气水热液矿床概论
第四章 气水热液矿床概论
❖ ②酸碱度
❖ 在成矿作用过程中,气水热液的化学性质是在不断 变化的,它随着温度、压力以及流经围岩的性质、 pH值和Eh值的变化而变化,并且也因溶液本身的化 学成分之改变,使化学性质发生变化。
❖ 随着酸碱度的变化,金属物质开始沉淀。
❖ ③热液的氧化—还原条件( Eh值)
❖ 如,在还原条件下,Fe2+比Fe3+占优势,硫化物要比 硫酸盐多得多,而且As、Sb等也主要是呈低价 ( As3+、Sb3+ )状态出现。
❖ 氧对矿床中矿石的质量组合和原生分带的影响也较为明显。
❖ 在自然界中,那些既能形成硫化物又能形成氧化物 的金属元素(如Fe、Sn等),在氧浓度高的情况 下,形成氧化物而沉淀;而在饱含硫化氢的溶液中 氧浓度低的情况下,主要形成硫化物沉淀。
❖ 实际上,在成矿过程中,游离氧的浓度是波动的, 因而氧化与还原反应也可以是交替发生的。应当指 出,成矿溶液所发生的氧化—还原反应,虽与游离 氧有主要的关系,但溶液的pH值和围岩中的物质, 以及温度和各种离子的氧化—还原电位的高低,都 可有所影响。
通过各种方式形成的具有较高温度和压力、以水为主的气态 和液态溶液。它在临界温度以上时为气态,当温度降至临界 点以下时则呈液态(纯水的临界温度为374℃).在高温情况 下,气、液两态往往同时存在,故称之为气水热液,简称 “热液”。 ❖ 气水热液的成分以水为主,并含有F、Cl、Br、B、S、 C以及多种成矿元素Sn、Mo、Bi、Fe、Cu、Pb、Zn、Au、 Ag、Sb、Hg…
❖ 所以水在热液中,对成矿物质的运移和沉淀起着重要作用。
❖ 二、氧(O2)
❖ 氧是分布最广、化学性质最活泼的元素之一,对气水热液的 成矿作用起着重大的影响。
❖ 游离氧是自然界中最强烈的氧化剂,在氧化—还原反应中起 着决定性的作用,尤其对那些变价元素(Fe、Mn、Ni、Co、 U、S、As等)的影响最大。
矿床学6-热液概述
3.上地幔
地幔流体的活动可以把分散在上地幔中的成矿物质活化、迁移到地壳 中成矿。
如胶东半岛金矿、四川大水沟碲—金矿以及河北东坪金矿等,已经有不 同的研究者相继提出地幔流体和地幔物质参与成矿的认识。
由于受技术条件的限制,对参与热液成矿作用的地幔成矿物质的识别, 目前尚处在不断的探索之中。
按Holland的实验,只有当与硅酸盐熔浆共存的蒸气相中H2O分压超过 4.94×107Pa时,黑云母和角闪石才可从英安质熔体中析出,形成斑晶。这些水 可以构成岩浆流体的主要来源。对热液矿床中矿物及其中流体包裹体氢氧同位 素成分的分析结果,也证实部分热液矿床形成的早期,确有岩浆流体存在。
Bumham(1979)实 验表明,岩浆中溶解的 H2O重量百分比随压力 的升高而加大。
三、热液中主要挥发组分的性状及其影响
热液中挥发组分对成矿物质活化、搬运和沉淀都有重要影响, 所以这些组分在热液中的化学性质和存在状态是值得我们探讨的。
1、卤族元素:热液中主要卤族元素是F和Cl。
a、卤族元素的化合物(尤其是氯化物)是强电解质,电解后强烈影响 热液的pH值;
b、大部分金属元素的卤化物都有较大的溶解度,很多金属元素均可与 卤族元素形成易溶络合物,还有部分卤化物高温时具有挥发性质。卤族 元素的这些重要性质有助于热液中有用组分的迁移。
海水热液及其成矿模式
海水可以在海底岩石中下渗几 公里,甚至十几公里,然后变成上 昂热液,在深部的环流过程中,可 以与所途径的岩石发生水岩反应, 变成含矿热卤水,然后沿着海底断 裂上升至海底,形成海底喷发和海 底“烟囱”。
近代海水的δD和δ18OH2O都近 于0‰(或均为1‰±5‰)含SO42-, 盐度3.5%。
矿床(4)气水热液矿床概论
图6-3
黑矿型矿床简要横剖面图
(五)变质热液 1. 成因 变质作用过程中,与变质岩石平衡、或从中分出的水溶液。 变质作用过程中,与变质岩石平衡、或从中分出的水溶液。 影响因素: 影响因素: a 原始地质体的成因; 原始地质体的成因; b 变质作用强度; 变质作用强度; c 变质作用类型(接触变质和区域变质)。 变质作用类型(接触变质和区域变质) 沉积岩(含水30%)→绿片岩相(6%)→角闪岩相(1-2%) 绿片岩相( ) 角闪岩相 角闪岩相( 如:沉积岩(含水 ) 绿片岩相 ) →麻粒岩相(0.5%) 麻粒岩相( 麻粒岩相 ) 2. 变质热液中的矿质来源 a 变质过程中来自原岩; 变质过程中来自原岩; b 从流经岩石中萃取; 从流经岩石中萃取; c 深部来源。 深部来源。 3. 特征: 特征: H2O的δ18O = 5‰∼25‰,δD = -20‰∼-65‰,多富 的 ∼ , ∼ ,多富CO2
四、成矿元素在热ቤተ መጻሕፍቲ ባይዱ中的迁移与沉淀
(一)成矿元素的迁移方式 矿石中金属元素的化合物,并不代表其在热液中的存在形式。 矿石中金属元素的化合物,并不代表其在热液中的存在形式。 FeS(不溶) 例: FeCl2(可溶)+ H2S = FeS(不溶)+ 2HCl 可溶) 1. 卤化物形式 高温下可能, (1)气态挥发物(如FeCl3、AuCl3、SnF4),高温下可能,温度降低 气态挥发物( 发生水解。 发生水解。 如:SnF4+2H2O=SnO2+4HF (2)可溶盐(简单离子),高温下可能,随温度降低,H2S和H2CO3解 可溶盐(简单离子) 高温下可能,随温度降低, 可能性减小。 离,可能性减小。 2. 胶体溶液形式。高温下不稳定,并且会不断有来自围岩的电解质, 胶体溶液形式。高温下不稳定,并且会不断有来自围岩的电解质, 因此仅在低温、局部可行。 因此仅在低温、局部可行。
矿床学课件第五章气水热液矿床共61页
(1)超高温(T>400℃)时,H2S发生分解; T>1500℃时,则全部分解为气体分子 H2S = 2H2+S2 随着温度下降,H2和S2 结合成H2S。
(2)高温热液阶段(T=300-400℃),未分解 的H2S以中性分子存在,很少形成硫化物,或只 形成低硫的硫化物如磁黄铁矿(FeS)、毒砂 (FeAsS)、辉钼矿(MoS)等。
21
三、气水热液的运移
13
3)氧—— O2
主要是氧化作用。氧的状态随空间不同而发生改变 (1)在深部,气水热液中含氧较少,有利于形成硫
化物和元素低价离子的化合物; (2)在浅部,气水热液中游离氧浓度增加,形成高
价元素离子的氧化物和硫酸盐矿物。
有些元素具有显著亲氧性,如铀和钨等,在自然条件下并 不形成硫化物,直到热液中足够的氧离子浓度才沉淀。有 些元素如金、银、铋等在热液中又不能形成氧化物,在还 原条件下可形成自然元素沉淀。
3
2、含矿气水热液
含矿气水热液是指含有用组分的气水热液,简 称含矿热液。
3、气水/气化热液矿床
在地壳岩石中由各种来源的含矿气水热液通 过交代、充填等作用而形成的矿床,称为气水 热液矿床,又称气化热液矿床。
4
二、矿床特征
1、矿床产于已固化的岩石中,即成矿晚于 围岩,属于后生矿床;
2、矿体主要呈透镜状、囊状、不规则状, 有时也呈似层状;
12
(3)中温热液阶段(T=300-200℃),H2S在 弱碱—碱性环境易分解成离子状态 H2S——HS-+H+ HS-——S2-+H+ 可形成高硫的硫化物如黄铁矿、胶黄铁矿等。
(4)低温热液阶段(T<200℃),SO42- 可形 成硫酸盐矿物如石膏、重晶石等。 随着温度下降,H2S在水中的溶解度逐渐增大,故 在低温-中温阶段易于形成大量的硫化物堆积沉淀。
05第五章+气水热液矿床
地下热卤水的形成关键在于地下水如何形成含矿的热液,形成的方式可能有多种多样:
① 流经含蒸发盐类的地层,溶解盐类使本身的含盐度增高。(35%)。
② 从围岩、矿源层、先期已形成的矿床中获取成矿物质,地下水的温度越高摄取的成矿物质越多。
③ 与其它含矿热液混合。
促使成矿物质从地下水含矿热液中沉淀的因素:
④ 气水热液作用于围岩时,常发生交代作用,使其成分、结构、构造发生变化,产生各种类型的围岩蚀变,因此气水热液矿床往往都发育有较强烈的围岩蚀变。围岩的物理性质和化学性质对气水热液的成分及成矿的方式影响也很大。矿床形成方式以充填作用和交代作用为主。
⑤ 成矿作用具有多阶段性。
⑥ 构成矿床的金属矿物以金属硫化物为主(Cu、Mo、Pb、Zn、Hg、Sb、Ag)另外有部分金属氧化物和含氧盐(W、Sn、U……)
形成火山熔浆的上地幔或深部地壳。
上升运移过程中从围岩中萃取。
二、地下水热液
地下水向下渗透时,温度可升高至200℃~300℃。使其升温的因素很多,如地热梯度,岩浆烘烤,放射性元素蜕变,等。这种加热了的地下水在环境过程中从围岩矿源层或早先形成的矿床中溶解出大量成矿物质,形成地下水含矿热液。(地下热卤水),地下水主要是由大气降水下渗面形成。根据研究推测,含矿的地下热卤水,从中沉淀出矿物后,可重新加入到下渗水流中,形成循环热流(图)。
三、变质热液
(在变质过程中产生的含矿热液)
主要是指在区域变质作用过程中,由于温度、压力升高,原岩中的粒间水以及矿物的结晶水,层间水等从母体中析出,成为变质水。
矿质+变质水→含矿变质热液:(在析出的过程中,将母岩中的成矿物质带出。在流动过程中溶解围岩中的成矿物质,使本身的含矿性增高。深部成矿物质的加入)
ch6气水热液矿床概论
技术的研究,包括提取技术、环境保护等方面的研究。
未来发展趋势
1 2 3
跨学科研究
未来研究将更加注重跨学科的研究方法,包括地 质学、地球物理学、地球化学、生物学等多个学 科的交叉融合。
信息化技术的应用
随着信息化技术的发展,未来将更加注重对信息 化技术的应用,如大数据分析、人工智能等,以 提高研究效率和精度。
成矿流体形成与演化
01
初始成矿流体
由岩浆熔融体冷却固化释放出的残余气液和岩浆期后热液组成,富含挥
发分、金属元素和硅酸盐等。
02 03
演化过程
成矿流体在运移过程中不断演化,受到温度、压力、组分分异作用等因 素影响。随着流体的演化,金属元素逐渐富集,形成具有工业价值的矿 床。
流体性质
成矿流体性质多样,包括气液相流体、含硫化氢和二氧化碳的酸性流体、 含盐水溶液等。这些流体的物理化学性质对成矿作用和矿床类型具有重 要影响。
成矿物质来源
岩浆岩
气水热液矿床的成矿物质主要来源于岩浆岩,特别是中酸 性岩浆岩。在岩浆熔融和结晶过程中,不同元素以不同方 式富集,为成矿提供了丰富的物质基础。
围岩
气水热液在与围岩接触过程中,通过交代、渗透等方式从 围岩中获取成矿物质,使矿质得以补充和聚集。
大气降水
大气降水在渗入地下过程中与岩浆岩接触,通过化学反应 和溶解作用携带了部分成矿物质,成为成矿流体的组成部 分。
04
气水热液矿床的勘探与开发
勘探方法与技术
地质勘探法
通过研究地层、构造、岩浆岩 等地质特征,分析成矿条件,
预测矿床位置。
地球物理勘探法
利用物理手段探测地下地质构 造和矿体,如重力、磁力、电 法等。
地球化学勘探法
第五章:气水热液矿床
成矿流体盐度和密度测试;
成矿流体pH值、Eh值、fO、fs分析; 成矿过程模拟;
思考如下问题:
1、热液中卤族元素、硫、二氧化碳等挥发组分的性状及其对成 矿元素迁移和沉淀有何影响? 2、金属元素在热液中可能的迁移形式有哪些?各需何种条件? 3、导致热液中成矿元素沉淀成矿的重要因素有哪些? 4、充填矿床常具有哪些识别特征? 5、交代矿床常具有哪些识别特征? 6、交代作用有何特点? 7、围岩的物理化学性质对成矿有何重要影响? 8、何谓围岩蚀变?研究围岩蚀变有何意义? 9、划分矿化期、矿化阶段及判别矿物生成顺序的主要标志有哪 些?
第五章 气水热液矿床概论
一、气水热液概念、性质及相关的矿床类型
二、气水热液的类型及其组成特征
三、成矿元素在热液中的迁移方式与影响其沉淀的因素 四、热液矿床的主要成矿作用 五、围岩蚀变 六、热液矿床的一般研究方法
一、气水热液概念、性质及相关的矿床类型及工业意义
气水热液的概念:地下形成的含多种挥发组分和成矿元素 的气态或液态水溶液。(简称热液) 气水热液的性质: 1、 气水热液的成分 a、主要成份:H2O(盐度一般为几%—几十%) b、其他挥发组分:HCl、HF、H2S、CO2、B、(As、Sb) c、主要金属元素:K、Na、Ca、Mg, d、常见成矿金属元素: Fe 、Mn、Cu 、 Pb、 Zn 、 W、 Sn 、 Mo、Bi、Sb、Hg、Au、Ag、LC、O、S、Pb、Si、B、H、He、Sr等);
成矿流体来源研究
H-O同位素研究
成矿年代研究
放射性同位素研究(U-Th-Pb法、K-Ar法、Ar-Ar法、Rb-Sr 法、Re-Os法等)
热液矿床形成的物理化学条件
成矿温度和成矿压力测定-矿物温度计和包裹体测温(均一 温度、爆裂温度); 成矿热液(流体)成分测试;
矿床学04气水热液矿床
• 1。岩浆中含有少量的硫和Cu、Pb、Zn、 Mo、Ag等成矿元素,它们在岩浆的结晶过 程中,较难进入造岩矿物的晶格,所以会 在剩余的岩浆中逐步富集。岩浆发生水过 饱和时分出独立的水相,这些矿质也要遵 循分配定律,一部分留在剩余岩浆中,一 部分进入分出的水相,形成含矿的水溶液。 越到岩浆演化的后期,剩余岩浆中水质和 矿质也越多,也就更容易形成含矿的热水 溶液。
• 所有这些形式的水,数量上可以达到岩石 总重量的30%,甚至更多一些。
• 岩石受到变质,这些水就被排除,最初岩 石中的游离水很快的减少,变质加深温度 超过300℃时,所有其余形式的水也会排出。 在变质很深的岩石中,保存下来的各种形 式的水含量很少超过1~2%。
• 据计算,假如泥质沉积岩的密度为2.5,水 含量为5%,变质时失去大部分水,变为含 水1%的变质岩,则1立方公里的泥质沉积 岩可以放出一亿吨水。显然,岩石在变质 过程中能产生大量的水,足以形成水溶液。
• 如果热液中含硫很多,就能形成诸如 [Co(HS)]+、HgS(H2S)2、[Zn(HS)3]-等等硫 氢化物络合物质以及(HgS2)2-、[SbS4]3-、 [MoS4]2-等等硫化物络合物质。
• 在富氯的溶液中,能够形成氯化物络合物 质,如象(CuC13)2-、(SnC16)2-、(SbC16)-、 ZnC12、FeC13、(AgC14)3-等等。溶液中硫 离子的浓度很低时,可以这种方式搬运大 量金属。
• 变质水的分离和运移大多发生在深度小于5 公里的地方,在更深的地方由于压力大, 温度高,部水会从变质岩中被赶出。所 以在5公里以下的地方往往只有岩浆水存在。
• (3)天水、渗流水、海水、深部循环水起源 的热水溶液
• 自由循环的天水可以在适当的水文地质条 件下渗入地壳深部,既可由于地球内部的 热也可由于深部岩浆的热,使它们成为热 水溶液。在一些近代火山活动地区,常可 看到被岩浆或火山气体所加热的在深部循 环的渗流水。
矿床学06气水热液矿床概论
矿床学06气水热液矿床概论1. 引言气水热液矿床是地质中含有气体、水和热液的矿床。
它们通常形成于构造运动活跃的地区,并与岩浆活动和热液活动有关。
本文将对气水热液矿床的形成机制、分类、主要特征和勘查方法进行概述。
2. 气水热液矿床的形成机制气水热液矿床的形成机制是由于地壳中的构造运动,导致岩浆在地下逆浸入,形成熔融岩浆库,同时地下水也因大地构造的运动而发生循环。
当熔融岩浆库和地下水循环相遇时,岩浆迅速冷却,热液形成。
热液含有丰富的金属和非金属元素,经过长时间的沉积和成矿作用,形成气水热液矿床。
3. 气水热液矿床的分类气水热液矿床可以根据热液的来源、成分和温度进行分类。
3.1 火山喷发型气水热液矿床火山喷发型气水热液矿床是由火山作用引起的热液活动形成的矿床。
火山岩浆中的含有丰富的挥发性组分,在火山喷发过程中与地下水相遇,形成热液。
这种类型的矿床常见于火山带。
3.2 岩浆热液型气水热液矿床岩浆热液型气水热液矿床是由岩浆活动引起的热液活动形成的矿床。
岩浆通过裂隙和断裂进入地下水系统,形成热液。
这种类型的矿床常见于火山地区和地壳褶皱带。
3.3 地壳深部热液型气水热液矿床地壳深部热液型气水热液矿床是由地壳深部的地热活动引起的热液活动形成的矿床。
由于地下深部的高温和高压条件,地下水在地壳深部形成高温高压下的热液。
这种类型的矿床常见于板块构造活跃的地区。
4. 气水热液矿床的主要特征气水热液矿床具有以下主要特征:•高温高压条件下形成:由于热液形成的地下条件通常是高温高压,导致矿床中的矿物含量丰富。
•矿物多样性:气水热液矿床中的矿物种类繁多,包括金属矿物、非金属矿物以及稀有地球元素矿物。
•成矿作用长时间:气水热液矿床的形成需要长时间的矿物沉积和成矿作用,矿床通常具有较大的规模。
•区域一致性:气水热液矿床常常呈现区域一致性,即在一个特定的地区内出现多个矿床。
5. 气水热液矿床的勘查方法气水热液矿床的勘查方法包括地质勘查、地球化学勘查和物理勘查。
第六章 气水热液矿床概论
(4)硫(S)
成矿热液中,硫以H2S形成存在,并具电离: H2S ≒H+ +HS— HS— ≒H+ + S2— [S2—] = K1· K2· [H2S] / [H+]2
溶液中[S2—]增加,对硫化物大量形成具重要意义。
S对热液成矿作用的影响:
S2— → [S2]2— →S0 → 还原环境 形成自然 形成金属 硫,主要 硫化物 见于火山 喷气中 S4+ →S6+ →氧化程度增加 与O结合形成SO2, 近地表时+H2O形成 亚硫酸氧化成硫酸, 形成硫酸盐矿物。
硫的地球化学性状决定硫化物主要在中、深和碱性 条件下形成,而硫酸盐只能在近地表环境下形成。
4)溶解的气体:H2S、CO2、HCl等; 5)其它微量元素:主要是稀散元素:Li、Rb、Cs、Br、 I、Se、Te等。
3、气水热液组份的性状:
(1)水
水是气水热液的主要组分,它不仅是成矿物质的搬运介质,而且在 成矿作用的地球化学过程中起着极大的作用。
a.水解作用:溶解物质或使某些矿物沉淀。 b.水的电离:H2O ≒H+ +OH—,影响溶液的pH值,对成
4)深层地下水(深钻和深部矿井中获得的)的成分;
5)现代地热系统的详细研究。
2、气水热液的成分
1)最主要组份:水(H2O)。 2)基本组份:主要的造岩元素和挥发性组份:Na、K、 Ca、Mg、Sr、Ba、Al、Si等;Cl、F-、SO42-、P等。 3)金属成矿元素:
矿床学第五章气水热液矿床
人们发现许多金属硫化物在胶体溶液中的含量,比真 溶液中至少大一百万倍。
胶体特性: ① 胶体质点具有特别大的表面积,具巨大的表面能
和吸附力。
② 胶体质点带有一定的电荷,同一胶体中由于相同 电荷的排斥保持胶体的稳定性。
③ 胶体溶液能在任何物理化学条件下产生,且在低 温条件下特别稳定。
通
道
热液产生的孔隙 热液的压裂、隐爆、溶蚀和交代等作用产生的孔隙
以上三种孔隙中,构造孔隙对热液运移和矿质沉淀成矿更具重要意义。
构造孔隙和热液产生的孔隙为次生孔隙。
整理课件
26
1)原生孔隙:
指岩石生成时就存在的孔洞、裂隙(岩浆岩颗粒 间的孔隙、火山岩中的气孔、沉积岩的层间裂 隙)。花岗岩孔隙度0.37-0.5%,沉积岩孔隙度 5-30%,对含矿热液的运移来说有效孔隙度才 有意义,也就是相互连通的孔隙越多,对热液的 流动越有利。
如岩浆上升到浅部,因压 力较低而使岩浆分馏,水 可呈蒸气状态逸出,然后 再聚集成热水溶液;若深 度较大、压力较高,则岩 浆分馏作用可形成超临界 溶液,冷却时直接转变成 热水溶液。
整理课件
2、变质热液
通过变质作用从受变质的围岩中析出后汇集而成的热水溶 液。据A.萨乌科夫计算,密度为2.5×103(kg/m3)的 泥质沉积岩,变质时将失水5-1%;若以4%计,则1km3 的沉积物中将释放出1亿t水。矿质来源:从变质原岩中, 从变质水流经的岩石中萃取的和深部的物质。
5、具有明显的围岩蚀变。
整理课件
三、研究意义
1、工业意义
矿产类型繁多
主要金属矿种如Fe、Mn,Cu、Pb、Zn、W、 Sn、Mo、Sb、Hg,Au、Ag,Li、Be、Nb、 Ta,U、Th;
第五章 热液矿床概论
4. 大气水热液(meteoric fluid)
第 一 节 含 矿 热 液 的 种 类 与 来 源
东太平洋北纬21°所进行的海底调查中发现海底 热水活动正在形成块状硫化物矿床; 冲绳海槽和西南太平洋发现类似的海底成矿作用; 目前已经发现几百个正在活动的海底喷流热卤水 池。 大量的岩浆岩及其相关流体的氢、氧同位研究表 明,在岩浆流体成矿系统中早期成矿以岩浆流体 为主 ,但中晚期通常有不同比例的大气水的混入, 即使是发育于斑岩体内外接触带的斑岩型铜矿也 都显示成矿后期有大气水的加入,甚至在一些热 液矿床中成矿流体以大气水为主。
热液矿床概念、形成物理化学条件
第 五 章 热 液 矿 床 概 论
传统上一般认为热液矿床的形成深度不超过 6~8Km,但
– 20世纪80、90年代在前苏联科拉半岛的超深钻11km 深度的裂隙中发现了含矿热液,在德国巴伐利亚KTB 超深钻9.1km深度上发现了丰富的含矿卤水。 – Barnicoat等(1991)研究了西澳大利亚南克劳斯省 产于角闪岩相和低麻粒岩相区的2个热液金矿床,发 现其成矿温度分别可达500~550 ℃和740℃。 – Groves等(1992,1993)研究认为,从次绿片岩相 到麻粒岩相的变质岩中都有热液脉状金矿产出,反映 至少在15km以上的地壳剖面中,在不同的垂向深度 上可连续形成金矿,成矿温度变化在180~700℃之间, 成矿压力最高可达5×108P来 源
前述的各种来源的热液均可把地壳岩石中的成 矿物质活化出来,并使之迁移、富集成矿。热 液沿围岩的裂隙、孔隙渗滤、运移时,可以与 围岩中组分发生反应,这一过程通常称为水岩 反应。通过水-岩反应,一部分物质溶解,使热 液中金属组分含量升高,并使围岩中原有金属 元素的含量减小。 – 例如:江西德兴铜矿,远离矿体的九岭群中 元古界火山-沉积岩系平均含铜55×10-6;紧 邻矿化-蚀变带的外围有一环形含铜量低值区, 宽2~5 km,平均含铜40×10-6;而在矿化蚀 变带中含铜在(100~1000)×10-6以上,矿 化蚀变带中的铜有一部分来自铜元素降低的 围岩。在成矿物质从围岩滤出的过程中,围 岩可发生或强或弱的变化。
第五章 热液矿床概论
第五章热液矿床概论(气水)热液指形成于地壳一定深度的,具有一定的温度(500-50℃)、压力的气液两相体系,称为气水热液,简称热液。
气水热液组成:以水为主,含挥发组份(H2O、F、Cl、B、S、P等),并经常含有各种成矿组份,故又称之为含矿(气水)热液。
当含矿气水热液在一定的地质构造中移动时,由于温度、压力和组份浓度等物理化学条件的变化,平衡遭到破坏,其中的成矿物质通过充填或交代作用,发生沉淀、聚集,以致形成矿床,这类矿床称为(气水)热液矿床。
①成矿晚于围岩,属于后生矿床。
②成矿温度400℃-50℃之间,少数可达500℃或更高,成矿深度变化较大。
③构造对气水热液矿床的形成有明显的控制作用。
它既是气水热液运移的通道,又是成矿组分沉淀的场所。
④气水热液矿床往往都发育有较强烈的围岩蚀变。
⑤成矿作用具有多阶段性。
⑥矿石组份:构成矿床的金属矿物以金属硫化物(Cu、Mo、Pb、Zn、Hg、Sb、Ag)为主,另外有部分金属氧化物和含氧盐(W、Sn、U……)。
⑦矿体主要呈透镜状、囊状、不规则状,有时也呈似层状。
⑧矿石组构:具充填和交代形成的结构构造,如脉状、网脉状、浸染状、块状构造,胶状、侵蚀、残余、骸晶结构等。
含矿热液的种类岩浆成因热液变质成因热液建造水大气水热液幔源初生水热液1. 岩浆成因热液岩浆成因热液指在岩浆结晶过程中从岩浆中释放出来的热水溶液。
水从岩浆中分出的主要因素是由于温度和压力的降低。
岩浆成因热液中常含有H2S、HCI、HF、SO2、CO、CO2、H2、N2等挥发组分,故具有很强的形成金属络合物并使其迁移活动的能力。
此外有高盐度、富K+的特征。
人们不可能直接得到岩浆水,但通过氢-氧同位素的计算可以确定岩浆水的参与:岩浆成因热液:δ18O:+6~+9‰,δD:-48~-80‰2 .变质成因热液指岩石在进化变质作用过程中(增温增压)所释放出来的热水溶液。
岩石遭受进化变质作用时,总伴随着矿物的脱水反应,而且脱水同变质的强度成正比。
汽水热液矿床各论
不同类型接触交代矿床地质特征一览表
矿床 类型 相关 岩体 矿体形态 矿石组成 矿石矿物 白钨矿 脉石矿物 贫铁矽卡岩矿 湖南柿竹园 物 湖南瑶岗仙 透辉石、钙铝 辽宁杨家杖子 榴石 矿床实例
钨矿 中酸性 似层状、脉状
钼矿 酸性岩 层状、透镜状 铅锌 中酸性、脉状、透镜状、 中性岩 层状 锡矿 酸性花 脉状、透镜状 岗岩 铍矿 酸性花 脉状、薄层状矿 体晚于矽卡岩 岗岩
钙质矽卡岩 镁质矽卡岩 3、矽卡岩(狭义矽卡岩、传统矽卡岩) 灰岩 白云岩、白云质灰岩 产出围岩 指产于中酸性侵入体与碳酸盐岩石接触带,在中等 石榴石、辉石, 镁橄榄石、透辉石、 深度条件下,经气水热液的高温交代作用形成的蚀 符山石、硅灰石、 尖晶石、硅镁石、蛇 矿物组成 方柱石及绿帘石、 纹石、金云母等 变岩石 阳起石、透闪石 主要由钙、铁、镁、铝的硅酸盐矿物组成
Cu品位可达2-8%,此外,矿石中常含较多
的磁铁矿、黄铁矿、磁黄铁矿 ;
(5)以中小型矿床为主,除Cu外,尚有Mo、
Pb、Zn、Au等伴生元素
矿例:河北寿王坟矿床
安徽铜官山矿床、
辽宁华铜铜矿床
(五)接触交代矿床的主要类型
其它类型接触交代型矿床 (3) 钨矿床-湖南柿竹园等 (4) 钼矿床-辽宁杨家杖子钼矿床 (5) 金ห้องสมุดไป่ตู้床—吉林兰家金矿床 (6) 锡矿床-云南个旧锡矿床 (7) 铅、锌矿床-湖南水口山铅、锌矿床
岩等)接触带及其附近,由含矿气水热液通过交代作
用形成的,在空间和成因上与矽卡岩关系密切的一 类矿床。
“矽卡岩矿床(Skarn Deposit)”
2、接触交代矿床的工业意义
• 矿种多(Fe、Cu、W、Sn、Mo、Pb、Zn、Au、Be、B、石棉等) • 品位高—富铜、富铁
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)气水热液的意义: 1. 有关矿床的成因类型 (1)热液矿床 (2)接触交代矿床 (3)在伟晶岩矿床、沉积矿床和变质矿床中的作用 2. 成矿过程中的作用 (1)萃取矿源系统中的矿质 (2)搬运矿质的主要介质 (3)围岩蚀变,形成重要的找矿地质-地球化学标志 3. 有关矿种
气水热液矿床的有关理论
一、气水热液及其在内生矿床中的意义
(一)气水热液的概念: 1. 气水热液
地下形成的含多种挥发组分和成矿元素的气态或液态水溶液(简称 热液) 2. 热液的成份
主要成份:H2O(盐度一般为几%—几十%),其他挥发 组分: HCl、HF、H2S、CO2、B、(As),主要金属元素:K、Na、Ca、Mg; 常见成矿金属元素:Fe-Mn、Cu-Pb-Zn-W-Sn-Mo-Sb-Hg、Au-Ag、LiBe-Nb-Ta、U-Th 3. 温度及物理状态
[HS-]= H++ S2-,k2=[H+][ S2-]/[HS-]=1.2×10-15,
[ S2-]= k2[HS-]/[H+] = k1 k2[ H2S]/ [H+]2 可见,影响H2S解离的因素是热液中H2S的浓度和PH值:H2S的溶 解度又与压力呈正相关,与温度呈负相关;PH值低溶液中[HS-]高, 有利于矿质的迁移,PH值高溶液中[ S2-]高,有利于硫化物的沉淀。 3. 二氧化碳 高温条件下为中性分子,温度降低水和为H2CO3
(四)深部流体 1. 沉积物沉积时包含在沉积物中的水,因此又称封存水。 地表→沉积物沉积→封存于地球内部→与周围环境反应→含矿流体。 这一过程使封存水的成分特征、同位素特征完全不同于地表水。 2. 地球排气作用导致地球内部不同圈层广泛形成含矿流体富集带。
流体富集带产生可能是一个连续过程:地球在不断排气过程中使 挥发份向上运动聚集在某些不具有渗透性或低渗透率层位。
(一)岩浆热液
1 成因 岩浆中分异的气水热液,由于富含挥发分,所以对成矿金属
有很强的迁移能力。
硅酸盐熔体中的H2O溶解度:温度增加, H2O溶解度降低; 压力增加, H2O溶解度增高;碱含量增高, H2O溶解度增高。
岩浆流体的重要影响因素:岩浆初始含水量、温度和压力
2 同位素特征 δ18ΟH2O =6‰ ∼ 9‰;δD=-48‰∼-80‰,
主要金属矿种:Fe、Au-Ag、Cu-Pb-Zn-W-Sn-Mo-Bi-Sb-Hg、LiBe-Nb-Ta、U-Th
非金属矿产:云母、石棉、萤石、水晶、明矾石、叶腊石、蛇纹 石、硫铁矿、重晶石、天青石、滑石、菱镁矿等
二、热液的成因(类型)
热液成因是矿床学基本问题之一,矿床成因研究的重要内容。 目前的主要手段:Байду номын сангаас
测定石英包裹体的δ18Ο石英 与δ18ΟH2O 的变换公式: δ18ΟH2O =δ18Ο石英 –3.38×106T-2+3.4
3 成分特征 高盐度,富K+
(二)大气水热液 1. 成因(图13)
20世纪60年代以来矿床学进展之一。包括雨水、湖水、河水 和浅部地下水。
主要形成在大陆地区;构造裂隙带发育地区。 升温因素:地热梯度、岩浆烘烤、放射性元素蜕变、与其它热 液混合。 2. 成矿中作用 (1)萃取、搬运成矿物质; (2)浅部地段、温度降低阶段,大气降水热液的主导作用加强。 3. 特征 氢氧同位素接近大气降水线(见图12), δD 与δ18ΟH2O 的关系
这些被封存在不同深度水平上的流体长期作用于周围环境,将溶 解与其相应的各种不相容元素(包括成矿元素),因而这种流体 富含成矿元素。 3. 幔源流体。
成因:核幔脱气、洋壳俯冲到上地幔中脱气。高温、C-H-O体系, 以H2O和CO2为主,含成矿元素。
图6-3 黑矿型矿床简要横剖面图
(五)变质热液 1. 成因 变质作用过程中,与变质岩石平衡、或从中分出的水溶液。 影响因素: a 原始地质体的成因; b 变质作用强度; c 变质作用类型(接触变质和区域变质)。 如:沉积岩(含水30%)→绿片岩相(6%)→角闪岩相(1-2%)
→麻粒岩相(0.5%) 2. 变质热液中的矿质来源 a 变质过程中来自原岩; b 从流经岩石中萃取; c 深部来源。 3. 特征:
H2O的δ18O = 5‰∼25‰,δD = -20‰∼-65‰,多富CO2
三、热液中主要挥发组分的性状及其影响
1. 卤族元素 a 强电解质,影响热液的PH值; b 有助于有用组分的迁移, 如:F-、CL-形成的络合物,是许多成矿金属的矿化剂。 2. 硫 氧化态为SO42-,与Cl-性状相似;还原态为H2S,是弱电解质和 重要的矿化剂,性状如下: a 温度>400ºC,H2S为中性分子,不电离,或分解为S和H2↑。 b 温度<400ºC,H2S开始水解:H2S=H++HSk1=[H+][HS-]/[ H2S]=8.4×10-8, [HS-]= k1 [ H2S]/ [H+]
δD = 8δ18ΟH2O +10 ‰
温度为中低温,富Ca2+、Na+
图12 不同成因水的同位素组成示意
由于水-岩相互作用和交换表示了海水和A、B组分的地下水18O位移趋势
图13 大气水热液及其成矿模式(斯米尔诺夫)
(三)海水热液 1. 成因 a 主要产生在海洋环境; b 大陆边缘和海洋岛屿地区,与地下水混合; c 沿构造变动带下渗-受热形成热环流-萃取矿质-沿火山机构上升-形 成矿床(图6-3) 主要与海底岩浆作用形成的块状硫化物矿床有关。 2. 特征 δD 与δ18ΟH2O在图12中接近于标准海水平均值(SMOW) 日本黑矿:δD 为-26‰∼-18‰, δ18ΟH2O为-1.5‰ ∼ 0.3‰
(1)现代地热系统 热泉、海底热水系统 (2)流体包裹体 矿物结晶过程圈闭的流体,流体包裹体地球化学
研究,获取成岩成矿流体性质。 (3)同位素示踪 当温度由包裹体测温确定后,依据寄主矿物的同
位素组成便可计算出成矿流体的同位素组成,从而确定成矿流 体性质。 (4)热水体系实验 实验室模拟地质过程的热水体系。 目前比较一致的观点:多种成因和多种来源,如岩浆水、大气水、 海水、深部流体和变质水等。