气相色谱仪的原理及应用
气相色谱仪原理结构及操作

气相色谱仪原理、结构及操作1、基本原理气相色谱GC是一种分离技术;实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析;混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离;待分析样品在汽化室汽化后被惰性气体即载气,一般是N2、He等带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡;但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出;当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图假设样品分离出三个组分,它包含了色谱的全部原始信息;在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线;2、气相色谱结构及维护进样隔垫进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃;正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”即不是样品本身的峰,从而影响分析;解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫;一般更换进样隔垫的周期以下面三个条件为准:1出现“鬼峰”;2保留时间和峰面积重现性差;3手动进样次数70次,或自动进样次数50次以后;玻璃衬管气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型;衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱;如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响;比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换;玻璃衬管清洗的原则和方法当以下现象:1出现“鬼峰”;2保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗;清洗的方法和步骤如下:1拆下玻璃衬管;2取出石英玻璃棉;3用浸过溶剂比如丙酮的纱布清洗衬管内壁; 玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm;要求填充均匀、平整;气体过滤器变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次;由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了;再生的方法是:1卸下过滤器,反方向连接于原色谱柱位置;2再生条件:载气流速40~50ml/min,温度340℃,时间5h;检测器如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛;无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果;因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术;目前,GC所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器FID、火焰热离子检测器FTD、火焰光度检测器FPD、热导检测器TCD、电子俘获检测器ECD等;下面对检测器的日常维护作简单讨论:2.4.1火焰离子化检测器FID1 FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4,等等;所以检测这些物质时不应使用FID;2FID的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1;3FID是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题;在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱;测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然;无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门;4为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度;检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火;消除污染的办法是对喷嘴和气路管道的清洗;具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡;2.4.2 火焰热离子检测器FTDFTD使用注意事项:1 铷珠:避免样品中带水,使用寿命大约600~700h;2 载气:N2或He,要求纯度%;一般He的灵敏度高;3 空气:最好是选钢瓶空气,无油;4 氢气:要求纯度%;另外需要注意的是使用FTD时,不能使用含氰基固定液的色谱柱,比如OV-1701;2.4.3火焰光度检测器FPDFPD使用注意事项:1 FPD也是使用氢火焰,故安全问题与FID相同;2 顶部温度开关常开250℃;3 FPD的氢气、空气和尾吹气流量与FID不同,一般氢气为60~80ml/min,空气为100~120ml/min,而尾吹气和柱流量之和为20~25ml/min;分析强吸附性样品如农药等,中部温度应高于底部温度约20℃;4 更换滤光片或点火时,应先关闭光电倍增管电源;5 火焰检测器,包括FID、FPD,必须在温度升高后再点火;关闭时,应先熄火再降温;2.4.4热导检测器TCDTCD使用注意事项:1确保热丝不被烧断;在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝就可能被烧断,致使检测器报废;关机时一定要先关检测器电源,然后关载气;任何时候进行有可能切断通过TCD的载气流量的操作,都要关闭检测器电源;2载气中含有氧气时,热丝寿命会缩短,所以载气中必须彻底除氧;3用氢气作载气时,气体排至室外;4基线漂移大时,要考虑以下几个问题:双柱是否相同,双柱气体流速是否相同;是否漏气;更换色谱柱至检测器的石墨垫圈; 池体污染;清洗措施:正己烷浸泡冲洗;2.4.5 电子俘获检测器ECDECD使用注意事项:1 气路安装气体过滤器和氧气捕集器;氧气捕集器再生:2 使用填充柱时也需供给尾吹气2~3ml/min;3 操作温度为250~350℃;无论色谱柱温度多么低,ECD的温度均不应低于250℃, 否则检测器很难平衡;4 关闭载气和尾吹气后,用堵头封住ECD出口,避免空气进入;3、基本操作加热由于气相色谱仪的生产厂家和质量的不同.测定温度的方式也不相同对于用微机设数法或拨轮选择法给定温度.一般是直接设数或选择合适给定温度值加以升温.而如果是采用旋钮定位法.则有技巧可言3.1.1过温定位法将温控旋钮调至低于操作温度约30℃处给气相色谱仪升温当过温至约为操作温度时.配台温度指示和加热指示灯.再逐渐将温控旋钮调至台适位置3.1.2 分步递进定位法将温控旋钮朝升温方向转动一个角度.升温开始.指示灯亮:当温度基本稳定时再同向转动温控旋钮.开始继续升温:如此递进调节、直至恒温在工作温度上. 调池平衡调池平衡实际是调热导电桥平衡.使之有较为台适的输出讲调节技巧.其实是对具有池平衡、调零和记录调零等第一步.用池平衡或调零旋钮将记录仪指针调至台适位置;第二步.自衰减至l6倍左右.观察记录仪指针移动情况;第三步.用记录谓零旋钮将记录仪指针调回原处;第四步.退回衰减.观察记录仪指针移动情况;第五步.用调零或池平衡旋钮将记录仪指针调回原处点火氢焰气相色谱仪开机时需要点火.有时因各种原因致使熄火后.也需要点火然而.我们经常会遇到点火不着的情况下面介绍两种点火技巧.供同行们相试3.3.1 加大氢气流量法先加大氢气流量.点着火后.再缓慢调回工作状况此法通用3.3.2 减少尾吹气流量法先减少尾吹气流量.点着火后.再调回工作状况此法适用于用氢气怍载气.用空气作助燃气和尾畋气情况气比的调节氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火;本着上述原则气比应按下法调节:1氮气流量的调节在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止2氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再将氢气流量上调少许;进样技术在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象3.5.1 进样量进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确1排除注射器里所有的空气用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点;还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉;2保证进样量的准确用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走3.5.2 进样方法双手章注射器用一只手通常是左手把针插入垫片.洼射大体积样品即气体样品或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出用右手的大拇指让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽出针尖继续压住柱塞3.5.3 进样时间进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟;。
GCMS原理及应用

GCMS原理及应用GCMS全称为气相色谱-质谱联用仪(Gas Chromatography-Mass Spectrometry),是一种用于分析复杂混合物的强大技术工具。
它将气相色谱和质谱联合在一起,能够在短时间内对样品中含有的化合物进行有效分离和鉴定。
本文将详细介绍GCMS的原理及其应用领域。
首先,我们来了解一下GCMS的原理。
GCMS由两个主要部分组成:气相色谱仪(GC)和质谱仪(MS)。
气相色谱仪用于将混合物的化合物分离,而质谱仪用于对化合物进行鉴定。
气相色谱仪的工作原理是基于化合物之间的相互作用力的不同,通过将气体样品注入到柱子中,利用化合物在固定相(填充柱)和流动相(载气)之间的分配系数不同,使不同的化合物以不同的速度通过柱子,从而实现对化合物的分离。
质谱仪则是通过将化合物转化为离子,并根据离子的质量-电荷比(m/z)进行分离和检测。
首先,化合物经过电离源,通常是通过化合物与电子碰撞或化合物分子之间的化学反应来产生正离子或负离子。
然后,离子进入质量分析器,在磁场的作用下根据离子的质量分离,最后离子通过离子接收器被检测出来。
当GC和MS联合起来使用时,样品首先通过气相色谱柱进行分离,然后化合物被一个热表面所蒸发,并通过离子源进行电离。
之后,离子被进一步分离和检测。
质谱仪会生成一个质谱图,其中每个化合物的质量代表了质谱图上的一个峰。
GCMS因其高分辨率、高灵敏度和广泛的应用领域而广受欢迎。
以下是一些GCMS的应用领域:1.环境分析:GCMS可用于分析空气、水和土壤等环境样品中的污染物,如挥发性有机物、农药、重金属等。
2.食品安全:GCMS可以分析食品样品中的残留农药、添加剂、污染物等,确保食品的安全性和质量。
3.药物分析:GCMS可用于药物代谢物的鉴定、药物残留物的检测以及药物分解产物的分析。
4.毒理学研究:GCMS可以用于毒理学研究中的生物标志物的分析,包括血液、尿液和毛发中的化合物分析。
气相色谱仪原理及应用课件

气相色谱仪用于检测水体中的有机污染物、农药残留和有害物质,保障水质安全 。
在科学研究领域的应用
生物样品分析
气相色谱仪用于分析生物体内的代谢产物和药物代谢物,研 究生物代谢过程和药物作用机制。
新材料成分分析
气相色谱仪用于分析新材料中的化合物组成和结构,促进新 材料的研究和开发。
THANKS FOR WATCHING
定期老化
新购置的色谱柱应进行老化处理,以优化性能和延长使用寿命。
清洗与再生
根据需要清洗和再生色谱柱,以去除残留物和恢复性能。
05 气相色谱仪的应用领域
在石油和化工领域的应用
石油分析
气相色谱仪用于分析石油中的烃类化 合物,如烷烃、芳烃和环烷烃,以及 硫、氮、氧等非烃类化合物。
化工原料分析
气相色谱仪用于检测化工生产过程中 的原料、中间产物和最终产品的成分 ,控制产品质量和生产过程。
化学方法
结合其他化学分析方法,如质 谱、红外光谱等,对未知样品
中的物质进行定性分析。
定量分析方法
外标法
使用已知浓度的标准品绘制标准曲线,根据未知样品色谱图中各组分 的峰面积或峰高,在标准曲线上查找对应的浓度。
内标法
在未知样品中加入一定量的内标物,利用内标物和待测组分的峰面积 或峰高之比,计算待测组分的浓度。
气相色谱仪原理及应用课件
目录
• 气相色谱仪基本原理 • 气相色谱仪的组成及部件 • 气相色谱仪的操作及应用 • 气相色谱仪的维护与保养 • 气相色谱仪的应用领域
01 气相色谱仪基本原理
色谱法原理
1 2 3
分离原理
色谱法是一种物理分离技术,通过不同物质在固 定相和流动相之间的分配平衡实现分离。
气相色谱仪的原理及应用方法

气相色谱仪的原理及应用方法一、气相色谱仪的原理气相色谱仪(Gas Chromatograph,简称GC)是一种分离和分析化合物的仪器。
它基于样品在气相和固定相之间相互分配的原理,通过柱和载气的选择实现对样品中各种化合物的分离。
1.1 采集样品在开始实验之前,需要准备样品,并采用适当的方法将需要分析的化合物转化为气态。
这可以通过蒸馏、热解、溶剂提取等方法完成。
1.2 柱的选择选择适当的柱是实现有效分离的关键。
柱的选择取决于需要分离的化合物的性质和分析目的。
常见的柱类型包括填充柱和毛细管柱。
填充柱常用于高分子化合物的分离,而毛细管柱适用于低分子量有机物的分离。
1.3 载气的选择载气在气相色谱中起到推动样品通过柱的作用。
常用的载气有氮气、氢气和惰性气体等。
载气的选择取决于对分子扩散速率和分离效果的要求,以及实验室中的安全性和成本等因素。
1.4 分离原理分离原理是气相色谱仪的核心。
它基于化合物在液相和固相之间的分配系数不同,使得样品中的各种化合物在柱上以不同的速率通过。
在样品通过柱的过程中,化合物会被分离出来,并形成不同的峰。
1.5 检测器的作用在分离完成后,需要通过检测器对分离出来的化合物进行定量或定性分析。
常见的检测器包括气体放大器检测器、火焰光度检测器和质谱检测器等。
二、气相色谱仪的应用方法气相色谱仪在各个领域中都有广泛的应用,以下列举几个主要的应用方法。
2.1 环境监测气相色谱仪在环境监测中起到非常重要的作用。
它可以用于检测大气中的有害气体和有机污染物,从而评估环境质量和监测污染源。
通过气相色谱仪的应用,我们可以及时发现和控制环境污染,保护人类的健康和生态环境。
2.2 化学分析气相色谱仪广泛应用于化学分析领域。
它可以对物质进行成分分析、结构鉴定和定量分析。
在药物分析、食品安全检测和石油化工等领域,气相色谱仪都是不可或缺的分析工具。
它可以高效地分离复杂的混合物,提高分析的准确性和灵敏度。
2.3 药物筛查气相色谱仪也被广泛应用于药物筛查。
气相质谱仪原理及用途

气相质谱仪原理及用途气相质谱仪是一种广泛应用于化学、生物学和环境科学等领域的分析仪器。
它可以将复杂物质分解成单一的分子,进而得出每种分子的相对分子质量、结构和含量。
本文将介绍气相质谱仪的原理、结构和应用。
一、气相质谱仪的原理气相质谱仪将化合物分离和分析分为两个步骤,即气相色谱分离(Gas Chromatography,GC)和质谱分析(Mass Spectrometry,MS),分别分析溶液中的各种成分。
GC分离将混合物中的各种成分分开,并送入MS设备进行分析。
1.气相色谱分离(GC)GC是一种物理分离技术,它基于各成分在某一固定温度下在固定相中的不同分配行为,将混合物中各种化合物物质分离开来。
GC通常使用毛细管柱,将混合物注入进来,各种成分在柱中沿着固定相的不同速度进行分离。
GC分离的准确性和效率取决于柱的性能、温度和其它硬件参数。
2.质谱分析(MS)在GC未被完全分离的基础上,由相对流的不同物质逐一进入,被质量分析仪所脱离带电,产生各种质谱峰,质谱仪将这些质谱峰的相对质量测量出来,进而推断出样品中的各种成分。
质谱分析的准确性和效率取决于其质谱仪的性能和相关软件的性能。
二、气相质谱仪的结构气相质谱仪包含样品供应和处理装置、气相色谱分离装置、质谱分析装置、检测器和控制系统等五个主要组成部分。
1.样品供应和处理装置样品供应和处理装置通常由进样器和样品前处理模块组成。
进样器是将样品导入GC列之前的一个模块,因此它非常重要。
目前普遍使用的进样器有针式、热蒸汽及液体动态头式等。
样品前处理模块是对样品进行前处理的设备,旨在分离、浓缩和良好的制备样品液体带有针的GC进样。
样品前处理程序往往包括减压器、浓缩器、气化器、分离器、冷却器等。
2.气相色谱分离装置气相色谱分离装置是将混合物分离成各组分的主要手段。
主要包括样品注入口、色谱柱和梯度温控系统,其中色谱柱是最为重要的部分。
色谱柱的选择应明确所需分析度的大小,例:分析度只需要较粗略时可选择通用柱(5%-10%);而分析度较高时(1%-5%)需要选择高效柱。
气相色谱仪原理及操作步骤

气相色谱仪原理及操作步骤
一、气相色谱仪的原理
用色谱柱先将混合物分离,然后利用检测器依次检测已分离出来的组分。
色谱柱的分离原理在于惯用的具有吸附性的色谱柱填料,使得混合物中各组分在色谱柱中的两相间进行分配。
由于各组分的吸附能力不同,因此各组分在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器上描绘出各组分的色谱峰。
二、气相色谱仪的操作步骤如下:
1. 准备工作:检查仪器安全阀是否处于开启状态,确认分析柱安装正确,温度设定在操作手册规定的温度范围内,并检查各部份是否连接完好。
2. 样品溶解:将样品加入溶剂中,采用高速搅拌混匀,以确保样品完全溶解,得到浓缩的溶液。
3. 溶液导入:将溶液加入检测器中,控制流量大小,确保流量的稳定性。
4. 调零:使用空白样品进行调零,确保实验数据准确性。
5. 开始实验:按照实验要求逐次放入样品,并监测色谱图及色谱曲线。
6. 记录数据:记录实验数据,包括色谱图及色谱曲线。
7. 清理仪器:关闭安全阀,拆卸分析柱,清理仪器,确保下次实验的正确进行。
气相色谱仪原理(图文详细讲解)

气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术。
它被用来对样品组分进行鉴定和定量测定:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的。
污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。
见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发。
用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流。
因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行。
气相色谱分析仪原理介绍和典型应用课件

注意事项
在使用过程中,要注意观察仪器运行是否稳 定,出现异常情况要及时处理。同时,要定 期清洗进样装置和色谱柱,避免样品残留对
仪器造成污染。
气相色谱分析仪的常见故障与排除方法
要点一
常见故障
要点二
排除方法
气相色谱分析仪常见的故障包括基线漂移、噪声过大、灵 敏度下降等。此外,仪器也会出现进样装置堵塞、色谱柱 失效、检测器故障等问题。
VS
考古学研究
在考古学领域,气相色谱分析仪可用于对 古代文物、遗址中的有机物、颜料等进行 成分分析,为考古学研究提供有力支持。
04
气相色谱分析仪使用与维护
气相色谱分析仪的安装与调试
安装环境
气相色谱分析仪应安装在干燥、通风良好、 无尘、无腐蚀性气体的室内,远离强磁场和 强电场,保证室内温湿度适宜,利于仪器的 稳定运行。
气相色谱分析仪的分类与比较
根据检测器的类型,气相色谱分析仪可以分为热导池、氢火 焰离子化、电子捕获等类型。
不同类型的气相色谱分析仪具有不同的特点和应用范围。例 如,热导池检测器适用于大多数气体和有机化合物,而氢火 焰离子化检测器则更适合于含碳有机化合物的检测。
02
气相色谱分析仪工作原理
色谱柱与分离原理
联用技术
与质谱、光谱等联用技术结合, 实现多维度的信息融合,提高 鉴定的准确性和可靠性。
智能化操作
实现智能化操作,如自动进样、 自动校准和自动诊断等功能, 提高分析的准确性和可靠性。
微型化
采用微流控技术,实现分析设 备的微型化,便于携带和使用。
气相色谱分析仪在各领域的未来应用前景 Nhomakorabea01
02
03
04
环境监测
污染物源解析
气相色谱仪原理结构及操作

气相色谱仪原理结构及操作气相色谱(Gas Chromatography,GC)是一种常用的分离和分析技术,通过样品在气相载体中的分配和传递过程,实现对不同物质成分的分离、鉴定和定量分析。
气相色谱仪是实现气相色谱分析的主要设备,其基本原理、结构和操作步骤如下:一、气相色谱仪的原理:气相色谱仪的基本原理是通过气相载体(通常为气体或液体)将待分析物质从进样口注入色谱柱中,样品在色谱柱中沿着固定相或液相产生分配、传递和吸附等过程,不同成分在固定相中的速率不同,从而实现分离,然后再通过检测器检测到各个分离出的组分并进行定量分析。
二、气相色谱仪的结构:1.进样系统:包括进样口和进样装置,用于将样品引入到色谱柱中。
常用的进样方式有气体进样、液体进样、固体进样等。
2.色谱柱:色谱柱是气相色谱的核心组件,通常由玻璃管或不锈钢管制成。
内部涂有固定相(固态色谱柱)或固定液相(毛细管色谱柱)用于分离样品组分。
3.载气系统:用于将气相载体送入色谱柱中,常用的载气有惰性气体(如氦气、氮气)。
4.柱温控制系统:用于控制色谱柱的温度,以影响分离效果。
柱温的选择要根据样品的性质和分离效果进行调整。
5.检测器:用于检测样品中的组分并产生电信号。
常见的检测方法有热导检测器(TCD)、火焰光度检测器(FID)、质谱检测器(MS)等。
三、气相色谱仪的操作步骤:1.打开气相色谱仪电源,启动冷却系统,使柱温控制系统达到设定温度。
2.准备样品:根据实验需要,选择恰当的样品,将其制备成适当的溶液或气态样品。
3.进样准备:根据样品的性质和进样方式,选择适当的进样方式,如气体进样、液体进样等。
进样量要根据色谱柱和样品的性质进行调整。
4.样品进样:将样品引入进样装置中,通过控制进样阀门或推进准备好的样品进样器,使样品进入色谱柱中。
5.色谱分离:根据实验需要,设定合适的色谱柱温度、载气流速等条件,使样品在色谱柱中进行有效分离。
6.检测和记录:根据需要,选择合适的检测器进行检测,并将检测到的信号记录下来。
气相色谱仪基本原理气相色谱仪基本原理

气相色谱仪,简称气色,是一种在化学分析中广泛使用的仪器。
它通过气相色谱技术,能够快速、高效地对化合物进行分离和检测。
气相色谱仪不仅在化学、环境、食品等领域有着重要的应用,还在医学和生物学等领域有着广泛的用途。
本文将从气相色谱仪的基本原理入手,深入探讨这一技术的工作原理、应用及其对科学研究和产业发展的影响。
1.气相色谱仪的工作原理1.1 柱温控制系统:气相色谱仪中的柱温控制系统对分离效果有着重要的影响。
柱温的选择需根据待分离组分的性质和柱子的特性,过低的温度会导致分辨率降低,过高的温度则会造成样品的分解和柱子失效。
1.2 载气系统:载气是气相色谱仪中的重要组成部分,它能够带动样品与固定相在毛细管内的分离。
常用的载气有氮气、氢气和惰性气体等。
1.3 采样系统:气相色谱仪的采样系统对样品的进样速度和精确度有着重要的要求。
采样器的选择应根据待分析样品的性质和实验要求进行合理选择。
2.气相色谱技术的应用2.1 化学分析:气相色谱技术在化学分析中有着广泛的应用,它可以对各种有机化合物进行精准的分离和检测,具有高分辨率和灵敏度高的特点。
2.2 环境监测:气相色谱技术能够对大气中的各种有机物和污染物进行准确的监测和分析,对环境保护和污染治理有着重要的意义。
2.3 食品检测:气相色谱技术在食品行业中的应用也十分广泛,能够对食品中的农药残留、添加剂和食品成分进行精确的检测。
3.气相色谱技术的影响气相色谱技术的发展对科学研究和产业发展有着重要的影响。
它为化学分析提供了高效、快速和精确的手段,推动了化学、环境、食品等领域的发展。
气相色谱技术的不断进步也为科学研究提供了更加丰富和准确的数据,促进了科学的发展。
总结回顾气相色谱技术作为一种高效的分析工具,已经在各个领域发挥着重要的作用。
它的工作原理及应用前景都展现出了巨大的潜力和发展空间。
随着科学技术的不断进步,相信气相色谱技术将会在更广泛的领域得到应用,为人类社会的发展进步贡献更多的力量。
气相色谱仪的应用领域及工作原理

气相色谱仪的应用领域及工作原理气相色谱仪的应用领域色谱仪是对色谱进行分别分析用的仪器,其紧要工作原理是由载气将混合气体样品载入仪器中,通过对待检测混合物中组分有不同保留性能的色谱柱,使各组分分别,依次导入检测器中,依照导入检测器的先后次序,经过对比,可以区分出各组分,依据峰高度或峰面积可以计算出各组分含量。
色谱仪在各行各业都有着广泛的用途,以下介绍色谱仪的十种用途。
一、石油化工能源检测分析检测项目:油气田勘探中的化学分析、原油分析、炼厂气分析、模拟蒸馏、油料分析、单质烃分析、含硫/含氮/含氧化合物分析、汽油添加剂分析、脂肪烃分析、芳烃分析。
检测方式:选用热导检测器、填充柱系统、阀自动或手动切换,并配有反吹系统,适用于炼油厂生产的液化石油气中C2—C4及总C5烃类构成的分析(不包括双烯烃和炔烃)。
紧要作用:石油开采过程中的质量安全监控二、环境检测分析检测项目:大气污染物分析、水分析、土壤分析、固体废弃物分析。
检测方式:室内环境检测选用氢焰离子化检测器,配以热解吸进样器、填充柱或毛细管柱,按国标GB50325—2023选用专用的色谱柱可完成对室内空气中苯、甲苯、二甲苯及总挥发性有机合物(TVOC)的检测。
接受衍生气相色谱法,经 2.4—二硝基苯肼衍生,用环已烷萃取,以OV—17和QF—1混涂色谱柱分别,用电子俘获检测器(ECD)测定室内空气中的甲醛,具有灵敏、精准、无干扰、试剂易保存等优点。
紧要作用:便于生态环境情形的实时监控管理三、食品检测检测项目:农药残留分析、香精香料分析、添加剂分析、脂肪酸甲酯分析、食品包装材料分析检测方式:选用不同种类的检测器和色谱柱可完成对食品中有害物质的检测与分析,如:食品中氯丙醇的检验,可接受三氯乙酐衍生化结合电子俘获检测器(ECD)进行测定;选用电子俘获检测器,配以毛细管进样系统和专用大口径毛细管柱,可完成对茶叶中有机氯农药残留的检测;利用GC/FID气相色谱技术可对塑料食品袋及包装食品中的5种酞酸酯,包括邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、希望能够给您供应更精准明确、更完美的解决方案邻苯二甲酸二正辛酯(DOP)和邻苯二甲酸二(2—乙基己基)酯(DE—HP)进行精准分别和检测。
气相色谱仪主要测什么

气相色谱仪紧要测什么气相色谱仪是一种广泛应用于化学、化工、医药、食品等领域的紧要分析仪器。
它能够高效分别和测定多而杂样品中的各种组分,其紧要测定的物质包含气体、液体和固体中的挥发性组分。
一、气相色谱仪的工作原理气相色谱仪的工作原理是利用色谱柱将样品中的各组分进行分别,然后通过检测器对分别后的组分进行检测和测量。
气相色谱仪的色谱柱一般是由玻璃或金属料子制成的,其内部填充有固定相,如硅胶、氧化铝等。
当样品中的组分被载气带入色谱柱后,由于固定相对各组分的吸附作用不同,因此各组分在色谱柱中的移动速度也会有所不同,从而实现各组分的分别。
二、气相色谱仪的紧要应用1.气体分析:气相色谱仪可以用于分析空气、氧气、氮气、二氧化碳等气体中的杂质和有害物质,如二氧化硫、一氧化碳、甲烷等。
2.液体分析:气相色谱仪可以用于分析各种液体中的挥发性组分,如汽油、柴油、润滑油等。
通过对这些液体中的组分进行分析,可以了解其成分和浓度,为生产和使用供应引导。
3.固体分析:气相色谱仪可以用于分析固体中的挥发性组分,如土壤、食品、药品等。
通过对这些固体中的组分进行分析,可以了解其成分和含量,为质量掌控和安全评估供应依据。
三、气相色谱仪的紧要优点1.高分别效能:气相色谱仪具有高分别效能,能够将多而杂样品中的各组分进行高效分别,适用于各种多而杂样品的分析。
2.高灵敏度:气相色谱仪具有高灵敏度,能够检测出低浓度的组分,为痕量分析供应可能。
3.宽线性范围:气相色谱仪的检测器具有宽线性范围,能够适应不同浓度样品的测量需求。
4.自动化程度高:气相色谱仪具有较高的自动化程度,能够实现自动进样、自动分别和自动检测等功能,提高分析效率和准确性。
5.应用范围广:气相色谱仪适用于各种领域,如化学、化工、医药、食品等,为不同领域的研究和应用供应支持。
总之,气相色谱仪是一种紧要的分析仪器,其紧要测定物质包含气体、液体和固体中的挥发性组分。
它具有高分别效能、高灵敏度、宽线性范围、自动化程度高等优点,广泛应用于各个领域的研究和应用中。
气相色谱仪的分离原理

气相色谱仪的分离原理
气相色谱仪的分离原理是基于样品在气相流动下通过固定相柱的分离作用。
在气相色谱仪中,样品首先被蒸发并注入进入流动相(载气)中,然后由流动相输送到柱子。
柱子通常被填充或涂覆了固定相,样品在固定相上发生吸附、分配或化学反应,达到分离的目的。
具体的分离原理有以下几种:
1. 吸附色谱:在吸附色谱中,固定相通常是一种多孔的固体材料,样品成分通过物理吸附在固定相上进行分离。
不同成分在固定相上的吸附能力不同,因此在柱子中停留时间不同,最终实现分离。
2. 分配色谱:在分配色谱中,固定相是一种液体,称为液态固定相或液相。
样品成分在液态固定相和气相之间进行分配,根据不同成分在两相间的分配系数不同来实现分离。
3. 离子交换色谱:在离子交换色谱中,固定相通常是带电的,称为离子交换树脂。
样品溶液中的带电成分与离子交换树脂表面的离子进行交换,实现分离。
4. 亲水色谱:在亲水色谱中,固定相通常是亲水性的材料,样品中的水溶性成分与固定相上的水分子之间进行分配,实现分离。
不同的分离原理适用于不同类型的样品和分离目的。
通过选择
适当的固定相和操作条件,可以实现对复杂混合物的高效分离和定量分析。
简述气相色谱仪的原理组成及应用

简述气象色谱仪的原理组成及应用气相色谱分析于1952 年出现,经过50 年的发展已成为重要的近代分析手段之一,由于它具有分离效能高,分析速度快,定量结果准,易于自动化等特点;且当其与质谱,计算机结合进行色-质联用分析时,又能对复杂的多组分混合物进行定性和定量分析。
首先我们对气象色谱仪进行探讨:1 气象色谱流程与分离原理气象色谱仪分离的原理:分离原理是气体流动相携带混合物流过色谱柱中的固定相,混合物与固定相发生作用,并在两相间分配。
由于各组分在性质和结构上的差异,发生作用的大小、强弱也有差异,因此不同组分在固定相中滞留时间有长有短,从而按先后不同的次序从固定相中流出,从而达到各组分分离的目的。
气象色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。
可用流程方框图表示,如下图:2 气象色谱仪的基本组成和核心部分2.1气路控制系统主要作用是为了保证进样系统、色谱柱系统和检测器的正常工作提供稳定的载气和有关检测器必须的燃气、助燃气以及辅助气体,气路控制系统的好坏将直接影响仪器的分离效率、灵敏度和稳定性,从而将直接影响定性定量的准确性。
气路控制系统主要由开关阀、稳定阀、针型阀、压力表、电子流量计等部件组成。
2.3 色谱柱和柱箱色谱柱的作用就是分离混合物样品中的有关组分。
是色谱分析的关键部分,主要有填充柱和毛细柱两大类。
色谱柱选用的正确与否,将直接影响分离的效率、稳定性和检测灵敏度。
柱箱就是装接和容纳各种色谱柱的精密控温的炉箱,是色谱仪的重要组成部分之一,柱箱结构设计的合理与否,将直接影响整体性能。
2.4 检测器检测器是气象色谱仪的心脏部分,它的功能就是把随载气流出色谱柱的各种组分进行非电量转换,将组分转变为电信号,便于记录测量的处理。
检测器的性能直接影响整机仪器的性能,主要影响稳定性和灵敏度,检测器的性能也决定了该仪器的应用范围。
一般色谱仪的检测器都有热导检测器和氢焰检测器:A 热导检测器的原理:气体具有热导作用,不同物质具有不同的热导系数,热导检测器就是根据不同物质热导系数的差别而设计的,它对有机、无机样品均匀响应,而不破坏样品,可用于常量分析。
气相色谱仪的原理及应用

气相色谱仪的原理及应用1. 引言气相色谱仪是一种常用的分析仪器,被广泛应用于化学、药学、环境监测、食品安全等领域。
本文将介绍气相色谱仪的基本原理以及其在不同领域的应用。
2. 气相色谱仪的原理2.1. 气相色谱的基本原理气相色谱的基本原理是通过样品在载气的流动下,在色谱柱中进行分离。
柱内的分离是通过样品和柱填料之间的不同相互作用来实现的。
在气相色谱仪中,样品首先被进样器蒸发到气态,然后被注入载气流中,通过进样口进入色谱柱。
样品成分会因为与柱填料的相互作用而在柱内进行分离,最后通过检测器进行检测。
2.2. 气相色谱仪的组成及工作原理气相色谱仪主要由进样系统、色谱柱、检测系统和数据处理系统组成。
进样系统负责将样品引入色谱柱,色谱柱负责样品的分离,检测系统负责检测分离出的化合物,数据处理系统负责对检测结果进行处理和分析。
3. 气相色谱仪的应用3.1. 环境监测气相色谱仪在环境监测中起着重要的作用。
例如,可以通过气相色谱仪对大气中的有害气体进行监测,如二氧化硫、甲醛等。
此外,气相色谱仪还可用于水体中有机物的分析,如水中的苯、甲苯、二甲苯等。
3.2. 食品安全检测气相色谱仪在食品安全检测中也有广泛的应用。
通过气相色谱仪可以对食品中的农药残留、重金属、食品添加剂等进行分析和检测。
这对于保证食品安全,确保消费者健康至关重要。
3.3. 药物分析气相色谱仪在药物分析中起着重要的作用。
它可以用于药物的纯度分析、同质异构体分析以及药物代谢产物的分析等。
准确的药物分析可以保证药物的质量和疗效,对于药物研发和质量控制具有重要意义。
3.4. 石油化工在石油化工领域,气相色谱仪被广泛应用于原油组分分析、炼油过程的监测以及催化剂的研究。
通过气相色谱仪可以对石油化工过程中产生的各种化合物进行分析和检测,有助于提高石油化工生产的效率和质量。
4. 结论气相色谱仪作为一种重要的分析仪器,具有广泛的应用前景。
它的原理简单明了,可以对各种化合物进行快速、准确的分离和检测。
气相色谱仪的原理及使用方法

气相色谱仪的原理及使用方法气相色谱仪(Gas Chromatograph,GC)是一种常用的分析仪器,主要用于分离和定量分析样品中的化合物。
它的原理基于化合物在固定相(填充物)和流动相(气体)之间的分配系数不同,从而实现样品分离的目的。
气相色谱仪的主要组成部分包括进样口、色谱柱、检测器和数据处理系统。
下面是气相色谱仪的工作原理和使用方法的详细介绍:1. 工作原理:- 进样:样品通过进样口进入色谱柱,可以采用自动进样或手动进样的方式。
- 色谱柱:色谱柱是气相色谱仪中最关键的组件,它通常由内衬固定相的管状结构构成。
常见的固定相包括聚硅氧烷(polydimethylsiloxane)、聚乙二醇(polyethylene glycol)等。
样品在色谱柱中被分离成不同的化合物组分。
- 流动相:气相色谱仪中的流动相一般为惰性气体,如氦气、氢气等。
流动相的主要作用是将样品推动通过色谱柱。
- 检测器:色谱柱后面连接着检测器,用于检测分离后的化合物。
常见的检测器包括火焰离子化检测器(Flame Ionization Detector,FID)、电子捕获检测器(Electron Capture Detector,ECD)等。
不同的检测器适用于不同类型的化合物分析。
- 数据处理系统:气相色谱仪通常配备有数据处理系统,用于记录和分析检测到的化合物信号。
2. 使用方法:- 样品准备:将待分析的样品制备成适合进样的形式,如液态样品可以直接进样,固态样品需进行萃取或溶解后再进样。
- 进样设置:确定进样方式,可以选择自动进样或手动进样。
根据样品的性质和分析要求,设置合适的进样量。
- 色谱条件设置:根据分析目的和样品性质,选择合适的色谱柱和固定相。
优化色谱条件,包括流量、温度程序等。
- 启动仪器:打开气源,确保色谱柱、进样口和检测器的正常工作。
预热色谱柱至稳定状态,等待系统温度平衡。
- 分析运行:进样后,启动气相色谱仪,开始分析运行。
气相色谱仪的工作原理

气相色谱仪的工作原理
气相色谱仪是一种通过气体载流相和固定相之间的分离作用来分离和识别化合物的分析仪器。
它的工作原理如下:
1. 样品进样:待分析的样品首先通过进样口进入气相色谱仪中。
样品可以是气体、液体或固体。
2. 气体载流相:样品与惰性气体(例如氮气、氦气等)混合,形成气体载流相。
这种气体负责将样品带入色谱柱中并在其中传播。
3. 色谱柱:色谱柱是气相色谱仪中最关键的部分。
它有两种主要类型,即填充柱和毛细管柱。
填充柱是由吸附材料或离子交换材料填充的管状容器。
毛细管柱是一种非常细的管状容器。
4. 分离:样品在色谱柱中按照化学性质不同被固定相吸附或溶解在载流相中。
不同的化合物之间由于化学性质的不同会有不同的分配系数,因此它们在色谱柱中传播速度不同,从而实现了对样品的分离。
5. 检测器:在色谱柱的出口处,有一个专门的检测器用于检测样品。
常用的检测器有火焰离子化检测器(FID)、光电离检测器(PID)、热导率检测器(TCD)
等。
这些检测器可以根据样品的特性发出信号,用于计算和分析。
6. 数据分析:检测器输出的数据通过计算机或数据处理系统进行分析和处理。
分析人员可以根据输出信号的强弱、时间等信息来确定样品中化合物的种类和浓度。
总的来说,气相色谱仪通过将样品带入色谱柱中,利用载流相和固定相之间的分离作用,将化合物分离并识别出来,从而实现对样品的分析。
气相色谱仪原理(图文详细讲解)

⽓相⾊谱仪原理(图⽂详细讲解)⽓相⾊谱仪原理(图⽂详解)什么是⽓相⾊谱本章介绍⽓相⾊谱的功能和⽤途,以及⾊谱仪的基本结构。
⽓相⾊谱(GC)是⼀种把混合物分离成单个组分的实验技术。
它被⽤来对样品组分进⾏鉴定和定量测定:基⼦时间的差别进⾏分离和物理分离(⽐如蒸馏和类似的技术)不同,⽓相⾊谱(GC)是基于时间差别的分离技术。
将⽓化的混合物或⽓体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同⽽得到分离。
这样,就是基于时间的差别对化合物进⾏分离。
样品经过检测器以后,被记录的就是⾊谱图(图1),每⼀个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以⽤来对每个组分进⾏定性,⽽峰的⼤⼩(峰⾼或峰⾯积)则是组分含量⼤⼩的度量。
图1典型⾊谱图系统⼀个⽓相⾊谱系统包括可控⽽纯净的载⽓源.它能将样品带⼊GC系统进样⼝,它同时还作为液体样品的⽓化室⾊谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从⽽对组分做出响应某种数据处理装置图2是对此作出的⼀个总结。
样品载⽓源⼀^ 进样⼝⼀^ ⾊谱柱⼀^ 检测器⼀_ 数据处理」图2⾊谱系统⽓源载⽓必须是纯净的。
污染物可能与样品或⾊谱柱反应,产⽣假峰进⼊检测器使基线噪⾳增⼤等。
推荐使⽤配备有⽔分、烃类化合物和氧⽓捕集阱的⾼纯载⽓。
见图钢瓶阀若使⽤⽓体发⽣器⽽不是⽓体钢瓶时,应对每⼀台GC都装配净化器,并且使⽓源尽可能靠近仪器的背⾯。
进样⼝进样⼝就是将挥发后的样品引⼊载⽓流。
最常⽤的进样装置是注射进样⼝和进样阀。
注射进样⼝⽤于⽓体和液体样品进样。
常⽤来加热使液体样品蒸发。
⽤⽓体或液体注射器穿透隔垫将样品注⼊载⽓流。
其原理(⾮实际设计尺⼨)如图4所⽰。
样品从机械控制的定量管被扫⼊载⽓流。
因为进样量通常差别很⼤,所以对⽓体和液体样品采⽤不同的进样阀。
其原理(⾮实际设计尺⼨)如图5所⽰。
进样阀通常与进样⼝连接,特别在分流进样模式时,进样阀连接到分流/不分流进样⼝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气相色谱仪的原理及应用
气相色谱仪是利用色谱分离技术和检测技术,对多组分的复杂混合物进行定性和定量分析的仪器。
气相色谱仪的原理:
气相色谱仪是以气体作为流动相(载气)。
当样品由微量注射器“注射”进入进样器后,被载气携带进入填充柱或毛细管色谱柱。
由于样品中各组分在色谱柱中的流动相(气相)和固定相(液相或固相)间分配或吸附系数的差异,在载气的冲洗下,各组分在两相间作反复多次分配使各组分在柱中得到分离,然后用接在柱后的检测器根据组分的物理化学特性将各组分按顺序检测出来。
检测器对每个组分所给出的信号,在记录仪上表现为一个个的峰,称为色谱峰。
色谱峰上的极大值是定性分析的依据,而色谱峰所包罗的面积则取决于对应组分的含量,故峰面积是定量分析的依据。
一个混合物样品注入后,由记录仪记录得到的曲线,称为色谱图。
分析色谱图就可以得到定性分析和定量分析结果。
气相色谱仪的应用:
气相色谱法是以气体为流动相的色谱分析方法,主要用于分离分析易挥发的物质。
气相色谱法已成为极为重要的分离分析方法之一,在医药卫生、石油化工、环境监测、生物化学等领域得到广泛的应用。
气相色谱仪具有:高灵敏度、高效能、高选择性、分析速度快、所需试样量少、应用范围广等优点。
气相色谱仪,将分析样品在进样口中气化后,由载气带入色谱柱,通过对欲检测混合物中组分有不同保留性能的色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。
按照导入检测器的先后次序,经过对比,可以
区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。
通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。