式中x3的系数为A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{a n}的前4 项为和为15,且a5=3a3+4a1,则a3=A.16 B.8 C.4 D.26.已知曲线y =a e x+x ln x 在点(1,a e)处的切线方程为y=2x+b,则A. a = e,b =-1 b =-1B.a=e,b=1 C.a = e-1,b = 1 D .a = e-1,B =7.函数y =2x32x + 2-x在[-6, 6]的图象大致为A.B.C.D.8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD⊥平面ABCD,M是线段ED 的中点,则A.BM=EN,且直线BM、EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线C.BM=EN,且直线BM、EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于yA. 2 - 124B. 2 - 125C. 2 - 126D. 2 - 12710. 双曲线 C :x2- =1 的右焦点为 F ,点 P 在 C 的一条渐进线上,O 为坐标原点,若 4 2PO = PF ,则△PFO 的面积为A. 3 24B. 3 22C. 2D. 311. 设 f( x ) 是定义域为 R 的偶函数,且在(0, ∞) 单调递减,则A. f (log1 )> f (- 3)>f ( - 2 )B. f (log 34 1)> f ( 2 2- 2)> f ( 2 3- 3 )3 4 2 3 2 2C. f ( - 3)> f ( -2)> f (log1)2 22 334D. f ( - 2)> f ( -3)> f (log1 )2 32 23412. 设函数 f( x ) =sin (ω x + π)( ω >0),已知 f (x ) 在[0, 2π]有且仅有 5 个零点,下述 5四个结论:① f (x ) 在( 0, 2π )有且仅有 3 个极大值点 2 22, xy ② f (x ) 在( 0, 2π )有且仅有 2 个极小值点③ f (x ) 在( 0, π)单调递增10④ ω 的取值范围是[12 29) 5 10其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2019年新课标Ⅲ高考数学理科试题含答案(Word版)

2019年新课标Ⅲ高考数学理科试题含答案(Word版)

绝密★启用前试题类型:2019年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =-( ) (A)1 (B) -1 (C) i (D)-i(3)已知向量13(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC=( ) (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是( )(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均最高气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =( )(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = ( ) (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分(13)若x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2019年新课标全国卷高考文科数学试卷及答案【word版】

2019年新课标全国卷高考文科数学试卷及答案【word版】

2019年普通高等学校招生全国统一考试(课标I 文科卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-(2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α(3)设i i z ++=11,则=||z A. 21 B. 22 C. 23 D. 2 (4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25 D. 1 (5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB. AD 21C. BC 21 D. BC (7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8.如图,格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.15810.已知抛物线C :x y =2的焦点为F ,()y x A00,是C 上一点,x F A 045=,则=x 0( ) A. 1 B. 2 C. 4 D. 8(11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3(C )-5或3 (D )5或-3(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.(14)甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________.(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.(16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

(北师大版2019课标)高中数学必修第一册 第六章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第六章综合测试(含答案)

第六章综合测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某公司从代理的A ,B ,C ,D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A ,B ,C ,D 四种产品的数量比是2:3:2:4,则该样本中D 类产品的数量为( )A.22B .33C .40D .552.在抽查产品尺寸的过程中,将其尺寸分成若干组,[]a b ,是其中的一组.已知该组的频率为m ,该组上的频率分布直方图的高为h ,则a b -等于( ) A.mhB .h mC .m hD .m h +3.我市对上、下班交通情况作抽样调查,上、下班时间各抽取12辆机动车测其行驶速度(单位:km/h )如下表:则上、下班时间行驶时速的中位数分别为( ) A .28与28.5B .29与28.5C .28与27.5D .29与27.54.下列数据的70%分位数为( )20,14,26,18,28,30,24,26,33,12,35,22. A .14B .20C .28D .305.下列说法:①一组数据不可能有两个众数; ②一组数据的方差必须是正数;③将一组数据中的每一个数据都加上或减去同一常数后,方差不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率.其中错误的个数为( ) A .0B .1C .2D .36.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg ),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[]4550,内适合跑步训练,体重在[)5055,内适合跳远训练,体重在[]5560,内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为( )A .4:3:1B .5:3:1C .5:3:2D .3:2:17.设有两组数据1x ,2x ,…,n x 与1y ,2y ,…,n y ,它们的平均数分别是x 和y ,则新的一组数据11231x y -+,22231x y -+,…,231n n x y -+的平均数是( )A .23x y -B .231x y -+C .49x y -D .491x y -+8.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为( )A .64B .54C .48D .27二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.对一个容量为N 的总体抽取容量为n 的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,三者关系不可能是( ) A .123p p p =<B .231p p p =<C .132p p p =<D .123p p p ==10.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 抽样方法不合理的是( ) A .①抽签法,②分层随机抽样 B .①随机数法,②分层随机抽样C .①随机数法,②抽签法D .①抽签法,②随机数法11.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则以下四种说法中正确的是( )甲乙①甲的成绩的平均数等于乙的成绩的平均数 ②甲的成绩的中位数大于乙的成绩的中位数 ③甲的成绩的方差小于乙的成绩的方差 ④甲的成绩的极差等于乙的成绩的极差 A .①B .②C .③D .④12.某台机床加工的1 000只产品中次品数的频率分布如下表:次品数 0 1 2 3 4 频率0.50.20.050.20.05则次品数的众数、平均数不可能为( ) A .0,1.1B .0,1C .4,1D .0.5,2三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x (单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为________.14.一个样本a ,3,5,7的平均数是b ,且a ,b 是方程2540x x ++=的两根,则这个样本的方差是________. 15.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下:甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12.三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲________,乙________,丙________.16.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲108999乙1010799如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产总计老年40404080200中年80120160240600青年40160280720 1 200总计160320480 1 040 2 000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?18.(本小题满分12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?19.(本小题满分12分)为了更好地进行精准扶贫,在某地区经过分层随机抽样得到本地区贫困人口收入的平均数(单位:万元/户)和标准差,如下表:求所抽样本的这30户贫困人口收入的平均数和方差.20.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们的培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(1)指出甲、乙两位学生成绩的中位数;(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.21.(本小题满分12分)某电视台为宣传本省,随机对本省内15~65岁的人群抽取了n人,回答问题“本省内著名旅游景点有哪些”.统计结果如下图表所示.组号 分组回答正确的人数回答正确的人数占本组的频率第1组 [)1525,a0.5第2组 [)2535, 18x第3组 [)3545,b0.9 第4组 [)4555, 9 0.36第5组[]5565,3y(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?22.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[)7585,[)8595,[)95105,[)105115,[]115125,频数62638228(1)在相应位置上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表).第六章综合测试答案解析一、 1.【答案】C【解析】根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D 类产品的数量为4110402324⨯=+++.2.【答案】C【解析】在频率分布直方图中小长方形的高等于频率组距,所以m h a b =-,ma b h-=,故选C.3.【答案】D【解析】上班时间行驶速度的中位数是2830292+=,下班时间行驶速度的中位数是272827.52+=. 4.【答案】C【解析】把所给的数据按照从小到大的顺序排列可得:12,14,18,20,22,24,26,26,28,30,33,35, 因为有12个数据,所以1270%8.4⨯=,不是整数,所以数据的70%分位数为第9个数28. 5.【答案】C【解析】①错,众数可以有多个;②错,方差可以为0. 6.【答案】B【解析】体重在[)4550,内的频率为0.150.5⨯=,体重在[)5055,内的频率为0.0650.3⨯=,体重在[]5560,内的频率为0.0250.1⨯=,0.5:0.3:0.15:3:1=∵,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5:3:1,故选B. 7.【答案】B【解析】设()23112i i i z x y i n =-+=,,…,,则 ()()()121212123111231m n n z z z z x x x y y y x y n n n n +++⎛⎫=+++=+++-++++=-+ ⎪⎝⎭…………. 8.【答案】B【解析】前两组中的频数为()1000.050.1116⨯+=.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为381622-=.又最大频率为0.32,故第四组频数为0.3210032⨯=.所以223254a =+=.故选B. 二、9.【答案】ABC【解析】在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为nN,所以123p p p ==.10.【答案】BCD【解析】①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样. 11.【答案】ABCD【解析】()15556965x =⨯++++=乙,()14567865x =⨯++++=甲,故甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数为6,乙的成绩的中位数为5,故甲大于乙;甲的成绩的方差为()221221225⨯⨯+⨯=,乙的成绩的方差为()2211331 2.45⨯⨯+⨯=;③正确,甲的成绩的极差为4,乙的成绩的极差等于4,④正确. 12.【答案】BCD【解析】数据i x 出现的频率为()12i p i n =,,…,,则1x ,2x ,…,n x 的平均数为1122n n x p x p x p +++….因此次品数的平均数为00.510.220.0530.240.05 1.1⨯+⨯+⨯+⨯+⨯=.由频率知,次品数的众数为0. 三、13.【答案】0.5【解析】小李这5天的平均投篮命中率0.40.50.60.60.40.55y ++++==.14.【答案】5【解析】2540x x ++=的两根是1,4. 当1a =时,a ,3,5,7的平均数是4, 当4b =时,a ,3,5,7的平均数不是1.1a =∴,4b =.则方差()()()()2222211434547454s ⎡⎤=⨯-+-+-+-=⎣⎦.15.【答案】众数 平均数 中位数【解析】甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数46389121388x +⨯++++==;丙:该组数据的中位数是7982+=.16.【答案】甲【解析】9x =甲,9x =乙,212255s =⨯=甲,216655s ⨯=乙,甲的方差较小,故甲入选. 四、17.【答案】(1)解:不同年龄段的人的身体状况有所差异,所以应该按年龄段用分层随机抽样的方法来调查该单位的职工的身体状况,老年、中年、青年所占的比例分别为2001200010=,6003200010=,1200320005=,所以在抽取40人的样本中,老年人抽140410⨯=人,中年人抽3401210⨯=人,青年人抽取340245⨯=人;(2)解:因为不同部门的人对单位的发展及薪金要求有所差异,所以应该按部门用分层随机抽样的方法来确定参加座谈会的人员,管理、技术开发、营销、生产人数分别占的比例为1602200025=,3204200025=,4806200025=,104013200025=,所以在抽取25人出席座谈会中,管理人员抽225225⨯=人,技术开发人员抽425425⨯=人,营销人员抽625625⨯=人,生产人员抽13251325⨯=人.18.【答案】(1)解:依题意知第三组的频率为412346415=+++++,又因为第三组的频数为12,∴本次活动的参评作品数为126015=(件). (2)解:根据频率分布直方图,可以看出第四组上交的作品数量最多,共有66018234641⨯=+++++(件). (3)第四组的获奖率是105189=,第六组上交的作品数量为1603234641⨯=+++++(件),∴第六组的获奖率为2639=,显然第六组的获奖率高. 19.【答案】解:由表可知所抽样本的这30户贫困人口收入的平均数为101081.222.4 1.84303030⨯+⨯+⨯=(万元),这30户贫困人口收入的方差为()()()222222101281 1.2 1.8442 1.844 2.4 1.8411.2304303030⎡⎤⎡⎤⎡⎤+-++-++-=⎣⎦⎣⎦⎣⎦.20.【答案】(1)解:甲的中位数是83,乙的中位数是84.(2)解:派甲,理由是:甲的平均数是85,乙的平均数是85,甲的方差是35.5,乙的方差是41,甲成绩更稳定.21.【答案】(1)解:由频率表中第4组数据可知,第4组总人数为9250.36=, 再结合频率分布直方图可知251000.02510n ==⨯,1000.01100.55a =⨯⨯⨯=∴, 1000.03100.927b =⨯⨯⨯=,180.920x ==,30.215y ==. (2)解:第2,3,4组回答正确的共有54人,∴利用分层随机抽样在54人中抽取6人,每组分别抽取的人数为:第2组:186254⨯=(人),第3组:276354⨯=(人),第4组:96154⨯=(人). 22.【答案】(1)解:频率分布直方图如图:高中数学 必修第一册 11 / 11(2)解:质量指标值的样本平均数为800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=. 质量指标值的样本方差为()()22222200.06100.2600.38100.22200.08104s =-⨯+-⨯+⨯+⨯+⨯=. 所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.。

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

第一章综合测试一、单选题(每小题5分,共40分)1.已知集合{}{}31A x x x Z B x x x Z =∈=∈<,,>,,则A B =( )A .∅B .){3223--,,,C .{}202-,,D .{}22-,2.命题“()01x x e x ∀∈+∞+,,≥”的否定是( ) A .()01x x e x ∃∈+∞+,,≥B .()01x x e x ∀∈+∞+,,< C .()01x x e x ∃∈+∞+,,<D .()01x x e x ∀∈-∞+,,≥ 3.若集合{}0A x x =<,且B A ⊆,则集合B 可能是( ) A .{}1x x ->B .RC .{}23--,D .{}3101--,,, 4.若a b c R ∈,,且a b >,则下列不等式成立的是( ) A .22a b >B .11a b<C .a c b c >D .2211a bc c ++>5.已知a b R ∈,,则“20a b +=”是“2ab=-”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.某市原来居民用电价为0.52元/kW h ,换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW h ,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW h .对于一个平均每月用电量为200kW h 的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( ) A .110kW hB .114kW hC .118kW hD .120kW h7.已知210a +<,则关于x 的不等式22450x ax a -->的解集是( ) A .{5x x a <或}x a -> B .{5x x a >或}x a -< C .{}5x a x a -<<D .{}5x a x a -<<8.若102x <<,则函数y = )A .1B .12C .14D .18二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合[)()25A B a ==+∞,,,.若A B ⊆,则实数a 的值可能是( ) A .3-B .1C .2D .510.下列不等式不一定正确的是( )A .12x x+≥B .222x y xy+≥C .222x y xy +>D .2x y+≥ 11.已知2323x y <<,<<,则( )A .2x y +的取值范围为()69,B .2x y -的取值范围为()23,C .x y -的取值范围为()11-,D .xy 的取值范围为()49,12.23520x x +->的充分不必要条件是( )A .132x -<<B .102x -<<C .12x <<D .16x -<<三、填空题(每小题5分,共20分)13.已知集合{}2114M m m =++,,,如果5M ∈,那么m =________.14.二次函数()2y ax bx c x R =++∈的部分对应值如表:则a =________;不等式20ax bx c ++>的解集为________.15.已知{}{}2212210A x x B x x ax a ==-+-<<,<,若A B ⊆,则a 的取值范围是________. 16.若正数a b ,满足1a b +=,则113232a b +++的最小值为________. 四、解答题(共70分)17.(10分)判断下列命题是全称量词命题还是存在量词命题. (1)任何一个实数除以1,仍等于这个数;(2)至少有一个整数,它既能被11整除,又能被9整除;(3)()210x R x ∀∈+,≥;(4)22x R x ∃∈,<.18.(12分)已知集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x U R =>,.(1)求()UA B AB ,;(2)若{}2131C x m x m =-+<≤,且B C U =,求m 的取值范围.19.(12分)(1)已知集合{}{2124A a B ==,,,,,且A B B =,求实数a 的取值范围;(2)已知:20:40P x q ax -->,>,其中a R ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.20.(12分)“绿水青山就是金山银山”.随着经济的发展,我国更加重视对生态环境的保护,2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、第二周鸡蛋的价格分别为x 元、y 元(单位:kg );甲、乙两人的购买方式不同:甲每周购买3kg 鸡蛋,乙每周购买10元钱鸡蛋.(1)若810x y ==,,求甲、乙两周购买鸡蛋的平均价格.(2)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由.21.(12分)解关于x 的不等式()22340x ax a a R +-∈<.22.(12分)为了缓解市民吃肉难的生活问题,某生猪养殖公司欲将一批猪肉用冷藏汽车从甲地运往相距120千米的乙地,运费为每小时60元,装卸费为1 000元,猪肉在运输途中的损耗费(单位:元)是汽车速度(km /h )值的2倍.(说明:运输的总费用=运费+装卸费+损耗费) (1)若汽车的速度为每小时50千米,试求运输的总费用.(2)为使运输的总费用不超过1 260元,求汽车行驶速度的范围.(3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?第一章综合测试答案解析一、 1.【答案】D【解析】选D .因为{}{}321012A x x x Z =∈=--<,,,,,,{}{11B x x x Z x x =∈=>,>或}1x x Z -∈<,,所以{}22AB =-,.2.【答案】C【解析】选C .命题为全称量词命题,则命题“()01x x e x ∀∈+∞+,,≥”的否定是“()01xx e x ∃∈+∞+,,<”. 3.【答案】C【解析】选C .因为23A A -∈-∈,,所以{}23A --⊆,. 4.【答案】D【解析】选D .选项A :01a b ==-,,符合a b >,但不等式22a b >不成立,故本选项是错误的;选项B :当01a b ==-,符合已知条件,但零没有倒数,故11a b<不成立,故本选项是错误的;选项C :当0c =时,a c b c >不成立,故本选项是错误的; 选项D :因为210c +>,所以根据不等式的性质,由a b >能推出2211a bc c ++>. 5.【答案】B【解析】选B .220aa b b=-⇒+=,反之不成立. 所以“20a b +=”是“2ab=-”成立的必要不充分条件.6.【答案】C【解析】选C .设每月峰时段的平均用电量为kW h x , 则谷时段的用电量为()200kW h x -;根据题意,得:()()()0.520.550.520.352002000.5210%x x -+--⨯⨯≥,解得118x ≤. 所以这个家庭每月峰时段的平均用电量至多为118kW h . 7.【答案】A【解析】选A .方程22450x ax a --=的两根为5a a -,. 因为210a +<,所以12a -<, 所以5a a ->.结合二次函数2245y x ax a =--的图象,得原不等式的解集为{5x x a <或}x a ->,故选A . 8.【答案】C【解析】选C .因为102x <<,所以2140x ->,所以2211414122224x x +-⨯⨯=≤,当且仅当2x =4x =. 二、9.【答案】AB【解析】选AB .因为A B ⊆,所以2a <,结合选项可知,实数a 的值可能是3-和1. 10.【答案】BCD 【解析】选BCD .因为x 与1x同号, 所以112x x x x+=+≥,A 正确; 当x y ,异号时,B 不正确;当x y =时,222x y xy +=,C 不正确;当11x y ==-,时,D 不正确.11.【答案】ACD【解析】选ACD .因为2323x y <<,<<, 所以49426xy x <<,<<, 所以629x y +<<,而32y ---<<,所以12411x y x y ---<<,<<. 12.【答案】BC【解析】选BC .由不等式23520x x +->,可得22530x x --<,解得132x -<<,由此可得:选项A ,132x -<<是不等式23520x x +->成立的充要条件;选项B ,102x -<<是不等式23520x x +->成立的充分不必要条件;选项C ,12x <<是不等式23520x x +->成立的充分不必要条件; 选项D ,16x -<<是不等式23520x x +->成立的必要不充分条件. 三、13.【答案】4或1或1-【解析】①当15m +=时,4m =,此时集合{}1520M =,,,符合题意, ②当245m +=时,1m =或1-,若1m =,集合{}125M =,,,符合题意,若1m =-,集合{}105M =,,,符合题意, 综上所求,m 的值为4或1或1-. 14.【答案】1 {2x x -<或}3x >【解析】由表知2x =-时03y x ==,时,0y =, 所以二次函数2y ax bx c =++可化为()()23y a x x =+-.又因为1x =时,6y =-,所以1a =,图象开口向上,结合二次函数的图象可得不等式20ax bx c ++>的解集为{2x x -<或}3x >. 15.【答案】12a ≤≤【解析】方程22210x ax a -+-=的两根为11a a +-,,且11a a +->, 所以{}11B x a x a =-+<<.因为A B ⊆,所以1112a a -⎧⎨+⎩≤≥,解得12a ≤≤.16.【答案】47【解析】由1a b +=,知()()113232732323232910b a a b a b ab ++++==+++++, 又2124a b ab +⎫⎛= ⎪⎝⎭≤(当且仅当12a b ==时等号成立), 所以499104ab +≤,所以749107ab +≥. 四、17.【答案】(1)命题中含有全称量词“任何一个”,故是全称量词命题. (2)命题中含有存在量词“至少有一个”,是存在量词命题. (3)命题中含有全称量词“∀”,是全称量词命题. (4)命题中含有存在量词“∃”,是存在量词命题.18.【答案】(1)因为集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x >,所以32AB x x ⎧⎫=⎨⎬⎩⎭≤或}2x >,因为{1U R B x x ==,<或}2x >,所以{}U12B x x =≤≤.所以()U 312AB x x ⎧⎫=⎨⎬⎩⎭≤≤.(2)依题意得:2131211312m m m m -+⎧⎪-⎨⎪+⎩<,<,≥,即2113m m m ⎧⎪-⎪⎨⎪⎪⎩>,<,≥,所以113m ≤<.19.【答案】(1)由题知BA ⊆.2=时,4a =,检验当4a =时,{}{}1241612A B ==,,,,,符合题意. 4=时,16a =,检验当16a =时,{}{}12425614A B ==,,,,,符合题意. 2a 时,0a =或1,检验当0a =时,{}{}124010A B ==,,,,,符合题意. 当1a =时,{}1241A =,,,,由于元素的互异性,所以舍去. 综上:4a =或16a =或0a =.(2)设{}{}240A x x B x ax ==->,>, 因为p 是q 的必要不充分条件,所以BA .①当0a >时,42a>,所以02a <<.②当0a <时,不满足题意.③当0a =时,:40q ->,即B ≠∅,符合题意. 综上:02a ≤<.20.【答案】(1)因为810x y ==,,所以甲两周购买鸡蛋的平均价格为()3831096⨯+⨯=元,乙两周购买鸡蛋的平均价格为()208010109810=+元. (2)甲两周购买鸡蛋的平均价格为3362x y x y++=, 乙两周购买鸡蛋的平均价格为2021010xyx y x y=++, 由(1)知,当810x y ==,时,乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜测乙的购买方式更实惠.证法一(比较法):依题意0x y ,>,且x y ≠,因为()()()()22420222x y xy x y x y xy x y x y x y +--+-==+++>, 所以22x y xyx y++>, 所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 证法二(分析法):依题意0x y ,>,且x y ≠, 要证:22x y xyx y++>, 只需证:()24x y xy +>只需证:222x y xy +>, 只需证:x y ≠(已知).所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 21.【答案】由于()22340x ax a a R +-∈<可化为()()40x a x a -+<,且方程()()40x a x a -+=的两个根分别是a 和4a -.当4a a =-,即0a =时,不等式的解集为∅; 当4a a ->,即0a >时,解不等式得4a x a -<<; 当4a a -<,即0a <时,解不等式得4a x a -<<.综上所述,当0a =时,不等式的解集为∅;当0a >时,不等式的解集为{}4x a x a -<<;当0a <时,不等式的解集为{}4x a x a -<<.22.【答案】(1)当汽车的速度为每小时50千米时,运输的总费用为:()120601000250124450⨯++⨯=元. (2)设汽车行驶的速度为km /h x , 由题意可得:12060100021260x x⨯++≤, 化简得213036000x x -+≤, 解得4090x ≤≤,故为使运输的总费用不超过1260元,汽车行驶速度不低于40km /h 时,不高于90km /h . (3)设汽车行驶的速度为km /h x ,则运输的总费用为12072006010002100010001240x x x ⨯++++=≥, 当72002x x=,即60x =时取得等号, 故若要使运输的总费用最小,汽车应以每小时60千米的速度行驶.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学新课标测试题一选择题:1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是( )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( )A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( )A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是( )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( )A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( )A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。

A.①②⑤⑧B.②③⑥⑦C.①④⑥⑧D.②③⑦⑧9.实现课程目标、实施教学的重要资源是( )A.课程资源B.教师C.教材D.仪器设备10.新课程教学改革要求我们首先确立起( )A.先进的教学观念B.与新课程相适应的、体现素质教育精神的教学观念C.教师为主导,学生为主体的教学观念D.以课堂教学为中心教学观念11.高中数学课程的基础性是指( )A.只有必修课程是基础B.必修和选修课程是所有高中生的基础C.高中数学课程为全体高中学生提供必要的数学基础,高中数学课程为不同学生提供不同的基础D.必修课程是基础,选修课程不是基础12.培养学生的学习习惯对今后发展至关重要,下面说法中不正确的是( )A.自学成才,无需培养B.培养学生会提问题、勤于思考的习惯C.培养学生用图形描述、刻画和解决问题的习惯D.培养学生及时反思和总结的习惯13.对于函数的教学以下说法不正确的是( )A.对函数的学习不能停留在抽象的讨论,要突出函数图形的地位B.函数是最重要、最基本的数学模型,要加深对函数思想的理解与应用C.在学生头脑中留下几个具体的最基本的函数模型就可以了D.结合具体的数学内容采用多种模式,让学生经历函数知识的形式与应用过程14.整体把握高中数学课程是理解高中数学课程的基点。

请根据培训内容说说看,高中数学课程内容的主线可大致分为( )A.函数思想、几何思想、算法思想、运算思想、随机思想与统计思想B.数形结合思想、分类讨论思想、函数与方程思想、概率与统计思想C.函数与方程的思想、数形结合思想、向量和坐标思想D.函数思想、算法思想、数形结合思想、分类讨论思想15.高中课程改革追求基本的目标是由应试教育向素质教育的转轨,真正实施( )A.全民教育B.大众教育C.素质教育D.精英教育16.《普通高中数学课程标准》提出的新课程基本理念,下面各组选项中说法不正确的是( )①构建共同基础,提供发展平台;②提供针对课程,适应个性选择;③倡导积极主动、勇于探索的学习方式;④注重提高学生的数学思维能力;⑤发展学生的数学思维能力;⑥与时俱进地认识双基;⑦强调本质,注意适度形式化;⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系; A.①③④⑦ B.②④⑤⑧ C.③⑤⑥⑨D.①⑤⑨⑩17.运算与推理的关系是( )A.运算与推理无关B.运算与推理是不同的思维形式C.运算本身就是一种推理,推理是运算的一种D.推理是运算18.任何新课程的研制,一般都要经过哪几个阶段进行( ) A.准备、研制、编写、推广B.研制、编写、实验、推广 C.准备、研制、实验、推广 D.准备、研制、编写、实验、推广19.从以下选项看,确定教学目标和教学要求的主要依据是( )A.课程标准B.教科书C.考试大纲D.教辅资料20.与社会、科技的进步紧密相连,体现时代精神的课程时代性的选择是指( )A.课程安排B.课程内容C.课程管理D.课程评价二填空:1.高中数学课程应力求通过各种不同形式的自主学习,探究活动,让学生体验数学发现和创造的历程,发展他们的___创新意识________。

2.高中数学课程应注重提高学生的数学思维能力,这是__数学教育______的基本目标之一。

3.数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生会用___数学的思考方式_____________解决问题、认识世界。

4.人们在学习数学和______运用数学解决问题____时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。

5.高中数学课程标准最突出的特点就是体现了___基础性________、多样性和选择性。

6.为了适应___信息时代__________发展的需要,高中数学课程应增加算法的内容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“双基异化”的倾向。

7.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展____.智力和创新意识_______具有基础性的作用。

8.数学学习的评价既要重视结果,也要重视过程。

对学生_数学学习过程______________的评价,包括学生参加数学活动的兴趣和态度、数学学习的自信、独立思考的习惯、合作交流的意识、数学认知的发展水平等方面。

9.解析几何是17世纪数学发展的重大成果之一,其本质是__.用代数方法研究图形的几何性质___________________,体现了数形结合的重要数学思想。

10.数学是研究__空间形式和数量关系_____的科学,是刻画自然规律和社会规律的科学语言和有效工具。

11.普通高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的__数学素养_________,以满足个人发展与社会进步的需要。

12.高中数学课程要求把数学探究、_数学建模_______的思想以不同的形式渗透在各个模块和专题内容之中。

13.选修课程系列1是为希望在__.人文、社会科学_________等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。

14.数学探究即数学____探究性课题______学习,是指学生围绕某个数学问题,自主探究、学习的过程。

15.算法是一个全新的课题,己经成为计算机科学的重要基础,它在科学技术和____社会发展_______中起着越来起重要的作用。

16.课程目标要求学生具有一定的数学视野,逐步认识数学的科学价值、应用______价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

17.新课程标准的目标要求包括三个方面:知识与技能,__过程与方法________________和情感、态度、价值观18.高中数学选修2-2的内容包括:导数及其应用、推理与证明_______、数系的扩充与复数的引入。

19.向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与___三角函数______的一种工具,有着极其丰富的实际背景。

20.用空间向量处理立体几何问题,提供了新的视角。

空间向量的引入,为解决三维空间中图形的位置关系与__度量______问题提供了一个十分有效的工具。

三简答:1.简述高中数学课程标准课程的基本理念。

<<普通高中数学课程标准>>提出的基本理念有:1.构建共同基础,提供发展平台。

2.提供多样课程,适应个性选择。

3.倡导积极主动,用于探索的学习方式。

4.注重提高学生的数学思维能力。

5.发展学生的数学应用意识。

6.与时俱进地认识“双基”。

7.强调本质,注意适度形式化。

8.体现数学的文化价值。

9.注意信息技术与数学课程的整合。

10.建立合理、科学的评价体系。

2.<<普通高中数学课程标准>>提出的这些基本理念,对我们理解和把握新课程启发可以从以下几个方面来看:1.教师和学生地位的把握在以前的学习中我就了解到,新课改下,教师不该再是课堂的主宰者,而应当是学生学习的引导者。

而学生也不应当再被动的接受知识,应该成为课堂的主体,老师要善于引导学生积极、自觉、自主的去发现生活中存在的数学,并鼓励、引领他们去探究、去学习。

新课改下的课堂应该是以教师引导、学生自主学习为主的,富有生机和活力的课堂!2.学习目标的变化过去的应试教育迫使教师和学生只注重双基,而忽略了学生的能力和情感价值的培养,而新课程标准理念强调学习的三维发展目标,不仅要求双基,更强调学生的能力目标和情感价值观目标。

这样就引起了我的深思:作为一名教师,我能交给我的学生什么?经过反复思考,我认为教师不应该只传授给学生知识、解题方法和技巧,而应当主动给学生创造机会,培养学生的实践能力和应用能力,让他们在学习数学的过程中发现数学的美,从意识上彻底的植入数学的“根”,这样才能让他们学好数学这一门课。

3.学生思维的培养我觉得数学课堂不应该再是老师满堂教,学生埋头听这种沉闷的气氛。

这种气氛下,学生的思维很容易受到限制、得不到发展,学生成绩自然不会有所长进。

在新课程理念下,我觉得教师应该有针对性的课堂情景的创设,好的情景能充分调动绝大多数学生的学习的积极性,也能激起他们对本课程的兴趣,充分的使他们的注意力高度集中,老师再层层递进的引导学生去大胆、积极的思考,最终达到对问题的解决,老师再从一般到特殊,特殊到一般的举一反三的给学生进行总结。

相关文档
最新文档