气相色谱仪原理及构造PPT课件
气相色谱仪原理及应用课件
气相色谱仪用于检测水体中的有机污染物、农药残留和有害物质,保障水质安全 。
在科学研究领域的应用
生物样品分析
气相色谱仪用于分析生物体内的代谢产物和药物代谢物,研 究生物代谢过程和药物作用机制。
新材料成分分析
气相色谱仪用于分析新材料中的化合物组成和结构,促进新 材料的研究和开发。
THANKS FOR WATCHING
定期老化
新购置的色谱柱应进行老化处理,以优化性能和延长使用寿命。
清洗与再生
根据需要清洗和再生色谱柱,以去除残留物和恢复性能。
05 气相色谱仪的应用领域
在石油和化工领域的应用
石油分析
气相色谱仪用于分析石油中的烃类化 合物,如烷烃、芳烃和环烷烃,以及 硫、氮、氧等非烃类化合物。
化工原料分析
气相色谱仪用于检测化工生产过程中 的原料、中间产物和最终产品的成分 ,控制产品质量和生产过程。
化学方法
结合其他化学分析方法,如质 谱、红外光谱等,对未知样品
中的物质进行定性分析。
定量分析方法
外标法
使用已知浓度的标准品绘制标准曲线,根据未知样品色谱图中各组分 的峰面积或峰高,在标准曲线上查找对应的浓度。
内标法
在未知样品中加入一定量的内标物,利用内标物和待测组分的峰面积 或峰高之比,计算待测组分的浓度。
气相色谱仪原理及应用课件
目录
• 气相色谱仪基本原理 • 气相色谱仪的组成及部件 • 气相色谱仪的操作及应用 • 气相色谱仪的维护与保养 • 气相色谱仪的应用领域
01 气相色谱仪基本原理
色谱法原理
1 2 3
分离原理
色谱法是一种物理分离技术,通过不同物质在固 定相和流动相之间的分配平衡实现分离。
气相色谱仪的基本原理与结构
气相色谱仪的基本原理与结构一、气相色谱仪的基本原理:色谱法,又称色谱法或色谱法,是一种利用物质的溶解性和吸附性的物理化学分离方法。
分离原理是基于流动相和固定相混合物中各组分功能的差异。
以气体作为流动相的色谱法称为气相色谱法(Gas Chromatography,简称GC),气相色谱是机械化程度很高的色谱方法,广泛应用于小分子量复杂组分物质的定量分析。
流动相:携带样品通过整个系统的流体,也称为载气。
固定相:色谱柱中的固定相、载体、固定液和填料。
二、气相色谱仪的组成:气相色谱仪主要由气路系统、采样系统、分离系统、检测及温控系统和记录系统组成。
图1. 气相色谱仪结构简图1. 气相色谱仪的气路系统气相色谱仪的气路系统包括气源、净化干燥管和载气流速控制装置,是一个载气连续运行的密闭管路系统,通过气相色谱仪的气路系统获得纯净、流速稳定的载气。
气相色谱仪的气路系统气密性、流量监测的准确性及载气流速的稳定性都是影响气相色谱仪性能的重要因素。
气相色谱仪中常用的载气有氢气、氮气和氩气,纯度要求99.999%以上,化学惰性好,不与待测组分反应。
载气的选择除了要求考虑待测组分的分离效果之外,还要考虑待测组分在不同载气条件下的检测器灵敏度。
2. 气相色谱仪的进样系统气相色谱仪的进样系统主要包括进样器和气化室两部分。
(1)注射器:根据待测组分的不同相态,采用不同的注射器。
通常,液体样品用平头微量进样器进样,如图2所示。
气体样品通常通过旋转六通阀或色谱仪提供的吸头微量进样器注入,如图2所示。
图2. 气体、液体进样器固体试样一般先溶解于适当试剂中,然后用微量注射器以液体方式进样。
(2)气化室:气化室一般由一根不锈钢管制成,管外绕有加热丝,作用是将液体试样瞬间完全气化为蒸气。
气化室热容量要足够大,且无催化效应,以确保样品在气化室中瞬间气化且不分解。
3. 气相色谱仪的分离系统气相色谱仪的分离系统是气相色谱仪的核心部分,作用是将待测样品中的各个组分进行分离。
2024版全新气相色谱基本构造ppt课件
01气相色谱概述Chapter气相色谱定义与原理气相色谱定义利用气体作为流动相,通过色谱柱将样品中的各组分分离,再经检测器检测并转换为电信号进行记录和分析的一种色谱分析方法。
分离原理基于样品中各组分在固定相和流动相之间的分配系数不同,实现各组分的分离。
检测原理通过检测器将分离后的各组分转换为与浓度成比例的电信号,进行定性和定量分析。
发展历程及现状发展历程现状应用领域与前景应用领域前景02基本构造与组成Chapter样品引入进样口设计加热与冷却系统030201进样系统分离系统色谱柱固定相与流动相柱温箱检测系统信号放大器检测器放大检测器输出的微弱信号,便于后续处理。
数据采集与处理色谱图显示以图形方式显示色谱图,便于观察和分析。
数据工作站实现数据的采集、存储、处理和分析等功能。
定性与定量分析通过比较标准品色谱图和峰面积等信息,对样品进行定性和定量分析。
数据处理系统03关键技术与参数Chapter色谱柱技术高效能色谱柱采用先进填料技术和优化柱结构,提高分离效能和峰容量。
多功能色谱柱针对不同分析需求,开发具有特殊选择性的色谱柱,如手性色谱柱、离子交换色谱柱等。
微型化色谱柱减小色谱柱尺寸,提高分析速度,降低样品消耗和溶剂成本。
检测器技术高灵敏度检测器多通道检测器智能化检测器进样技术自动化进样器01微量进样技术02在线富集技术03数据处理技术数据采集与处理软件多维数据处理技术人工智能辅助数据处理04操作流程与规范Chapter样品准备与进样样品选择样品处理进样方式进样量控制仪器启动与调试仪器检查参数设置系统调试数据采集与处理数据采集数据处理数据保存结果分析结果解释报告生成根据色谱数据和标准品信息,对样品中的目标化合物进行定性和定量分析。
结果分析与报告05常见故障与排除方法Chapter1 2 3进样针堵塞进样口泄漏进样量不准确进样故障及排除色谱柱失效色谱柱污染流动相流速不稳定检测器故障检测器灵敏度下降基线噪声大其他常见故障及排除系统漏气01色谱峰异常02数据采集故障0306维护与保养建议Chapter01020304电源和接地检查进样系统检查气路系统检查检测器状态检查日常检查与维护项目定期使用专用工具清洁进样口和检测器,去除积碳和污染物。
气相色谱仪原理(图文详解)
气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术.它被用来对样品组分进行鉴定和定量测定:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分.峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源。
它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的.污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气.见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发.用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流.因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行.因为用户可以选择不同的色谱柱.故使用一台仪器能够进行许多不同的分析。
气相色谱仪原理(图文详细讲解)
气相色谱仪原理(图文详解)什么是气相色谱本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。
气相色谱(GC)是一种把混合物分离成单个组分的实验技术。
它被用来对样品组分进行鉴定和定量测定:基子时间的差别进行分离和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。
将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。
这样,就是基于时间的差别对化合物进行分离。
样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。
峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。
图1典型色谱图系统一个气相色谱系统包括可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应某种数据处理装置图2是对此作出的一个总结。
样品载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」图2色谱系统气源载气必须是纯净的。
污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。
推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。
见图钢瓶阀若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。
进样口进样口就是将挥发后的样品引入载气流。
最常用的进样装置是注射进样口和进样阀。
注射进样口用于气体和液体样品进样。
常用来加热使液体样品蒸发。
用气体或液体注射器穿透隔垫将样品注入载气流。
其原理(非实际设计尺寸)如图4所示。
样品从机械控制的定量管被扫入载气流。
因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。
其原理(非实际设计尺寸)如图5所示。
进样阀通常与进样口连接,特别在分流进样模式时,进样阀连接到分流/不分流进样口。
色谱柱分离就在色谱柱中进行。
气相色谱分析仪原理介绍和典型应用课件
注意事项
在使用过程中,要注意观察仪器运行是否稳 定,出现异常情况要及时处理。同时,要定 期清洗进样装置和色谱柱,避免样品残留对
仪器造成污染。
气相色谱分析仪的常见故障与排除方法
要点一
常见故障
要点二
排除方法
气相色谱分析仪常见的故障包括基线漂移、噪声过大、灵 敏度下降等。此外,仪器也会出现进样装置堵塞、色谱柱 失效、检测器故障等问题。
VS
考古学研究
在考古学领域,气相色谱分析仪可用于对 古代文物、遗址中的有机物、颜料等进行 成分分析,为考古学研究提供有力支持。
04
气相色谱分析仪使用与维护
气相色谱分析仪的安装与调试
安装环境
气相色谱分析仪应安装在干燥、通风良好、 无尘、无腐蚀性气体的室内,远离强磁场和 强电场,保证室内温湿度适宜,利于仪器的 稳定运行。
气相色谱分析仪的分类与比较
根据检测器的类型,气相色谱分析仪可以分为热导池、氢火 焰离子化、电子捕获等类型。
不同类型的气相色谱分析仪具有不同的特点和应用范围。例 如,热导池检测器适用于大多数气体和有机化合物,而氢火 焰离子化检测器则更适合于含碳有机化合物的检测。
02
气相色谱分析仪工作原理
色谱柱与分离原理
联用技术
与质谱、光谱等联用技术结合, 实现多维度的信息融合,提高 鉴定的准确性和可靠性。
智能化操作
实现智能化操作,如自动进样、 自动校准和自动诊断等功能, 提高分析的准确性和可靠性。
微型化
采用微流控技术,实现分析设 备的微型化,便于携带和使用。
气相色谱分析仪在各领域的未来应用前景 Nhomakorabea01
02
03
04
环境监测
污染物源解析
气相色谱仪结构及其原理
分流示意图
3.色谱柱
茨维特的经典实验:
茨维特的经典实验是使用一根填充白色菊粉的玻璃柱管来分离植物叶的石 油醚提取液,实现了不同色素的分离。操作时将植物叶的石油醚提取液倒入菊 粉柱中,提取液中色素被吸附在顶端,然后用纯净的石油醚不断冲洗,与此同 时可观察到柱管从上到下形成绿、黄、黄三个色带。再继续用石油醚冲洗,就 可分别得到各个色带的洗脱液。
点火时,FID检测器温度务必在120℃以上。点火困难时,适当增大氢气流速, 减小空气流速,点着后再调回原来的比例。检测器温度要高于柱温20~50℃, 防水冷凝。
进样隔垫定期更换,定期清洗衬管。
分析样品前需老化色谱柱,走平基线后分析样品。
ቤተ መጻሕፍቲ ባይዱ
工作过程:
来自色谱柱的有机物与 H2-Air混合并燃烧,产生 电子和离子碎片,这些 带电粒子在火焰和收集 极间的电场作用下(几 百伏)形成电流,经放 大后测量电流信号(1012 A)。
A区:预热区 B层:点燃火焰 C层:热裂解区:温度最高 D层:反应区
具体描述如下:
氢气由喷嘴加入,与空气混合点火燃烧,形成氢火焰。极化极和收集极
形成的微电流经高电阻,在其两端产生电压降,经微电流放大器放大后从输
出衰减器中取出信号,在记录仪中记录下来即为基流,或称本底电流、背景
电流。只要载气流速、柱温等条件不变,基流亦不变。无样品时两极间离子
很少,基流不变;当载气+组分进入火焰时,在氢火焰作用下电离生成许多正、
负离子和电子,使电路中形成的微电流显著增大。即组分的信号,离子流经
由茨维特的经典实验可以看到色谱分析是一种物理的分离方法,其原理是 将分离的组分在两相间进行分布,其中一相是具有大比表面积的固定相菊粉, 另一相是推动被分离组分流过固定相的惰性流体石油醚,叫流动相。当流动相 载带被分离的组分经过固定相时,利用固定相与被分离的各组分产生的吸附( 或)分配作用的差别,被分离的各组分在固定相中的滞留时间不同,使不同的 组分按一定的先后顺序从固定相中被流动相洗脱出来,从而实现不同组分的分 离。
《气相色谱仪》课件
05 气相色谱仪的发展趋势与展望
技术创新
1 2 3
高效分离技术
通过改进色谱柱填料和优化色谱分离条件,提高 气相色谱仪的分离效率和分辨率,缩短分析时间 。
智能化控制
引入人工智能和机器学习技术,实现气相色谱仪 的自动化和智能化控制,提高分析准确性和稳定 性。
微型化与便携化
减小气相色谱仪的体积和重量,提高其便携性和 移动性,满足现场快速检测的需求。
峰形异常
可能是由于进样技术、色谱柱性能下降或检测器污染引起 的。应检查进样技术、色谱柱性能及检测器清洁情况。
灵敏度下降
可能是由于检测器污染、气体流量不稳定或电路问题引起 的。应检查检测器清洁情况、气体流量及仪器电路是否正 常。
重复性差
可能是由于进样技术不稳定、色谱柱性能下降或仪器状态 不稳定引起的。应检查进样技术、色谱柱性能及仪器状态 是否稳定。
等的分离和测定。
石油分析
用于石油和石油产品的 组分分析,如烃类、含
氧化合物等。
食品分析
用于食品中农药残留、 添加剂、风味组分等的
检测。
环保分析
用于大气、水体、土壤 等环境样品中的有害物
质分析。
02 气相色谱仪的组成
进样系统
进样阀
用于进样和定量。常用的 有旋转式六通阀和十通阀 。
进样针
用于抽取样品,要求其有 足够的精度和耐用性。
检查仪器是否正常启动,确保 仪器处于稳定状态。
开始进样
将处理后的样品注入进样口, 开始进行分析。
观察色谱图
在分析过程中,观察色谱图的 峰形、峰高、峰面积等参数, 判断分离效果和分析结果。
记录数据
记录色谱图中的各项数据,如 保留时间、峰高、峰面积等。
第2节气相色谱仪ppt课件
(6) 固定液的相对极性
规定:角鲨烷(异三十烷)的相对极性为零, β,β’—氧二丙睛的相对极性为100.
10/12/2024
固定液 名称
1、 角鲨烷 (异三十烷)
2、阿皮松 L
商品牌号 SQ
使用温度 (最高)
℃
150
溶剂 乙醚
APL
300
苯
3、硅油
OV-101 350
丙酮
4、 苯基 10%
10/12/2024
表5-1填充柱气液色谱担体一览表
种类 红色
硅 硅藻土 藻 担体 土 类
担体名称
201 红色担体 301 釉化红色担体
6201 红色担体
特点及用途
生产厂家
适用于涂渍非极性固定液分析非极性物 质 由 201 釉化而成,性能介于红色与白色 硅藻土担体之间,适用于分析中等极性 物质
上海试剂厂 大连催化剂厂
10/12/2024
三、气相色谱检测装置
色谱仪的关键部件之一,种类较多,原理和结构各异。 有的具有广普性,如热导检测器;有的具有高选择性,仅对 某类物质有高响应。
1.检测器特性
浓度型检测器: 测量的是载气中通过检测器组分浓度瞬间的变化,检测 信号值与组分的浓度成正比。 质量型检测器: 测量的是载气中某组分进入检测器的速度变化,即检测 信号值与单位时间内进入检测器组分的质量成正比。
g 适宜分析强极性物质和腐蚀性物质
10/12/2024
固定液
固定液:高沸点难挥发有机化合物,种类繁多。 (1)对固定液的要求
应对被分离试样中的各组分具有不同的溶解能力,较好 的热稳定性,并且不与被分离组分发生不可逆的化学反应。
(2)选择的基本原则
气相色谱检测器结构和原理(共72张PPT)
• 特点:
• 灵敏度高,死体积小,应答时间快,除载气外还 需引入空气和氢气,对永久性气体和水无应答。
• 适用范围:有机化合物,能直接用于毛细管色 谱分析。
• 噪音:
一瞬时通过检测器的量。例如:热导检测器、氢焰检测器、电子捕获检测器和火焰光度检 测器、热离子检测器等,此类检测器为一般色谱分析中的常用检测器。
3.按响应特性分类
⑴ 浓度型检测器 浓度型检测器测量的是载气中组分浓度瞬间的变化,也即检 测器的响应值取决于载气中组分的浓度。例如:热导检测器和电子 捕获检测器等。
式中: h--峰高,mm
Wh/2--半峰宽,mm A --峰面积,mm2
c1--记录器或数据处理机灵敏度,mV/mm
c2--纸速倒数,min/mm
F--经校正后的载气流速,mL/min m--样品质量,mg
气相色谱仪的检测器
检测器的灵敏度
2.质量型检测器灵敏度的计算
SΔ Δ m Rm/W (h h/2 1c c2)6A 0 m 1cc2
式中: h--峰高,mm
Wh/2--半峰宽,mm
A --峰面积,mm2
c1--记录器或数据处理机灵敏度,mV/mm c2--纸速倒数,min/mm m--样品质量,mg
气相色谱仪的检测器
检测器的检测限
检测器的检测限比较灵敏度而言是一个更重要的参数,它衡量了检测器对微小信号 〔由痕量组分产生〕的检测能力。因为检测器在检测时必须考虑噪声这一参数。将产生 两倍噪声信号时,单位体积的载气或单位时间内进入检测器的组分量称为检测限〔D〕。那
• 相关事宜
• ① 载气种类:实验说明,用氮气作载气比 用其他气体〔如H2、He、Ar〕作载气时的 灵敏度要高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气相色谱仪构造
1.气路系统:包括气源、气体净化、气体流速控制阀门和 压力表等; 2.进样系统:包括进样器、汽化室(将液体样品瞬间汽化 为蒸气)等; 3.分离系统:包括色谱柱和柱温控制装置(色谱柱箱)等; 4.检测系统:包括检测器,控温装置等; 5.操作系统:包括中文显示器、触摸式参数输入键盘; 6.记录系统:包括放大器、数据处理系统(色谱工作站) 等。
(R1R4≠R2R3),图3-9的AB两端产生电位差,有信号输出,且信号与组分浓度成正比。 back
氢火焰检测器(FID)
原理:
氢气由喷嘴加入,与空气混合点火燃烧,形成氢火焰。通入空气助燃。极化极和收集极通过高阻、基流补偿和50~350V的直流电源 组成检测电路,测量氢火焰中所产生的微电流。该检测电路在收集极和极化极间形成一高压静电场。H2+O2燃烧能产生2100℃高温, 使被测有机组分电离。载气(N2)本身不会被电离,只有载气中的有机杂质和流失的固定液会在氢火焰中被电离成正、负离子和电子。 在电场作用下,正离子移向收集极(正极)。负离子和电子移向极化极(负极)。形成的微电流经高电阻,在其两端产生电压降,经微电 流放大器放大后从输出衰减器中取出信号,在记录仪中记录下来即为基流,或称本底电流、背景电流。只要载气流速、柱温等条件 不变,基流亦不变。如载气纯度高,流速小,柱温低或固定相耐热度性好, 基流就低,反之就高。基流越小就越容易测到信号电流 的微小变化。通常通过调节“基流补偿”使输入电阻的基流降至零。一般进样前均要使用“基流补偿”,将记录仪上的基线调至零。 无样品时两极间离子很少,当载气加组分进入火焰时,在氢火焰作用下电离生成许多正、负离子和电子,使电路中形成的微电流显 著增大。此即组分的信号,离子流经高阻放大、记录即得色谱峰。 有机物在氢气中燃烧,被裂解产生含碳的自由基CnHm ------- CH生成的自由基,与火焰外面扩散的激发态氧反应。 CH + O* ———2CHO+ + e + ΔH 形成的CHO+与氢气燃烧产生的水蒸气相碰撞,生成H3O CHO+ + H2O ----------- H3 O+ + CO 在外电场作用下,CHO+和H3O+等正离子向负极移动,而被正极吸收,形成微电流。所产生的离子数与单位时间内进入火焰的碳原 子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数 量级,可用于痕量有机物分析。其缺点是不能检测惰性气体、空气、水、C0,CO2、NO、S02及H2S等。FID的灵敏度与氢气、空 气和氮气的比例有直接的关系,因此要注意优化。一般三者的比例接近或等于1:10:1 ,如氢气30~40ml/min ,空气
TCD使用注意事项
• 1. 确保热丝不被烧断!在检测器通电之前,一定要确保载气已经 通过了检测器,否则,热丝可能被烧断,致使检测器报废!同时, 关机时一定要先关检测器电源,然后关载气。任何时候进行有可 能切断通过TCD载气流量的操作,都要关闭检测器电源。这是 TCD操作必须遵循的规则!
• 2. 载气中含有氧气时,会使热丝寿命缩短,所以有TCD时载气 必须彻底除氧。而且不要使用聚四氟乙烯作载气输送管,因为它 会渗透氧气。
气 源 部 分
汽化室
TCD检测器
FID检测器汽化室 Nhomakorabeaback
热导池检测器(TCD)
工作原理:
热导检测器由热导池体和热敏元件组成。热敏元件是四根电阻值完全相同的金属丝(钨丝或白金丝), R1R2R3R4是阻值相等的热敏电阻作为四个臂接入惠斯顿电桥中,由恒定的电流加热。 如果热导池只有载气通过,载气从两个热敏元件带走的热量相同,四个热敏元件的温度变化是相同的, 其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样品气和载气的热 导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记 录器上就有信号产生。 也就是说当参比池(只通过纯载气)与测量池都只有一定流量的纯载气通过时,电桥平衡 (R1R4=R2R3),无信号输出(0mv,走基线),当样品组分加载气通过测量池时,此时参比池还是由纯 载气通过,由于组分与载气的导热系数不同,使热敏元件的电阻值和温度发生变化,电桥失去平衡
300~400ml/min ,氮气30~40ml/min 。另外,有些仪器设计有不同的喷嘴分别用于填充柱和毛细柱,使用时要查看说明书。 back
尾吹气的使用
尾吹气是从色谱柱出口直接进入检测器的一路气体,又叫补充气或辅助气。 填充柱不用尾吹气,而毛细管大多采用尾吹气。这是因为毛细管柱内载气流量太 低(常规为1~3ml/min),不能满足检测器的最佳操作条件(一般检测器要求 20ml/min的载气流量)。在色谱柱后增加一路载气直接进入检测器,就可保证检 测器在高灵敏度状态下工作。尾吹气的另一个重要作用是消除检测器的死体积的 柱外效应。经分离的化合物流出色谱柱后,可能由于管道体积的增大而出现体积 膨胀,导致流速缓慢,从而引起谱带展宽。加入尾吹气后就消除了这一现象。 尾吹气流量究竟多少合适呢?
• 3. 载气种类对TCD的灵敏度影响较大。原则是讲,载气与被测 物的传热系数之差越大越好,故氢气或氦气作载气时比氮气作载 气时的灵敏度高。当然,要测定氢气时就必须用氮气作载气。
这要看所用检测器和色谱柱的尺寸而定。比如,用0.53mm大口径柱时,柱内流 量可达15ml/min,这对微型TCD和单丝TCD来说已经够大了,就没有必要再加 尾吹气了。而对于FID、NPD、FPD则需要至少10ml/min的尾吹气的流量,对于 ECD就需要20ml/min的尾吹气(ECD一般需要载气总流量大于25ml/min)。使 用常规或微径柱时,尾吹气流量应相应加大。经验参考值为:FID、NPD、FPD 需要柱内载气和尾吹气的流量之和为30ml/min左右,ECD则需要40~60ml/min。 当需要在最高灵敏度状态下工作时,应针对具体样品优化尾吹气流量以及其他气 体流量。一般情况下尾吹气所用气体类型应与载气相同。