等式与不等式的区别

合集下载

初中数学-不等式、不等式组

初中数学-不等式、不等式组
由题意得: x y z 100 x 3 y x z y z x
解得:
100 100 x 7 6
又x为正整数,故x可取15或16,相应y可取45 或48,z可取40或36。
例题7:根据图中信息回答问题
A C
B A
(1)请从图中信息判断说明A、B、C的大小关系。 解:因A<C,B<A 由不等式的传递性可得:
二者的区别:不等式的解是指满足这个不等式的 未知数的某个值,而不等式的解集,是指满足 这个不等式的未知数的所有的值,不等式的所 有解组成了解集,解集中包括了第一个解。
3、不等式解集的表示
a x a
a
x a
a
b
a
b
ax b
a x b
4、不等式组的解集
ab
解 集
不等式组
x a x b
11 此不等式的解集是 x 。 5
注意在去括号时可能 会出现得符号问题。
例题2:k为何值时,关于x的方程3(x+1)=5-kx 分别有①正数解②负数解③不大于1的解。 分析:此类题关键是由题意得出不等式,进而求解。 2 解:由方程解得 x 3k
2 ①若解为正数,则 x 0 ,解得 k>-3; 3k 2 ②若解为负数,则 x 0 ,解得 k<-3; 3k 2 x 1 ③若解不大于1,则 3k
B<A<C.
(2)请从图中信息判断说明P、Q、R、S的大小关系。
解:由图中信息可得
QR
SP
Q+R=S+P ①
S >P

P S
QS PR
P+R>Q+S③ 由不等式性质1: ③-①: P-Q>Q-P,P>Q, R -S >S -R ,R >S 。

《等式的性质》

《等式的性质》

同时加
3,得到
8=10,等式仍然成
立。
即:若 a=b,则 a+c=b+c(或 ac=b-c)。
等式的乘法性质
等式两边同时乘以(或 除以) 同一个非零数,等式仍然成立 。
即:若 a=b 且 c≠0,则 ac=bc(或 a/c=b/c)。
示例:若 6=9,两边同时乘以 2,得到 12=18,等式仍然成 立。
等式与不等式在解决实际问题中的应用
等式常用于求解未知数或验证数学定理;
不等式则更常用于解决实际问题中的大小、范围、最值等问题;
举例:利用不等式求解最优化问题(如线性规划),或者通过等式和不等式联合求 解实际问题(如方程组和不等式组的综合应用)。
高级等式性质与应
04

移项与合并同类项
移项
通过移项操作,可以将等式中的某些项移到等式的另一侧, 从而简化等式或解决问题。在移项时,需要保持等式的平衡 ,即等号两边的数学表达式在移项后仍然相等。
实际问题解决
等式的基本性质在几何中也有应用,例如 证明几何定理时,可以通过构建等式并应 用等式性质进行推导。
等式的基本性质可以用于解决实际问题中 的方程问题,如距离、速度、时间之间的 关系等。
等式的运算性质
02
等式的加法性质
等式两边同时加上( 或 减去)同一个数 ,等式仍然成立。
示例:若 5=7,两边
学习等式性质的意义与价值
培养逻辑思维能力
通过学习等式的性质,我们可以培养逻辑思维能力,学会 从已知条件出发,通过逻辑推理得出未知数的解。
解决实际问题的基础
等式性质在实际问题中有广泛的应用,例如工程问题、经 济问题等。掌握等式的性质,能够帮助我们更好地解决这 些实际问题。

不等式的认识与不等式的解法

不等式的认识与不等式的解法

不等式的认识与不等式的解法不等式是数学中的一种运算关系,常用于比较两个数或表达数之间的大小关系。

和等式不同,不等式的解并非唯一,而是一个数集或区间。

本文将介绍不等式的概念、性质以及常见的解法方法。

一、不等式的概念不等式是指包含不等号(大于、小于、大于等于、小于等于)的数学表达式。

常见的不等式符号包括:大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。

例如,2x + 3 > 7 和 5y - 4 ≤ 11 就是两个常见的数学不等式。

不等式中的变量可以是实数、整数或分数,通过对变量的求解可以得到满足不等式的解集。

二、不等式的性质1.加减性质:不等式两边同时加、减一个相同的数,不等号方向不变,但要注意正负数的情况。

例如:若a > b,则a + c > b + c。

2.乘除性质:不等式两边同时乘、除一个正数(或不等式两边同时乘除一个负数),不等号方向不变。

例如:若a > b,则ac > bc(c > 0)。

3.取倒性质:不等式两边同时取倒数,不等号方向改变。

例如:若a > b,则1/a < 1/b。

三、不等式的解法1.图像法:对于一元一次不等式,可以通过绘制图像解决。

将不等式中的变量标在数轴上,观察区间的开合情况,即可找到解集。

例如:解不等式2x + 3 > 7,先将2x + 3 = 7画成直线,再观察其线段,在直线右侧为解,即x > 2。

2.试值法:通过试值法可以验证不等式的解。

例如:解不等式3x - 2 < 7,我们可以尝试x = 2,代入不等式得到3(2) - 2 = 4 < 7,所以x = 2是不等式的解。

3.换元法:对于复杂的不等式,可以通过引入新的变量进行换元,简化计算。

例如:解不等式2x^2 - 3x + 1 < 0,设y = 2x - 1,将x的部分转化为y,得到y^2 - 3y < 0,再通过求解y得到解。

不等式的解法——七年级

不等式的解法——七年级

课程简介1、授课对象初一同步或复习个性化学员(70/100)2、授课重难点重点:一元一次不等式(组)的解法难点:含参一元一次不等式(组)的解法课程体系等式与不等式的区别等式:表示相等关系(用等号=连接)的式子叫做等式不等式:表示不相等关系(用不等号>、<、≥、≤、≠连接)的式子叫做不等式总结:1.数量关系不同2.连接符号不同3.解的个数不同。

等式:有限个解或无解不等式:有限个解、无限个解或无解解集简单一元一次不等式的解法例:3x-2>7x>3,这跟等式解法简单!一样嘛哈~纠错:不等式的解法不能完全等同于等式的解法。

简单一元一次不等式的解法总体原则:1.类似于等式,但不同于等式的解法。

细则:1.进行移项、合并同类型等变式,作法和等式的相关作法相同。

2.不等式两边同时加上或减去一个数,作法和等式相同。

3.不等式两边同时乘以或除以1个大于0的数或式,作法和等式相同。

4.不等式两边同时乘以或除以1个小于0的数或式,不等式改变方向,其余作法和等式相同。

你记住了么?简单一元一次不等式的解法练习:(1)7x-2>0(2)6x-3>2x-8(3)4x-1>1.5x+2(4)2x+6<7x-3练习为主,设置陷阱,加深印象。

含分式的一元一次不等式的解法(1)一般的含分式的一元一次不等式例:212364x x ->-【析】:①找最小公倍数6②通分682312121212x x ->-③去分母6823x x ->-④移合项910x >⑤求解109x >找共倍数、去分母求解(2)可约分的含分式的一元一次不等式例:0.40.90.030.020.010.050.50.030.02x x x ++-->【析】:①约分②通分③去分母④移合项1199x ->-⑤求解9x <先观察,能约分先约分,找共倍数、去分母求解p8 补救练习1 (2)49325532x x x ++-->245430201575303030x x x ++-->245430201575x x x +-->-一元一次不等式组的解的数轴表示意义:将一元一次不等式的解法用数轴表示出来可以更好得呈现的不等式的解集范围。

一元二次不等式、方程和函数的关系

一元二次不等式、方程和函数的关系

一元二次函数、方程和不等式一、定义1、等式的定义等式是数学中表示两个量或两个表达式之间相等关系的式子。

它由等号(=)连接,等号两边的数值或表达式在特定条件下是相等的。

换句话说,如果两个量或两个表达式用等号连接,那么这两个量或表达式就构成了等式。

2、不等式的定义不等式是数学中表示两个量或两个表达式之间大小关系的式子。

它不使用等号(=)连接,而是使用大于(>)、小于(<)、大于等于(≥)、小于等于(≤)或不等号(≠)这样的关系符号来连接两边的数值或表达式。

二、性质1、等式的性质:性质1:如果a=b ,那么b=a性质2:如果a=b ,b=c ,那么a=c性质3:如果a=b ,那么a±c=b±c性质4:如果a=b ,那么ac=bc 。

性质5:如果a=b ,c ≠0,那么c b c a =2、不等式的性质:性质1:如果a >b ,那么b <a;如果b <a ,那么a >b .即:a >b ⇔b <a 。

性质2:如果a >b ,b >c ,那么a >c 。

即:a >b ,b >c ⇒a >c .性质3:如果a >b ,那么cb c a ++>性质4:如果a >b ,c>0,那么ac >bc ;如果a>b ,c<0,那么ac<bc性质5:如果d c b a >,>,那么db c a ++>性质6:如果0d c 0b a >>,>>,那么bdac >性质7:如果a >b >0,那么),(>2n n b a nn ≥∈N三、基本不等式对于∀a >0,b >0,ab 2b a ≥+变形为2b a ab +≤①当且仅当a=b 时,等号成立.通常我们称不等式①为基本不等式。

其中2b a +叫做正数a ,b 的算术平方根,ab 叫做正数a ,b 的几何平均数基本不等式表明:两个正数的算术平均数不小于它们的几何平均数四、用分析法证明基本不等式分析法是一种“执果索因”的证明方法,即从要证明的结论出发,逐步寻求使他成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理)为止要证明2b a ab +≤,只要证明b a ab 2+≤,要证明b a ab 2+≤,只要证明0b a ab 2≤--,要证明0b a ab 2≤--,只要证明0b a 2≤--)(,要证明0b a 2≤--)(,只要证明0b a 2≥-)(,很显然,平方恒大于等于0,0b a 2≥-)(成立,当且仅当a=b 时,0b a 2≥-)(中的等号成立。

《等式的性质与方程的解集》等式与不等式

《等式的性质与方程的解集》等式与不等式

解法的应用与推广
应用
二元一次方程组是数学中常见的方程之一,它在实际生活中也有广泛的应用,比如在物理、化学、经 济等领域中都可以遇到。通过学习二元一次方程组的解法,可以更好地理解和解决这些问题。
推广
学习二元一次方程组的解法还可以为学习更复杂的方程组打下基础,比如三元一次方程组、高次方程 组等。同时,解法中涉及的数学思想和方法也可以应用于其他数学问题的解决中。
传递性
加法单调性
乘法单调性
同号得正
奇偶性
若a>b,b>c,则a>c。
即若a>b,c为任意实数 或整式,则a+c>b+c。
若a>b>0,c>d>0,则 ac>bd。
若a>b>0,c>d>0,则 ac>bd。
若f(x)为奇函数,则对于 定义域内的任意x,都有 f(-x)=-f(x)。若f(x)为偶 函数,则对于定义域内 的任意x,都有f(x)=f(x)。
一元一次方程的解法举例
例子1
解方程 2x + 4 = 10。
去分母
2x + 4 = 10。
去括号
2x + 4 = 10。
一元一次方程的解法举例
移项
01
2x = 6。
合并同类项
02
2x = 6。
化简
03
x = 3。
一元一次方程的解法举例
例子2
解方程 3(x - 2) = 5(x - 1)。
去分母
05
方程的解集与根的判别式
方程的解集的概念与性质
方程的解集的定义
方程的所有解组成的集合称为方程的解 集。

四年级认识等式和不等式课件

四年级认识等式和不等式课件

经济学:在经济学中,等式和不等式可以用来描述供求关系、价格变动、成本效益分析等经济现象。
计算机科学:在计算机科学中,等式和不等式可以用来描述算法、数据结构、程序优化等问题。
等式的运算规则
等式的性质:等式的两边加上或减去同一个数,等式仍成立
等式的运算性质:等式的两边乘以或除以同一个数(零除外),等式仍成立
定义:等式表示两个量相等,不等式表示两个量不相等
符号:等式用“=”表示,不等式用“>”、“<”、“≥”、“≤”表示
转化:等式可以转化为不等式,不等式也可以转化为等式
等式和不等式的联系
定义:等式表示两个量相等,不等式表示两个量不相等
符号:等式用“=”表示,不等式用“>”、“<”、“≥”、“≤”表示
性质:等式的两边加上或减去同一个数,等式仍成立;不等式的两边加上或减去同一个数,不等号的方向不变
不等式的定义
添加标题
添加标题
添加标题
添加标题
不等式是数学中比较基础的概念
用符号“>”“<”“≥”“≤”“≠”等表示大小关系的数学符号
不等式可以比较两个数大小关系的数学符号
不等式的基本性质:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变;不等式的两边乘以(或除以)同一个负数,不等号的方向改变
转化:等式可以转化为不等式,不等式也可以转化为等式
等式和不等式的应用场景
科学实验:在科学实验中,等式和不等式可以用来描述实验结果和实验条件之间的关系,例如化学反应、物理实验等。
数学问题解决:等式和不等式是数学中常见的概念,它们在解决数学问题中有着广泛的应用,例如代数方程、几何图形、概率统计等。

不等式的基本性质

不等式的基本性质

4 16 1 4
2
0
1 16
l
l
2
4

l
2
(根据不等式的基本性质2)
16
例1 将下列不等式化成“x>a”或“x<a”的形式:
(1) x 5 1 (2) 2x 3
解:(1)根据不等式的基本性质1,两边都加上5, 得 x 1 5 即 x4 (2)根据不等式的基本性质3,两边都除以-2, 得
1 2
不等式的基本性质3:
不等式的两边都乘以(或除以)同一个负数,不等号 的方向_改变___。
6 ( 2 );
1 2
(2)
4 2
6 2
;
(3) 4 (
)
6 (
).
在上一节课中,我们猜想,无论绳长l取何值,
圆的面积总大于正方形的面积,即
l
2
4

l
2
16
你相信这个结论吗?你能利用不等式的基本 性质解释这一结论吗?
1.2 不等式的基本性质
学习目标:
(1)探索并掌握不等式的基本性质; (2)理解不等式与等式性质的联系与区别.
自学提纲:
1、自学课本第7、8页内容5分钟,独立完成 下列填空。
2、把等式的基本性质和不等式的基本性质进行 比较,并且背熟。 自学时间安排:前7分钟独立自学,疑难问题前 后桌4人交流2分钟,集体展示3分钟。
1 2
x 3 2 x6
x
2.已知x>y,下列不等式一定成立吗?
(1) x 6 > y 6 ;
不成立
(3) 2 x 2 y ;
不成立
(4) 2 x 1 2 y 1 .

不等式及其性质(基础)_不等式及其性质(基础)知识讲解

不等式及其性质(基础)_不等式及其性质(基础)知识讲解

不等式及其性质(基础)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系.2. 理解不等式的三条基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x 表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.用不等式表示:(1)x 与-3的和是负数;(2)x 与5的和的28%不大于-6;(3)m 除以4的商加上3至多为5.【思路点拨】列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式.【答案与解析】解:(1)x-3<0;(2)28%(x+5)≤-6;(3)34m +≤5. 【总结升华】在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x 是非负数,则x≥0;若x 是非正数,则x≤0;若x 大于y ,则有x-y >0;若x 小于y ,则有x-y <0等.举一反三:【变式】a a +的值一定是( ).A.大于零B.小于零C.不大于零D. 不小于零【答案】D.2.下列叙述:①a 是非负数则a≥0;②“a 2减去10不大于2”可表示为a 2-10<2; ③“x 的倒数超过10”可表示为1x>10;④“a ,b 两数的平方和为正数”可表示为a 2+b 2>0.其中正确的个数是( ).A.1个B.2个C.3个D. 4个【答案与解析】①非负数是大于等于零的实数,即a≥0.故①正确;②“a 2减去10不大于2”可表示为a 2-10≤2;故②错误;③“x 的倒数超过10”就是“③“x 的倒数大于10”,可表示为1x>10.故③正确; ④“a ,b 两数的平方和为正数”,即“;④“a ,b 两数的平方和大于零”,可表示为a 2+b 2>0.故④正确.综上所述,正确的说法有3个.故选C .【总结升华】考查了不等式的定义.一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠. 类型二、不等式的基本性质3.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b ﹣3a <0,则b <3a ;(2)如果﹣5x >20,那么x >﹣4;(3)若a >b ,则 ac 2>bc 2;(4)若ac 2>bc 2,则a >b ;(5)若a >b ,则 a (c 2+1)>b (c 2+1).(6)若a >b >0,则<. .【答案与解析】解:(1)若由b﹣3a<0,移项即可得到b<3a,故正确;(2)如果﹣5x>20,两边同除以﹣5不等号方向改变,故错误;(3)若a>b,当c=0时则ac2>bc2错误,故错误;(4)由ac2>bc2得c2>0,故正确;(5)若a>b,根据c2+1,则a(c2+1)>b(c2+1)正确.(6)若a>b>0,如a=2,b=1,则<正确.故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.4.(2020•青浦区一模)已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b【思路点拨】根据不等式的性质分析判断.【答案】D.【解析】解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确.【总结升华】不等式的性质是不等式变形的重要依据.关键要注意不等号的方向.性质1和性质2类似于等式的性质但性质3中,当不等式两边乘以或除以同一个负数时,不等号的方向要改变.举一反三:【变式】根据不等式的基本性质,将“mx<3”变形为“x>3m”,则m的取值范围是.【答案】m<0.解:∵将“mx<3”变形为“x>3m ”,∴m的取值范围是m<0.故答案为:m<0.。

等式与不等式的性质(解析版)

等式与不等式的性质(解析版)

等式与不等式的性质【考纲要求】1、会用不等式表示不等关系;掌握等式性质和不等式性质.2、会利用不等式性质比较大小【思维导图】【考点总结】【考点总结】一、等式的基本性质性质1如果a=b,那么b=a;性质2如果a=b,b=c,那么a=c;性质3如果a=b,那么a±c=b±c;性质4如果a=b,那么ac=bc;性质5 如果a =b ,c ≠0,那么a c =bc .二、不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式. 三、比较两个实数a 、b 大小的依据文字语言符号表示 如果a >b ,那么a -b 是正数; 如果a <b ,那么a -b 是负数; 如果a =b ,那么a -b 等于0, 反之亦然a >b ⇔a -b >0 a <b ⇔a -b <0 a =b ⇔a -b =0[1.上面的“⇔”表示“等价于”,即可以互相推出.2.“⇔”右边的式子反映了实数的运算性质,左边的式子反映的是实数的大小顺序,二者结合起来即是实数的运算性质与大小顺序之间的关系. 四、不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇒a +c >b +c .推论(同向可加性):⎭⎬⎫a >bc >d ⇒a +c >b +d ; (4)可乘性: ⎭⎬⎫a >b c >0⇒ac >bc ;⎭⎬⎫a >bc <0⇒ac <bc ; 推论(同向同正可乘性):⎭⎬⎫a >b >0c >d >0⇒ac >bd ; (5)正数乘方性:a >b >0⇒a n >b n (n ∈N *,n ≥1); (6)正数开方性:a >b >0⇒n a >nb (n ∈N *,n ≥2). [化解疑难]1.在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件. 2.要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.【题型汇编】题型一:利用不等式的性质比较数(式)大小 题型二:作差法比较数(式)大小 题型三:利用不等式的性质证明不等式 【题型讲解】题型一:利用不等式的性质比较数(式)大小 一、单选题1.(2022·浙江·三模)已知,,,a b c d ∈R ,且,,()()()a b c c d a d b d c d c d <<≠---+=,则( ) A .d a < B .a d b <<C .b d c <<D .d c >【答案】B 【解析】 【分析】由()()()a d b d c d c d ---+=得()()10a d b d --=-<,结合a b <即可求解. 【详解】由题意知:()()()a d b d c d d c ---=-,又c d ≠,则()()10a d b d --=-<,显然,a d b d --异号, 又a b <,所以a d b c <<<. 故选:B.2.(2022·北京·北大附中三模)已知0a b >>,下列不等式中正确的是( ) A .c ca b> B .2ab b <C .12a b a b-+≥- D .1111a b <-- 【答案】C 【解析】 【分析】由0a b >>,结合不等式的性质及基本不等式即可判断出结论. 【详解】解:对于选项A ,因为110,0a b a b>><<,而c 的正负不确定,故A 错误; 对于选项B ,因为0a b >>,所以2ab b >,故B 错误; 对于选项C ,依题意0a b >>,所以10,0a b a b ->>-,所以()112a b a b a ba b-+≥-⨯=--,故C 正确;对于选项D ,因为10,111,1a b a b a >>->->--与11b -正负不确定,故大小不确定,故D 错误; 故选:C.3.(2022·江西萍乡·三模(理))设2ln1.01a =, 1.021b =,1101c =,则( ) A .a b c << B .c a b << C .b a c << D .c b a <<【答案】D 【解析】 【分析】令()()ln ,1x f x x g x =,()()()ln 1h x f x g x x x =-=,求导研究函数()h x 的单调性,从而得到a b >,利用不等式的性质比较得出b c >,从而求得答案. 【详解】令()()ln ,1x f x x g x =, ()()()ln 1h x f x g x x x =-=,12()2xh x x x -'==,可以判断()h x 在[0,4)上单调递增, 22ln1.01 1.021ln1.01 1.011ln1.0201 1.021a b -==-= ln1.02 1.021(1.02)(1)0h h >=>=,所以a b >,2222221221202200121(1)(1) 1.02(1)0101100101101100101101100101101b c -+-+=-+=--=-=->⨯⨯, 所以22(1)(1)b c +>+, 又因为 1.0210b =>,10101c =>, 所以11b c +>+,即b c >,所以c b a <<, 故选:D.4.(2022·北京·二模)“0m n >>”是“()22()log log 0-->m n m n ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】 【分析】首先根据不等式的性质,求解出()22()log log 0-->m n m n ,进而根据逻辑关系进行判断即可. 【详解】对于()22()log log 0-->m n m n 等价为:220log log 0m n m n ->⎧⎨->⎩或220log log 0m n m n -<⎧⎨-<⎩ 即:22log log m n m n >⎧⎨>⎩或22log log m n m n <⎧⎨<⎩ 解得:0m n >>或0m n <<,∴“0m n >>”是“()22()log log 0-->m n m n ”的充分不必要条件.故选:A.5.(2022·江西鹰潭·二模(理))已知0,0a b >>,且2e 1b aa b -+=+则下列不等式中恒成立的个数是( ) ①1122b a --< ②11b a a b -<- ③e e b a b a -<- ④52727ln 5a a b b ++-+<+A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】①,分析得到,a b <所以1122b a --<正确;②,构造函数举反例判断得解;③,构造函数利用函数单调性判断得解;④,转化为判断2ln(5)2+72ln(5)2+7a a b b +<+解. 【详解】解:①,若02,e e 1,11b aa ab b -+≥∴≤=∴>+,所以矛盾,所以,a b <所以1122b a --<正确; ②,1111b a a b a b a b -<-∴+<+,,设21(1)(1)(),(0),()x x f x x x f x x x +-'=+>∴=, 所以当(0,1)x ∈时,函数()f x 单调递减,当(1,+)x ∈∞时,函数()f x 单调递增,因为a b <,所以11a b ab+<+不恒成立,如1151,(),1,(1)2()2222a fb f f ====<,所以该命题错误;③,e e a b a b -<-,设()e ,()e 10,()x x g x x g x g x '=-∴=->∴在(0,)+∞单调递增,因为a b <,所以e e a b a b -<-恒成立,所以该命题正确; ④,52727ln2ln(5)2+72ln(5)2+75a a b a a b b b ++-+<⇔+<++ 设()2ln(5)2+7h x x x =+所以2227(5)()(5)27(5)27[227(5)]x x h x x x x x x x +-+'+++++++ (5)27[227(5)]x x x x +++++,所以函数()h x 在(0,1)单调递增,在(1,)+∞单调递减. 取131,e,(1)e 3e,1b b a b b -==∴+=+ 设()(1)e ,()(2)e 0x x k x x k x x '=+∴=+>,所以()k x 在(0,)+∞单调递增, (1)2e 3e k =<,2(2)3e 3e k =>,所以存在(1,2),(1)e 3e b b b ∈+>,此时2ln(5)2+72ln(5)2+7a a b b ++ 所以该命题错误. 故选:B6.(2022·山东日照·二模)若a ,b ,c 为实数,且a b <,0c >,则下列不等关系一定成立的是( ) A .a c b c +<+ B .11a b< C .ac bc > D .b a c ->【答案】A 【解析】 【分析】由不等式的基本性质和特值法即可求解. 【详解】对于A 选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a b a c b c <⇒+<+,A 选项正确;对于B 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若2a =-,1b =-,则11a b>,B 选项错误; 对于C 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,0c >,0a b ac bc <<⇒<,C 选项错误;对于D 选项,因为0a b b a <⇒->,0c >,所以无法判断b a -与c 大小,D 选项错误.7.(2022·陕西渭南·二模(文))设x 、y 都是实数,则“2x >且3y >”是“5x y +>且6xy >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】由不等式性质及特殊值法判断条件间的推出关系,结合充分必要性的定义即可确定答案. 【详解】由2x >且3y >,必有5x y +>且6xy >,当5x y +>且6xy >时,如1,7x y ==不满足2x >,故不一定有2x >且3y >. 所以“2x >且3y >”是“5x y +>且6xy >”的充分不必要条件. 故选:A8.(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( ) A .22a b > B .11b b a a +<+ C .22ac bc > D .332a b -+>【答案】D 【解析】 【分析】对于A ,B ,C 可以取特殊值验证,对于D ,根据题意得330a b >>,3333a b b b --+>+,利用基本不等式求解即可. 【详解】对于A :当2a =,4b =-时不成立,故A 错误;对于B :当12a =-,1b =-,所以2ba =,101b a +=+,即11b b a a +>+,故C 错误;对于C :当0c 时不成立,故C 错误;对于D :因为a b >,所以330a b >>,又30b ->,所以33332332b b a b b b ---≥⨯+>+=(等号成立的条件是0b =),故D 正确. 故选:D.9.(2022·宁夏六盘山高级中学二模(文))设0a ≠,若x a =为函数()()()2f x a x a x b =--的极小值点,则( ) A .a b < B .a b > C .2ab a < D .2ab a >【答案】C 【解析】 【分析】先对函数求导,令()0f x '=,则x a =或23a b x +=,然后分23a b a +<和23a ba +>结合a 的正负讨论判断函数的极值点即可 【详解】由()()()2f x a x a x b =--,得2()2()()()()(32)f x a x a x b a x a a x a x a b '=--+-=---, 令()0f x '=,则x a =或23a bx +=, 当23a ba +<,即a b <时, 若0a >时,则()f x 在(,)a -∞,2,3a b +⎛⎫+∞ ⎪⎝⎭上单调递增,在2,3a b a +⎛⎫ ⎪⎝⎭上单调递减,所以x a =是函数的极大值点,不合题意,若0a <时,则()f x 在(,)a -∞,2,3a b +⎛⎫+∞ ⎪⎝⎭上单调递减,在2,3a b a +⎛⎫ ⎪⎝⎭上单调递增,所以x a =是函数的极小值点,满足题意,此时由a b <,0a <,可得2a ab >, 当23a ba +>时,a b >, 若0a <时,()f x 在2,3a b +⎛⎫-∞ ⎪⎝⎭,(,)a +∞上单调递减,在2,3a b a +⎛⎫ ⎪⎝⎭上单调递增, 所以x a =是函数的极大值点,不合题意,若0a >时,()f x 在2,3a b +⎛⎫-∞ ⎪⎝⎭,(,)a +∞上单调递增,在2,3a b a +⎛⎫ ⎪⎝⎭上单调递减, 所以x a =是函数的极小值点,满足题意,此时由a b >,0a >得2a ab >,综上,2a ab >一定成立,所以C 正确,ABD 错误, 故选:C10.(2022·江西·二模(文))已知正实数a ,b 满足1a b +=,则下列结论不正确的是( ) A ab 12B .14a b+的最小值是9C .若a b >,则2211a b < D .22log log a b +的最大值为0 【答案】D 【解析】 【分析】利用基本不等式,以及对数的运算,不等式的性质,对每个选项进行逐一分析,即可判断和选择. 【详解】对A :0,0,1a b a b ab >>=+≥12ab ,当且仅当12a b ==时,等号成立,故A 正确; 对B :14144()59b a a b a b a b a b⎛⎫+=++=++≥ ⎪⎝⎭, 当且仅当2a b =,即12,33a b ==时,等号成立,故B 正确;对C :0a b >>,∴22a b >,∴2211a b<,故C 正确; 对D :由A 可知104ab <≤,故22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时,等号成立,故D 错误. 故选:D . 二、多选题1.(2022·全国·模拟预测)已知110a b<<,则下列不等关系中正确的是( ) A .ab a b >- B .ab a b <--C .2b aa b+>D .b a a b> 【答案】CD 【解析】【分析】根据不等式的性质,特值法以及基本不等式即可判断各关系式的真假. 【详解】 对A ,由110a b <<,得0b a <<,当12a =-,2b =-时,A 错误; 对B ,当2a =-,3b =-时,B 错误; 对C ,由110a b<<,得0b a <<,根据基本不等式知,C 正确: 对D ,由110a b <<,得0b a <<,所以22b a >,因为220b a b a a b ab--=>,所以D 正确. 故选:CD .2.(2022·辽宁·二模)己知非零实数a ,b 满足||1a b >+,则下列不等关系一定成立的是( ) A .221a b >+ B .122a b +> C .24a b > D .1ab b>+ 【答案】ABC 【解析】 【分析】利用不等式的性质及特殊值法判断即可. 【详解】解:对于非零实数a ,b 满足||1a b >+,则()22||1a b >+, 即2222||11a b b b >++>+,故A 一定成立; 因为1||1122a b a b b +>+≥+⇒>,故B 一定成立;又()2||10b -≥,即212||b b +≥,所以24||4a b b >≥,故C 一定成立; 对于D :令5a =,3b =,满足||1a b >+,此时5143a b b =<+=,故D 不一定成立. 故选:ABC3.(2022·重庆·二模)已知2510a b ==,则( ) A .111a b+> B .2a b > C .4ab > D .4a b +>【答案】BCD 【解析】根据指数式与对数式的互化,再利用对数的运算性质及对数大小的比较及不等式的性质即可求解. 【详解】252510,log 10,log 10,a b a b ==∴==对于A ,lg lg lg lg log log lg lg lg lg a b +=+=+=+251111112510101010101025log log log log =+===⨯101010102255101,故A 不正确;对于B ,log ,log log log a b ====2255510221010100,342328,216,525,5125====log log log ;log log log a b <<⇒<<<<⇒<<222555816342510012522103,2a b >,故B 正确; 对于C ,()()lg lg lg lg lg lg log log log log lg lg lg lg ab ++=⋅=⋅=⋅=++102525251025101015122525log log log log log log =+++⋅=++25252515252252log log ,log log ab >=>=∴>++=22555422102204,故C 正确;对于D ,由B 知,,,a b b a b <<<<∴<<∴<+<311342231422,故D 正确;故选:BCD.题型二:作差法比较数(式)大小 一、单选题1.(2022·全国·模拟预测(理))已知10a b a>>>,则下列结论正确的是( ) A .1a bb a -⎛⎫> ⎪⎝⎭B .log log a a bba b <C .log log a b baa b <D .11b a a b-<- 【答案】D 【解析】 【分析】根据不等式的性质,结合指数函数、对数函数的单调性、作差法比较大小等知识,逐一分析各个选项,即可得答案.因为10a b a>>>,所以1a >, 对于A :01b a <<,0a b ->,所以01a bb b a a -<⎛⎫⎛⎫⎪⎪⎝⎝⎭=⎭,故A 错误; 对于B :1ab>,所以log a b y x =在(0,)+∞上为增函数,又a b >,所以log log a a bba b>,故B 错误;对于C :log log log log log a b a a a babbbb a b a ab-=+=,因为1ab>,1ab >,所以log log 10a a b b ab =>,所以log log a b baa b>,故C 错误;对于D :11111()ab b a b a a b a b b a ab -⎛⎫⎛⎫---=-+-=- ⎪ ⎪⎝⎭⎝⎭, 因为0a b ->,1ab >, 所以111()0ab b a a b a b ab -⎛⎫⎛⎫---=-< ⎪ ⎪⎝⎭⎝⎭,即11b a a b -<-,故D 正确. 故选:D2.(2022·重庆·二模)若非零实数a ,b 满足a b >,则下列不等式一定成立的是( ) A .11a b< B .2a b ab +>C .22lg lg a b > D .33a b >【答案】D 【解析】 【分析】根据不等式的基本性质、基本不等式的条件和对数的运算,逐项判定,即可求解. 【详解】对于A 中,由11b aa b ab--=,因为a b >,可得0b a -<,当ab 不确定,所以A 错误;对于B 中,只有当0,0,a b a b >>,不相等时,才有2a b ab +>B 错误; 对于C 中,例如1,2a b ==-,此时满足a b >,但22lg lg a b <,所以C 错误; 对于D 中,由不等式的基本性质,当a b >时,可得33a b >成立,所以D 正确. 故选:D.3.(2022·江西上饶·二模(理))设e 4ln 2313e 4ln 214e ea b c ===,,其中e 是自然对数的底数,则( ) 注:e 2.718ln 20.693==,A .b a c <<B .b c a <<C .a c b <<D .c a b <<【答案】C 【解析】 【分析】 构造函数()e xxf x =,则()(4ln 2)e b f c f ==、,利用导数研究函数的单调性可得 b c >;根据作差法和对数的运算性质可得13423)4c a -=+,构造新函数2(1)()ln (0)1x g x x x x -=->+,利用导数研究函数的性质可得34230+>, 进而c a >,即可得出结果. 【详解】 令()e xx f x =, 则1()ex xf x -'=,令()01f x x =⇒=', 则()e xxf x =在(1,)+∞单调递减, 所以4ln 2e 4ln e e e 2()(4ln 2)e bf c f ====,, ∵4ln 240.69 2.76e b c >⨯=∴>>,; 4ln 24ln 2ln 231314e 4c a ===,, ∴ln 231311343)444c a -=-+=+, 令2(1)()ln (0)1x g x x x x -=->+, 则22214(1)()0(1)(1)x g x x x x x -'=-=≥++,∴()g x 在(1,)+∞单调递增, ∴2(31)(3)33423031g -==++, ∴c a >; 综上,b c a >>. 故选:C4.(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( )A .22a b >B .11b b a a +<+ C .22ac bc > D .332a b -+>【答案】D 【解析】 【分析】对于A ,B ,C 可以取特殊值验证,对于D ,根据题意得330a b >>,3333a b b b --+>+,利用基本不等式求解即可. 【详解】对于A :当2a =,4b =-时不成立,故A 错误;对于B :当12a =-,1b =-,所以2ba =,101b a +=+,即11b b a a +>+,故C 错误;对于C :当0c 时不成立,故C 错误;对于D :因为a b >,所以330a b >>,又30b ->,所以33332332b b a b b b ---≥⨯+>+=(等号成立的条件是0b =),故D 正确. 故选:D.5.(2022·广东广州·一模)若正实数a ,b 满足a b >,且ln ln 0a b ⋅>,则下列不等式一定成立的是( ) A .log 0a b < B .11a b b a->- C .122ab a b ++< D .11b a a b --<【答案】D 【解析】 【分析】根据函数单调性及ln ln 0a b ⋅>得到1a b >>或01b a <<<,分别讨论两种情况下四个选项是否正确,A 选项可以用对数函数单调性得到,B 选项可以用作差法,C 选项用作差法及指数函数单调性进行求解,D 选项,需要构造函数进行求解. 【详解】因为0a b >>,ln y x =为单调递增函数,故ln ln a b >,由于ln ln 0a b ⋅>,故ln ln 0a b >>,或ln ln 0b a <<, 当ln ln 0a b >>时,1a b >>,此时log 0a b >; ()11110a b a b b a ab ⎛⎫⎛⎫---=--> ⎪ ⎪⎝⎭⎝⎭,故11a b b a ->-; ()()()1110ab a b a b +-+=-->,122ab a b ++>;当ln ln 0b a <<时,01b a <<<,此时log 0a b >,()11110a b a b b a ab ⎛⎫⎛⎫---=--< ⎪ ⎪⎝⎭⎝⎭,故11b a a b -<-;()()()1110ab a b a b +-+=-->,122ab a b ++>;故ABC 均错误;D 选项,11b a a b --<,两边取自然对数,()()1ln 1ln b a a b -<-,因为不管1a b >>,还是01b a <<<,均有()()110a b -->,所以ln ln 11a b a b <--,故只需证ln ln 11a ba b <--即可, 设ln 1xf xx (0x >且1x ≠),则()()211ln 1x x f x x --'=-,令()11ln g x x x =--(0x >且1x ≠),则()22111xg x x x x-'=-=,当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<,所以()()10g x g <=,所以()0f x '<在0x >且1x ≠上恒成立,故ln 1xf xx (0x >且1x ≠)单调递减,因为a b >,所以ln ln 11a b a b <--,结论得证,D 正确 故选:D6.(2022·山西太原·二模(文))已知32a =,53b =,则下列结论正确的有( ) ①a b < ②11a b a b+<+ ③2a b ab +< ④b a a a b b +<+ A .1个 B .2个 C .3个 D .4个【答案】B 【解析】 【分析】求出a 、b 的值,比较a 、b 的大小,利用指数函数的单调性、导数法、不等式的基本性质以及基本不等式逐项判断可得出合适的选项. 【详解】因为32a =,53b =,则3log 2a =,5log 3b =.对于①,3223<,则2323<,从而2333320log 1log 2log 33a =<=<=,3235>,则2335>,则235552log 5log 3log 513b =<=<=,即2013a b <<<<,①对;对于②,()()()11111a b ab a b a b a b a b ab --⎛⎫⎛⎫⎛⎫+-+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为2013a b <<<<,则0a b -<,01ab <<,所以,11a b a b +>+,②错;对于③,355522log 2log 32log 2log 4ab =⋅==,所以,35535542log 2log 3log 4log 2log log 3log 503a b ab +-=+-=->=, 所以,2a b ab +>,③错; 对于④,构造函数()ln x f x x =,其中0e x <<,则()21ln xf x x -'=. 当0e x <<时,()0f x '>,则函数()f x 在()0,e 上单调递增, 因为01a b <<<,则()()f a f b <,即ln ln a ba b<,可得b a a b <,所以,b a a a b b +<+,④对. 故选:B.7.(2022·河北衡水中学一模)已知110a b<<,则下列结论一定正确的是( ) A .22a b > B .2b aa b+<C .a ba a <D .2lg lg a ab <【答案】D 【解析】 【分析】 由110a b<<,得到0b a <<,结合不等式的基本性质、作差比较、基本不等式和对数的运算法则,逐项判定,即可求解. 【详解】 由110a b<<,可得0b a <<,则0,0,0a b a b ab +<->>, 对于A 中,由22()()0a b a b a b -=+-<,所以22a b <,所以A 不正确; 对于B 中,由0,0b a a b <>,且b a a b ≠,则2b a b aa b a b+>⨯,所以B 不正确;对于C 中,由0,0aba a >>,且a a bba aa-=,当1a >时,1a a bba aa -=>,此时ab a a >;当1=a 时,1a a bba aa -==,此时ab a a =;当1a <时,1a a bba aa-=<,此时a b a a <,所以C 不正确;对于D 中,由22lg lg lglg a aa ab ab b=-=,因为0b a <<,可得01a b <<,所以lg0ab<,可得2lg lg a ab <,所以D 正确. 故选:D.8.(2022·重庆·三模)已知0.3πa =,20.9πb =,sin 0.1c =,则a ,b ,c 的大小关系正确的是( ) A .a b c >> B .c a b >> C .a c b >> D .b a c >>【答案】B 【解析】 【分析】作差法比较出a b >,构造函数,利用函数单调性比较出c a >,从而得出c a b >>. 【详解】 2220.30.90.3π0.90.330.90ππππa b -⨯--=-=>=,所以0a b ->,故a b >,又()πsin 3f x x x =-,则()πcos 3f x x '=-在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递减,又()0π30f '=->,π3π306f ⎛⎫'< ⎪⎝⎭,所以存在0π0,6x ⎛⎫∈ ⎪⎝⎭,使得()00f x '=,且在()00,x x ∈时,()0f x '>,在0π,6x x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,即()πsin 3f x x x =-在()00,x x ∈上单调递增,在0π,6x x ⎛⎫∈ ⎪⎝⎭单调递减,且π6+23012f ⎛⎫'-> ⎪⎝⎭,所以0π12x >,又因为()00f =,所以当()00,x x ∈时,()πsin 30f x x x =->,其中因为1π1012<,所以()010,10x ∈,所以1πsin 0.10.3010f ⎛⎫=-> ⎪⎝⎭,故sin 0.10.3π>,即c a b >>. 故选:B9.(2022·湖南·雅礼中学二模)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是 A .ax by cz ++ B .az by cx ++ C .ay bz cx ++ D .ay bx cz ++【答案】B 【解析】 【详解】由x y z <<,a b c <<,所以()()()ax by cz az by cx a x z c z x ++-++=-+- ()()0x z a c =-->,故ax by cz az by cx ++>++;同理,()ay bz cx ay bx cz ++-++()()()()0b z x c x z x z c b =-+-=--<,故ay bz cx ay bx cz ++<++.因为()az by cx ay bz cx ++-++()()()()0a z y b y z a b z y =-+-=--<,故az by cx ay bz cx ++<++.故最低费用为az by cx ++.故选B.二、多选题1.(2022·山东日照·三模)某公司通过统计分析发现,工人工作效率E 与工作年限()0r r >,劳累程度()01T T <<,劳动动机()15b b <<相关,并建立了数学模型0.141010r E T b -=-⋅,已知甲、乙为该公司的员工,则下列结论正确的是( )A .甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高B .甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率低C .甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短.则甲比乙劳累程度弱D .甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强 【答案】AC 【解析】 【分析】设甲与乙的工人工作效率12,E E ,工作年限12,r r ,劳累程度12,T T ,劳动动机12,b b ,利用作差法和指数函数的性质比较大小即可判断选项AB ;利用作商法和幂函数指数函数的性质比较大小即可判断选项CD. 【详解】设甲与乙的工人工作效率12,E E ,工作年限12,r r ,劳累程度12,T T ,劳动动机12,b b , 对于A ,0.141212122,,,15,01b b r r T T b b -=><<<<<∴210.140.421121,0r r b b T T -->>>, 则()120.140.1412112210101010r r E E T b T b ---=-⋅--⋅()1200.1.1424211100r rT b T b --=⋅-⋅>,∴12E E >,即甲比乙工作效率高,故A 正确; 对于B ,121212,,T T r r b b =>>,∴2210.0.140.140.141402.14121110,r r r b b b b b ----->>>>>,则()120.140.1412112210101010r r E E T b T b ---=-⋅--⋅()210.141210.14100r rT b b --=->,∴12E E >,即甲比乙工作效率高,故B 错误: 对于C ,112221,,b b E E r r =><,∴()210.140.14122211100r r E E T b T b ---=⋅-⋅>,210.140.142211r rT b T b --⋅>⋅∴()()11220.140.41110.122141r r r r b b b T T ---->=>, 所以1T T >2,即甲比乙劳累程度弱,故C 正确;对于D ,12121221,,,01r r E E b b b b =><<<, ∴()210.140.14122211100r r E E T bT b ---=⋅-⋅>,210.140.142211r r T bT b --⋅>⋅∴()()11220.140.41110.122141r r r r b b b T T ---->=>, 所以1T T >2,即甲比乙劳累程度弱,故D 错误. 故选:AC2.(2022·辽宁葫芦岛·二模)已知0a b >>,115a b a b+++=,则下列不等式成立的是( ) A .14a b <+<B .114b a a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .2211b a a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭D .2211a b a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭【答案】AB 【解析】 【分析】AB 选项,利用基本不等式进行求解;CD 选项,利用作差法比较大小. 【详解】 115a b a b +++=,即5a b a b ab+++=,所以()5a b ab a b +=-+,因为0a b >>,所以由基本不等式得:()24a b ab +<,所以()()254a b a ba b ++<-+,解得:14a b <+<,A 正确;11112224b a ab ab a b abab ⎛⎫⎛⎫++=++≥⋅≥ ⎪⎪⎝⎭⎝⎭,当且仅当1ab ab =时等号成立,故B 正确; ()221111111111b a b a b a b a b a a b a b a b a b ab ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+=++++--=++++- ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因为0a b >>,所以()11110b a b a a b ab ⎛⎫⎛⎫++++-< ⎪⎪⎝⎭⎝⎭,所以2211b a a b ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭,C 错误;()221111111111a b a b a b a b b a a b a b a b a b ab ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+=++++--=+++-- ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因为0a b >>,而1ab 可能比1大,可能比1小,所以()1111a b b a a b ab ⎛⎫⎛⎫+++-- ⎪⎪⎝⎭⎝⎭符号不确定,所以D 错误, 故选:AB3.(2022·湖南·长沙市明德中学二模)已知1m n >>,若1e 2e e m n m m m n +-=-(e 为自然对数的底数),则( ) A .1e e 1m n m n +>+ B .11122m n-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭C .42222m n --+> D .()3log 1m n +>【答案】ACD 【解析】 【分析】 由1e 2ee mn mm m n +-=-可得1e e 21m n m n ++=+,利用作差法即可判断A ;令()()e 1x f x x x=>,根据导数可判断函数在()1+∞,上递增,结合A 及指数函数的单调性可判断B ;根据指数函数的单调性结合基本不等式可判断C ;结合B 根据对数函数的单调性可判断D. 【详解】解:因为1e 2e e m n m m m n +-=-,所以()()11e e 2m n n m ++=+,即1e e 21m n m n ++=+, 对于A ,因为111e e e 2e 20111+1m n n n m n n n n ++++-=-=>+++,所以1e e 1m n m n +>+,故A 正确; 对于B ,令()()e 1x f x x x =>,则()()21e 0x x f x x -'=>, 所以()f x 在()1+∞,上单调递增, 因为1e e 1m n m n +>+,所以()()1f m f n >+, 所以1m n >+,即1m n ->,所以11122m n-⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭,故B 错误; 对于C ,因为1m n >+,所以433322222222m n n n n n -------+>+≥⋅== 当且仅当322n n --=,即32n =时取等号, 所以4222m n --+>,故C 正确; 对于D ,因为1213m n n n n +>++=+>,所以()3log 1m n +>,故D 正确. 故选:ACD.4.(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ).A .函数()f x 的定义域为RB .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭【答案】BC 【解析】 【分析】先利用待定系数法求出幂函数的解析式,写出函数的定义域、判定奇偶性,即判定选项A 错误、选项B 正确;设出切点坐标,利用导数的几何意义和过点P 求出切线方程,进而判定选项C 正确;平方作差比较大小,进而判定选项D 错误. 【详解】设()f x x α=,将点4,2代入()f x x α=,得24α=,则12α=,即12()f x x =, 对于A :()f x 的定义域为[)0,+∞,即选项A 错误; 对于B :因为()f x 的定义域为[)0,+∞, 所以()f x 不具有奇偶性,即选项B 正确;对于C :因为12()f x x =,所以()2f x x'=设切点坐标为(00x x ,则切线斜率为()002k f x x =' 切线方程为000)2y x x x x =-,又因为切线过点1(0,)2P ,所以0001)22x x x -,解得01x =, 即切线方程为11(x 1)2y -=-,即1122y x =+,即选项C 正确;对于D :当120x x <<时,()()21212221212[]222f x f x x x x x x x f ++++⎛⎫-=-⎪⎝⎭⎝⎭ (212121212121222024x x x x x x x x x x x x ++--+=-<,即()()1212()22f x f x x xf ++<成立,即选项D 错误.故选:BC .5.(2022·辽宁·一模)已知不相等的两个正实数a 和b ,满足1ab >,下列不等式正确的是( ) A .1ab a b +>+ B .()2log 1a b +> C .11a b ab+<+ D .11a b a b+>+ 【答案】BD 【解析】 【分析】A 选项,利用()()1110a b ab a b --=+--<作出判断;B 选项,利用基本不等式即函数单调性求解;CD 选项,用作差法求解. 【详解】由于两个不相等的正实数a 和b ,满足1ab >,所以a 和b 可取一个比1大,一个比1小,即()()1110a b ab a b --=+--<,故1ab a b +<+,A 错误;由题意得:22a b ab +>,所以()2log 1a b +>,B 正确;()111111a b a b a b a b a b ab ⎛⎫⎛⎫+-+=-+-=-- ⎪ ⎪⎝⎭⎝⎭,其中110ab ->,但不知道a 和b 的大小关系,故当a b >时,11a b a b+>+,当a b <时,11a b a b +<+,C 错误;()1111a b a b a b ab ⎛⎫⎛⎫+-+=+- ⎪ ⎪⎝⎭⎝⎭,其中110ab ->,0a b +>,所以()11110a b a b a b ab ⎛⎫⎛⎫+-+=+-> ⎪ ⎪⎝⎭⎝⎭,即11a b a b+>+,D 正确. 故选:BD6.(2022·山东聊城·三模)已知实数m ,n 满足01n m <<<,则下列结论正确的是( ) A .11n n m m +<+ B .11m n m n+>+C .n m m n >D .log log m n n m <【答案】AC 【解析】 【分析】利用作差法比较大小,可判断A,B,利用指数函数和幂函数的单调性,可判断C;根据对数函数的单调性,可判断D. 【详解】由01n m <<<知,0n m -< ,故110,1(1)1n n n m n n m m m m m m +-+-=<<+++,A 正确; 由01n m <<<得0m n ->,110mn -<,所以()11110m n m n m n mn ⎛⎫⎛⎫+-+=--< ⎪ ⎪⎝⎭⎝⎭,即11m n m n +<+,故B 错误;因为指数函数x y m =为单调减函数,故n m m m >,由幂函数m y x = 为单调增函数知m m m n > ,故n m m n >,故C 正确; 根据, 01n m <<<对数函数log ,log m n y x y x == 为单调减函数, 故log log 1log log m m n n n m n m >==>,故D 错误, 故选:AC题型三:利用不等式的性质证明不等式 一、单选题1.(2022·浙江·绍兴一中模拟预测)设,a b ∈R ,则“||1+≤a b ”是“||1a b +≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据不等式的基本性质可证充分性成立,举例说明可证必要性不成立. 【详解】||1|||||1|1≥+⇒+≥++≥b a a b a a ,所以充分性成立,当05a b ==-,时,满足||1a b +≥,但||1+≤a b 不成立,所以必要性不成立. 所以“||1+≤a b ”是“||1a b +≥”的充分不必要条件.故选:A .2.(2022·浙江省杭州学军中学模拟预测)若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决. 3.(2021·浙江·模拟预测)已知a ,b R ∈,则“a b b ->”是“12b a <”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】先化简a b b ->得12b a <,即得解. 【详解】由a b b ->得2222,(2)0a b ab b a a b +->∴->, 所以2210,10,2a b b b a a a ->∴->∴<. 反之,也成立.所以“a b b ->”是“12b a <”的充分必要条件. 故选:C 【点睛】方法点睛:充分必要条件的判断,常用的方法有:(1)定义法;(2)集合法;(3)转化法. 要根据已知条件灵活选择方法求解.4.(2021·上海长宁·二模)已知函数()(),y f x y g x ==满足:对任意12,x x R ∈,都有()()()()1212f x f x g x g x -≥-.命题p :若()y f x =是增函数,则()()y f x g x =-不是减函数;命题q :若()y f x =有最大值和最小值,则()y g x =也有最大值和最小值. 则下列判断正确的是( ) A .p 和q 都是真命题 B .p 和q 都是假命题 C .p 是真命题,q 是假命题 D .p 是假命题,q 是真命题【答案】C 【解析】 【分析】利用函数单调性定义结合已知判断命题p 的真假,再利用函数最大、最小值的意义借助不等式性质判断命题q 的真假而得解. 【详解】对于命题p :设12x x <,因为()y f x =是R 上的增函数,所以()()12f x f x <, 所以()()()()1221f x f x f x f x -=-, 因为()()()()1212f x f x g x g x -≥-,所以()()()()211221()()f x f x g x g x f x f x -+≤-≤- 所以()()1122()()f x g x f x g x -≤- 故函数()()y f x g x =-不是减函数, 故命题p 为真命题;对于命题():q y f x =在R 上有最大值M ,此时x a =,有最小值m ,此时x b =, 因为()()()()()()()()f x f a g x g a f x M g x g a M f x -≥-⇔-≤-≤-,()()()()()()()()f x f b g x g b m f x g x g b f x m -≥-⇔-≤-≤-所以()()()()2()()()()22m M g a g b M m g a g b m M g x g a g b M m g x -++-++-≤--≤-⇔≤≤,所以()y g x =有界,但不一定有最大值和最小值,故命题q 为假命题. 故选:C 【点睛】结论点睛:含绝对值不等式转化方法:a>0时,||x a a x a ≤⇔-≤≤;||x a x a ≥⇔≤-或x a ≥.5.(2021·浙江·模拟预测)已知x ,y ∈R ,则“2214xy +≤”是“12xy +≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】利用不等式的性质证明必要性成立,利用特殊值法证明充分性不成立即可得到结果. 【详解】若12x y +≤,则12x ≤,1y ≤,所以222x x ⎛⎫≤ ⎪⎝⎭,2y y ≤所以22122x x y y ⎛⎫+≤+≤ ⎪⎝⎭,即必要性成立;当32x =,12y =时,22312142⎛⎫ ⎪⎛⎫⎝⎭+< ⎪⎝⎭,但311242x y +=+>,所以充分性不成立 所以“2214x y +≤”是“12x y +≤”的必要不充分条件故选:B . 【点睛】关键点睛:解决本题的关键是利用不等式的性质证明必要性.6.(2021·全国·模拟预测)已知a ∈R ,()21ln 0ax x a x --+≤在1,22x ⎡∈⎤⎢⎥⎣⎦上恒成立,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .11,32⎡⎤⎢⎥⎣⎦C .1,3⎡⎫+∞⎪⎢⎣⎭D .1,3⎛⎤-∞ ⎥⎝⎦【答案】D 【解析】 【分析】不等式()21ln 0ax x a x --+≤等价于(1)(1)ln 0x ax a x -+-≤,分类讨论1,12x ⎡⎫∈⎪⎢⎣⎭,1x =和(1,2]x ∈,分别求出实数a 的取值范围,最后取交集即可. 【详解】易知21(1)(1)ax x a x ax a --+=-+-,不等式()21ln 0ax x a x --+≤,即(1)(1)ln 0x ax a x -+-≤.当1,12x ⎡⎫∈⎪⎢⎣⎭时,ln 0x <,10x -<,则1101ax a a x +-≤⇒≤+,又112,123x ⎛⎤∈ ⎥+⎝⎦,所以12a ≤; 当1x =时,ln 0x =,对任意的实数a ,不等式恒成立; 当(1,2]x ∈时,ln 0x >,10x ->,则1101ax a a x +-≤⇒≤+,又11,32⎡⎫⎪⎢⎣⎭,所以13a ≤; 综上,实数a 的取值范围为1,3⎛⎤-∞ ⎥⎝⎦.故选:D 【点睛】方法点睛:本题考查不等式恒成立求参数问题, 不等式恒成立问题常见方法: ①分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可); ②数形结合(()y f x = 图像在()y g x = 上方即可); ③讨论最值()min 0f x ≥或()max 0f x ≤恒成立.7.(2021·浙江·模拟预测)已知0a b >>,给出下列命题: 1a b =,则1a b -<; ②若331a b -=,则1a b -<; ③若1a b e e -=,则1a b -<; ④若ln ln 1a b -=,则1a b -<. 其中真命题的个数是( ) A .1 B .2C .3D .4【答案】B 【解析】1a b =1a b ,然后两边平方,再通过作差法即可得解;②若331a b -=,则331a b -=,然后利用立方差公式可知23(1)(1)a a a b -++=,再结合0a b >>以及不等式的性质即可判断; ③若1abe e -=,则111a b a bb b b e e ee e e-+===+,再利用0b >,得出1b e >,从而求得a b e -的范围,进而判断; ④取特殊值,a e =,1b =即可判断. 【详解】1a b , 1a b =, 所以12a b b =++所以121a b b -=+,即①错误; 若331a b -=, 则331a b -=,即23(1)(1)a a a b -++=, 因为0a b >>, 所以22a b >, 所以221a a b ++>,所以1a b -<,即1a b -<,所以②正确; 若1a b e e -=, 则111a b a bb b b e e ee e e-+===+, 因为0b >,所以12a b e e -<<<, 所以1a b -<,即③正确;④取a e =,1b =,满足1lna lnb -=, 但1a b ->,所以④错误; 所以真命题有②③, 故选:B . 【点睛】本题考查命题真假的判断,涉及根据不等式的性质证明不等式、指对运算法则、立方差公式等,考查学生的分析能力和运算能力.8.(2022·四川省泸县第二中学模拟预测(文))已知,a b ∈R 且满足1311a b a b ≤+≤⎧⎨-≤-≤⎩,则42a b +的取值范围是( ) A .[0,12] B .[4,10]C .[2,10]D .[2,8]【答案】C 【解析】 【分析】设()()42+=++-a b A a b B a b ,求出A B ,结合条件可得结果. 【详解】设()()42+=++-a b A a b B a b ,可得42+=⎧⎨-=⎩A B A B ,解得31=⎧⎨=⎩A B ,()423+=++-a b a b a b ,因为1311a b a b ≤+≤⎧⎨-≤-≤⎩可得()33911⎧≤+≤⎨-≤-≤⎩a b a b ,所以24210a b ≤+≤. 故选:C.9.(2022·浙江·杭州高级中学模拟预测)已知,,a b c ∈R 且0,++=>>a b c a b c ,则22a c ac+的取值范围是( )A .[)2,+∞B .(],2-∞-C .5,22⎛⎤-- ⎥⎝⎦D .52,2⎛⎤⎥⎝⎦【答案】C 【解析】 【分析】首先求得a c ,及c a 的取值范围,再把22a cac+转化为关于c a 的代数式a c c a +,利用函数1()f t t t =+的单调性去求a cc a+的取值范围即可解决 【详解】由0,++=>>a b c a b c ,可得00a c ><,,b a c =-- 则a a c c >-->,则122c a -<<-,令c t a=,则122t -<<-221a c a c t ac c a t +=+=+,122t ⎛⎫-<<- ⎪⎝⎭。

不等式的概念

不等式的概念

不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1) 不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2)等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

4.不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。

不等式的解集必须符合两个条件(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。

不等式的基本性质

不等式的基本性质

第二节1.2不等式的基本性质—目标导引1.历经不等式基本性质探索,进一步体会不等式与等式的区别.2.掌握并能灵活运用不等式的基本性质1.2不等式的基本性质—内容全解1.不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向.2.等式性质与不等式性质的区别其最大区别在于不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变第二课时●课题§1.2 不等式的基本性质●教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法 类推探究法即与等式的基本性质类似地探究不等式的基本性质. ●教具准备 投影片两张 第一张:(记作§1.2 A ) 第二张:(记作§1.2 B ) ●教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5 ∴3+2<5+2 3-2<5-2 3+a <5+a 3-a <5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. [师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究. [生]∵3<5 ∴3×2<5×23×21<5×21. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<53×(-2)>5×(-2) 所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×33×31<4×31 3×(-3)>4×(-3)3×(-31)>4×(-31)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释π42l >162l 的正确性[师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和162l ,且有π42l >162l 存在,你能用不等式的基本性质来解释吗?[生]∵4π<16 ∴π41>161 根据不等式的基本性质2,两边都乘以l 2得π42l >162l 3.例题讲解将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. [生](1)根据不等式的基本性质1,两边都加上5,得 x >-1+5 即x >4;(2)根据不等式的基本性质3,两边都除以-2,得x <-23; (3)根据不等式的基本性质2,两边都除以3,得 x <-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§1.2 A )或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流. [生](1)正确∵a <b ,在不等式两边都加上c ,得 a +c <b +c ; ∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c ,得 ac <bc , 所以正确.(4)根据不等式的基本性质2,两边都除以c ,得c a <cb 所以结论错误.[师]大家同意这位同学的做法吗? [生]不同意.[师]能说出理由吗? [生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有c a <c b ,若 c <0,则有c a >cb,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x >a ”或“x <a ”的形式.(1)x -1>2 (2)-x <65 [生]解:(1)根据不等式的基本性质1,两边都加上1,得x >3 (2)根据不等式的基本性质3,两边都乘以-1,得 x >-65 2.已知x >y ,下列不等式一定成立吗? (1)x -6<y -6; (2)3x <3y ; (3)-2x <-2y . 解:(1)∵x >y ,∴x -6>y -6. ∴不等式不成立; (2)∵x >y ,∴3x >3y ∴不等式不成立;(3)∵x >y ,∴-2x <-2y ∴不等式一定成立. 投影片(§1.2 B )Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.●板书设计●备课资料 参考练习1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3;(2)6x <5x -1; (3)21x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空. (1)a -3 b -3;(2)2a 2b ; (3)-4a -4b ;(4)5a 5b ;(5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0. 参考答案:1.(1)x <5;(2)x <-1; (3)x >10;(4)x <-43. 2.(1)> (2)> (3)< (4)>(5)> (6)< (7)< (8)>.●迁移发散 迁移1.若a <b ,则下列不等式中成立的是哪些,说明理由. ①-3+a <-3+b ②-3a <-3b③-3a -1<-3b -1 ④-3a +1>-31b +1 解:在已知条件下成立的有①,其余皆错.错因:②在a <b 的条件下,根据不等式的基本性质3应有-3a >-3b ; ③基本上同②;④在a <b 条件下,由不等式的基本性质,两边必须加(减、乘、除)同一个整式或数.2.判断x =-51能否满足不等式3-2x <5+6x ,x =-1呢? 解:将x =-51代入得:3-2×(-51)<5+6×(-51)3+52<5-56,519517 ∴x =-51满足不等式3-2x <5+6x当x =-1时,代入不等式得:3-2×(-1)<5+6×(-1),3+2<5-6,5<-1 显然不能成立.∴x =-1不能满足不等式3-2x <5+6x . 发散本节我们用到了我们以前学过的知识如下:等式的基本性质1:等式的两边都加上(或都减去)同一个整式,等式仍成立. 等式的基本性质2:等式的两边都乘以(或除以)同一个不为零的数,等式仍成立.●方法点拨[例1]判断下列各运算运用了不等式的哪一条性质. ①∵2<3 ∴2×5<3×5 ②∵2<3 ∴2+x <3+x③∵2<3 ∴2×(-1)>3×(-1) 解:①运用了不等式的性质2. ②运用了不等式的性质1. ③运用了不等式的性质3.[例2]判断下列运算是否正确,请说明理由. ∵2<3 ∴2a <3a .点拨:在此没有说明a 的取值,所以要分三种情况讨论.即a >0,a =0,a <0. 解:此运算错误.当a >0时,则有2a <3a . 当a =0时,不等式不成立. 当a <0时,则有2a >3a .[例3]根据不等式的性质.把下列不等式化为x >a 或x <a 的形式. (1)2x -15<5 (2)3x >2x +1 (3)3x +1<5x -2(4)31x >51x +1. 解:(1)先由不等式基本性质1,两边都加15得:2x <5+15.即2x <20. 再由不等式基本性质2,两边都乘以21得:x <10. (2)由不等式的基本性质1,两边都减去2x 得:3x -2x >1.即x >1.(3)先由不等式的基本性质1,两边都加上-5x -1得:3x -5x <-2-1,即-2x <-3.再由不等式的性质3,两边都除以-2得:x >23(注意不等号变向). (4)先由不等式的基本性质1,两边都减去51x 得:31x -51x <1,即152x <1.再由不等式的基本性质2,两边都乘以215得:x <215.[例4]在下列横线上填上适当的不等号(>或<)(1)如果a >b ,则a -b __________0. (2)如果a <b ,则a -b __________0. (3)如果2x <x ,则x __________0.(4)如果a >0,b <0,则ab __________0. (5)如果a +b >a ,则b __________0.(6)如果a >b ,则2(a -b )__________3(a -b ). 解:(1)> (2)< (3)< (4)< (5)> (6)<●作业指导 随堂练习1.解:(1)先由不等式的基本性质1,两边加1得:4x >2+1. 即4x >3.再由不等式基本性质2,两边都除以4得:x >43. (2)由不等式的基本性质3,两边都乘以-1得:x >-65. 2.解:(1)不成立. (2)不成立.(3)由不等式的基本性质3得成立. 习题1.21.解:(1)< (2)< (3)> (4)<2.解:(1)先由不等式的基本性质1,两边都减去3得:5x <-1-3 即5x <-4.再由不等式的基本性质2,两边都除以5得:x <-54. (2)由不等式的基本性质3,两边都乘以-3得:x <-15.试一试解:当a >0时,2a >a ;当a =0时2a =a ;当a <0时,2a <a .§1.2 不等式的基本性质●温故知新 想一想,做一做填空1.等式的两边都加上或都减去__________,结果仍是等式. 2.等式两边都乘以或除以__________,结果仍是等式. 3.用__________连接而成的式子叫做不等式.4.①若a 为非负数,则a __________(列出不等式). ②若a 为非正数,则a __________. ③若a 不小于3,则a __________. ④若a 不大于-3,则a __________. 你做对了吗?我们一起来对对答案:1.同一个整式2.同一个不为零的整式3.“<” “≤” “>” “≥”4.①≥0 ②≤0 ③≥3 ④≤-3 看看书,动动脑填空1.不等式的两边都加上(或减去)同一个整式,不等式的方向__________. 2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________. 3.不等式两边都乘以(或除以)同一个负数,不等号方向__________.2.不等式的基本性质作业导航理解并掌握不等式的基本性质,会运用不等式的基本性质有根据地进行不等式的变形. 一、选择题1.若a +3>b +3,则下列不等式中错误的是( ) A.-55b a -< B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b ) 2.若a >b ,c <0,则下列不等式成立的是( ) A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c3.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )图1A.b -a >0B.ab >0C.c -b <c -aD.ab 11> 4.已知4>3,则下列结论正确的是( )①4a >3a ②4+a >3+a ③4-a >3-aA.①②B.①③C.②③D.①②③ 5.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA.2B.3C.4D.5 二、填空题(用不等号填空)6.若a <b ,则-3a +1________-3b +1.7.若-35x >5,则x ________-3. 8.若a >b ,c ≤0,则ac ________bc .9.若ba b a --||=-1,则a -b ________0. 10.若ax >b ,ac 2<0,则x ________a b . 三、解答题11.指出下列各题中不等式变形的依据.(1)由21a >3,得a >6. (2)由a -5>0,得a >5. (3)由-3a <2,得a >-32. 12.根据不等式性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9(2)6x <5x -3 (3)51x <52 (4)-32x >-1 13.如果a >ab ,且a 是负数,那么b 的取值范围是什么?*14.已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.参考答案一、1.B 2.B 3.D 4.C 5.B二、6> 7.< 8.≤ 9.< 10.<三、11.略12.(1)x >2 (2)x <-3 (3)x <2(4)x <23 13.b >1 14.m <mn 2<mn§1.2 不等式的基本性质(15分钟练习)班级:_______ 姓名:_______一、快速抢答用“>”或“<”填空,并在题后括号内注明理由:(1)∵a >b∴a -m ________b -m ( )(2)∵a >2b∴2a ________b ( ) (3)∵3m >5n ∴-m ________-35n ( ) (4)∵4a >5a∴a ________0( )(5)∵-24n m -< ∴m ________2n ( )(6)∵2x -1<9∴x ________5( )二、下列说法正确吗?(1)若a <b ,则ac 2<bc 2.( )(2)若b <0,则a -b >a .( )(3)若x >y ,则x 2>y 2.( )(4)若x 2>y 2,则x -2>y -2.( )(5)3a 一定比2a 大.( ) 三、认真选一选(1)若m +p <p ,m -p >m ,则m 、p 满足的不等式是( )A.m <p <0B.m <pC.m <0,p <0D.p <m(2)已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x >yB.a 2x >a 2yC.a -x <a -yD.x >-y(3)实数a 、b 满足a +b >0,ab <0,则下列不等式正确的是( )A.|a |>|b |B.|a |<|b |C.当a <0,b >0时,|a |>|b |D.当a >0,b <0时,|a |>|b |四、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式 (1)3432-<x (2)-0.3x >0.9(3)x +2≤-3(4)4x ≥3x +5参 考 答 案一、(1)>,不等式的性质1(2)>,不等式的性质2(3)<,不等式的性质3(4)<,不等式的性质1(5)>,不等式的性质3(6)<,不等式的性质1和2二、(1)×(2)√(3)×(4)×(5)×三、(1)C (2)C (3)D四、(1)x<-2 (2)x<-3 (3)x≤-3-2(4)x≥5。

等式性质和不等式性质的区别

等式性质和不等式性质的区别

等式性质和不等式性质的区分等式的两边同时乘以或除以同一个不为0 的数,等式仍旧成立。

不等式的两边同时乘以或除以同一个正数,不等式仍旧成立;不等式的两边同时乘以或除以同一个负数,不等式转变方向。

等式的性质1、等式两边同时加上或减去同等式的两边同时乘以或除以同一个不为0 的数,等式仍旧成立。

不等式的两边同时乘以或除以同一个正数,不等式仍旧成立;不等式的两边同时乘以或除以同一个负数,不等式转变方向。

等式的性质1、等式两边同时加上或减去同一个整式,等式仍旧成立。

2、等式两边同时乘或除以同一个不为0的整式,等式仍旧成立。

3、等式具有传递性。

假设a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an。

不等式的性质1、不等式两边相加或相减同一个数或式子,不等号的方向不变。

〔移项要变号〕
2、不等式两边相乘或相除同一个正数,不等号的方向不变。

〔相当系数化1,这是得正数才能使用〕
3、不等式两边乘或除以同一个负数,不等号的方向转变。

〔÷或×1个负数的时候要变号〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等式与不等式的区别
等式和不等式是数学中常见的两种数学表达式,它们在解方程、比
较大小等方面起着重要的作用。

本文将探讨等式与不等式的概念、特
点以及它们之间的区别。

一、等式的概念及特点
等式是指左右两边相等的数学表达式。

它可以使用等号“=”进行表示,例如:2 + 3 = 5。

在等式中,等号的左边称为等式的左边(左式),右边称为等式的右边(右式)。

等式的左右两边可以有相同或者不同
的数学运算。

等式的特点主要有以下几点:
1. 对称性:等式的左右两边可以互换位置,等式仍然成立。

例如:
3 + 2 = 2 + 3。

2. 运算性:等式的左右两边可以进行相同的运算,等式仍然成立。

例如:2 + 3 - 1 = 4。

3. 等价性:等式的左右两边具有相同的数值,可以互相代替。

例如:
2 +
3 = 5,可以将5代替等式的左边或右边。

二、不等式的概念及特点
不等式是指左右两边不相等的数学表达式。

它可以使用不等号“<”、“>”、“≤”、“≥”等进行表示,例如:2 + 3 < 7。

在不等式中,不等号的
左边称为不等式的左边(左式),右边称为不等式的右边(右式)。

不等式的左右两边可以有不同的数学运算。

不等式的特点主要有以下几点:
1. 不对称性:不等式的左右两边不能互换位置,不等式的方向性很
重要。

例如:2 + 3 < 7,不能写成7 < 2 + 3。

2. 运算性:不等式的左右两边可以进行相同或者不同的运算,但是
不等式的方向可能发生改变。

需要注意运算的结果对不等式的影响。

例如:2 + 3 < 5,可以进行运算得到5 < 5,进而可以推断出不等式不
成立。

3. 范围性:不等式可以表示一定范围的数值大小关系。

例如:2 + 3 < x,表示x的取值范围大于5。

三、等式和不等式的区别主要体现在以下几个方面:
1. 符号差异:等式使用等号“=”进行表示,而不等式使用不等号“<”、“>”、“≤”、“≥”。

2. 方向性:等式具有对称性,左右两边可以互换位置;而不等式具
有不对称性,左右两边不能互换位置。

3. 结果差异:等式的左右两边具有相同的数值,可以互相代替;而
不等式的左右两边具有不同的数值,不能互相代替。

4. 范围性:等式表示两个数值相等,不等式表示两个数值大小关系。

总结:
等式和不等式在数学中有着不同的表达方式和数学特性。

等式强调两个数值相等,可以进行代入和运算;而不等式强调两个数值大小关系,可以表示范围性的数值关系。

在解方程、比较大小等问题中,我们需要根据具体的情况选择使用等式还是不等式,以便更准确地描述和解决问题。

相关文档
最新文档