气相色谱仪原理、结构及操作(精)
气相色谱仪操作及原理

气相色谱仪操作及原理
气相色谱仪(Gas Chromatograph, GC)是一种常用的色谱分析仪器,广泛应用于化学、环境、食品、药品等领域。
其操作过程主要包括样品进样、气相传递、分离、检测等步骤。
首先,将待分析的样品制备成气体或者气体相溶液,并通过进样口进入气相色谱仪。
进样口处的样品会被注射器吸入到色谱柱的载气(通常为惰性气体,如氢气或氦气)流中。
载气将样品带入色谱柱,色谱柱中填充了一种或多种吸附型物质,称为固定相。
样品组分在固定相上吸附和解吸的速率不同,因而会发生分离。
固定相的种类根据不同的分析需求选择。
接下来,样品组分随着载气流经色谱柱内的固定相,不同的组分会按照其亲、疏吸附性质在固定相中迅速分离,达到各自的平衡状态。
这个过程称为分离。
分离完成后,样品组分进入检测器进行检测。
常见的检测器包括火焰离子化检测器(FID)、热电导检测器(TCD)、质谱
检测器等。
检测器会将样品组分转化为电信号,并将其传递给记录仪或计算机进行分析和处理。
气相色谱仪的原理基于物质在不同固相上的吸附性质不同,通过控制固相类型、流速和温度等参数,可以实现对样品中各种物质的分离和定量分析。
总结起来,气相色谱仪的操作包括样品进样、气相传递、分离
和检测等步骤,其原理是基于吸附分离原理,通过调控条件实现对样品中物质的分离和定量分析。
气相色谱仪使用方法及试验操作步骤

气相色谱仪使用方法及试验操作步骤气相色谱技术是现代化学分析中的紧要手段之一、气相色谱仪(GC)是一种高效液相色谱(HPLC)和毛细管电泳技术(CE)之类的分析仪器,广泛应用于生物化学、环境分析、食品安全、药物、化工等领域。
本文介绍气相色谱仪的使用方法和试验操作步骤,希望对大家的讨论工作有所帮忙。
一、气相色谱仪的基本原理气相色谱法是一种在惰性载气流动作用下,利用样品成分在不同温度下对固定相上分别的方法。
气相色谱仪紧要由进样装置、色谱柱、检测器、计算机软件构成。
其中,色谱柱是气相色谱仪的核心部件,可以依据不同的应用场合配置不同种类的色谱柱。
气相色谱仪基本原理如下:1.样品挥发成分进入色谱柱2.色谱柱中填充有不同材料的液态或固态载气固定相3.不同挥发成分因固定相的选择性分别在分别列中停留时间不同4.通过检测器检测不同挥发成分的特征值并进行分析和识别二、气相色谱仪的使用方法在使用气相色谱仪前,需要正确安装气瓶、NN、纯化器等设备并进行调试。
操作气相色谱仪时需要保持仪器的稳定和一些紧要试验参数的精准性,操作前应谙习相关操作手册。
1. 样品的制备在进行气相色谱分析之前,必需将待测的样品进行制备。
在样品制备过程中需要注意以下几点:1.样品中的挥发物质必需彻底挥发,在对样品进行处理之前要先进行预处理2.需要保证样品的纯度,才能保证气相色谱仪的分析结果精准3.样品制备过程中不得使用水及含水溶液2. 进样操作样品制备完成后,需要将样品注入气相色谱仪中进行分析。
进样过程中应注意以下事项:1.进样量应依据样品的性质和检测要求合理选择,超量进样会影响分析结果2.在进样前应先进行检测器本底稳定,然后才能进行样品的进样3.每次进样之前,应清洗进样针头以确保不会显现交叉污染的情况3. 计算分析结果在分析中,需要计算并分析样品的峰面积、峰高度、保留时间等分析参数。
计算分析结果时,应注意以下几点:1.分析结果的精准性和牢靠性与仪器和操作人员的技术水平有关,需要统计和分析每个分析参数的偏差情况,以确定操作的精准性2.计算结果应与标准品进行对比,然后进行数据修正,以确定试验数据的精准性和牢靠性三、试验操作步骤以下是气相色谱仪常规分析的步骤:1.准备分析样品,依照标准样品来自制,应使用干燥无残留污染的样品容器2.准备好进样设备,清洗进样针头3.设置分析条件,包括纪录时间、流速、温度程序4.进样到色谱柱中5.依照设定条件进行扫描,然后进行数据分析6.依据得到的数据进行分析,然后生成试验报告四、总结气相色谱仪是一种紧要的分析仪器,广泛应用于生物化学、环境分析、食品安全、药物、化工等领域。
气相色谱仪原理结构及操作

气相色谱仪原理、结构及操作1、基本原理气相色谱GC是一种分离技术;实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析;混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离;待分析样品在汽化室汽化后被惰性气体即载气,一般是N2、He等带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡;但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出;当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图假设样品分离出三个组分,它包含了色谱的全部原始信息;在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线;2、气相色谱结构及维护进样隔垫进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃;正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”即不是样品本身的峰,从而影响分析;解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫;一般更换进样隔垫的周期以下面三个条件为准:1出现“鬼峰”;2保留时间和峰面积重现性差;3手动进样次数70次,或自动进样次数50次以后;玻璃衬管气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型;衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱;如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响;比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换;玻璃衬管清洗的原则和方法当以下现象:1出现“鬼峰”;2保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗;清洗的方法和步骤如下:1拆下玻璃衬管;2取出石英玻璃棉;3用浸过溶剂比如丙酮的纱布清洗衬管内壁; 玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm;要求填充均匀、平整;气体过滤器变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次;由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了;再生的方法是:1卸下过滤器,反方向连接于原色谱柱位置;2再生条件:载气流速40~50ml/min,温度340℃,时间5h;检测器如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛;无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果;因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术;目前,GC所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器FID、火焰热离子检测器FTD、火焰光度检测器FPD、热导检测器TCD、电子俘获检测器ECD等;下面对检测器的日常维护作简单讨论:2.4.1火焰离子化检测器FID1 FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4,等等;所以检测这些物质时不应使用FID;2FID的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1;3FID是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题;在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱;测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然;无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门;4为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度;检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火;消除污染的办法是对喷嘴和气路管道的清洗;具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡;2.4.2 火焰热离子检测器FTDFTD使用注意事项:1 铷珠:避免样品中带水,使用寿命大约600~700h;2 载气:N2或He,要求纯度%;一般He的灵敏度高;3 空气:最好是选钢瓶空气,无油;4 氢气:要求纯度%;另外需要注意的是使用FTD时,不能使用含氰基固定液的色谱柱,比如OV-1701;2.4.3火焰光度检测器FPDFPD使用注意事项:1 FPD也是使用氢火焰,故安全问题与FID相同;2 顶部温度开关常开250℃;3 FPD的氢气、空气和尾吹气流量与FID不同,一般氢气为60~80ml/min,空气为100~120ml/min,而尾吹气和柱流量之和为20~25ml/min;分析强吸附性样品如农药等,中部温度应高于底部温度约20℃;4 更换滤光片或点火时,应先关闭光电倍增管电源;5 火焰检测器,包括FID、FPD,必须在温度升高后再点火;关闭时,应先熄火再降温;2.4.4热导检测器TCDTCD使用注意事项:1确保热丝不被烧断;在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝就可能被烧断,致使检测器报废;关机时一定要先关检测器电源,然后关载气;任何时候进行有可能切断通过TCD的载气流量的操作,都要关闭检测器电源;2载气中含有氧气时,热丝寿命会缩短,所以载气中必须彻底除氧;3用氢气作载气时,气体排至室外;4基线漂移大时,要考虑以下几个问题:双柱是否相同,双柱气体流速是否相同;是否漏气;更换色谱柱至检测器的石墨垫圈; 池体污染;清洗措施:正己烷浸泡冲洗;2.4.5 电子俘获检测器ECDECD使用注意事项:1 气路安装气体过滤器和氧气捕集器;氧气捕集器再生:2 使用填充柱时也需供给尾吹气2~3ml/min;3 操作温度为250~350℃;无论色谱柱温度多么低,ECD的温度均不应低于250℃, 否则检测器很难平衡;4 关闭载气和尾吹气后,用堵头封住ECD出口,避免空气进入;3、基本操作加热由于气相色谱仪的生产厂家和质量的不同.测定温度的方式也不相同对于用微机设数法或拨轮选择法给定温度.一般是直接设数或选择合适给定温度值加以升温.而如果是采用旋钮定位法.则有技巧可言3.1.1过温定位法将温控旋钮调至低于操作温度约30℃处给气相色谱仪升温当过温至约为操作温度时.配台温度指示和加热指示灯.再逐渐将温控旋钮调至台适位置3.1.2 分步递进定位法将温控旋钮朝升温方向转动一个角度.升温开始.指示灯亮:当温度基本稳定时再同向转动温控旋钮.开始继续升温:如此递进调节、直至恒温在工作温度上. 调池平衡调池平衡实际是调热导电桥平衡.使之有较为台适的输出讲调节技巧.其实是对具有池平衡、调零和记录调零等第一步.用池平衡或调零旋钮将记录仪指针调至台适位置;第二步.自衰减至l6倍左右.观察记录仪指针移动情况;第三步.用记录谓零旋钮将记录仪指针调回原处;第四步.退回衰减.观察记录仪指针移动情况;第五步.用调零或池平衡旋钮将记录仪指针调回原处点火氢焰气相色谱仪开机时需要点火.有时因各种原因致使熄火后.也需要点火然而.我们经常会遇到点火不着的情况下面介绍两种点火技巧.供同行们相试3.3.1 加大氢气流量法先加大氢气流量.点着火后.再缓慢调回工作状况此法通用3.3.2 减少尾吹气流量法先减少尾吹气流量.点着火后.再调回工作状况此法适用于用氢气怍载气.用空气作助燃气和尾畋气情况气比的调节氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火;本着上述原则气比应按下法调节:1氮气流量的调节在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止2氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再将氢气流量上调少许;进样技术在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象3.5.1 进样量进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确1排除注射器里所有的空气用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点;还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉;2保证进样量的准确用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走3.5.2 进样方法双手章注射器用一只手通常是左手把针插入垫片.洼射大体积样品即气体样品或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出用右手的大拇指让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽出针尖继续压住柱塞3.5.3 进样时间进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟;。
气相色谱仪操作

样品类型
高
低 痕量
进样方法选择
热稳定性
分离时的沸点
热稳定 热不稳定
`
热稳定 热不稳定
高沸点 低沸点 高沸点 低沸点 高沸点 低沸点 高沸点 低沸点
使用方法
PTV分流进样 分流
PTV或住上上样 PTV或住上上样
不分流/PTV 不分流
柱上不分流PTV 柱上或不分流PTV
大体积不分流进样
进样系统
进样器
后检测器选择【未指定】
开机
参数设置
联机操作 脱机操作
关机
`
柱温箱勾选【打开】最高温度未色谱柱最高耐受维度,平衡时间为每个方
法前温度稳定的时间,一般为1分钟。
开机
参数设置
联机操作 脱机操作
关机
`
主要使用后检测器,前检测器只勾选【尾吹气】和【节点流量】和【电位
ቤተ መጻሕፍቲ ባይዱ计】
开机
参数设置
联机操作 脱机操作
关机
一 日は 短い 単位 の一 生、一 生は 长い 単位 の一 日だ 。
壹 仪器原理
贰 仪器组成
`
叁 仪器使用
肆 仪器维护
CONTENES
第 壹 章
PART.1
仪器原理
Principle of experiment
原理
色谱法是种分离方法,它利用物质在两相中分配系数的微小
`
差异进行分离。当两相做相对移动时,使被测物质在两相之间
[Start] :手动开始运行,当
使用自动进样器 或气体进样
阀时,运行自动被激活, 不
许按此键。
[Stop] :手动提前停止运行
开机
键盘操作
联机操作 脱机操作
气相色谱仪的基本原理与结构

气相色谱仪的基本原理与结构一、气相色谱仪的基本原理:色谱法,又称色谱法或色谱法,是一种利用物质的溶解性和吸附性的物理化学分离方法。
分离原理是基于流动相和固定相混合物中各组分功能的差异。
以气体作为流动相的色谱法称为气相色谱法(Gas Chromatography,简称GC),气相色谱是机械化程度很高的色谱方法,广泛应用于小分子量复杂组分物质的定量分析。
流动相:携带样品通过整个系统的流体,也称为载气。
固定相:色谱柱中的固定相、载体、固定液和填料。
二、气相色谱仪的组成:气相色谱仪主要由气路系统、采样系统、分离系统、检测及温控系统和记录系统组成。
图1. 气相色谱仪结构简图1. 气相色谱仪的气路系统气相色谱仪的气路系统包括气源、净化干燥管和载气流速控制装置,是一个载气连续运行的密闭管路系统,通过气相色谱仪的气路系统获得纯净、流速稳定的载气。
气相色谱仪的气路系统气密性、流量监测的准确性及载气流速的稳定性都是影响气相色谱仪性能的重要因素。
气相色谱仪中常用的载气有氢气、氮气和氩气,纯度要求99.999%以上,化学惰性好,不与待测组分反应。
载气的选择除了要求考虑待测组分的分离效果之外,还要考虑待测组分在不同载气条件下的检测器灵敏度。
2. 气相色谱仪的进样系统气相色谱仪的进样系统主要包括进样器和气化室两部分。
(1)注射器:根据待测组分的不同相态,采用不同的注射器。
通常,液体样品用平头微量进样器进样,如图2所示。
气体样品通常通过旋转六通阀或色谱仪提供的吸头微量进样器注入,如图2所示。
图2. 气体、液体进样器固体试样一般先溶解于适当试剂中,然后用微量注射器以液体方式进样。
(2)气化室:气化室一般由一根不锈钢管制成,管外绕有加热丝,作用是将液体试样瞬间完全气化为蒸气。
气化室热容量要足够大,且无催化效应,以确保样品在气化室中瞬间气化且不分解。
3. 气相色谱仪的分离系统气相色谱仪的分离系统是气相色谱仪的核心部分,作用是将待测样品中的各个组分进行分离。
气相质谱仪原理及用途

气相质谱仪原理及用途气相质谱仪是一种广泛应用于化学、生物学和环境科学等领域的分析仪器。
它可以将复杂物质分解成单一的分子,进而得出每种分子的相对分子质量、结构和含量。
本文将介绍气相质谱仪的原理、结构和应用。
一、气相质谱仪的原理气相质谱仪将化合物分离和分析分为两个步骤,即气相色谱分离(Gas Chromatography,GC)和质谱分析(Mass Spectrometry,MS),分别分析溶液中的各种成分。
GC分离将混合物中的各种成分分开,并送入MS设备进行分析。
1.气相色谱分离(GC)GC是一种物理分离技术,它基于各成分在某一固定温度下在固定相中的不同分配行为,将混合物中各种化合物物质分离开来。
GC通常使用毛细管柱,将混合物注入进来,各种成分在柱中沿着固定相的不同速度进行分离。
GC分离的准确性和效率取决于柱的性能、温度和其它硬件参数。
2.质谱分析(MS)在GC未被完全分离的基础上,由相对流的不同物质逐一进入,被质量分析仪所脱离带电,产生各种质谱峰,质谱仪将这些质谱峰的相对质量测量出来,进而推断出样品中的各种成分。
质谱分析的准确性和效率取决于其质谱仪的性能和相关软件的性能。
二、气相质谱仪的结构气相质谱仪包含样品供应和处理装置、气相色谱分离装置、质谱分析装置、检测器和控制系统等五个主要组成部分。
1.样品供应和处理装置样品供应和处理装置通常由进样器和样品前处理模块组成。
进样器是将样品导入GC列之前的一个模块,因此它非常重要。
目前普遍使用的进样器有针式、热蒸汽及液体动态头式等。
样品前处理模块是对样品进行前处理的设备,旨在分离、浓缩和良好的制备样品液体带有针的GC进样。
样品前处理程序往往包括减压器、浓缩器、气化器、分离器、冷却器等。
2.气相色谱分离装置气相色谱分离装置是将混合物分离成各组分的主要手段。
主要包括样品注入口、色谱柱和梯度温控系统,其中色谱柱是最为重要的部分。
色谱柱的选择应明确所需分析度的大小,例:分析度只需要较粗略时可选择通用柱(5%-10%);而分析度较高时(1%-5%)需要选择高效柱。
气相色谱仪工作原理(精)

系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。
储液器中的流动相被高压泵打入系统, 样品溶液经进样器进入流动相, 被流动相载入色谱柱(固定相内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附-解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪, 数据以图谱形式打印出来高效液相色谱仪主要有进样系统、输液系统、.分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。
1.进样系统液相色谱仪一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。
这对提高分析样品的重复性是有益的。
2.输液系统该系统包括高压泵、流动相贮存器和梯度仪三部分。
高压泵的一般压强为l .47~4.4X107Pa ,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。
流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH 值,或改用竞争性抑制剂或变性剂等。
这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。
3.分离系统该系统包括色谱柱、连接管和恒温器等。
色谱柱一般长度为10~50cm (需要两根连用时,可在二者之间加一连接管),内径为2~5mm ,由" 优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm 粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000? )和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。
气相色谱仪工作原理(精)

系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。
储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来高效液相色谱仪主要有进样系统、输液系统、.分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。
1进样系统液相色谱仪一般采用隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。
这对提高分析样品的重复性是有益的。
2 .输液系统该系统包括高压泵、流动相贮存器和梯度仪三部分。
高压泵的一般压强为l . 47〜4. 4X107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。
流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性抑制剂或变性剂等。
这就可使各种物质(即使仅有一个基团的差别或是同分异构体)都能获得有效分离。
3.分离系统该系统包括色谱柱、连接管和恒温器等。
色谱柱一般长度为10〜50cm (需要两根连用时,可在二者之间加一连接管),内径为2〜5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5〜10卩m粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。
气相色谱仪原理及操作步骤

气相色谱仪原理及操作步骤
一、气相色谱仪的原理
用色谱柱先将混合物分离,然后利用检测器依次检测已分离出来的组分。
色谱柱的分离原理在于惯用的具有吸附性的色谱柱填料,使得混合物中各组分在色谱柱中的两相间进行分配。
由于各组分的吸附能力不同,因此各组分在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器上描绘出各组分的色谱峰。
二、气相色谱仪的操作步骤如下:
1. 准备工作:检查仪器安全阀是否处于开启状态,确认分析柱安装正确,温度设定在操作手册规定的温度范围内,并检查各部份是否连接完好。
2. 样品溶解:将样品加入溶剂中,采用高速搅拌混匀,以确保样品完全溶解,得到浓缩的溶液。
3. 溶液导入:将溶液加入检测器中,控制流量大小,确保流量的稳定性。
4. 调零:使用空白样品进行调零,确保实验数据准确性。
5. 开始实验:按照实验要求逐次放入样品,并监测色谱图及色谱曲线。
6. 记录数据:记录实验数据,包括色谱图及色谱曲线。
7. 清理仪器:关闭安全阀,拆卸分析柱,清理仪器,确保下次实验的正确进行。
气相色谱仪原理(图文详细讲解)

气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术。
它被用来对样品组分进行鉴定和定量测定:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的。
污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。
见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发。
用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流。
因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行。
气相色谱仪图解

气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术。
它被用来对样品组分进行鉴定和定量测定》:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的。
污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。
见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发。
用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流。
因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行。
气相色谱分析法—气相色谱仪(食品仪器分析课件)

色谱仪的分离系统是安装在柱箱内的色谱柱。色 谱柱的入口与气化室相连,其出口连在检测器上,用 于分离样品,是色谱仪的核心部分。
色谱柱的安置
色谱柱主要有填充柱和毛细管柱两类。 一、填充柱
填充柱由不锈钢或玻璃材料制成,内装固定相,一般内径为 3~4mm,长1~10m。形状有U形和螺旋形两种,常用的是螺旋形的 。填充柱制备简单,可供选择的固定相种类多,柱容量大,分离效 能也足够高,应用很广泛。
净化干燥器
三、稳压、恒流装置 高压钢瓶气需经过减压后才能使用。载气的流速是影响色谱分
离和定性分析的重要参数之一,因此其流速必须稳定。载气流速由 稳压阀或稳流阀调节控制。稳压阀的作用是通过改变输出气压来调 节气体流量的大小,并稳定输出气压。在恒温色谱分析中,当操作 条件不变时,整个系统阻力不变,单独使用稳压阀便可使色谱柱入 口压力稳定,从而保持稳定的流速。但在程序升温色谱分析中,由 于柱内阻力随温度升高而不断增加,载气的流量逐渐减少,因此需 要在稳压阀后连接一个稳流阀,以保持恒定的流量。
一、气相色谱仪基本结构
气相色谱仪结构示意图
二、气相色谱仪的流程
在气相色谱分析中,由载气系统的高压钢瓶(或气体发生器) 提供的流动相气体即载气(如H2、He、N2及Ar等),经减压阀减压、 稳压,净化器净化、干燥,稳压阀或稳流阀精确调节其压力后,以 稳定的压力和流量连续流经进样系统的样品气化室,将从进样口注 入的气体样品(或在气化室瞬间气化的液体试样蒸气),运载进入 色谱柱进行分离。
二、毛细管柱 毛细管柱又叫空心柱,最常用的是石英毛细管柱。普通毛细管
柱的内径一般为0.32mm,大口径毛细管柱内径为0.53mm。毛细管 柱渗透性好,传质阻力小,柱长可长达几十米,甚至几百米。毛细 管柱分辨率高(理论塔板数可达1.0×106),分析速度快,样品用 量小。但柱容量小,对检测器的灵敏度要求高。
气相色谱仪组成及详细结构

气相色谱仪组成及详细结构了解结构的目的:(三个有利于)1,有利于对色谱理论的把握和理解2,有利于更好地使用和操作仪器3,有利于仪器的修理和维护一,仪器组成(通过分析样品的一个完整流程=)整体结构1气路系统载气和检测器所用气体的气源(N2,H2,HE2,AIR等)及气流控制装置,压力表,针型阀,稳流阀,电磁阀,电子流量计2进样系统自动进样器,进样阀,各种进样口(填,毛,冷柱上,程升进样口,顶空进样口)吹扫—捕集,裂解等辅助进样装置。
作用:有效地将样品导入色谱柱进行分离。
3柱系统柱加热,色谱柱,进样口和检测器的接头。
色谱柱本身的性能是分离成败的关键,是仪器的心脏。
柱子断了进行连接就好比心脏搭桥手术。
4,检测系统TCD,FID,NPD,FPD,ECD,MSD(质谱检测器),ACD(原子发射光谱检测器)5,控制系统主要是检测器,进样器和柱温的控制,检测信号的控制等。
6,数据处理系统,对色谱仪的原始信号进行检测画出色谱图,并获得相应的定性定量数据。
二,气路系统1,气源{钢瓶或气体发生器A:载气与N2和H2的区别?H2既做燃气又可做载气,做载气同时做燃气。
(马是白马,白马非马)B分子筛的活化:置于坩埚放入马弗炉内,加热400-600摄氏度,活化4-6小时,待凉即装入净化器内。
C硅胶的活化:140摄氏度2小时烘箱变蓝2,气路控制系统A气路流程图,以FID为例,N2,H2,AIR的全过程。
N2,钢瓶---减压阀压力表---稳压阀---稳流阀---转子流量计---汽化室---色谱柱---检测室---放空H2, 钢瓶---减压阀压力表---稳压阀---稳流阀---检测室---放空AIR, 钢瓶---减压阀压力表---稳压阀---稳流阀---检测室---放空3,检漏重要性?防爆炸防漏气防不出峰等等A用的材料,肥皂水洗洁精异丙醇+水=1:1 B方法,分段查每一接口4,EPC系统电子压力传感器和电子流量控制器优点:A流量控制准确,重现性好B 可实现载气的多模式操作,恒流恒压压力编程等C仪器体积小D自动化程度高E更省气F操作更安全G分析结果更可靠因价格高国内目前较少采用三,进样系统(汽化室)总的要求:A热容量较大B死体积较小C不使样品分解一)进样口结构及技术指标1,温度范围350—420摄氏度(柱子温度一般不超过400摄氏度)流量0—200ML/MIN 散热帽导向垫玻璃内衬管柱接头柱子五同心2,死体积内衬管的空间0.2—1微升,死体积应足够小,以保证进入色谱柱的初始谱带尽可能窄,从而减少柱外效应;但体积太小又会因样品汽化后体积膨胀而引起压力剧烈变动,严重时会造成样品的“倒灌”,反而增大了柱外效应。
气相色谱仪原理结构及操作

气相色谱仪原理结构及操作气相色谱(Gas Chromatography,GC)是一种常用的分离和分析技术,通过样品在气相载体中的分配和传递过程,实现对不同物质成分的分离、鉴定和定量分析。
气相色谱仪是实现气相色谱分析的主要设备,其基本原理、结构和操作步骤如下:一、气相色谱仪的原理:气相色谱仪的基本原理是通过气相载体(通常为气体或液体)将待分析物质从进样口注入色谱柱中,样品在色谱柱中沿着固定相或液相产生分配、传递和吸附等过程,不同成分在固定相中的速率不同,从而实现分离,然后再通过检测器检测到各个分离出的组分并进行定量分析。
二、气相色谱仪的结构:1.进样系统:包括进样口和进样装置,用于将样品引入到色谱柱中。
常用的进样方式有气体进样、液体进样、固体进样等。
2.色谱柱:色谱柱是气相色谱的核心组件,通常由玻璃管或不锈钢管制成。
内部涂有固定相(固态色谱柱)或固定液相(毛细管色谱柱)用于分离样品组分。
3.载气系统:用于将气相载体送入色谱柱中,常用的载气有惰性气体(如氦气、氮气)。
4.柱温控制系统:用于控制色谱柱的温度,以影响分离效果。
柱温的选择要根据样品的性质和分离效果进行调整。
5.检测器:用于检测样品中的组分并产生电信号。
常见的检测方法有热导检测器(TCD)、火焰光度检测器(FID)、质谱检测器(MS)等。
三、气相色谱仪的操作步骤:1.打开气相色谱仪电源,启动冷却系统,使柱温控制系统达到设定温度。
2.准备样品:根据实验需要,选择恰当的样品,将其制备成适当的溶液或气态样品。
3.进样准备:根据样品的性质和进样方式,选择适当的进样方式,如气体进样、液体进样等。
进样量要根据色谱柱和样品的性质进行调整。
4.样品进样:将样品引入进样装置中,通过控制进样阀门或推进准备好的样品进样器,使样品进入色谱柱中。
5.色谱分离:根据实验需要,设定合适的色谱柱温度、载气流速等条件,使样品在色谱柱中进行有效分离。
6.检测和记录:根据需要,选择合适的检测器进行检测,并将检测到的信号记录下来。
气相色谱仪原理结构及操作

气相色谱仪原理结构及操作1.原理:气相色谱仪的原理是将待测物质通过进样装置注入色谱柱,然后将载气(通常是惰性气体,如氮气或氦气)通过色谱柱,通过与固定相互作用,不同化学物质在固定相中的作用力不同,从而实现了分离。
通过在柱包中设置检测器,可以检测到不同组分在不同时间通过柱的强度差异,进而定性和定量分析物质。
2.结构:(1)进样系统:进样系统主要包括进样口、进样装置和进样回收器。
进样口将待测样品引入进样装置中,进样装置通常有液体进样口和气相进样口两种形式,用以将待测样品转化为气态混合物并注入色谱柱。
(2)分离柱:分离柱是气相色谱仪最重要的组成部分,它实现了样品中化学物质的分离。
分离柱一般采用玻璃制成,内壁经过特殊处理,如涂覆涂层、填充柱或开放管等形式,从而增加柱与样品之间的相互作用。
常用的分离柱有毛细管柱和填料柱两种。
(3)检测系统:检测系统用于检测化学物质的分离情况,常用的检测系统有热导检测器、火焰离子化检测器(FID)、化学离子化检测器(CID)等。
它们根据化学物质的性质和特点选择不同的检测器进行分析。
3.操作:(1)准备工作:保证仪器干净,检查色谱柱是否在正常工作状态下,检查气源气压是否正常,对色谱柱进行恒温,准备好待测样品溶液。
(2)进样:根据样品的性质选择适当的进样方式,液相进样通常采用注射器,气相进样则经过气相进样口将气态样品引入色谱柱。
(3)分离:开启气路,设定所需的气体流速和温度梯度。
载气通过色谱柱时,不同组分在固定相上的作用力不同,从而在色谱柱中发生分离。
(4)检测:将色谱柱后的气相混合物进一步检测,根据不同的检测器可以检测到不同化学物质的信号,一般会记录下峰高度或面积以及相对保留时间。
(5)数据分析:将检测到的信号通过数据处理软件进行分析,根据峰高度或面积以及相对保留时间可以进行定性和定量分析。
气相色谱仪结构及其原理

分流示意图
3.色谱柱
茨维特的经典实验:
茨维特的经典实验是使用一根填充白色菊粉的玻璃柱管来分离植物叶的石 油醚提取液,实现了不同色素的分离。操作时将植物叶的石油醚提取液倒入菊 粉柱中,提取液中色素被吸附在顶端,然后用纯净的石油醚不断冲洗,与此同 时可观察到柱管从上到下形成绿、黄、黄三个色带。再继续用石油醚冲洗,就 可分别得到各个色带的洗脱液。
点火时,FID检测器温度务必在120℃以上。点火困难时,适当增大氢气流速, 减小空气流速,点着后再调回原来的比例。检测器温度要高于柱温20~50℃, 防水冷凝。
进样隔垫定期更换,定期清洗衬管。
分析样品前需老化色谱柱,走平基线后分析样品。
ቤተ መጻሕፍቲ ባይዱ
工作过程:
来自色谱柱的有机物与 H2-Air混合并燃烧,产生 电子和离子碎片,这些 带电粒子在火焰和收集 极间的电场作用下(几 百伏)形成电流,经放 大后测量电流信号(1012 A)。
A区:预热区 B层:点燃火焰 C层:热裂解区:温度最高 D层:反应区
具体描述如下:
氢气由喷嘴加入,与空气混合点火燃烧,形成氢火焰。极化极和收集极
形成的微电流经高电阻,在其两端产生电压降,经微电流放大器放大后从输
出衰减器中取出信号,在记录仪中记录下来即为基流,或称本底电流、背景
电流。只要载气流速、柱温等条件不变,基流亦不变。无样品时两极间离子
很少,基流不变;当载气+组分进入火焰时,在氢火焰作用下电离生成许多正、
负离子和电子,使电路中形成的微电流显著增大。即组分的信号,离子流经
由茨维特的经典实验可以看到色谱分析是一种物理的分离方法,其原理是 将分离的组分在两相间进行分布,其中一相是具有大比表面积的固定相菊粉, 另一相是推动被分离组分流过固定相的惰性流体石油醚,叫流动相。当流动相 载带被分离的组分经过固定相时,利用固定相与被分离的各组分产生的吸附( 或)分配作用的差别,被分离的各组分在固定相中的滞留时间不同,使不同的 组分按一定的先后顺序从固定相中被流动相洗脱出来,从而实现不同组分的分 离。
简述气相色谱仪的原理组成及应用

简述气象色谱仪的原理组成及应用气相色谱分析于1952 年出现,经过50 年的发展已成为重要的近代分析手段之一,由于它具有分离效能高,分析速度快,定量结果准,易于自动化等特点;且当其与质谱,计算机结合进行色-质联用分析时,又能对复杂的多组分混合物进行定性和定量分析。
首先我们对气象色谱仪进行探讨:1 气象色谱流程与分离原理气象色谱仪分离的原理:分离原理是气体流动相携带混合物流过色谱柱中的固定相,混合物与固定相发生作用,并在两相间分配。
由于各组分在性质和结构上的差异,发生作用的大小、强弱也有差异,因此不同组分在固定相中滞留时间有长有短,从而按先后不同的次序从固定相中流出,从而达到各组分分离的目的。
气象色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。
可用流程方框图表示,如下图:2 气象色谱仪的基本组成和核心部分2.1气路控制系统主要作用是为了保证进样系统、色谱柱系统和检测器的正常工作提供稳定的载气和有关检测器必须的燃气、助燃气以及辅助气体,气路控制系统的好坏将直接影响仪器的分离效率、灵敏度和稳定性,从而将直接影响定性定量的准确性。
气路控制系统主要由开关阀、稳定阀、针型阀、压力表、电子流量计等部件组成。
2.3 色谱柱和柱箱色谱柱的作用就是分离混合物样品中的有关组分。
是色谱分析的关键部分,主要有填充柱和毛细柱两大类。
色谱柱选用的正确与否,将直接影响分离的效率、稳定性和检测灵敏度。
柱箱就是装接和容纳各种色谱柱的精密控温的炉箱,是色谱仪的重要组成部分之一,柱箱结构设计的合理与否,将直接影响整体性能。
2.4 检测器检测器是气象色谱仪的心脏部分,它的功能就是把随载气流出色谱柱的各种组分进行非电量转换,将组分转变为电信号,便于记录测量的处理。
检测器的性能直接影响整机仪器的性能,主要影响稳定性和灵敏度,检测器的性能也决定了该仪器的应用范围。
一般色谱仪的检测器都有热导检测器和氢焰检测器:A 热导检测器的原理:气体具有热导作用,不同物质具有不同的热导系数,热导检测器就是根据不同物质热导系数的差别而设计的,它对有机、无机样品均匀响应,而不破坏样品,可用于常量分析。
气相色谱原理和分析方法图解

或含有矿物杂质,如氧化铝、铁等,使色谱峰产生拖尾。 因此,使用前要进行化学处理,以改进孔隙结构,屏蔽活性中 心。处理方法有酸洗、碱洗、硅烷化及添加减尾剂等。
(i)酸洗 酸洗:用3--6mol·cm-3 盐酸浸煮载体、过滤, 酸洗 水洗至中性。甲醇淋洗,脱水烘干。可除去无机 盐,Fe,Al等金属氧化物。适用于分析酸性物质。 (ii)碱洗 碱洗:用5%或10%NaOH的甲醇溶液回流或浸 碱洗 泡,然后用水、甲醇洗至中性,除去氧化铝,用 于分析碱性物质。 (iii)硅烷化 硅烷化:用硅烷化试剂与载体表面硅醇基反应, 硅烷化 使生成硅烷醚,以除去表面氢键作用力。如:
保留指数
人为规定正构烧烃的保留指数为其碳数乘100,如正己 人为规定正构烧烃的保留指数为其碳数乘100,如正己 烷和正辛烷的保留指数分别为600和80O。至于其他物质 烷和正辛烷的保留指数分别为600和80O。至于其他物质 的保留指数,则可采用两个相邻正构烷烃保留指数进行标 定。测定时,将碳数为n n+1的正构烷烃加于样品x 定。测定时,将碳数为n和n+1的正构烷烃加于样品x中进 行分析,若测得它们的调整保留时间分别为t 行分析,若测得它们的调整保留时间分别为tr′(Cn),tr′ ),t (Cn+1;)和tr′(x)且tr′(Cn)<tr′(x)<tr(Cn+1)时, ;)和tr′ )且t )<t )<t 则组分X 则组分X的保留指数可按下式计算,即
这种分子间作用力是一种较弱的分子间的 吸引力,它不像分子内的化学键那么强。它包 括有定向力、诱导力、色散力和氢键作用力4 种。前三种统称范德华力,都是由电场作用而 引起的。而氢键力则与它们有所不同,是一种 特殊的范德华力。此外,固定液与被分离组分 间还可能存在形成化合物或配合物等的键合力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气相色谱仪原理、结构及操作1、基本原理气相色谱(GC )是一种分离技术。
实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。
混合物的分离是基于组分的物理化学性质的差异,GC 主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。
待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He 等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。
但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。
当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。
在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。
2、气相色谱结构及维护2.1 进样隔垫进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。
正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”(即不是样品本身的峰),从而影响分析。
解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫。
一般更换进样隔垫的周期以下面三个条件为准:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差;(3)手动进样次数70次,或自动进样次数50次以后。
2.2 玻璃衬管气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型。
衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱。
如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响。
比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换。
玻璃衬管清洗的原则和方法当以下现象:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗。
清洗的方法和步骤如下:(1)拆下玻璃衬管;(2)取出石英玻璃棉;(3)用浸过溶剂(比如丙酮)的纱布清洗衬管内壁。
玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg ,高度5~10mm 。
要求填充均匀、平整。
2.3 气体过滤器变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次。
由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了。
再生的方法是:(1)卸下过滤器,反方向连接于原色谱柱位置。
(2)再生条件:载气流速40~50ml/min,温度340℃,时间5h 。
2.4 检测器如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛。
无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果。
因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术。
目前,GC 所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器(FID )、火焰热离子检测器(FTD )、火焰光度检测器(FPD )、热导检测器(TCD )、电子俘获检测器(ECD )等。
下面对检测器的日常维护作简单讨论:2.4.1火焰离子化检测器(FID )(1) FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O 、NH3、CO 、CO2、CS2、CCl4,等等。
所以检测这些物质时不应使用FID 。
(2)FID 的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1。
(3)FID 是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题。
在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱。
测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然。
无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门。
(4)为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度。
检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火。
消除污染的办法是对喷嘴和气路管道的清洗。
具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡。
2.4.2 火焰热离子检测器(FTD )FTD 使用注意事项:(1)铷珠:避免样品中带水,使用寿命大约600~700h ;(2)载气:N2或He ,要求纯度99.999%。
一般He 的灵敏度高;(3)空气:最好是选钢瓶空气,无油;(4)氢气:要求纯度99.999%。
另外需要注意的是使用FTD 时,不能使用含氰基固定液的色谱柱,比如OV-1701。
2.4.3火焰光度检测器(FPD )FPD 使用注意事项:(1) FPD也是使用氢火焰,故安全问题与FID 相同;(2)顶部温度开关常开(250℃);(3) FPD的氢气、空气和尾吹气流量与FID 不同,一般氢气为60~80ml/min,空气为 100~120ml/min,而尾吹气和柱流量之和为20~25ml/min。
分析强吸附性样品如农药等,中部温度应高于底部温度约20℃;(4)更换滤光片或点火时,应先关闭光电倍增管电源;(5)火焰检测器,包括FID 、FPD ,必须在温度升高后再点火;关闭时,应先熄火再降温。
2.4.4热导检测器(TCD )TCD 使用注意事项:(1)确保热丝不被烧断。
在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝就可能被烧断,致使检测器报废;关机时一定要先关检测器电源,然后关载气。
任何时候进行有可能切断通过TCD 的载气流量的操作,都要关闭检测器电源;(2)载气中含有氧气时,热丝寿命会缩短,所以载气中必须彻底除氧;(3)用氢气作载气时,气体排至室外;(4)基线漂移大时,要考虑以下几个问题:双柱是否相同,双柱气体流速是否相同;是否漏气;更换色谱柱至检测器的石墨垫圈。
池体污染;清洗措施:正己烷浸泡冲洗。
2.4.5 电子俘获检测器(ECD )ECD 使用注意事项:(1)气路安装气体过滤器和氧气捕集器;氧气捕集器再生:(2)使用填充柱时也需供给尾吹气(2~3ml/min);(3)操作温度为250~350℃。
无论色谱柱温度多么低,ECD 的温度均不应低于250℃,否则检测器很难平衡。
(4)关闭载气和尾吹气后,用堵头封住ECD 出口,避免空气进入。
3、基本操作3.1 加热由于气相色谱仪的生产厂家和质量的不同.测定温度的方式也不相同对于用微机设数法或拨轮选择法给定温度.一般是直接设数或选择合适给定温度值加以升温.而如果是采用旋钮定位法.则有技巧可言3.1.1过温定位法将温控旋钮调至低于操作温度约30℃处给气相色谱仪升温当过温至约为操作温度时.配台温度指示和加热指示灯.再逐渐将温控旋钮调至台适位置3.1.2 分步递进定位法将温控旋钮朝升温方向转动一个角度.升温开始.指示灯亮:当温度基本稳定时再同向转动温控旋钮.开始继续升温:如此递进调节、直至恒温在工作温度上.3.2 调池平衡调池平衡实际是调热导电桥平衡.使之有较为台适的输出讲调节技巧.其实是对具有池平衡、调零和记录调零等第一步.用池平衡或调零旋钮将记录仪指针调至台适位置;第二步.自衰减至l6倍左右.观察记录仪指针移动情况;第三步.用记录谓零旋钮将记录仪指针调回原处;第四步.退回衰减.观察记录仪指针移动情况;第五步.用调零或池平衡旋钮将记录仪指针调回原处3.3 点火氢焰气相色谱仪开机时需要点火.有时因各种原因致使熄火后.也需要点火然而.我们经常会遇到点火不着的情况下面介绍两种点火技巧.供同行们相试3.3.1 加大氢气流量法先加大氢气流量.点着火后.再缓慢调回工作状况此法通用3.3.2 减少尾吹气流量法先减少尾吹气流量.点着火后.再调回工作状况此法适用于用氢气怍载气.用空气作助燃气和尾畋气情况3.4 气比的调节氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l :l :10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢? 本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火。
本着上述原则气比应按下法调节:(1)氮气流量的调节在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止(2氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气? 的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再将氢气流量上调少许。
3.5 进样技术在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象3.5.1 进样量进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确(1 排除注射器里所有的空气用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点。
还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉。
(2 保证进样量的准确用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走3.5.2 进样方法双手章注射器用一只手(通常是左手把针插入垫片.洼射大体积样品(即气体样品或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出(用右手的大拇指让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽出针尖(继续压住柱塞3.5.3 进样时间进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟。