人教版七年级数学下册期中复习测试题

合集下载

人教版数学七年级下册《期中测试卷》(含答案)

人教版数学七年级下册《期中测试卷》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定3.如图,已知:∠1=∠2,那么下列结论正确的是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠44.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C 20° D. 15°5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( )A. 1B. 2C. 3D. 46.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7.下列从左到右的变形中,正确的是( ) A. 81=9± B. 3.60.6-=- C. 21010-=-() D. 3355-=- 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)9.既是方程1x y -=,又是方程25x y +=解是( )A. 12x y =-⎧⎨=⎩B. 21x y =⎧⎨=-⎩C. 12x y =⎧⎨=⎩D. 21x y =⎧⎨=⎩ 10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为( )A. 4.512x y y x +=⎧⎪⎨+=⎪⎩B. 4.512x y y x =+⎧⎪⎨+=⎪⎩C. 4.512x y x y =+⎧⎪⎨=+⎪⎩D. 4.512x y y x +=⎧⎪⎨=-⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.12.如图所示,OA ⊥OC 于点O ,∠1=∠2,则∠BOD 的度数是_____.32-的相反数是__________.14.16的算术平方根是____,﹣8的立方根是____.15.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +=_____.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm ,则每一个小长方形的面积为_____.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-22.解方程组(1)5293411x y x y +=⎧⎨+=⎩; (2)2431y x x y =-⎧⎨+=⎩. 23.如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1,2).(1)写出点A 、B 的坐标:A ( , )、B ( , );(2)求△ABC 的面积;(3)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′,画出△A ′B ′C ′,写出A′、B′、C′三个点坐标.24.完成下面证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.26.已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.答案与解析一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.[答案]D[解析][详解]解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定[答案]B[解析]点到直线的距离,所以他的跳远成绩是BN,故选B.3.如图,已知:∠1=∠2,那么下列结论正确是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠4[答案]B[解析][分析]∠1和∠2是直线AB、CD被直线DB所截的内错角,若∠1=∠2,则AB∥CD.[详解]解:∵∠1=∠2,∴AB ∥CD .(内错角相等,两直线平行)故选B .[点睛]正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°[答案]B[解析] 根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( ) A. 1B. 2C. 3D. 4 [答案]D[解析][分析]根据无理数的定义,可得到无理数的个数.[详解]﹣23是分数,8=2238=2是有理数,﹣0.518是有理数;3π是无理数;37-|2是无理数 83π,37-|,2是无理数 故选:D[点睛]本题考查了无理数的定义,无限不循环小数叫做无理数.无理数是实数中不能精确地表示为两个整数之比的数,2等开不尽方的数都是无理数.6.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间 [答案]C[解析][分析]<<5<<6,即可解出.[详解]<<∴5<<6,故选C.[点睛]此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.7.下列从左到右的变形中,正确的是( )A. 9±B. 0.6=-C. 10=-D. =[答案]D[解析]选项A ,原式=9;选项B ,原式 ;选项C ,原式=10;选项D ,原式=故选D. 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)[答案]C[解析]因点P 在第三象限,可得P 点的横坐标为负,纵坐标为负,又因到x 轴的距离是4,所以纵坐标为-4,再由到y 轴的距离是3,可得横坐标为-3,即可得P(-3,-4),故选C.9.既是方程1x y -=,又是方程25x y +=的解是( ) A. 12x y =-⎧⎨=⎩ B. 21x y =⎧⎨=-⎩ C. 12x y =⎧⎨=⎩ D. 21x y =⎧⎨=⎩ [答案]D[解析]两方程的解相同,可联立两个方程,形成一个二元一次方程组,解方程组即可求得.解:根据题意,得:()()11252x y x y ⎧-=⎪⎨+=⎪⎩,①+②,得:3x=6,解得:x=2,x=2代入②,得:4+y=5,解得:y=1,∴21x y =⎧⎨=⎩,故选D.10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为()A.4.512x yyx+=⎧⎪⎨+=⎪⎩B.4.512x yyx=+⎧⎪⎨+=⎪⎩C.4.512x yxy=+⎧⎪⎨=+⎪⎩D.4.512x yyx+=⎧⎪⎨=-⎪⎩[答案]A [解析][详解]4.512x yyx+=⎧⎪⎨+=⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.[答案]对顶角相等[解析]试题分析:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故答案为对顶角相等.考点:对顶角、邻补角.12.如图所示,OA⊥OC于点O,∠1=∠2,则∠BOD的度数是_____.[答案]90°.[解析][分析]根据垂直求出∠AOC =90°,根据∠1=∠2求出∠BOD =∠AOC ,即可得出答案.[详解]∵OA ⊥OC ,∴∠AOC =90°,∵∠1=∠2,∴∠BOD =∠2+∠BOC =∠1+∠BOC =∠AOC =90°,故答案为:90°.[点睛]此题考查垂直定义和角的计算,能求出∠BOD=∠AOC 是解题的关键.-的相反数是__________.[答案[解析][分析]根据只有符号不同的两个数叫做互为相反数进行解答.[详解[点睛]此题考查相反数,解题关键在于掌握其定义.14.16的算术平方根是____,﹣8的立方根是____.[答案]4,-2[解析]试题分析:164=,-82=-.考点:1.算术平方根;2. 立方根.15.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.[答案]0.[解析][分析]根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.[详解]∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴31ab c d -+++=﹣1+0+1=0.故答案为:0.[点睛]此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.[答案]2.[解析][分析]根据x 轴上的点的纵坐标等于0列式计算即可得解.[详解]∵点P (m +3,m ﹣2)x 轴上,∴m ﹣2=0,解得m =2.故答案为:2.[点睛]此题考查点的坐标,熟记x 轴上的点的纵坐标等于0是解题的关键.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.[答案](3,3)[解析][分析]根据已知两点的坐标建立坐标系,然后确定其它点的坐标.[详解]由图示知;“将”为(0,0)而“马”位于“将”上第三个格,右第三个格中,所以,“马”为(3,3)故答案:(3,3).18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.[答案]11.[解析][分析]利用相反数的性质及非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出所求.[详解]∵|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,∴|x +y ﹣3|+(2x +3y ﹣8)2=0,∴=323=8x yx y+⎧⎨+⎩①②,①×3﹣②得:x=1,把x=1代入①得:y=2,则3x+4y=3+8=11.故答案为:11.[点睛]此题考查解二元一次方程组,非负数的性质,熟练掌握方程组的解法是解题的关键.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为_____.[答案]27cm2.[解析][分析]设小长方形的长为xcm,宽为ycm,观察大长方形,由大长方形的对边相等及大长方形的宽为12cm,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入xy中即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:2312x x yx y=+⎧⎨+=⎩,解得:93 xy=⎧⎨=⎩,∴27xy=.故答案为:27cm2.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.[答案](2019,2)[解析][分析]分析点P 的运动规律,找到循环次数即可.[详解]分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).[点睛]本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-[答案](1)3(2)6.[解析][分析](1)直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用二次根式的性质以及立方根分别化简再合并得出答案.[详解]解:(1)原式=2+5﹣(23=2+5﹣3=3(2)原式=9﹣3=6.[点睛]本题考查了实数的运算,涉及到的知识有,立方根、二次根式的性质、绝对值的性质等知识,熟练掌握运算法则是解题的关键.22.解方程组(1)529 3411 x yx y+=⎧⎨+=⎩;(2)24 31y xx y=-⎧⎨+=⎩.[答案](1)12xy=⎧⎨=⎩;(2)12xy=⎧⎨=-⎩.[解析]分析](1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.[详解]解:(1)529 3411x yx y+=⎧⎨+=⎩①②,①×2﹣②得:7x=7,解得:x=1,把x=1代入①得:y=2,则方程组的解为12 xy=⎧⎨=⎩;(2)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1, 解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , )、B( , );(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.[答案](1)A(2,﹣1)、B(4,3);(2)5;(3)图详见解析,A′(0,0)、B′(2,4)、C′(﹣1,3).[解析][分析](1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC所在矩形面积减去三个小三角形的面积即可求解;(3)分别将点A、B、C先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.[详解]解:(1)A(2,﹣1),B(4,3);(2)S△ABC=3×4﹣12×2×4﹣12×1×3﹣12×3×1=5,故△ABC的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).[点睛]本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)[答案]两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等[解析][分析]首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.[详解]证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE,(内错角相等,两直线平行)∴∠2=∠E,(两直线平行,内错角相等)∴∠C=∠E(等量代换).故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等.[点睛]此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.[答案](1)一间大餐厅可供960名学生就餐,一间小餐厅可供360名学生就餐;(2)能,理由见解析.[解析][分析](1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.[详解](1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280x y x y ==+⎧⎨+⎩ 解得:960360x y ⎧⎨⎩==, 答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.[点睛]考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.26.已知射线AB ∥射线CD ,P 为一动点,AE 平分∠PAB ,CE 平分∠PCD ,且AE 与CE 相交于点 E.(1)在图1中,当点P 运动到线段AC 上时,∠APC=180°.①直接写出∠AEC 的度数;②求证:∠AEC=∠EAB+∠ECD ;(2)当点P 运动到图2的位置时,猜想∠AEC 与∠APC 之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC 与∠APC 之间的关系,并加以证明.[答案](1))①∠AEC=90°②见解析;(2)∠AEC=12∠APC , 理由见解析;(3)不成立,∠AEC=180∘−12∠APC ,理由见解析[解析][分析](1)①由平行线的性质可得出∠PAB+∠PCD=180°,进而可得出∠AEC 的度数;②在图1中,过E 作EF ∥AB ,根据平行线的性质可得出∠AEF=∠EAB 、∠CEF=∠ECD ,进而即可证出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD ;(2)猜想:∠AEC=12∠APC,由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,进而即可得出∠AEC=12(∠PAB+∠PCD)=12∠APC;(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°-12∠APC,过P作PQ∥AB,由平行线的性质可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,进而可得出∠PAB+∠PCD=360°-∠APC,再由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,结合(1)的结论即可证出∠AEC=180°-12∠APC.[详解](1)①∵AB∥CD,∴∠PAB+∠PCD=180°,∴∠AEC=90°;②证明:在图1中,过E作EF∥AB,则∠AEF=∠EAB. ∵AB∥CD,∴EF∥CD,∴∠CEF=∠ECD.∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.(2)猜想:∠AEC=12∠APC,理由如下:∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)=12∠APC.(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180∘−12∠APC,其证明过程是:过P作PQ∥AB,则∠PAB+∠APQ=180°. ∵AB∥CD,∴PQ∥CD,∴∠CPQ+∠PCD=180∘.∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°−∠APC. ∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)= 180°-12∠APC.[点睛]此题考查平行线的判定与性质,解题关键在于作辅助线。

人教版数学七年级下册《期中检测卷》(含答案)

人教版数学七年级下册《期中检测卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。

人教版数学七年级下学期《期中检测题》附答案

人教版数学七年级下学期《期中检测题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- 2. 若代数式31x -的值为4-,则的值为( )A. 1B.C. 53-D. 353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b > C. 22a b -<- D. 22a b > 5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -= 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++= D. x y 50{x y 90=-+=8. 《九章算术》是中国传统数学重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ 9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2- B. 2 C. D. 110. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大 B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关 二、填空题(共24分)11. 若2x =-是方程520x k +=解,则k =__________.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则的取值范围是____________. 三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值. 20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- [答案]D[解析][分析]的值不大于3-就是的值小于或等于3-,据此解答即可.[详解]解:的值不大于3-,用不等式表示的范围是:3a ≤-.故选:D .[点睛]本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则的值为( )A. 1B. C. 53- D. 35[答案]B[解析]分析]根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值.[详解]解:由题意,得314x -=-,解得1x =-;故选B .[点睛]本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( ) A. 14x y =⎧⎨=⎩ B. 07x y =⎧⎨=⎩ C. 32x y =⎧⎨=-⎩ D. 1.53.5x y =⎧⎨=⎩[答案]D[解析][分析]把各选项中的x 、y 的值逐一代入计算即得答案.[详解]解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意; D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .[点睛]本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键. 4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B. 22a b >C. 22a b -<-D. 22a b > [答案]D[解析][分析]根据不等式的性质逐项判断即可.[详解]解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意; B 、在不等式a b >两边同时除以2,得22a b >,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意;D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意.故选:D .[点睛]本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键.5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+ [答案]A[解析][分析]根据去分母的方法:原方程两边同时乘以6可得答案.[详解]解:原方程两边同时乘以6,得:()()18336221x x x +-=-+.故选:A .[点睛]本题考查了一元一次方程解法,属于基本题型,熟练掌握去分母的方法是解本题的关键.6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=[答案]D[解析][分析]由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.[详解]解:根据题意可列方程为:0.618x -=.故选:D .[点睛]本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+= B. x y 50{x y 180=++= C. x y 50{x y 90=++= D. x y 50{x y 90=-+= [答案]C[解析] [详解]根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C . 考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ [答案]A[解析][分析]设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.[详解]解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩, 故选:A ;[点睛]本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2-B. 2C.D. 1[答案]C[解析][分析]先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值. [详解]x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②, ①-②得:y=m+2③,把③代入②得:x=m-3,∵x+y=-3,∴m-3+m+2=-3,∴m=-1.故选C .[点睛]本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关[答案]D[解析][分析]方程组中的两个方程相加,再两边同时除以2即可进行判断. [详解]解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-, ∴代数式x y -的值与的大小无关.故选:D .[点睛]本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.[答案]5[解析][分析]将2x =-代入方程520x k +=即可求算.[详解]解:∵2x =-是方程520x k +=的解,2x =-代入方程:∴1020k -+=,解得:5k =故答案为:5[点睛]本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.[答案]523x - [解析][分析]移项,把x 看做已知数求出y 即可.[详解]解:二元一次方程235x y +=,移项得:352y x =-, 即:523x y, 故答案为:523x -; [点睛]此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. [答案]1m <[解析][分析]根据不等式的性质可得10m -<,解不等式即得答案.[详解]解:由题意得:10m -<,解得:1m <.故答案为:1m <.[点睛]本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________.[答案]5[解析][分析]由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.[详解]解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.[点睛]本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键. 15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.[答案]314x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解答即可.[详解]解:对457x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z++=,即8x y z++=④,④-①,得z=4, ④-②,得x=3, ④-③,得y=1,∴方程组的解是:314xyz=⎧⎪=⎨⎪=⎩.故答案为:314 xyz=⎧⎪=⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24xx m-≤⎧⎨<⎩无解,则的取值范围是____________.[答案]2m≤-[解析][分析]先求出不等式的解集,再根据无解得出m的取值范围.[详解]解:24xx m-≤⎧⎨<⎩①②由①得:2x≥-由②得:x m<∵不等式组无解,没有公共部分∴2m≤-故答案为:2m≤-[点睛]本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.[答案]2x =-[解析][分析]根据解一元一次方程的方法和步骤解答即可.[详解]解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.[点睛]本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.[答案]0x <,图见解析[解析][分析]分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.[详解]解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:[点睛]本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.[答案]a=5,b=-2[分析]将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.[详解]解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2[点睛]本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.[答案]这个两位数为45.[解析][分析]要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x ,则十位数字是9﹣x ,则原数是10(9﹣x )+x ,新数是10x +(9﹣x ),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.[详解]解:设原两位数的个位数字是x ,则十位数字是9﹣x .根据题意得:10x +(9-x )=10(9﹣x )+x +9解得:x =5,则9﹣x =4,答:这个两位数为45.[点睛]本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. [答案]16[解析]根据题意列出x 和y 的方程组,然后进行求解,将解代入另外的两个方程求出a 和b 的值,进而即可求解.[详解]解方程组5325x y x y +=⎧⎨-=⎩,得12x y =⎧⎨=-⎩. 把12x y =⎧⎨=-⎩代入5451ax y x by +=⎧⎨+=⎩,得142a b =⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?[答案](1)购进甲种商品800件,购进乙种商品200件;(2)334;[解析][分析](1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.[详解]解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000,解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.[答案](1)31k b =-⎧⎨=⎩;(2)7≤m <13 [解析][分析](1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式最大整数解是k =-3,来得到m 的取值范围. [详解]解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.[点睛]主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b .(1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. [答案](1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 [解析][分析] (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. [详解]解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+左边=49149 942336n n n-+--+=右边=49149 942336n n n-++--=+∴左边=右边∴当(),m n是“相伴数对”时,91,4m n⎛⎫⎪⎝+⎭-也是“相伴数对”[点睛]本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.[答案](1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B 种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[解析][分析](1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C 彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.[详解]解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B 种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[点睛]此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。

人教版七年级数学下册期中测试卷(及答案)

人教版七年级数学下册期中测试卷(及答案)

人教版七年级数学下册期中测试卷(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( ) A .2 B .3 C .9 D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6669.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3B .-1或-3C .±1或±3D .无法判断 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、C7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、-4π3、-2≤m<34、78°5、24.6、76.510⨯三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1)6;(2)略;(3)略.4、(1)证明略;(2)证明略.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨,B种原料正好用完,还剩下0吨.。

人教版数学七年级下学期《期中检测试题》附答案

人教版数学七年级下学期《期中检测试题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= 2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米 3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm 4.如图,若AB ∥CD ,则∠A 、∠E 、∠D 之间是( )A. ∠A +∠E +∠D =180°B. ∠A +∠E -∠D =180°C. ∠A -∠E +∠D =180°D. ∠A +∠E +∠D =270°5.在方程组2131x y y z -=⎧⎨=+⎩,231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,123xy x y =⎧⎨+=⎩,111y x y ⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有( )个.A 2 B. 3 C. 4 D. 56.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角 7.时钟显示为8:30时,时针与分针所夹锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30° 9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 2010.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩ 11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A. 11910813x y y x x y =⎧⎨+-+=⎩()() B. 10891311y x x y x y +=+⎧⎨+=⎩C. 91181013x y x y y x ()()=⎧⎨+-+=⎩D. 91110813x y y x x y =⎧⎨+-+=⎩()() 二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.14.计算:()()32p p -⋅-=________15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.16.如果方程组45x by ax =⎧⎨+=⎩解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. 17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ 三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ 21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON 互余的角: .(2)若∠AOC=52∠FOM ,求∠MOD 与∠AON 的度数.24.如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?答案与解析一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= [答案]D[解析][分析]根据幂的运算性质,对四个选项进行判断即可.[详解]解: A.(-1)0=1,∴A 错误; B.11(1)11--==--,∴B 错误; C .()()()22221a aa a -÷-=÷-=-,∴C 错误. D .3331222a a a -=⋅=,∴D 正确. 故选D . [点睛]此题主要考查了零指数幂和负整数指数幂,关键是掌握负整数指数为正整数指数倒数;任何非0数的0次幂等于1.2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米[答案]B[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]0.000035米=3.5×10-5米;故选B .[点睛]本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线的距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm [答案]D[详解]解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线的距离≤PC,即点P到直线的距离不大于3cm.故选:D.4.如图,若AB∥CD,则∠A、∠E、∠D之间的是( )A ∠A+∠E+∠D=180° B. ∠A+∠E-∠D=180°C. ∠A-∠E+∠D=180° D. ∠A+∠E+∠D=270°[答案]B[解析][分析]作EF∥AB,则EF∥CD∥AB,根据平行线的性质即可求解.[详解]作EF∥AB,则EF∥CD∥AB,∴∠A+∠AEF=180°,∠D=∠DEF,又∠AED=∠AEF+∠DEF,故∠A+∠E-∠D=180°选B.[点睛]此题主要考查平行线的性质,解题的关键是熟知平行线的性质.5.在方程组2131x yy z-=⎧⎨=+⎩,231xy x=⎧⎨-=⎩,35x yx y+=⎧⎨-=⎩,123xyx y=⎧⎨+=⎩,111yx y⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有()个.A. 2B. 3C. 4D. 5 [答案]A[解析]根据二元一次方程组的定义逐一分析即可.[详解]2131x y y z -=⎧⎨=+⎩含有三个未知数,故不是二元一次方程组; 231x y x =⎧⎨-=⎩是二元一次方程组; 035x y x y +=⎧⎨-=⎩是二元一次方程组; 123xy x y =⎧⎨+=⎩中1xy =是二元二次方程,故该方程组不是二元一次方程组; 111y x y ⎧=⎪⎨⎪+=⎩中11y =不是整式方程,故该方程组不是二元一次方程组; 综上,是二元一次方程组的只有231x y x =⎧⎨-=⎩和035x y x y +=⎧⎨-=⎩. 故选:A .[点睛]本题考查二元一次方程组的定义,要求熟悉二元一次方程组的形式及其特点:含有2个未知数,最高次项的次数是1的整式方程.6.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角[答案]D[解析][分析] 根据内错角、同位角以及同旁内角的定义进行判断即可.[详解]解:A 、∠2和∠4是内错角,故本选项错误;B 、∠1和∠C 是同位角,故本选项错误;C 、∠3和∠4是邻补角,故本选项错误;D 、∠1和∠C 是同位角,故本选项正确;故选D .[点睛]本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.7.时钟显示为8:30时,时针与分针所夹的锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒[答案]C[解析][分析]根据钟面平均分成2份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.[详解]解:钟面每份是30°,8点30分时针与分针相距2.5份,8点30分时,时钟的时针与分针所夹的锐角是30°×2.5=75°,故选:C .[点睛]本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数等于钟面角.8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30°[答案]C[解析] [详解]解:∵FE ⊥DB ,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB ∥CD ,∴∠2=∠D=40°. 故选C .[点睛]本题考查平行线的性质.9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 20[答案]B[解析][分析]运用同底数幂的除法进行分解22n 3=33-÷m n m ,把值代入求职即可;[详解]由题可得()222n 3=33=33-÷÷m n m m n , 把35m =,34n =代入上式得:原式=22554=254=4÷÷. 故答案选B .[点睛]本题主要考查了整式乘法中幂的运算性质逆运算公式,准确应用公式是解题的关键. 10.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩[答案]C[解析][分析]将2012+a 和2013-b 分别看作整体,则可分别对应x ,y 的值,分别解方程即可求得结果.[详解]解:令 2012+=a m ,2013-=b n ,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩可化为23345m n m n -=⎧⎨+=⎩, ∵方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩, ∴方程组23345m n m n -=⎧⎨+=⎩的解是 2.20.4m n =⎧⎨=-⎩, 即2012 2.220130.4a b +=⎧⎨-=-⎩, 解得:2009.82012.6a b =-⎧⎨=⎩, 故选:C .[点睛]本题考查了二元一次方程组的解,掌握整体思想的运用是解题的关键.11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠[答案]C[解析][分析]根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.[详解]解:A 、∵∠CAB =∠EAD =90°,∴∠1=∠CAB−∠2,∠3=∠EAD−∠2,∴∠1=∠3;故该选项正确,B 、∵∠2=30°,∴∠1=90°−30°=60°,∵∠E =60°,∴∠1=∠E ,∴AC ∥DE ;故该选项正确,C 、∵∠2=30°,∴∠3=90°−30°=60°,∵∠B =45°,∴BC 不平行于AD ;故该选项错误;D 、由AC ∥DE 可得∠4=∠C ;故该选项正确,故选:C.[点睛]此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D91110813 x yy x x y=⎧⎨+-+=⎩()()[答案]D[解析][分析]根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.[详解]设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选D.[点睛]此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.[答案]120°[解析][分析]根据余角和补角概念计算即可.[详解]∵∠1=30°,∴∠1的余角=90°﹣∠1=90°﹣30°=60°,则∠1的余角的补角=180°﹣∠1的余角=180°﹣60°=120°.故答案为:120°.[点睛]本题考查了余角和补角,解答本题的关键是熟练掌握互余两角之和等于90°,互补两角之和等于180°.14.计算:()()32p p-⋅-=________[答案]p 5[解析][分析]根据同底数幂的乘法法则解答即可.[详解]解:原式=-p 3·(-p 2)=p 5.故答案为:p 5.[点睛]本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.[答案]100︒或60︒[解析][分析]先画图形,注意先画较大的角,分情况:当OC 在AOB ∠的内部时,当OC 在AOB ∠的外部时,从而利用角的和差可得答案.[详解]解:当OC 在AOB ∠的内部时,如图,此时:60,BOC AOB AOC ∠=∠-∠=︒当OC 在AOB ∠的外部时,如图,此时:100.BOC AOB AOC ∠=∠+∠=︒故答案为:100︒或60︒[点睛]本题考查是角的和差运算,画好符合题意的图形是解题的关键.16.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. [答案]1[解析][分析]根据题意,把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.[详解]解:根据题意把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得 345432b a b a +⎧⎨+⎩=①=②, ①+②,得:7(a+b )=7,则a+b=1,故答案为:1.[点睛]此题主要考查了二元一次方程组的解的定义以及加减消元法解方程组.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意两个方程组有相同的解时,往往需要将两个方程组进行重组解题.17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)[答案]①④[解析][分析]根据平行线的性质定理与判定定理,即可解答.[详解]∵∠B=∠AGH ,∴GH ∥BC ,即①正确;∴∠1=∠MGH ,又∵∠1=∠2,∴∠2=∠MGH ,∴DE ∥GF ,∵GF ⊥AB ,∴DE ⊥AB ,即④正确;∠D=∠F ,HE 平分∠AHG ,都不一定成立;故答案为:①④.[点睛]此题考查平行线的性质定理与判定定理,解题的关键是熟记平行线的性质定理与判定定理.18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ [答案][解析][分析]按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.[详解]222322333()()x x x x x x x xx--=-⋅÷-⋅= 故答案为: [点睛]本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+[答案](1)0;(2)9x ;(3)53422492x y x y x y -+-;(4)34+x[解析][分析](1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以单项式法则计算,合并即可得到结果;(3)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以多项式法则计算即可得到结果;(4)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果. [详解]解:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ 819=--+0=;(2)()52632x x x x -÷+⋅1092x x x =-÷+992x x =-+9x =;(3)232213112346x y x y x y ⎛⎫-⋅-+ ⎪⎝⎭ 232222131121212346x y x y x y x y x y =-⋅+⋅-⋅ 53422492x y x y x y =-+-;(4)()()221x x x +-+ ()()()222x x x x =++-+2244x x x x =++--34x =+;[点睛]此题考查了整式的混合运算,零指数幂、负整数指数幂,熟练掌握运算法则及公式是解本题的关键. 20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ [答案](1)32x y =⎧⎨=⎩;(2)312x y =⎧⎪⎨=⎪⎩[解析][分析](1)利用代入消元法求解即可;(2)方程组整理后,利用加减消元法求解即可.[详解]解:(1)128x y x y =+⎧⎨+=⎩①②, 把①式代入②中,得:()218y y ++=,解这个方程得:y=2,把y=2代入①中,得x=3,所以方程组的解为32x y =⎧⎨=⎩; (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩, 原方程组可变为:3283210x y x y -=⎧⎨+=⎩①②, ①+②得:6x=18,解这个方程得:x=3,把x=3代入①中,得: y=12, 所以方程组的解为312x y =⎧⎪⎨=⎪⎩. [点睛]此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.[答案]见解析[解析][分析]因为∠ADB=∠EFB ,由同位角相等证明AD ∥EF ,则有∠1=∠E ,∠2=∠3,又因为∠3=∠1,所以有∠1=∠2,故AD 平分∠BAC .[详解]证明:∵AD BC ⊥于点,EF BC ⊥于点(已知),∴90EFC ADC ∠=∠=︒(垂直定义),∴ EF AD ∥(同位角相等,两直线平行),∴1E ∠=∠(两直线平行,同位角相等),32∠=∠(两直线平行,内错角相等).又∵3E ∠=∠(已知),∴12∠=∠(等量代换),∴AD 平分BAC ∠(角平分线定义).[点睛]此题是一道把平行线性质和判定、角平分线的定义结合求解的综合题.有利于培养学生综合运用数学知识的能力.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.[答案](1)平行,理由见解析;(2)∠ACB=42°.[解析][分析](1)根据两直线平行、同旁内角互补求出∠ABF ,得到∠ABC ,根据内错角相等、两直线平行证明;(2)根据两直线平行、同旁内角互补求出∠DCE ,计算即可.[详解]解:(1)平行,理由如下:∵//EF AB ,130EFB ∠=︒,∴18013050ABF ∠=︒-︒=︒,∵20CBF ∠=︒,∴70CBA ABF CBF ∠=∠+∠=︒,∵70DCB ∠=︒,∴∠CBA =∠DCB ,∴//CD AB ;(2)∵//EF AB ,68CEF ∠=︒,∴68A ∠=︒,由(1)知://CD AB ,∴180ACD A ∠+∠=︒,∴180********ACD A ∠=︒-∠=︒-︒=︒,又∵70DCB ∠=︒,∴1127042ACB ACD DCB ∠=∠-∠=︒-︒=︒.[点睛]本题考查的是平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON互余的角:.(2)若∠AOC=52∠FOM,求∠MOD与∠AON的度数.[答案](1)∠FOM,∠MOD,∠CON;(2)20°,70°[解析][分析](1)根据垂直的定义可得∠BOF=∠AOF=90°,由角平分线的定义和对顶角相等可得与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,用含x的式子表示出∠FOD和∠AOC的度数,然后由∠AOC=∠BOD,得出∠FOD+∠AOC=90°,据此列方程求解,再由(1)中∠MOD与∠AON互余可得出∠AON的度数.[详解]解:(1)∵FO⊥BO,∴∠BOF=∠AOF=90°,∴∠BOM+∠FOM=90°,又∠BOM=∠AON,∴∠AON+∠FOM=90°.∵OM平分∠DOF,∴∠DOM=∠FOM,又∵∠DOM=∠CON,∴与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,∵OM平分∠FOD,∴∠MOD=∠FOM=x°,∴∠FOD=2x°,∠AOC=52∠FOM=5x2°,又∵FO⊥BO,∠AOC=∠BOD, ∴∠FOD+∠AOC=90°,即2x+5x2=90,解得:x=20.即∠MOD=20°,由(1)可知∠MOD与∠AON互余,∴∠AON=90°-∠MOD=90°-20°=70°.故∠MOD的度数为20°,∠AON的度数为70°.[点睛]本题考查了垂直的定义,角的平分线的定义,余角的定义与性质以及对顶角相等,正确理解相关概念是关键.24.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.[答案]20°[解析][分析]推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.[详解]∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB−∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.[点睛]本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?[答案]货主应该付运输费735元.[解析]试题分析:本题需知道1辆甲种货车,1辆乙种货车一次运货吨数.等量关系为:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.试题解析:设甲、乙两种货车每辆每次分别运货x吨、y吨,根据题意,得2315.5, {5635.x yx y+=+=解这个方程组,得4 {2.5 xy==则所运货物有3×4+5×2.5=24.5(吨),所以货主应该付运输费为24.5×30=735(元).答:货主应该付运输费735元.[点睛]应根据条件和问题知道应设的未知量是直接未知数还是间接未知数.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.列出方程组,再求解.选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?[答案]7[解析][分析]设报11的人心想的数是a ,用b ,c ,d 到i 分别表示顺指针其余8个小朋友所想的数,通过图可以分别表示出各字母之间的代数式,最后通过整合代数式列出方程,解方程即可.[详解]解:设、、、、、f 、、、分别表示9个小朋友所想的数,则有:248a c c =⨯-=-,21632b d d =⨯-=-,224c e e =⨯-=-,21326d f f =⨯-=-,2612e g g =⨯-=-,2128f h h =⨯-=-,2714g i i =⨯-=-,21021h a a =⨯-=-,21122i b b =⨯-=-,整合884441214a c e e g a =-=-+=+=+-==- 可得7a =,∴报11的人心想的数是7,故答案为:7.[点睛]正确理解题意,用方程的思想解决问题.要注意代数式的表示方法.。

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题2分,共20分)1. 据悉,世界上最小开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×1092. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+43. 下列各式中,不能用平方差公式是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A B.C. D.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B. 32C. 1D. 27. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 8. 给定下列条件,不能判定三角形是直角三角形的是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A B.C. D.二、填空题(每题3分,共24分)11. 若a+3b ﹣3=0,则3a •27b =_____.12. (a ﹣2018)2+(2020﹣a )2=20,则a ﹣2019=_____.13. 若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.14. 已知a ,b ,c 是一个三角形的三边长,化简|a+c ﹣b|﹣|b ﹣c+a|﹣|a ﹣b ﹣c|=_____.15. 已知BD 、CE 是△ABC 的高,BD 、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC =_____. 16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.17. 如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.答案与解析一、选择题(每题2分,共20分)1. 据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×109[答案]A[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000009=9.0×10﹣8.故选:A.[点睛]本题考查了绝对值小于1的数的科学计数法表示,熟练掌握表示法则是解题的关键.2. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+4[答案]C[解析][分析]分别根据完全平方公式,积的乘方,同底数幂的乘法等知识进行计算即可求解.[详解]解:A.原式=x2+2xy+y2,计算错误,不合题意;B.原式=﹣8x9,计算错误,不合题意;C.原式=x1+2=x3,计算正确,符合题意;D.原式=x2+4+4x,计算错误,不合题意.故选:C.[解答]本题考查了完全平方公式、积的乘方、同底数幂的乘法等知识,熟知相关法则是解题关键.3. 下列各式中,不能用平方差公式的是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)[答案]D[解析][分析]根据平方差公式的结构特点,两个数的和乘以两个数的差,对各选分析判断即可得解.[详解]解:A、(3x﹣2y)(3x+2y)是3x与2y的和与差的积,符合公式结构,故本选项不符合题意;B、(a+b+c)(a﹣b+c),是(a+c)与b的和与差的积,符合公式结构,故本选项不符合题意;C、(a﹣b)(﹣b﹣a),是﹣b与a的和与差的积,符合公式结构,故本选项不符合题意;D、(﹣x+y)(x﹣y)=﹣(x﹣y)2,不符合公式结构,故本选项符合题意.故选:D.[点睛]此题主要考查平方差公式的结构特点,正确掌握结构是解题关键.4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交的两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A 2个 B. 3个 C. 4个 D. 5个[答案]D[解析][分析]根据三角形的高、点到直线的距离定义、平行公理、平行线定义进行分析即可.[详解]解:①平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;②平面内,不相交的两条直线必平行,故原题说法错误;③三角形的三条高线交于一点,应该是三条高线所在直线交于一点,故原题说法错误:④直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误;⑤过直线外一点有且只有一条直线与已知直线平行,故原题说法错误.错误的说法有5个,故选:D.[点睛]此题主要考查真假命题的判断,正确理解各相关概念是解题关键.5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B.C D.[答案]B[解析][分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A、∠1=∠2不能判定任何直线平行,故本选项错误;B、∵∠1=∠2,∴AB∥CD,符合平行线判定定理,故本选项正确;C、∵∠1=∠2,∴AC∥BD,故本选项错误;D、∠1=∠2不能判定任何直线平行,故本选项错误.故选:B.[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B.32C. 1D. 2[答案]B[解析][分析]S△ADF-S△CEF=S△ABE-S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=9,就可以求出三角形ABE的面积和三角形BCD的面积.[详解]∵BE=CE,∴BE=12 BC,∵S△ABC=9,∴S△ABE=12S△ABC=12×9=4.5.∵AD=2BD ,S △ABC =9,∴S △BCD =13S △ABC =13×9=3, ∵S △ABE -S △BCD =(S △ADF +S 四边形BEFD )-(S △CEF +SS 四边形BEFD )=S △ADF -S △CEF ,即S △ADF -S △CEF =S △ABE -S △BCD =4.5-3=1.5.故选B .[点睛]考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.7. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 [答案]B[解析][分析]直接利用多项式乘多项式运算法则计算,进而得出a ,b 的值.[详解]解:∵(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,∴原式=x 4﹣3x 3+ax 3﹣3ax 2+bx 2﹣3bx=x 4+(﹣3+a )x 3+(﹣3a+b )x 2﹣3bx ,∴﹣3+a =0,﹣3a+b =0,解得:a =3,b =9.故选:B .[点睛]本题考查整式的乘法、多项式乘多项式的法则,灵活运用这些法则是解题的关键,属于中考常考题型. 8. 给定下列条件,不能判定三角形是直角三角形是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ [答案]C[解析][分析]根据三角形的内角和等于180°求出最大角,然后选择即可.[详解]解:A 、最大角∠C=180°÷(2+3+5)×5=90°,是直角三角形,故此选项不符合题意;B 、最大角∠A=∠B+∠C=180°÷2=90°,是直角三角形,故此选项不符合题意;C 、最大角∠A=180°÷(2+2+1)×2=72°,故此选项符合题意;D 、最大角∠C=(1+2+3)×3==90°,故此选项不符合题意;故答案为:C.[点睛]本题考查了由角度大小计算判断直角三角形,掌握三角形的内角和等于180°是解题的关键. 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°[答案]C[解析][分析] 先求出∠AEF ,再根据翻折变换的性质得到∠A ′EA ,根据平角的定义和翻折变换的性质可求∠A ′EG ,∠DEG ,再根据平行线的性质和角的和差关系即可求解.[详解]解:∵∠AFE =70°,∴∠AEF =20°,由翻折变换的性质得∠A ′EA =40°,∴∠A ′ED =140°,由翻折变换的性质得∠A ′EG =∠DEG =70°,∵A ′E ∥C ′G ,∴∠EGC ′=110°,∵AD ∥BC ,∴∠EGB =70°,∴∠BGC ′=110°﹣70°=40°.故选:C .[点睛]本题考查了翻折的性质,平行线的性质,理解翻折的性质得到相等的角解题关键.10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A. B.C. D.[答案]D[解析][分析]该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.[详解]解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.[点睛]本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.二、填空题(每题3分,共24分)11. 若a+3b﹣3=0,则3a•27b=_____.[答案]27[解析][分析]先将原式化为同底,然后利用条件即可求出答案.[详解]解:原式=3a•(33)b=3a+3b,∵a+3b﹣3=0∴a+3b=3,∴原式=33=27,故答案为:27.[点睛]本题考查幂的乘方、同底数幂的乘法,解题的关键是熟练掌握运算法则.12. (a﹣2018)2+(2020﹣a)2=20,则a﹣2019=_____.[答案]±3[解析][分析]将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.[详解]解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.[点睛]此题主要考查求代数式的值,解题关键是根据题意整理式子.13. 若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.[答案]55或20[解析][分析]根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.[详解]解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.[点睛]本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14. 已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=_____.[答案]a﹣3b+c[解析][分析]根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.[详解]解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.[解答]本题考查了三角形三边关系,绝对值的意义,根据三角形三边关系得到三个绝对值内整式的符号是解题关键.15. 已知BD、CE是△ABC的高,BD、CE所在的直线相交所成的角中有一个角为60°,则∠BAC=_____.[答案]60°或120°.[解析][分析]分两种情况:(1)当∠A为锐角时,如图1;(2)当∠A为钝角时,如图2;根据四边形的内角和为360°即可得出结果.[详解]解:分两种情况:(1)当∠A为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC的度数为60°或120°,故答案为:60°或120°.[点睛]本题考查了三角形高线的定义,四边形的内角和等知识,掌握相关定理,能分类讨论是解题关键.16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.[答案]9[解析][分析]分底小于腰和底大于腰两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.[详解]解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=21,解得:x=3,当x=3时,x+6=9,此时等腰三角形的三边为:3,9,9;(2)设底为x,则腰为(x﹣6),由题意得:x+2(x﹣6)=21,解得:x=11,当x=11时,x﹣6=5,11,5,5不能构成三角形,不符合题意;因此,腰为9,故答案为:9.[点睛]本题考查了等腰三角形的定义,三角形的三边关系,根据题意分类讨论,并对答案根据三边关系进行分析取舍是解题关键.17. 如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.[答案]68°[解析][分析]如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.[详解]解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E, ∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.[答案]2.5或14.5[解析][分析]根据题意得:动点P 在BC 上运动的时间是4秒,又由动点的速度,可得BC 、AF 的长;再根据三角形的面积公式解答即可.[详解]解:动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC =2cm/秒×4秒=8(cm ); 动点P 在CD 上运动时,对应的时间为4到6秒,易得:CD =2cm/秒×(6﹣4)秒=4(cm );动点P 在DF 上运动时,对应的时间为6到9秒,易得:DE =2cm/秒×(9﹣6)秒=6(cm ),故图甲中的BC 长是8cm ,DE =6cm ,EF =6﹣4=2(cm )∴AF =BC+DE =8+6=14(cm ),∴b =9+(EF+AF )÷2=17, ∴12152AB t ⋅=或()12152AB BC CD DE EF AF t ++++-=, 解得t =2.5或14.5.故答案为:2.5或14.5.[点睛]本题考查了一元一次方程的应用及动点问题,根据题意需要分情况讨论是解题的关键.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.[答案](1)3a5;(2)10.[解析][分析](1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.[详解]解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.[点睛]本题考查了整式的乘法运算,平方差公式,0指数幂,负整数指数幂等知识,熟知相关运算法则是解题关键.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.[答案]﹣y+2x,﹣2[解析][分析]先根据整式的运算法则进行化简,然后将x与y的值代入原式即可求出答案.[详解]解:原式=(4x2﹣4xy+y2﹣9x2+y2+5x2)÷(﹣2y)=(2y2﹣4xy)÷(﹣2y)=﹣y+2x,当x=12-,y=1时,原式=﹣1+2×(12 -)=﹣1﹣1=﹣2.[点睛]本题考查乘法公式的混合运算,熟记完全平方公式和平方差公式是解题的关键,需要注意把乘法公式的结果用括号括起来.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )[答案]已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[解析]分析]利用平行线的性质定理和判定定理进行解答即可.[详解]证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC中,∠1+∠B+∠3=180°,在△ADF中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB//CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD//BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[点睛]本题考查平行线的性质以及判定定理,熟练掌握相关定理是解决此题的关键.22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.[答案](1)DE∥BF,理由见解析;(2)∠A =50°.[解析][分析](1)依据FG∥CB,即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF.(2)依据三角形外角性质以及三角形内角和定理,即可得到∠A的度数.[详解]解:(1)BF与DE的位置关系为互相平行,理由:∵∠AGF=∠ABC=70°,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°∴DE∥BF.(2)∵DE⊥AC,∠2=150°,∴∠C=∠2﹣∠CED=150°﹣90°=60°,又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣60°=50°.[点睛]此题主要考查平行线的判定和性质、三角形的内角和定理、三角形的外角性质,熟练进行逻辑推理是解题关键.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.[答案](1)24ab-6b2;(2)31500元.[解析][分析](1)根据已知条件,用大正方形的面积减去4个长方形的面积再减去中间小正方形的面积即可求解.(2)把a=10,b=5及草坪的造价为每平米30元代入代数式即可求解.[详解]解:(1)∵阴影部分的面积为:大正方形的面积减去4个长方形的面积再减去中间小正方形的面积,∴草坪(阴影)面积为:6a×6a﹣4×b×12×b﹣(6a﹣2b)2=24ab-6b2.(2)当a=10,b=5时,草坪的造价为:(24×10×5-6×52)×30=31500(元).[点睛]本题考查了整式的应用和求整式的值,根据题意正确列出整式是解题的关键.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.[答案](1)甲在600秒时,第一次超出乙600米;(2)1600,1000,1360;(3)150或900或1150或1500.[解析][分析](1)由图象可得:点A表示甲在600秒时,第一次超出乙600米;(2)先求出甲,乙速度,即可求解;(3)分四种情况讨论,由时间=路程÷速度,即可求解.[详解]解:(1)点A表示甲在600秒时,第一次超出乙600米,故答案为:甲在600秒时,第一次超出乙600米;(2)由图形可得乙出发1600s时到达终点,∴乙的速度=24001600=1.5米/秒,∴甲的速度=600600+1.5=2.5秒,∴a=600 2.51.5⨯=1000,∴b=24002.5﹣600+1000=1360,故答案为:1600,1000,1360;(2)刚出发时,1502.5 1.5-=150s,甲在A地时,2.56001501.5⨯-=900s,从A地出发后,1000+150=1150s,甲到终点后,24001501.5-=1500s,综上所述:甲乙出发150s或900s或1150s或1500s时,相距150米.故答案为:150或900或1150或1500.[点睛]此题主要考查根据函数图象的信息解决实际问题,解题关键是读懂函数图象.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.[答案](1)∠DAE=20°;(2)α﹣20°;(3)∠1+∠2=2∠B[解析][分析](1)三角形根据三角形内角和定理求出∠BAC,再由角平分线性质求得∠BAE,再根据三角形的高和直角三角形的性质求得∠BAD,进而由角的和差关系求得结果;(2)根据直角三角形的性质求得∠BAD,再由角的和差关系求得∠BAE,由角平分线的定义求得∠BAC,最后根据三角形内角和定理求得结果;(3)根据邻补角性质和角平分线定义用∠1、∠2分别表示∠BGH和∠BHG,再由三角形内角和定理得结果.[详解]解:(1)∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(2)∵∠B=α,∠ADB=90°,∴∠BAD=90°﹣α,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=100°﹣α,∵AE平分∠BAC,∴∠BAC=200°﹣2α,∴∠C=180°﹣∠B﹣∠BAC=180°﹣α﹣200°+2α=α﹣20°, 故答案为:α﹣20°;(3)∠1+∠2=2∠B.理由:由折叠知,11,,22BGH BGF BHG BHF ∠=∠∠=∠∵∠BGF=180°﹣∠1,∠BHF=180°﹣∠2,∴∠BGH=90°﹣12∠1,∠BHG=90°﹣122∠,∴∠B=180°﹣∠BGH﹣∠BHG=1112 22∠+∠,即∠1+∠2=2∠B.[点睛]本题考查三角形内角和、邻角补角性质、角平分线、高线、直角三角形相关性质以及折叠图形的特点,熟练掌握相关知识点并运用是解决此题的关键.。

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x32.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A. B. C. D.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角4.在圆周长C=2πR中,常量与变量分别是( )A. 2是常量,C、π、R是变量B. 2π是常量,C,R是变量C. C、2是常量,R是变量D. 2是常量,C、R是变量5.如图,能判定AB∥CD的条件是()A ∠1=∠3 B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A. 120°B. 125°C. 130°D. 135°8.在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤二.填空题9.用科学记数法表示:0.007398=_____.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD=___________° .11.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是_____.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .14.已知(9n)2=38,则n=_____.15.若多项式a2+2ka+1是一个完全平方式,则k的值是_____.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.17.如图,已知AB∥CD,则∠A、∠C、∠P关系为_____.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)220.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.21.已知()25a b +=,()23a b -=,求下列式子的值:(1)22a b +;(2)4ab .22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示(1)甲速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A 后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?24.在△ABC 中,AB =AC ,点D 是射线CB 上一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).答案与解析一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x3[答案]B[解析][分析]直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.[详解]A、x2+x2=2x2,故此选项错误;B、x2•x3=x5,正确;C、x6÷x2=x4,故此选项错误;D、(2x)3=8x3,故此选项错误;故选B.[点睛]此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A B. C. D.[答案]B[解析][分析]根据轴对称的性质求解.[详解]观察选项可知,A中的两个图形可以通过平移,旋转得到,C中可以通过平移得到,D中可以通过放大或缩小得到,只有B可以通过对称得到.故选B.[点睛]本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角[答案]D[解析][分析] 根据同位角、对顶角、同旁内角以及余角的定义对各选项作出判断即可.[详解]解:A 、∠1与∠5是同位角,故本选项不符合题意;B 、∠2与∠4对顶角,故本选项不符合题意;C 、∠3与∠6是同旁内角,故本选项不符合题意.D 、∠5与∠6互为补角,故本选项符合题意.故选:D .[点睛]本题主要考查了同位角、对顶角、同旁内角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.在圆的周长C =2πR 中,常量与变量分别是( )A. 2是常量,C 、π、R 是变量B. 2π是常量,C,R 是变量C. C 、2是常量,R 是变量D. 2是常量,C 、R 是变量[答案]B[解析][分析]根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.[详解]在圆的周长公式中2R C π=中,C 与r 是改变的,π是不变的;所以变量是C ,R ,常量是2π.故答案选B[点睛]本题考查了变量与常量知识,属于基础题,正确理解变量与常量的概念是解题的关键.5.如图,能判定AB ∥CD 的条件是( )A. ∠1=∠3B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°[答案]B[解析][分析]在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.[详解]A. ∵∠1=∠3,∴AD∥BC,而不能判定AB∥CD,故A错误;B.∵∠2=∠4,∴AB∥CD,故B正确,C.∵∠DCE=∠D,∴AD∥BC,而不能判定AB∥CD,故C错误;D. ∵∠B+∠BAD=180°,∴AD∥BC,而不能判定AB∥CD,故D错误.故选:B[点睛]本题考查了平行线的判定方法,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB[答案]D[解析][分析]由题意可知,∠ABC=∠DCB,BC=CB,然后利用三角形全等的判定定理逐个进行判定即可.[详解]解:由题意∠ABC=∠DCB,BC=CB∴A. ∠A=∠D,可用AAS定理判定△ABC≌△DCBB. ∠ACB=∠DBC,可用ASA定理判定△ABC≌△DCBC. AB=DC,可用SAS定理判定△ABC≌△DCBD. AC=DB,不一定能够判定两个三角形全等故选:D[点睛]本题考查三角形全等的判定,掌握判定定理灵活应用是本题的解题关键.7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于( )A. 120°B. 125°C. 130°D. 135°[答案]D[解析][分析] 根据全等三角形的判定定理可得出BCA BDE ∆≅∆,从而有3CAB ∠=∠,这样可得1390∠+∠=︒,根据图形可得出245∠=︒,这样即可求出123∠+∠+∠的度数.[详解]解:在ABC ∆与BDE ∆中AC DE C D CB DB =⎧⎪∠=∠⎨⎪=⎩, ()BCA BDE SAS ∴∆≅∆,3CAB ∴∠=∠,由图可知,1=90CAB ∠+∠︒,∴1390∠+∠=︒,由图可知,245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:.[点睛]此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定BCA BDE ∆≅∆,这是解答本题关键.8.在△ABC 中,AB =AC ,∠BAC =45°.若AD 平分∠BAC 交BC 于D ,BE ⊥AC 于E ,且交A 于O ,连接OC .则下列说法中正确的是( )①AD ⊥BC ;②OC 平分BE ;③OE =CE ;④△ACD ≌△BCE ;⑤△OCE 的周长=AC 的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤[答案]C[解析][分析]①正确,利用等腰三角形的三线合一即可证明;②错误,证明OB=OC>OE即可判断;③正确,证明∠ECO =∠OBA=45°即可;④错误,缺少全等的条件;⑤正确,只要证明BE=AE,OB=OC,EO=EC即可判断.[详解]解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,即①正确,∴OB=OC,∵BE⊥AC,∵OC>OE,∴OB>OE,即②错误,∵∠ABC=∠ACB,∠OBC=∠OCB,BE⊥AC,∴∠ABE=∠ACO=45°,∴∠ECO=∠EOC=45°,∴OE=CE,即③正确,∵∠AEB=90°,∠ABE=45°,∴AE=EB,∴△OEC的周长=OC+OE+EC=OE+OB+EC=EB+EC=AE+EC=AC,即⑤正确,无法判断△ACD≌△BCE,故④错误,故选:C.[点睛]本题考查等腰三角形的性质,等腰直角三角形的判定和性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二.填空题9.用科学记数法表示:0.007398=_____.[答案]3⨯7.39810-绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.007398=7.398×10﹣3.故答案为:37.39810-⨯.[点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD =___________°.[答案]70.[解析][分析]根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.[详解]解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故答案为70.[点睛]本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是_____.[答案]6cm 或7cm .当腰长=6cm时,底边=20﹣6﹣6=8cm,当底边=6cm时,腰长=2062﹣=7cm,根据三角形的三边关系,即可推出腰长.[详解]解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20﹣6﹣6=8cm,即6+6>8,能构成三角形,∴当底边=6cm时,腰长=2062﹣=7cm,即7+6>7,能构成三角形,∴腰长是6cm或7cm,故答案为6cm或7cm.[点睛]本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)[答案](a+2b)(a+3b)=a2+5ab+6b2[解析][分析]根据图形求面积有直接求和间接求两种方法,列出等式即可.[详解]解:根据题意得:整个长方形的面积:S=(a+2b)(a+3b),同时,这个图形是由5个长是a宽是b的小长方形和6个边长是b的小正方形和一个边长是a的正方形组成的,所以面积S=a2+5ab+6b2.∴(a+2b)(a+3b)=a2+5ab+6b2.故答案为:(a+2b)(a+3b)=a2+5ab+6b2.[点睛]这道题主要考查整式的乘法的推导,难度较低,利用数形结合的方法是解题的关键.13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________.[答案]γ=2α+β.[解析][分析]根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.[详解]由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为γ=2α+β.[点睛]此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.14.已知(9n)2=38,则n=_____.[答案]2[解析][分析]先把9n化为32n,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n=8,即可求得n的值.[详解](9n)2=(32n)2=34n=38,∴4n=8,解得n =2.[点睛]此题考查幂的乘方,解题关键在于掌握运算法则.15.若多项式a 2+2ka+1是一个完全平方式,则k 的值是_____.[答案]±1[解析]分析:完全平方式有两个:222a ab b ++和222a ab b -+,根据以上内容得出221ka a =±⋅,求出即可. 详解:∵221a ka ++ 是一个完全平方式,∴2ka =±2a ⋅1, 解得:k =±1, 故答案是:±1. 点睛:考查完全平方公式,熟记公式是解题的关键.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.[答案]50°或130°;[解析][分析]根据平行线的性质:两直线平行,同位角相等即可解答此题.[详解]解:如图:当α=∠2时,∠2=∠1=50°,当β=∠2时,∠β=180°−50°=130°,故答案为:50°或130°;[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.17.如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.[答案]∠A+∠C﹣∠P=180°[解析][详解]如图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm[答案]5[解析][分析]过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,根据轴对称的相关性质以及两点之间线段最短可以得出此时PE+QE最小,并且等于Q,进一步利用全等三角形性质求解即可.[详解]如图,过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,此时PE+QE最小.∵与P关于BD对称,∴PE=E,BP=B=2cm,∴PE+QE= Q,又∵等边△ABC中,BD⊥AC于点D,AD=3.5cm,∴AC=BC=AB=7cm,∵BP=AQ=2cm,∴QC=5cm,∵B=2cm,∴C=5cm,∴△Q C为等边三角形,∴Q=5cm.∴PE+QE=5cm.所以答案为5.[点睛]本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,熟练掌握相关概念是解题关键.三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)2[答案](1)22++-;(2)2-5ab+4a4b2.m mn n444[解析][分析](1)根据平方差公式和完全平方公式计算即可;(2)根据整式乘法,加减运算法则进行计算即可.[详解]解:(1)(2m+n﹣2)(2m+n+2)()2m n+-=2422m mn n++-;=444(2)(2+a)(2﹣a)﹣a(5b﹣a)+ 3a4b2+(﹣a2b)2=2-a2-5ab+a2+3a4b2+ a4b2=2-5ab+4a4b2.[点睛]本题考查了整式的乘法运算和乘法公式,解题的关键是牢记平方差公式和完全平方公式,并严格按照整式乘法法则进行.20.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.[答案](1)53-;(2)2x y -,4. [解析][分析](1)根据负整数指数幂,0指数幂,积的乘方逆运算计算,再进行加减运算即可;(2)先根据完全平方公式和平方差公式展开合并,再根据多项式除以单项式计算,最后代入求值即可.[详解]解:(1)(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 20182018223=21332⎛⎫⎛⎫⎛⎫-++-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()20182=113⎛⎫-+-⨯- ⎪⎝⎭ 2=13⎛⎫-+- ⎪⎝⎭ =53-; (2)[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x =22224442x xy y x y x ⎡⎤-++-÷⎣⎦=2242x xy x ⎡⎤-÷⎣⎦=2x y -,当x =2,y =﹣1时,原式=()221-⨯-=4.[点睛]本题考查了负整数指数幂,0指数幂,积的乘方逆运算,整式的加减乘除混合运算及代入求值等知识,解题关键是牢记相关知识,严格按法则进行计算.21.已知()25a b +=,()23a b -=,求下列式子值:(1)22a b +;(2)4ab .[答案](1)4;(2)2;(1)直接利用完全平方公式将原式展开,进而求出22a b +的值;(2)直接利用(1)中所求,进而得出ab 的值,求出答案即可.[详解]解:(1)∵()25a b +=,()23a b -=,∴22+25a b ab +=,2232b a b a +-=,∴()2228a b +=,解得:224a b +=,(2)∵224a b +=,∴4+2ab=5,解得:ab=12, ∴4ab =14=22⨯; [点睛]本题主要考查了完全平方公式,掌握完全平方公式是解题的关键.22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____[答案]见解析根据平行线的性质结合已知得到∠D=∠BFC,证明DE∥BF,利用平行线的性质得出结论.[详解]证明:∵AB∥CD,∴∠B=∠BFC.(两直线平行,内错角相等),又∵∠B=∠D,∴∠D=∠BFC.(等量代换)∴DE∥BF.(同位角相等,两直线平行),∴∠l+∠2=180°.(两直线平行,同旁内角互补).故答案为:∠BFC;两直线平行,内错角相等;∠D;∠BFC;DE;BF;同位角相等,两直线平行;两直线平行,同旁内角互补.[点睛]本题考查了平行线的判定和性质,熟练掌握平行线的性质和判定定理是解题的关键.23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示(1)甲的速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?[答案](1)16,43;(2) 78;(3)283或60分钟[解析][分析](1)根据路程与时间的关系,可得甲乙的速度;(2)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案;(3)根据题意列方程即可解答.[详解]解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米, 设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43,即乙的速度为43米/分钟.故答案为16;43;(2)甲、乙相遇时,乙所行驶的路程:4401033⨯=(千米)相遇后乙到达A站还需1416263⎛⎫⨯÷=⎪⎝⎭(分钟),相遇后甲到达B站还需411036⎛⎫⨯÷⎪⎝⎭=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为78;(3)110606÷=(分钟),设甲出发了x分钟后,甲、乙之间的距离为10千米时,根据题意得,16x+43(x-6)=16-10,解得x=283,答:甲出发了283或60分钟后,甲、乙之间的距离为10千米时.[点睛]本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.24.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 线段CB 上,且∠BAC =90°时,那么∠DCE =______度.(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).[答案](1)90°;(2)①α+β=180°;②α=β.[解析]试题分析:(1)利用等腰三角形证明ABD ≅ACE,所以∠ECA=∠DBA,所以∠DCE =90°.(2)方法类似(1)证明△ABD ≌△ACE ,所以∠B=∠ACE ,再利用角的关系求αβ180+=︒. (3)同理方法类似(1).试题解析:解:(1) 90 度.∠DAE =∠BAC ,所以∠BAD =∠EAC,AB=AC,AD=AE ,所以ABD ≅ACE,所以∠ECA=∠DBA,所以∠ECA =90°.(2)① αβ180+=︒.理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE,又AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠B=∠ACE .∴∠B +∠ACB =∠ACE+∠ACB ,∴B ACB DCE β∠∠∠+==.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.(3)补充图形如下, αβ=.。

人教版数学七年级下册《期中检测试卷》含答案解析

人教版数学七年级下册《期中检测试卷》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.9的算术平方根是( )A. 3B. 3C. ±3D. ±3 2.-2,4,2,3.14,327-,5π,这6个数中,无理数共有( ) A. 4个 B. 3个C. 2个D. 1个 3.平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限 D. 第四象限 4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D. 5.如图,直线a ,b 相交于点O ,若∠1等于45°,则∠2等于( )A. 45°B. 135°C. 115°D. 55°6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( )A. 10°B. 15°C. 25°D. 35°7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)9.如图,直线a ,b 被直线c 所截,下列说法正确的是( )A. 当∠1=∠2时,a ∥bB. 当a ∥b 时,∠1=∠2C. 当a ∥b 时,∠1+∠2=90°D. 当a ∥b 时,∠1+∠2=180°10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣112.下列命题中正确的有( )①相等的角是对顶角; ②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ;③同旁内角互补; ④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个13.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A. 2B. 4C. 0或4D. 4或﹣414.如图,在平面直角坐标系中A (3,0),B (0,4),AB =5,P 是线段AB 上一个动点,则OP 的最小值是()A. 245B. 125C. 4D. 3 二、填空题 15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.17.实数,在数轴上的位置如图所示,请化简:222()a b a b ---18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.三、解答题19.计算:(1)239118()162+--;(2)122332----+-. 20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 是20的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.22.完成下列推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( )∴∠B = ( )又∵∠B=∠D( 已知),∴∠=∠( 等量代换)∴AD∥BE( )∴∠E=∠DFE( )23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动时间.答案与解析一、选择题1.9的算术平方根是( )A. 3B.C. ±3 [答案]A[解析][分析]根据算术平方根定义即可得到结果.[详解]解:∵32=9∴9的算术平方根是3,故选:A.[点睛]本题考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.2.在-2,3.14,5π,这6个数中,无理数共有( ) A. 4个B. 3个C. 2个D. 1个 [答案]C[解析]-22=, 3.14, 3=-是有理数;,5π是无理数; 故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个). 3.在平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]B[解析]∵−2<0,3>0,∴(−2,3)在第二象限,故选B.4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D.[答案]B[解析][分析]根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.[详解]解:根据平移概念,观察图形可知图案B通过平移后可以得到.故选B.[点睛]本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.5.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A 45° B. 135° C. 115° D. 55°[答案]B[解析][分析]根据互为邻补角的两个角的和等于180°列式计算即可得解.[详解]解:由图可知,∠1与∠2互为邻补角,∴∠2=180°-∠1=180°-45°=135°.故选:B.[点睛]本题考查了邻补角的定义,是基础题,熟记概念并准确识图是解题的关键6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A. 10°B. 15°C. 25°D. 35°[答案]C[解析][分析]由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.[详解]如图,∵∠1=65°∴∠3=∠1=65°,∴∠2=90°−65°=25°.故选:C.[点睛]考查平行线的性质,掌握两直线平行,同位角相等是解题的关键.7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)[答案]D[解析][分析]根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.[详解]如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.[点睛]本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)[答案]C[解析]分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选C点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.9.如图,直线a,b被直线c所截,下列说法正确的是( )A. 当∠1=∠2时,a∥bB. 当a∥b时,∠1=∠2C. 当a∥b时,∠1+∠2=90°D. 当a∥b时,∠1+∠2=180°[答案]D[解析][分析]根据平行线的性质,两直线平行,同旁内角互补以及对顶角的性质即可判断.[详解]解:∠1=∠2时,∠2=∠3,同旁内角相等,a∥b不一定成立,选项A错误;当a ∥b 时,∠2+∠3=180°,而∠1=∠3,则∠1+∠2=180°,故D 正确.故选D .[点睛]此题考查平行线的性质,解题关键在于掌握其性质定义.10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°[答案]D[解析] 分析:利用互余和互补的概念,可求得∠BOD 的大小.详解:因为OE AB ⊥,28EOC ∠=︒,所以∠COB =62°,所以∠BOD=180°-62°=118°. 故选D.点睛:辨析互余互补:(1)相加等于90°的两角称作互为余角.(2)相加等于180°的两个角互为补角.11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣1 [答案]A[解析]分析]由|y ﹣x |=x ﹣y 知x ≥y ,再根据|x |=3,y 是4的算术平方根得出x 、y 的值,代入计算可得[详解]解:因为|y ﹣x |≥0,所以x ﹣y ≥0,即x ≥y .由|x |=3,y 是4的算术平方根可知x =3、y =2.则x+y=5,故选A.[点睛]此题考查算术平方根,解题关键在于掌握运算法则.12.下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个[答案]C[解析][分析]根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.[详解]解:相等的角不一定是对顶角,①错误;在同一平面内,若a∥b,b∥c,则a∥c,②正确;同旁内角不一定互补,③错误;互为邻补角的两角的角平分线互相垂直,④正确,故选:C.[点睛]本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为( )A. 2B. 4C. 0或4D. 4或﹣4[答案]D[解析][分析]根据点A、B的坐标可找出OA、OB的长度,再根据三角形的面积公式即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.[详解]∵A(a,0),B(0,10),∴OA=|a|,OB=10,∴S△AOB=12OA•OB=12•10|a|=20,解得:a=±4.故选D.[点睛]本题考查了坐标与图形性质,根据三角形的面积公式列出关于a的含绝对值符号的一元一次方程是解题的关键.14.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是( )A. 245B.125C. 4D. 3[答案]B[解析][分析]利用等面积法求得OP的最小值.[详解]解:当OP⊥AB时,OP的值最小.∵A(3,0),B(0,4),∴OB=4,OA=3.∴12OA•OB=12AB•OP.∴OP=341255 OA OBAB⨯==.故选B.[点睛]此题考查坐标与图形,解题关键在于利用三角形面积公式进行计算.二、填空题15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.[答案]如果两个角互为对顶角,那么这两个角相等[解析][分析]根据命题的形式解答即可.[详解]将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.[点睛]此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.[答案]-8[解析][分析]直接利用非负数的性质得出x ,y 的值,进而得出答案.[详解]解:∵3x -+(y+2)2=0,∴x-3=0,y+2=0,解得x=3,y=-2,故y x =(-2)3=-8.故答案为:-8.[点睛]此题主要考查了非负数的性质,根据几个非负数的和等于0,则每一个式子都等于0进行列式是解题的关键.17.实数,在数轴上的位置如图所示,请化简:222()a b a b -[答案]0[解析][分析]先判断a ,b ,a-b 的符号,再根据二次根式的性质化简即可.[详解]解:由数轴可知0a <,0b >,∴0a b -<,222()a b a b -||||||a b a b =---()0a b a b =--+-=.[点睛]本题考查了利用数轴比较实数的大小,二次根式的性质与化简,熟练掌握二次根式的性质是解答本题的关键.18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.[答案](-4,8)[解析][分析]根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.[详解]解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P 的坐标为(-4,8).故答案为:(-4,8).[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题19.计算:(121()2;(2)1-+[答案](1)-1;(2[解析][分析](1)首先化简二次根式,再计算加减即可;(2)首先根据绝对值的性质计算,再计算加减即可.[详解]解:(121()2+124- 51=244-- =-1(2)1-[点睛]此题主要考查了二次根式的加减和绝对值的性质,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变,对于含有绝对值的运算先去掉绝对值符号再运算.20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.[答案](1)4x =或2x =-;(2)4x =-[解析][分析](1)根据平方形式开方运算,即可解答;(2)根据等式的性质,可化成立方的形式,根据开方运算,可得答案.[详解]解:(1)2(1)9x -=则:13x -=±当13x -=时,4x =当13x -=-时,2x =-综上所述,4x =或2x =-(2)32(1)54x -+= 3(1)-27x +=13x +=-4x =-[点睛]本题考查了平方根和立方根,能够先化成平方和立方的形式,再进行开方运算是解题的关键.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.[答案](1)a=5,b=-13,c=4;(2)3.[解析][分析](1)根据题意可得:4a-1l=9,3a+b-1=1,c=4,求解即可;(2)代入数值,根据立方根的性质求解.[详解]解:(1)∵4a-1l 的平方根是.∴4a-1l=9∴a=5∵3a+b-1的算木平方根是1∴3a+b-1=l∴b=-13;∵c 是20的整数部分,4<20<5∴c=4(2)333225(13)4273a b c -+=⨯--+==[点睛]本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.22.完成下列推理说明: 如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( ) ∴∠B = ( )又∵∠B =∠D ( 已知 ),∴ ∠ = ∠ ( 等量代换 )∴AD ∥BE ( )∴∠E =∠DFE ( )[答案]详见解析[解析][分析]根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B=∠DCE ,求出∠DCE=∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.[详解]证明:∵∠B+∠BCD=180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B= ∠DCE (两直线平行,同位角相等 ),又∵∠B=∠D( 已知),∴∠ DCE = ∠ D ( 等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.[点睛]本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC.[答案]证明见解析[解析]试题分析:先根据角平分线定义可证明∠1=∠2,进而利用平行线的判定方法得出答案.试题解析:证明:∵BF平分∠ABC,∴∠1=∠FBC.∵DE平分∠ADC,∴∠2=∠ADE.∵∠ABC=∠ADC,∴∠1+∠FBC=∠2+∠ADE,∴2∠1=2∠2,即∠1=∠2.又∵∠1=∠3,∴∠2=∠3,∴AB∥DC.24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.[答案](1)AE∥CD,理由见解析;(2)50°[解析][分析](1)根据平行线的性质得出∠D+∠C=180°,求出∠EAD+∠D=180°,根据平行线的判定得出即可;(2)根据平行线的性质和三角形的外角性质求出即可.[详解]解:(1)AE∥CD,理由是:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∠EFC=50°,∴∠AEF=∠EFC=50°,∵∠AEC=∠B+∠BAE=∠AEF+∠FEC,又∵∠FEC=∠BAE,∴∠B=∠AEF=50°.[点睛]此题考查平行线的判定与性质,三角形的外角性质,解题关键在于掌握判定定理.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.[答案]⑴如图所示见解析;⑵平行且相等;⑶7 2[解析][分析](1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.[详解](1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,(3)S△DEF=3×3-12×2×3-12×1×2-12×1×3=72.[点睛]本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.[答案](1)(4,6);(2)4;(3)4秒或8秒[解析][分析](1)根据长方形的性质,易得B得坐标;(2)根据题意,P的运动速度与移动的时间,进而结合三角形的面积公式可得答案;(3)根据题意,当点P到x轴距离为5个单位长度时,有P在AB与OC上两种情况,分别求解可得答案.[详解]解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴P A=2.∴S△OAP=12OA×P A=12×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,P A=4,此时点P移动路程为4+4=8,时间为12×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为12×16=8.∴点P移动的时间为4秒或8秒.[点睛]此题考查长方形的性质,坐标与图形变化-平移,解题关键在于掌握平移的性质.。

人教版数学七年级下册《期中考试题》及答案解析

人教版数学七年级下册《期中考试题》及答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2 2. 下列方程变形中属于移项的是( ) A 由2x =﹣1得x =﹣12 B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣b D. 由4﹣3x =0得﹣3x +4=03. 由132x y -=,可以得到用表示的式子( ) A 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- 4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x 5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x =2是不等式4x >15的一个解D. 不等式x ﹣2<6的两边都减去3,则此不等式仍成立6. 把方程0.10.20.510.30.4x x ---=的分母化成整数后,可得方程( ) A. 0.10.20.5134x x ---= B. 12510134x x ---= C. 125101034x x ---= D.120.5134x x ---= 7. 不等式325132x x ++≤-的解集表示在数轴上是( )A. B. C. D.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=9. 如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩ 10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A. B. C. D.二、填空题(每小题3分,共15分)11. 若2x ﹣3与1互为相反数,则x =_____.12. 在公式S =12n (a +b )中,已知S =5,n =2,a =3,那么b 的值是_____. 13. 一个两位数,两个数位上数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. 15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x﹣1)﹣2(1﹣x)=0.17. 解不等式52x+﹣1<322x+,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20. 如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21. 小明在解方程21134x x m-+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22. 阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x=13;②当3x<0时,原方程可化一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)答案与解析一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2[答案]D[解析][分析]先移项,再合并同类项,最后系数化为1即可得出答案.[详解]3x -1=5,移项得,3x =5+1,合并同类项得,3x =6,系数化为1得,x =2.故选D.[点睛]本题考查了一元一次方程的解法.熟练掌握解一元一次方程的步骤是解题的关键.2. 下列方程变形中属于移项的是( )A. 由2x =﹣1得x =﹣12B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣bD. 由4﹣3x =0得﹣3x +4=0 [答案]C[解析][分析]根据一元一次方程的解法直接进行排除选项即可.[详解]A 、由2x =﹣1得:x =12-,不符合题意; B 、由2x =2得:x =4,不符合题意; C 、由5x +b =0得5x =﹣b ,符合题意;D 、由4﹣3x =0得﹣3x +4=0,不符合题意.故选:C .[点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.3. 由132x y -=,可以得到用表示的式子( ) A. 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- [答案]A[解析][分析] 只需把含有y 的项移到方程的左边,其它的项移到另一边,然后合并同类项、系数化为1就可用含x 的式子表示y .[详解]解:移项,得123y x =-, 系数化为1,得223x y =-. 故选:A .[点睛]本题考查的是方程的基本运算技能,移项、合并同类项、系数化为1等.4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x[答案]C[解析][分析]出错的地方为:方程两边除以x ,没有考虑x 为0的情况,据此判断即可.[详解]解:错误的地方为:方程两边都除以x ,没有考虑x 是否为0,正确解法为:移项得:2x ﹣3x =0,合并得:﹣x =0,系数化为1得:x =0.故选:C .[点睛]本题考查了解一元一次方程,熟练掌握运算法则是解题的关键.5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x=2是不等式4x>15的一个解D. 不等式x﹣2<6的两边都减去3,则此不等式仍成立[答案]D[解析][分析]根据不等式的解法及不等式解集的概念直接进行排除选项即可.[详解]A、方程的解只有一个,而不等式的解有无数个;故本选项不合题意.B、不等式4x>5的解集是x>54,故本选项不合题意.C、不等式4x>15的解集是x>154不包括2,故本选项不合题意.D、不等式x﹣2<6的两边都减去3,则此不等式仍成立,正确,依据是不等式的基本性质.故选:D.[点睛]本题主要考查一元一次不等式的解集及解法,熟练掌握一元一次不等式的解集及解法是解题的关键.6. 把方程0.10.20.510.30.4x x---=的分母化成整数后,可得方程( )A. 0.10.20.5134x x---= B.12510134x x---=C. 125101034x x---= D.120.5134x x---=[答案]B[解析][分析]本题方程两边都含有分数系数,在变形的过程中,利用分数的性质将分数的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程,把含分母的项的分子与分母都扩大原来的10倍.[详解]解:把原方程的分母化为整数得,12510134x x ---=故选B.[点睛]分母化成整数的过程的依据是分数的性质,掌握相关知识是解题的关键.7. 不等式325132x x++≤-的解集表示在数轴上是( )A. B.C.D.[答案]B[解析][分析] 根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.[详解]解:去分母,得,2(3x +2)≤3(x +5)﹣6,去括号,得6x +4≤3x +15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .[点睛]本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=[答案]C[解析][分析]设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.[详解]解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .[点睛]本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.9. 如图,射线OC 端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩[答案]B[解析][分析]根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;然后由平角可建立方程组,则问题得解.[详解]解:根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;根据∠AOC 和∠BOC 组成了平角,得方程x +y =180.列方程组为180210x y x y +=⎧⎨=+⎩. 故选:B .[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A.B. C. D. [答案]C[解析][分析]可设第一个数为x ,根据已知对每个选项计算讨论得出.[详解]设第一个数为x,根据已知:A:得x+x+6+x+7+x+8=36,则x=6.25不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选C.[点睛]此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.二、填空题(每小题3分,共15分)11. 若2x﹣3与1互为相反数,则x=_____.[答案]1.[解析][分析]根据互为相反数的关系直接进行求解即可.[详解]解:根据题意得:2x﹣3+1=0,移项合并得:2x=2,解得:x=1.故答案:1.[点睛]本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.12. 在公式S=12n(a+b)中,已知S=5,n=2,a=3,那么b的值是_____.[答案]2.[解析][分析]求公式中的一个字母b的值,把已知其它字母的值代入,转化为关于b大的方程,解之即可.[详解]∵S=12n(a+b)中,且S=5,n=2,a=3,∴5=12×2×(3+b),解得:b=2.故答案为:2.[点睛]本题考查从公式中求某个字母值问题,关键是把给的已知字母的值代入,转化为某字母为未知数的方程.13. 一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.[答案]36[解析][分析]设十位数字为x ,个位数字为y ,由题意可进行列方程组进行求解即可.[详解]解:设十位数字为x ,个位数字为y ,由题意得:2101027y x y x x y =⎧⎨+=++⎩, 解得:36x y =⎧⎨=⎩, 原两位数是36,即:原两位数是36.故答案是:36.[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. [答案]38. [解析][分析]已知等式利用题中的新定义化简,计算即可求出解.[详解]解:根据题中的新定义化简得:3x +12=2﹣x , 去分母得:6x +1=4﹣2x ,解得:x =38. 故答案为:38. [点睛]本题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解题的关键.15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.[答案]12和20[解析][分析]足球缝合规律:五边形的5条边都与六边形缝合,六边形只有3条边与五边形缝合,所以五边形的个数乘以5应该等于六边形的个数乘以3,据此设足球有黑色五边形皮块x 个,列方程求解即可[详解]设足球有黑色五边形皮块x 个,则有白色六边形皮块(32-x)个,由题意得,5x=3(32-x)解得:x=12所以白色皮块数为20,黑色皮块数为12.故答案为:12和20.[点睛]本题主要考查一元一次方程应用,熟练掌握一元一次方程的应用是解题的关键.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x ﹣1)﹣2(1﹣x )=0.[答案]x =58 [解析][分析]先去括号合并同类项,然后直接解一元一次方程即可.[详解]解:()()321210x x ---=去括号,得6x ﹣3﹣2+2x =0,移项,得6x +2x =3+2,合并同类项,得8x =5,系数化为1,得x =58. [点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.17. 解不等式52x +﹣1<322x +,小兵的解答过程是这样的. 解:去分母,得x +5﹣1<3x +2①.移项,得x ﹣3x <2﹣5+1②.合并同类项,得﹣2x <﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.[答案](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答过程见解析,x>12.[解析][分析](1)根据解一元一次不等式的步骤,逐一判断即可得出结论;(2)根据解一元一次不等式的步骤,解不等式即可.[详解](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答是:去分母得(x+5)﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,系数化为1,得x>12.[点睛]此题考查的是解一元一次不等式,掌握解一元一次不等式的步骤是解题关键.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.[答案]33 xy=⎧⎨=-⎩.[解析][分析]先把方程组标号①②,把两个方程同一未知数的系数变绝对值相等的数,同号两式相减,异号两式相加,消去一个未知数,转化为一元一次方程,得解后再代入①或②,求另一未知数,把两个解联立起来即可.[详解]433 3315x yx y+=⎧⎨-=⎩①②,①×2得:8x+6y=6③,②×3得:9x﹣6y=45④,③+④得:17x=51,解得:x=3,把x=3代入①,得4×3+3y=3, 解得:y=﹣3,所以原方程组的解是33 xy=⎧⎨=-⎩.[点睛]本题考查加减消元法解方程组,关键是要变方程一未知数系数绝对值相等,同号两式相减,异号两式相加.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.[答案]a=﹣11.[解析][分析]两个方程中,有一个只有一个未知数,先解这个方程,求出后,代入第二个方程解之即可.[详解]解方程.3x﹣6=4x﹣5,移项,得3x﹣4x=﹣5+6,合并同类项,得﹣x=1,系数化为1得:x=﹣1,把x=﹣1代入方程a﹣5x=﹣6,得a﹣5×(﹣1)=﹣6.解得a=﹣11.[点睛]本题考查用方程确定参数问题,关键是观察两个方程中有一个方程直接求解.20. 如图1,在边长为a大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.[答案]图2中第Ⅱ部分的面积为100.[解析][分析]根据在边长为a的大正方形中剪去一个边长为b的小正方形,以及长方形的长为30,宽为20,得出a+b=30,a-b=20,进而得出答案.[详解]解:根据题意得出:3020b a a b +=⎧⎨-=⎩, 解得:255a b =⎧⎨=⎩, 故图2中Ⅱ部分的面积是:5×20=100, 答:第Ⅱ部分的面积为100.[点睛]本题考查了正方形的性质以及二元一次方程组的应用,根据已知得出a+b=30,a-b=20是解题的关键. 21. 小明在解方程21134x x m -+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x =3,请你帮助小明求出m 的值和原方程正确的解.[答案]m =4,x =45 [解析][分析]根据题意进行“将错就错”,即把方程的解是x =3代入()()42131x x m -=+-中求解m 的值,最后代入原方程进行求解即可.[详解]解:根据题意,x =3是方程()()42131x x m -=+-的解,将x =3代入得4×(2×3﹣1)=3(3+m )﹣1,解得m =4, 所以原方程为214134x x -+=-, 解方程得x =45. [点睛]本题主要考查分式方程的解及分式方程的解法,熟练掌握分式方程的解及分式方程的解法是解题的关键.22. 阅读以下例题:解方程:|3x |=1,解:①当3x ≥0时,原方程可化一元一次方程3x =1,解这个方程得x =13;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.[答案](1)x=1或x=﹣2;(2)当b<﹣1时,方程无解;当b=﹣1时,方程只有一个解;当b>﹣1时,方程有两个解.[解析][分析](1)仿照例题分情况讨论:①当2x+1≥0时,②当2x+1<0时,化简绝对值,解关于x的一元一次方程即可求解;(2)|x﹣2|≥0恒成立,①若无解,则b+1<0,解不等式即可求解;②若只有一个解,则b+1=0,求解即可;③若有两个解,则b+1>0,解不等式即可求解.[详解]解:(1)①当2x+1≥0时,原方程可化为一元一次方程2x+1=3,解这个方程得x=1;②当2x+1<0时,原方程可化为一元一次方程﹣2x﹣1=3,解这个方程得x=﹣2;所以原方程的解是x=1或x=﹣2;(2)因为|x﹣2|≥0,所以①当b+1<0,即b<﹣1时,方程无解;②当b+1=0,即b=﹣1时,方程只有一个解;③当b+1>0,即b>﹣1时,方程有两个解.[点睛]本题考查解绝对值方程,理解题意是解题的关键.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)[答案](1)甲组工作一天商店应付300元,乙组工作一天商店应付140元;(2)单独请乙组,商店所付费用较少;(3)安排甲、乙两个装修组同时施工更有利于商店.[解析][分析](1)设甲组工作一天商店应付元,乙组工作一天商店应付元,根据“若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)根据总费用每天需支付的费用工作时间,可分别求出单独请甲组和单独请乙组施工所需费用,比较后即可得出结论;(3)分单独请甲组施工、单独请乙组施工和请甲、乙两组合做施工三种情况考虑,利用损失的总钱数施工费用因装修损失收入,分别求出三种情况下损失的钱数,比较后即可得出结论.[详解](1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,依题意,得:883520 6123480x yx y+=⎧⎨+=⎩,解得:300140xy=⎧⎨=⎩.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组需要的费用为300×12=3600(元);单独请乙组需要的费用为140×24=3360(元).∵3600>3360,∴单独请乙组,商店所付费用较少.(3)单独请甲组施工,需费用3600元,少盈利200×12=2400(元),相当于损失6000元;单独请乙组施工,需费用3360元,少盈利200×24=4800(元),相当于损失8160元;请甲、乙两组合做施工,需费用3520元,少盈利200×8=1600(元),相当于损失5120元.∵5120<6000<8160,∴甲、乙合做损失费用最少.答:安排甲、乙两个装修组同时施工更有利于商店.[点睛]本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.。

人教版数学七年级下册《期中检测试题》及答案解析

人教版数学七年级下册《期中检测试题》及答案解析

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.计算:a•a2的结果是( )A. 3aB. a3C. 2a2D. 2a32.下列调查中,最适合采用全面调查的是( )A 调查市区居民的日平均用水量B. 调查全区初中生的每天睡眠时间C. 调查一批灯泡的使用寿命D. 调查某班学生的健康码情况3.据了解,新型冠状病毒(SARS﹣CoV﹣2)的最大直径大约是0.00000014米.数0.00000014用科学记数法表示为( )A. 1.4×10B. 1.4×10C. 1.4×10D. 14×104.用加减法解方程组224x yx y-=⎧⎨+=⎩①②时,方程①+②得( )A. 2y=2B. 3x=6C. x﹣2y=﹣2D. x+y=65.计算11aa a-+,正确结果是()A 1 B. 12C. aD.1a6.已知:如图,直线a∥b,若∠1=70°,则∠2的度数是( )A 100° B. 70° C. 130° D. 110°7.下列多项式中,不能用乘法公式进行因式分解的是( )A. a2﹣1B. a2+2a+1C. a2+4D. 9a2﹣6a+18.若2xy m=-⎧⎨=⎩是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是( )A. 3B. 2C. 1D. ﹣19.抗击新冠肺炎疫情期间,某口罩厂接到加大生产的紧急任务后积极扩大产能,现在每天生产的口罩比原来多4万个.已知现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,问口罩厂现在每天生产多少个口罩?设原来每天生产x 万个口罩,则由题意可列出方程( ) A. 1004x -=60x B. 1004x +=60x C. 604x -=100x D. 604x +=100x 10.如图,直线AB ∥CD ,折线EFG 交AB 于M ,交CD 于N ,点F 在AB 与CD 之间,设∠AMF =m °,∠EFG =n °,则∠CNG 的度数是( )A. n °B. (m +n )°C. (2n ﹣m )°D. (180+m ﹣n )°二.填空题(共8小题)11.分解因式:22a a +=_____.12.若分式13x -有意义,则取值范围是_____________. 13.如图,在△ABC 中,BC =10cm ,D 是BC 的中点,将△ABC 沿BC 向右平移得△A ′DC ′,则点A 平移的距离AA ′=_____cm .14.将数据83,85,87,89,84,85,86,88,87,90分组,则86.5~88.5这一组的频数是_____.15.已知:如图,在四边形ABCD 中,AB ⊥AC ,垂足为A .如果∠B =∠D =50°,∠CAD =40°,那么∠BCD =_____度.16.如图,在边长为 2a 的正方形中央剪去一边长为 ()a 2+ 的小正方形 ()a 2>,将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为__________________.17.如图,6块同样大小的长方形复合地板刚好拼成一个宽为30cm 的大长方形,则这个大长方形的长是_____cm .18.对于实数a ,b 定义运算“◎”如下:a ◎b =1a b -,如5◎2=512-=2,(﹣3)◎4=314--=﹣1,若(m +2)◎(m ﹣3)=2,则m =_____. 三.解答题(共7小题)19.计算:(﹣1)2020+(π﹣3)0﹣(12)﹣1. 20.解方程组8312x y x y -=⎧⎨+=⎩. 21.先化简,再求值:211()111a a a a a +-÷---,其中a =3. 22.某校组织七年级学生从学校出发,到距学校9km 的教育基地开展社会实践活动,一部分学生骑自行车先出发,半小时后,其他学生乘公共汽车出发,结果两批学生同时到达目的地.已知公共汽车的行驶速度是自行车骑行速度的3倍,求自行车的骑行速度和公共汽车的行驶速度分别是多少?23.如图,点D 在△ABC 的边AC 上,过点D 作DE ∥BC 交AB 于E ,作DF ∥AB 交BC 于F .(1)请按题意补全图形;(2)请判断∠EDF 与∠B 的大小关系,并说明理由.24.国家卫健委规定:中学生每天线上学习时间不超过4小时,某区对七年级学生“停课不停学”期间,使用手机等电子设备的时长情况进行抽样调查,调查结果共分为四个层次:A .0~2小时;B .2~4小时;C .4~6小时;D .6小时以上,根据调查统计结果绘制如图两幅不完整的统计图.请结合统计图,解答下列问题:(1)本次参与调查的学生共有多少人?请补全条形统计图;(2)在扇形统计图中,表示层次D的扇形的圆心角是多少度?(3)若该区一共有3300名七年级学生,那么估计有多少名学生使用电子设备的时长不符合国家卫健委的规定.25.某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等),加工成如图2的竖式与横式两种无盖的长方体铁容器(加工时接缝材料忽略不计).(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,则可加工的竖式和横式长方体铁容器各有多少个?(2)把长方体铁容器加盖可以加工成铁盒.现工厂准备将35块铁板裁剪成长方形铁片和正方形铁片,用来加工铁盒,已知1块铁板可裁成3张长方形铁片或4张正方形铁片,也可以裁成1张长方形铁片和2张正方形铁片.问:该工厂充分利用这35张铁板,最多可以加工成多少铁盒?答案与解析一.选择题(共10小题)1.计算:a•a2的结果是( )A. 3aB. a3C. 2a2D. 2a3[答案]B[解析][分析]原式利用同底数幂的乘法法则计算即可得到结果.[详解]解:原式=a3,故选:B.[点睛]此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.2.下列调查中,最适合采用全面调查的是( )A. 调查市区居民的日平均用水量B. 调查全区初中生的每天睡眠时间C. 调查一批灯泡的使用寿命D. 调查某班学生的健康码情况[答案]D[解析][分析]根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.[详解]解:A、调查市区居民的日平均用水量,调查范围广,适合抽样调查,故此选项不符合题意;B、调查全区初中生的每天睡眠时间,调查范围广,适合抽样调查,故此选项不符合题意;C、调查一批灯泡的使用寿命,适合抽样调查,故此选项不符合题意;D、调查某班学生的健康码情况适合普查,故此选项符合题意;故选:D.[点睛]本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.据了解,新型冠状病毒(SARS﹣CoV﹣2)的最大直径大约是000000014米.数0.00000014用科学记数法表示为( )A. 1.4×10B. 1.4×10C. 1.4×10D. 14×10[答案]C[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000014=1.4×10-7,故选:C.[点睛]本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.用加减法解方程组224x yx y-=⎧⎨+=⎩①②时,方程①+②得( )A. 2y=2B. 3x=6C. x﹣2y=﹣2D. x+y=6 [答案]B[解析][分析]直接根据等式的基本性质即可解答.[详解]解:用加减法解方程组224x yx y-=⎧⎨+=⎩①②时,方程①+②得:3x=6.故选:B.[点睛]此题主要考查等式的基本性质,正确理解性质是解题关键.5.计算11aa a-+,正确的结果是()A. 1B. 12C. aD.1a[答案]A[解析]分析]直接利用分式的加减运算法则计算得出答案.[详解]11111 a a aa a a a--++===,故选A.[点睛]此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.6.已知:如图,直线a∥b,若∠1=70°,则∠2的度数是( )A. 100°B. 70°C. 130°D. 110°[答案]D[解析][分析]根据平角的定义先求出∠3,再根据平行线的性质求出∠2.[详解]解:如图:∵∠1+∠3=180°,∴∠3=180°﹣∠1=110°∵a∥b,∴∠2=∠3=110°.故选:D.[点睛]本题考查了平角的定义及平行线的性质,掌握平行线的性质是解决本题的关键.7.下列多项式中,不能用乘法公式进行因式分解的是( )A. a2﹣1B. a2+2a+1C. a2+4D. 9a2﹣6a+1 [答案]C[解析][分析]直接利用公式法分别分解因式进而得出答案.[详解]A、a2﹣1=(a+1)(a﹣1),可以运用公式法分解因式,不合题意;B、a2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C、a2+4,无法利用公式法分解因式,符合题意;D、9a2﹣6a+1=(3a﹣1)2,可以运用公式法分解因式,不合题意;故选:C.[点睛]本题考查了公式法,正确运用乘法公式是解题的关键.8.若2xy m=-⎧⎨=⎩是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是( )A. 3B. 2C. 1D. ﹣1 [答案]A[解析][分析]直接把方程的解代入进行计算,得到3m﹣n=2,再计算得到答案.[详解]解:∵2xy m=-⎧⎨=⎩是方程nx+6y=4的一个解,∴代入得:﹣2n+6m=4,∴3m﹣n=2,∴3m﹣n+1=2+1=3,故选:A.[点睛]本题考查了二元一次方程的解和求代数式的值,能求出3m-n=2是解此题的关键.9.抗击新冠肺炎疫情期间,某口罩厂接到加大生产的紧急任务后积极扩大产能,现在每天生产的口罩比原来多4万个.已知现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,问口罩厂现在每天生产多少个口罩?设原来每天生产x万个口罩,则由题意可列出方程( )A. 1004x-=60xB.1004x+=60xC.604x-=100xD.604x+=100x[答案]B[解析][分析]设原来每天生产x万个口罩,则现在每天生产(x+4)万个口罩,根据工作时间=工作总量÷工作效率结合现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,即可得出关于x的分式方程,此题得解.[详解]解:设原来每天生产x万个口罩,则现在每天生产(x+4)万个口罩,依题意,得:1004x=60x;故选:B.[点睛]本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.如图,直线AB∥CD,折线EFG交AB于M,交CD于N,点F在AB与CD之间,设∠AMF=m°,∠EFG=n°,则∠CNG的度数是( )A. n°B. (m+n)°C. (2n﹣m)°D. (180+m﹣n)°[答案]D[解析]分析]过点F,作FH∥AB,利用平行线的性质,先用含m、n的代数式表示出∠CNF,根据平角求出∠CNG.[详解]过点F作FH∥AB.∵AB∥CD,∴AB∥FH∥CD.∴∠AMF=∠EFH,∠CNF=∠HFG.∵∠EFH+HFG=∠EFG,∴∠AMF+∠FNC=∠EFG.即∠FNC=n°﹣m°.∴∠CNG=180°﹣(n°﹣m°)=(180+m﹣n)°.故选:D.[点睛]本题考查了平行线的性质及平角的定义.掌握平行线的性质是解题的关键.二.填空题(共8小题)11.分解因式:22a a +=_____.[答案]22(2)a a a a +=+[解析][分析]直接提公因式法:观察原式22a a +,找到公因式,提出即可得出答案.[详解]22(2)a a a a +=+.[点睛]考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.12.若分式13x -有意义,则的取值范围是_____________. [答案]3x ≠[解析][分析]根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.[详解]解:分式13x -有意义, ∴30x -≠,解得:3x ≠,故答案:3x ≠.[点睛]本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键. 13.如图,在△ABC 中,BC =10cm ,D 是BC 的中点,将△ABC 沿BC 向右平移得△A ′DC ′,则点A 平移的距离AA ′=_____cm .[答案]5.[解析][分析]利用平移变换的性质解决问题即可.[详解]解:观察图象可知平移的距离=AA′=BD=12BC=5(cm),故答案为5.[点睛]本题考查平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.14.将数据83,85,87,89,84,85,86,88,87,90分组,则86.5~88.5这一组的频数是_____.[答案]3.[解析][分析]数出数据落在86.5~88.5这一组中的个数即可.[详解]解:将数据83,85,87,89,84,85,86,88,87,90分组,则落在86.5~88.5这一组中的数据有87,88,87,一共3个.故答案为:3.[点睛]本题考查了频数:频数是指每个对象出现的次数.一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.15.已知:如图,在四边形ABCD中,AB⊥AC,垂足为A.如果∠B=∠D=50°,∠CAD=40°,那么∠BCD=_____度.[答案]130.[解析][分析]根据题意可得∠BAD=130°,再根据四边形的内角和等于360°计算即可得出∠BCD的度数.[详解]解:∵AB⊥AC,∴∠BAC=90°,∠BAD=∠BAC+∠CAD=90°+40°=130°,又∵∠BCD+∠BAD+∠B+∠D=360°,∴∠BCD=360°﹣∠BAD﹣∠B﹣∠D=360°﹣130°﹣50°﹣50°=130°.故答案为:130.[点睛]本题主要考查了多边形的内角与外角,熟记多边形的内角和公式是解答本题的关键.16.如图,在边长为 2a 的正方形中央剪去一边长为 ()a 2+ 的小正方形 ()a 2>,将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为__________________.[答案]3a 2 -4a-4[解析][分析]平行四边形的面积等于大正方形的面积减去小正方形的面积.[详解]根据题意得,平行四边形的面积=(2a )2-(a +2)2=3a 2-4a -4.故答案为3a 2-4a -4.[点睛]本题考查了整式混合运算的应用,解题的关键是理解两个正方形的面积与平行四边形的面积之间的关系,列出相应的式子后再化简.17.如图,6块同样大小的长方形复合地板刚好拼成一个宽为30cm 的大长方形,则这个大长方形的长是_____cm .[答案]40.[解析][分析]设每个小长方形的长为xcm ,宽为ycm ,根据长方形的对边相等已经宽为30cm ,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入(1+2y )中即可求出结论.[详解]解:设每个小长方形的长为xcm ,宽为ycm ,依题意,得:2230x y x x y +=⎧⎨+=⎩, 解得:2010x y =⎧⎨=⎩,∴x+2y=40.故答案为:40.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.对于实数a,b定义运算“◎”如下:a◎b=1ab-,如5◎2=512-=2,(﹣3)◎4=314--=﹣1,若(m+2)◎(m﹣3)=2,则m=_____.[答案]7.[解析][分析]利用新定义得到2123mm+-=-,再解这个分式方程即可.详解]解:根据题意得2123mm+-=-,方程两边同乘m﹣3,得:m+2﹣1=2(m﹣3),解这个方程,得:m=7.经检验,m=7是所列方程的解故答案为:7.[点睛]本题考查了解分式方程,熟练掌握解分式方程的步骤是解答本题的关键.三.解答题(共7小题)19.计算:(﹣1)2020+(π﹣3)0﹣(12)﹣1.[答案]0.[解析][分析]先计算乘方,零指数幂和负整数指数幂,再相加减即可.[详解]解:原式=1+1﹣2=0.[点睛]本题考查了有理数的乘方、零指数幂和负整数指数幂的计算,熟记公式,正确的计算出零指数幂和负整数指数幂是解决此题的关键.20.解方程组8 312 x yx y-=⎧⎨+=⎩.[答案]53 xy=⎧⎨=-⎩[解析][分析]根据y 的系数互为相反数,利用加减消元法求解即可.[详解]8312x y x y -=+=⎧⎨⎩①②, ①+②得,4x=20,解得x=5,把x=5代入①得,5-y=8,解得y=-3,所以方程组的解是53x y =⎧⎨=-⎩. 21.先化简,再求值:211()111a a a a a +-÷---,其中a =3. [答案]a +1,4.[解析][分析]先根据分式的混合运算顺序和运算法则化简原式,将a 的值代入计算可得.[详解]解:原式=1(1)(1)a a a a a ÷-+- =(1)(1)1a a a a a+-⨯- =a+1,当a =3时,原式=3+1=4.[点睛]本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.某校组织七年级学生从学校出发,到距学校9km 的教育基地开展社会实践活动,一部分学生骑自行车先出发,半小时后,其他学生乘公共汽车出发,结果两批学生同时到达目的地.已知公共汽车的行驶速度是自行车骑行速度的3倍,求自行车的骑行速度和公共汽车的行驶速度分别是多少?[答案]自行车的速度是12km /h ,公共汽车的速度是36km /h .[解析][分析]设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据骑自行车用的时间-公交车用的时间=半小时即可列出分式方程,求出分式方程的解并检验后即得结果.[详解]解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:99132x x-=,解得:x=12,经检验,x=12是所列分式方程的解,∴3x=36.答:自行车的速度是12km/h,公共汽车的速度是36km/h.[点睛]本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.23.如图,点D在△ABC的边AC上,过点D作DE∥BC交AB于E,作DF∥AB交BC于F.(1)请按题意补全图形;(2)请判断∠EDF与∠B的大小关系,并说明理由.[答案](1)如图,见解析;(2)∠EDF=∠B.理由见解析.[解析][分析](1)利用几何语言画出对应的几何图形;(2)根据平行线的性质得到∠B=∠AED,∠AED=∠EDF,然后根据等量代换得到∠EDF=∠B.[详解]解:(1)如图,(2)∠EDF=∠B.理由如下:∵DE∥BC,∴∠B=∠AED,∵DF∥AB,∴∠AED=∠EDF,∴∠EDF=∠B.[点睛]本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质.24.国家卫健委规定:中学生每天线上学习时间不超过4小时,某区对七年级学生“停课不停学”期间,使用手机等电子设备的时长情况进行抽样调查,调查结果共分为四个层次:A.0~2小时;B.2~4小时;C.4~6小时;D.6小时以上,根据调查统计结果绘制如图两幅不完整的统计图.请结合统计图,解答下列问题:(1)本次参与调查的学生共有多少人?请补全条形统计图;(2)在扇形统计图中,表示层次D的扇形的圆心角是多少度?(3)若该区一共有3300名七年级学生,那么估计有多少名学生使用电子设备的时长不符合国家卫健委的规定.[答案](1)本次参与调查的学生共有200人,补全的条形统计图见解析;(2)18°;(3)估计有825名学生使用电子设备的时长不符合国家卫健委的规定.[解析][分析](1)用条形统计图中A层次的人数除以扇形统计图中A层次的人数所占百分比即可求出参与调查的学生人数,用总人数减去其它三个层次的人数即可求出C层次的人数,进一步即可补全条形统计图;(2)用D层次的人数除以总人数再乘以360°即可求得结果;(3)用C、D两个层次的人数之和除以调查的总人数再乘以3300即可求出结果.[详解]解:(1)30÷15%=200(人),C层次的学生有:200﹣30﹣120﹣10=40(人),即本次参与调查的学生共有200人,补全的条形统计图如图所示;(2)360°×10200=18°,答:在扇形统计图中,表示层次D的扇形的圆心角是18°;(3)3300×4010200=825(名),答:估计有825名学生使用电子设备的时长不符合国家卫健委的规定.[点睛]本题考查了条形统计图、扇形统计图以及利用样本估计总体等知识,属于基本题型,正确理解题意、熟练掌握上述基础知识是解题的关键.25.某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等),加工成如图2的竖式与横式两种无盖的长方体铁容器(加工时接缝材料忽略不计).(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,则可加工的竖式和横式长方体铁容器各有多少个?(2)把长方体铁容器加盖可以加工成铁盒.现工厂准备将35块铁板裁剪成长方形铁片和正方形铁片,用来加工铁盒,已知1块铁板可裁成3张长方形铁片或4张正方形铁片,也可以裁成1张长方形铁片和2张正方形铁片.问:该工厂充分利用这35张铁板,最多可以加工成多少铁盒?[答案](1)可以加工竖式长方体铁容器100个,横式长方体铁容器538个;(2)最多可以加工成19个铁盒.[解析][分析](1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设用m块铁板裁成长方形铁片,n块铁板裁成正方形铁片,则用(35-m-n)块铁板裁成长方形铁片和正方形铁片,根据裁成的长方形铁片和正方形铁片正好配套,即可得出关于m,n的二元一次方程,结合m,n,(35-m-n)均为非负整数,即可得出各裁剪方案,再分别求出各方案所能加工成的铁盒数量,比较后即可得出结论.[详解](1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩.答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设用m块铁板裁成长方形铁片,n块铁板裁成正方形铁片,则用(35﹣m﹣n)块铁板裁成长方形铁片和正方形铁片,依题意,得:3(35)42(35)42m m n n m n+--+--=,∴n=65m﹣21.∵m,n,(35﹣m﹣n)均为非负整数,∴259mn=⎧⎨=⎩,203mn=⎧⎨=⎩.当m=25,n=9时,3(35)325(35259)19 44m m n+--⨯+--==;当m=20,n=3时,3(35)320(35203)44m m n+--⨯+--==.∵19>18,∴最多可以加工成19个铁盒.[点睛]本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.。

人教版数学七年级下册《期中检测试题》附答案解析

人教版数学七年级下册《期中检测试题》附答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9 3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯ 4. 一个角度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90°5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 216. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS 8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 3310. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s 表示此人离家距离,t 表示时间,在下面给出的四个表示s 与t 的关系的图象中,符合以上情况的是( ) A. B. C. D.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a 2b)(3ab)=____________________.12. 对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______ 15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.16. 若102m =,103n =,则210m n +=_________.17. 若226m n -=,且3m n -=,则m n +=___.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 位置关系是______________20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.22. 请将下列证明过程补充完整:已知:∠1=∠E ,∠B =∠D . 求证:AB ∥CD证明:∵ ∠1=∠E ( 已知 )∴ ∥ ( )∴ ∠D +∠2=180°( ) ∵ ∠B =∠D ( 已知 )∴ ∠B + ∠2= 180°( ) ∴ AB ∥CD ( )23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.25. 已知如图,A、E、F、C四点共线,BF=DE,AB=CD.(1)请你添加一个条件,使△DEC≌△BFA;(2)在(1)基础上,求证:DE∥BF.26. 如图:BD平分∠ABC,∠ABD=∠ADB,∠ABC=50°,请问:(1)∠BDC+∠C 度数是多少?并说明理由.(2)若P点是BC上的一动点(B点除外),∠BDP与∠BPD之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?答案与解析一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.[答案]B[解析][分析]根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.[详解]解: A.∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;B.∠1与∠2的两边互为反向延长线, 只有一个公共顶点,是对顶角;C.∠1与∠2有两个公共顶点,不是对顶角;D. ∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;故选B .[点睛]本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系..它是在两直线相交的前提下形成的.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9[答案]D[解析][分析]根据同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.[详解]A 、应x 6÷x 3=x 3,故本选项错误;B 、应为2x 3﹣x 3=x 3,故本选项错误;C 、应为x 2•x 3=x 5,故本选项错误;D 、(x 3)3=x 9,正确.[点睛]本题考查同底数幂的除法,合并同类项法则,同底数幂的乘法,幂的乘方,熟练掌握运算性质和法则是解题的关键.3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯[答案]D[解析][分析]科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.[详解]0.00000156的小数点向右移动6位得到1.56,所以0.00000156用科学记数法表示为1.56×10-6,故选D .[点睛]本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 一个角的度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90° [答案]A[解析][分析]若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.依此求出度数.[详解]40°角的余角是:90°−40°=50°,50°角的补角是:180°−50°=130°.故选:A.[点睛]考查余角与补角的相关计算,掌握余角与补角的定义是解题的关键.5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 21 [答案]B[解析]由题意分该等腰三角形的腰长分别为4和9两种情况结合三角形三边间的关系进行讨论,然后再根据三角形的周长公式进行计算即可.详解:由题意分以下两种情况进行讨论:(1)当该等腰三角形的腰长为4时,因为4+4<9,围不成三角形,所以这种情况不成立;(2)当该等腰三角形的腰长为9时,因为4+9>9,能够围成三角形,此时该等腰三角形的周长=9+9+4=22. 综上所述,该等腰三角形的周长为22.故选B.点睛:当已知等腰三角形其中两边长,求第三边长或周长时,通常要分“已知两边分别为等腰三角形的腰长”两种情况,结合三角形三边间的关系进行讨论.6. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-[答案]B[解析][分析]根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.[详解]解:、、符合平方差公式的特点,故能运用平方差公式进行运算;、两项都互为相反数,故不能运用平方差公式进行运算.故选:.[点睛]本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS[答案]B我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.[详解]解:作图的步骤:①以为圆心,任意长为半径画弧,分别交OA 、OB 于点、;②任意作一点,作射线O A '',以为圆心,OC 长为半径画弧,交O A ''于点;③以为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选B .[点睛]本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm[答案]C[解析][分析]根据三角形的三边关系进行判断.[详解]A 、 3+5=8 ,不能组成三角形;B 、 8+8<18,不能组成三角形;C 、 1+1>1 ,能组成三角形;D 、 3+4<8 ,不能组成三角形;故选:C .[点睛]本题考查三角形的三边关系,一般用两条较短的线段相加,如果大于最长那条就能够组成三角形. 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 33 [答案]B先根据完全平方公式进行变形,再代入求出即可.[详解]∵a+b=−5,ab=−4,∴a2−ab+b2=(a+b)2−3ab=(−5)2−3×(−4)=37,故选:B.[点睛]本题考查完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键.10. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s表示此人离家的距离,t表示时间,在下面给出的四个表示s与t的关系的图象中,符合以上情况的是( )A. B. C. D.[答案]C[解析][分析]根据修车时,路程没变化,可得答案.[详解]∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.[点睛]本题考查函数图象,观察图象是解题关键,注意修车时路程没有变化.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a2b)(3ab)=____________________.[答案]-6a3b2[解析][分析]根据单项式与单项式相乘的运算法则进行计算即可得到答案.[详解]解:(-2a2b)(3ab)=-6a3b2.故答案为-6a3b2.[点睛]本题考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.12. 对于圆的周长公式c=2πr,其中自变量是______,因变量是______.[答案] (1). r (2). c[解析]试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r ,其中自变量是,因变量是 .故答案为,.r C13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________[答案]110°[解析][分析]由D 点是∠ABC 和∠ACB 角平分线的交点可推出∠DBC +∠DCB =70°,再利用三角形内角和定理即可求出∠BDC 的度数.[详解]解:∵D 点是∠ABC 和∠ACB 角平分线的交点,∴∠CBD =∠ABD =12∠ABC ,∠BCD =∠ACD =12∠ACB , ∵∠A=40°,∴∠ABC +∠ACB =180°−40°=140°,∴∠DBC +∠DCB =70°,∴∠BDC =180°−70°=110°,故答案为:110°.[点睛]此题主要考查学生对角平分线性质,三角形内角和定理,熟记三角形内角和定理是解决问题的关键. 14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______[答案]S=35t[解析][分析]根据路程=速度×时间列出函数关系式即可.[详解]解:根据路程=速度×时间得:汽车所走的路程S (千米)与所用的时间t (时)的关系表达式为:s=35t . 故答案为:S=35t .[点睛]本题考查函数关系式,解题的关键是明确路程=速度×时间,据此表示出关系式.15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.[答案]CB =CD[解析][分析]要判定△ABC ≌△ADC ,已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 可添加CB =CD .[详解]已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 能判定△ABC ≌△ADC ,则需添加CB =CD ,故答案为:CB =CD .[点睛]本题考查三角形全等的判定方法,解题的关键是掌握判定两个三角形全等的一般方法(SSS ). 16. 若102m =,103n =,则210m n +=_________.[答案][解析]∵10m =2,10n =3,∴10m+2n =10m •102n =2×32=18.故答案是:18.17. 若226m n -=,且3m n -=,则m n +=___.[答案]2[解析][分析]将m 2−n 2 利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值.[详解]解:∵m 2-n 2=(m+n)(m-n)=6,且m-n=3,∴m+n=2.故答案为:2.[点睛]本题考查利用平方差公式因式分解,熟练掌握公式及法则是解本题的关键.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)[答案](2n+1) −4×n=4n+1.[解析][分析]由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.[详解]由题意知, ①223415-⨯=,②225429-⨯=,③2274313-⨯=,则第④个等式为9−4×4=17,故第n 个等式为(2n+1) −4×n=4n+1左边=4n+4n+1−4n=4n+1=右边,∴(2n+1) −4×n=4n+1故答案为(2n+1) −4×n=4n+1.[点睛]此题考查规律型:数字的变化类,解题关键在于理解题意找到规律. 三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 的位置关系是______________[答案](1)见解析;(2)DE 平行BC.理由见解析.[解析][分析](1)由题意作∠ADE=∠ABC ,DE 与AC 边交于点E ,即可得到图形;(2)根据同位角两直线平行进行判定即可得到答案.[详解](1)作∠ADE=∠ABC ,DE 与AC 边交于点E ,如图所示:∠ADE 即为所求;(2)DE 平行BC.理由:由(1)可知∠ADE=∠ABC ,根据同位角相等,两直线平行可得DE 平行BC.[点睛]本题考查作图—基本作图和平行线的判定,解题的关键是掌握作图基本方法和平行线的判定方法. 20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-[答案](1)1;(2)43a 7b 5;(3)-m ²+3m−2;(4)a ²+2ab+b ²-4; [解析][分析](1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)先算括号里面的,再根据单项式乘单项式的运算法则计算,然后合并同类项即可;(3)根据多项式乘多项式和单项式乘多项式的运算法则并合并同类项计算即可;(4)把a+b 当成一项,根据平方差公式计算,在展开合并化简即可. [详解](1)原式=1+14−14=1; (2)原式=-8a 6b 3÷(-2ab)13a ²b 3=43a 7b 5; (3)原式=m ²−m−2−2m ²+4m=-m ²+3m−2;(4)原式=(a+b)²-4=a ²+2ab+b ²-4.[点睛]本题考查了整式混合运算,熟练掌握整式的混合运算是解题的关键,计算时要注意符号的正确处理. 21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.[答案]70°[解析]分析]设这个角是x ,表示出它的补角为(180°−x ),然后列出方程求出x ,再根据余角的定义计算即可得解.[详解]设这个角是x ,则它的补角=180°−x ,根据题意得,x ∶(180°−x)=1∶8,解得x =20°,90°−20°=70°.答:这个角的余角是70°.[点睛]本题考查了余角和补角,熟记定义并表示这个角的补角,然后列出方程是解题的关键.22. 请将下列证明过程补充完整:已知:∠1=∠E,∠B=∠D.求证:AB∥CD证明:∵∠1=∠E(已知)∴∥()∴∠D+∠2=180°()∵∠B=∠D(已知)∴∠B+ ∠2= 180° ( )∴AB∥CD()[答案]∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°(等量代换)∴AB∥CD(同旁内角互补,两直线平行)[解析][分析]根据∠1=∠E可判定AD∥BE,可得∠D和∠2为同旁内角互补;结合∠B=∠D,可推得∠2和∠B也互补,从而判定AB平行于CD.[详解]证明:∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°,∴AB∥CD.[点睛]本题考查了平行线的性质和平行线的判定,同学们要熟练掌握.23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?[答案](1) 30千米;(2)10时30分,休息了半小时;(3) 17.5千米;(4) 12.5千米.[解析]试题分析:(1)(3)小题,观察图象,结合题意即可得到对应的答案;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,由此可得1112点玲玲骑车前进了30-17.5=12.5(km).试题解析:(1)观察图象可得:玲玲是在12点时到达距家最远的地方的,此时她距家30km;(2)观察图象可得:玲玲10点30分开始第一次休息,休息了30分钟;(3)观察图象可得:玲玲第一次休息时,距家17.5km;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,∴11点12点,玲玲骑车行驶了:30-17.5=12.5(km).点睛:解答这类题的关键有以下两点:(1)弄清图象中点的横坐标和纵坐标所代表的量的意义;(2)弄清图象中各个转折点(如图中的点C、D、E、F)的意义.24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.[答案]见解析[解析][分析]证明△ABC ≌△DEF 得到∠B=∠DEF ,即可推出AB ∥DE.[详解]∵BE=CF ,∴BE+CE=CF+CE,即BC=EF ,在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF,∴∠B=∠DEF ,∴AB ∥DE.[点睛]此题考查三角形全等的判定及性质,根据题中的已知条件证得△ABC ≌△DEF 是解题的关键. 25. 已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD .(1)请你添加一个条件,使△DEC ≌△BFA ;(2)在(1)的基础上,求证:DE ∥BF .[答案](1)添加的条件为:AE=CF (答案不唯一);(2)证明见解析;[解析][分析](1)添加的条件AE=CF ,因此可得AF=CE ,即可证明△DEC ≌△BFA ;(2) 由(1)知△DEC ≌△BFA ,得到∠DEC=∠BFA ,根据直线平行的判定,即可证明;[详解]解:(1)添加的条件为:AE=CF ,证明:∵AE=CF ,∴AE+EF=CF+EF ,即:AF=CE ,又∵BF=DE ,AB=CD ,∴在△DEC 和△BFA 中,AB CD BF DE AF CE =⎧⎪=⎨⎪=⎩∴△DEC ≌△BFA (SSS );(2)由(1)知△DEC ≌△BFA ,∴∠DEC=∠BFA(全等三角形对应角相等),∴DE ∥BF (内错角相等,两直线平行).[点睛]本题主要考查了三角形全等的判定以及三角形全等的性质、直线平行的·判定,掌握内错角相等两直线平行是解题的关键.26. 如图:BD 平分∠ABC ,∠ABD=∠ADB ,∠ABC=50°,请问:(1)∠BDC +∠C 度数是多少?并说明理由.(2)若P 点是BC 上的一动点(B 点除外),∠BDP 与∠BPD 之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.[答案](1)∠BDC+∠C=155°,理由见解析,(2)∠BDP 与∠BPD 之和是一个确定的值,∠BDP+∠BPD=155°,理由见解析.[解析][分析](1)由BD 平分∠ABC ,∠ABD=∠ADB ,可得出AD ∥BC ,在△BCD 中,∠DBC=25°,从而可得答案,(2)因为∠DBC 大小固定,ADB ∠的大小就固定,所以无论P 点如何移动,∠BDP 与∠BPD 之和为一定值.[详解]解:(1)∠BDC+∠C=155°. 理由如下:∵BD 平分∠ABC ,∠ABC=50°,∴∠ABD=∠CBD=25°; 又∠ABD=∠ADB=25°,∠BDC+∠C=180°-∠CBD=155°.(2)是确定的值. 理由如下:∵∠ADB=∠CBD ,∴AD∥BC,∴∠ADP+∠BPD=180°;∴∠BDP+∠BPD=180°-∠ADB=155°.[点睛]本题考查的是角平分线的性质,三角形的内角和定理,平行线的判定与性质,熟练掌握平行线的判定定理及性质和三角形内角和公式是解题的关键.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?[答案](1)m-n;(2)(m-n)(m-n)=(m-n)2,(m+n)2-4mn=(m-n)2;(3)(m+n)2-4mn=(m-n)2;(4)29[解析][分析](1)观察得到长为m,宽为n的长方形的长宽之差即为阴影部分的正方形的边长;(2)可以用大正方形的面积减去4个长方形的面积得到图2中的阴影部分的正方形面积;也可以直接利用正方形的面积公式得到;(3)利用(2)中图2中的阴影部分的正方形面积得到(m+n)2-4mn=(m-n)2;(4)根据(3)的结论得到(a-b)2=(a+b)2-4ab,然后把a+b=7,ab=5代入计算.[详解]解:(1)观察图形可得正方形的边长=m-n;(2)方法一:(m-n)(m-n)=(m-n)2 ;方法二:(m+n)2-4mn=(m-n)2 ;(3)利用(2)中的方法二可得:(m+n)2-4mn=(m-n)2 ;⨯=.(4)根据(3)的结论可得:(a-b)2=(a+b)2-4ab=27-4529[点睛]本题考查了完全平方公式与图形之间的关系,从几何的图形来解释完全平方公式的意义.解此类题目的关键是正确的分析图列,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.。

人教版数学七年级下学期《期中检测试题》含答案解析

人教版数学七年级下学期《期中检测试题》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程是( )A. 2x =1B. 120x -=C. 2x -y =5D. 2x +1=2x 2.二元一次方程组224x y x y +=⎧⎨-=⎩的解是( ) A. 02x y =⎧⎨=⎩ B. 20x y =⎧⎨=⎩ C. 31x y =⎧⎨=-⎩ D. 11x y =⎧⎨=⎩3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++= 5.由方程组43x m y m +=⎧⎨-=⎩,可得出x 与y 的关系是( ) A. x+y=1 B. x+y=-1 C. x+y=7 D. x+y=-76.不等式组10260x x +>⎧⎨-≤⎩解集在数轴上表示正确的是( ) A.B.C.D 7.某文具店一本练习本和一支中性笔单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ 8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.10.x 的3倍与5的和不大于8,用不等式表示为______.11.若方程23x y -=,用含的代数式表示,则=____.12.不等式5140x +≥的负整数解的和是____.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.16.解方程组:20346x y x y +=⎧⎨+=⎩ 17.解方程组:2201160x y z x y z x y ++=-⎧⎪-+=⎨⎪+=⎩.18.解不等式213436x x --≥,并把解集数轴上表示出来. 19.已知x=1是方程2﹣13(a ﹣x)=2x 的解,求关于y 的方程a(y ﹣5)﹣2=a(2y ﹣3)的解. 20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?24.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.答案与解析一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程的是( )A. 2x=1B. 120x-= C. 2x-y=5 D. 2x+1=2x[答案]A[解析][分析]依据一元一次方程的定义解答即可.[详解]解:A、2x=1是一元一次方程,故A正确;B、120x-=不是整式方程,故B错误;C、2x-y=5是二元一次方程,故C错误;D、2x+1=2x是一元二次方程,故D错误;故选:A.[点睛]本题主要考查的是一元一次方程的定义,熟练掌握一元一次方程的概念是解题的关键.2.二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩[答案]B[解析][分析]方程组利用加减消元法求出解即可.[详解]224x yx y①②+=⎧⎨-=⎩,①+②得:3x=6,即x=2, 把x=2代入①得:y=0,则方程组的解为20 xy=⎧⎨=⎩,故答案选B.[点睛]本题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.解题的关键是熟练的掌握解二元一次方程组的方法.3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > [答案]D[解析][分析]根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,对A 进行判断;不等式两边乘(或除以)同一个正数,不等号的方向不变,对B 、D 进行判断;不等式两边乘(或除以)同一个负数,不等号的方向改变,对C 进行判断.[详解]∵不等式两边加(或减)同一个数(或式子),不等号的方向不变∵m >n∴m -2>n -2故A 错误∵不等式两边乘(或除以)同一个正数,不等号的方向不变∵m >n∴6m >6n ,44m n > 故B 错误,D 正确∵不等式两边乘(或除以)同一个负数,不等号的方向改变∵m >n∴-8m <-8n故C 错误故选:D[点睛]本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++=[答案]A[解析]根据等式的性质方程两边都乘以12即可.解:24x ++1=3x,去分母得:3(x+2)+12=4x,故选A.“点睛”本题考查了一元一次方程的变形,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1.5.由方程组43x my m+=⎧⎨-=⎩,可得出x与y的关系是( )A. x+y=1B. x+y=-1C. x+y=7D. x+y=-7 [答案]C[解析][分析]将两个方程相加即可得到结论.[详解]43 x my m+=⎧⎨-=⎩①②由①+②得:x+y=7.故选C.[点睛]考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.6.不等式组10260xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D. [答案]C [解析] [分析]分别解两个不等式得到1x >-和3x ,从而得到不等式组的解集为13x -<,然后利用此解集对各选项进行判断.[详解]10{260x x ①②+>-≤,解①得x>-1,解②得x≤3,所以不等式组的解集为-1<x≤3.故选.[点睛]本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.某文具店一本练习本和一支中性笔的单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ [答案]B[解析][分析]根据等量关系“一本练习本和一支中性笔的单价合计为3元”,“20本练习本的总价+10支中性笔的总价=40”,列方程组求解即可.[详解]设练习本每本为x 元,中性笔每支为y 元,根据单价的等量关系可得方程为x+y=3,根据总价40得到的方程为20x+10y=40,所以可列方程为:3201040x y x y +=⎧⎨+=⎩, 故选:B .[点睛]此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x[答案]B[解析][分析]首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.[详解]设原来每天最多能生产x 辆,由题意得:15(x+6)>20x,故选B .[点睛]此题主要考查了由实际问题抽象出一元一次不等式,关键正确理解题意,抓住关键描述语. 二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.[答案]-4[解析]把x =6代入方程2x +3a =0得:12+3a =0,解得:a =﹣4,10.x 的3倍与5的和不大于8,用不等式表示为______.[答案]358x +≤[解析]分析:先表示出x 的3倍,再表示出与5的和,最后根据和不大于...8可得不等式.详解:根据题意可列不等式:3x +5≤8.故答案为3x +5≤8.点睛:本题考查了由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.11.若方程23x y -=,用含的代数式表示,则=____.[答案]32x - [解析]要用含x 的代数式表示y ,就要把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1即可.[详解]解:移项,得23y x -=-+,系数化为1,得32x y -=, 故答案为:32x -. [点睛]本题考查了代入消元法解二元一次方程组,解题关键是把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1.12.不等式5140x +≥的负整数解的和是____.[答案]-3[解析][分析]先移项再系数化为1即可解不等式,再取负整数的解进行相加即可得到答案.[详解]解:5140x +≥,移项得到:514x ≥-,系数化为1得到:145x ≥-, ∴负整数解有:-2、-1,∴负整数解得和为:(-2)+(-1)= -3,故答案为:-3;[点睛]本题主要考查了解不等式以及整数的定义,掌握解不等式的步骤值解题的关键.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.[答案]80[解析][分析]设该书包的进价为x 元,根据销售收入﹣成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.[详解]解:设该书包的进价为x 元,根据题意得:110×0.8﹣x =10%x ,解得:x =80.答:该书包的进价为80元.故答案为:80.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.[答案]5[解析][分析]由图可知:2个球体的重量=5个圆柱体的重量,2个正方体的重量=3个圆柱体的重量.可设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程即可得出答案.[详解]解:设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程:2x =5y ;2z =3y ,即:6x =15y ;10z =15y ,则:6x =10z ,即:3x =5z ,即三个球体的重量等于五个正方体的重量.故答案:5.[点睛]本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.[答案]x =-3.[解析][分析]方程去括号,移项合并,把x 系数化为1,即可求出解.[详解]解:去括号得:3x -1=5x +5,移项得:3x -5x =5+1,合并得:-2x =6,系数化为1得:x =-3.[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.解方程组:20 346 x yx y+=⎧⎨+=⎩[答案]原方程组的解为=63 xy⎧⎨=-⎩[解析][分析]利用代入法进行求解即可得.[详解]20346x yx y+=⎧⎨+=⎩①②,由①得:x=-2y ③将③代入②得:3(-2y)+4y=6, 解得:y=-3,将y=-3代入③得:x=6,∴原方程组的解为63xy=⎧⎨=-⎩.[点睛]本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.17.解方程组:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩.[答案]6113xyz=⎧⎪=-⎨⎪=⎩.[解析][分析]①﹣②得出2y=-22,求出y=﹣11,把y=﹣11代入③,即可求得x=6,再把x=6,y=-11代入①进而求得z=3即可.[详解]解:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩①②③①-②得,2y=-22, 解得y=-11.把y=-11代入③中, 得11x+6×(-11)=0,解得x=6.把x=6,y=-11代入①中, 得6-11+z=-2,解得z=3.∴原方程组的解为6113xyz=⎧⎪=-⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,利用了消元的思想,解决本题的关键是消元,消元的方法有:代入消元法与加减消元法.18.解不等式213436x x--≥,并把解集在数轴上表示出来.[答案]x≥-2;在数轴上表示见解析.[解析][分析]根据不等式的性质解一元一次不等式,然后在数轴上表示不等式的解集.[详解]解:2(2x-1)≥3x-4,4x-2≥3x-4,4x-3x≥-4+2,x≥-2.在数轴上表示如图所示:[点睛]本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.19.已知x=1是方程2﹣13(a﹣x)=2x的解,求关于y的方程a(y﹣5)﹣2=a(2y﹣3)的解.[答案]y=﹣4.[解析]试题分析:把x=1代入方程计算求出a的值,代入所求方程求出解即可.试题解析:把x=1代入方程得:2﹣13(a﹣1)=2,解得:a=1,代入方程a(y﹣5)﹣2=a(2y﹣3)得:(y﹣5)﹣2=2y﹣3, 解得:y=﹣4.20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?[答案]21人,羊为150元[解析][分析]可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.[详解]设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150,答:买羊人数21人,羊价为150元.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.[答案](1)m>2;(2)3x>-.[解析][分析](1)首先要解这个关于x的方程,然后根据解是负数,就可以得到一个关于m的不等式,最后求出m的范围.(2)本题是关于x的不等式,应先只把x看成未知数,根据m的取值范围求得x的解集.[详解]解:(1)4x+2m+1=2x+5,2x=4-2m,x=2-m.由题意,得x<0,即2-m<0,∴m>2,∴m的取值范围m>2;(2)∵m>2,∴m取最小整数为3.∴关于x的不等式为3112xx+-<,2(1)31x x-<+,2231x x-<+,3x>-∴不等式的解集为3x>-.[点睛]本题主要考查解一元一次不等式和一元一次方程的能力,(1)此题是一个方程与不等式的综合题目,解关于x的不等式是本题的一个难点.(2)需注意,在不等式两边都除以一个负数时,应改变不等号的方向.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.[答案](1)x=2或23x=-;(2)①b<-1;②-1;③b>-1.[解析][分析](1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.[详解]解:(1)当3x-2≥0时,原方程可化为3x-2=4,解得x=2;当3x-2<0时,原方程可化为3x-2=-4,解得23x=-.所以原方程的解是x=2或23x=-.(2)∵|x﹣2|≥0,∴当b +1<0,即b <﹣1时,方程无解;当b +1=0,即b =﹣1时,方程只有一个解;当b +1>0,即b >﹣1时,方程有两个解故答案为:①b <-1;②-1;③b >-1.[点睛]本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?[答案](1)甲种图书单价为30元,乙种图书单价为20元;(2)最多可购买甲种图书20本.[解析][分析](1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以求得甲种图书最多能购买多少本.[详解](1)设甲种图书的单价为x 元,乙种图书的单价为y 元,由题意,得:1032130x y x y =+⎧⎨+=⎩解得:3020x y =⎧⎨=⎩. 答:甲种图书单价为30元,乙种图书单价为20元.(2)设最多可购买甲种图书m 本,则购乙种图书(50﹣m )本,由题意,得:30m +20×(50﹣m )≤1200解得:m ≤20.答:最多可购买甲种图书20本.[点睛]本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和一元一次不等式.24.已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.[答案](1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨;(2)共有2种租车方案:①租A型车6辆,B型车2辆;②租A型车2辆,B型车5辆;(3)最省钱租车方案为方案②,租车费用为800元.[解析][分析](1)根据2辆A型车和1辆B型车装满货物=10吨;1辆A型车和2辆B型车装满货物=11吨,列出方程组即可解决问题.(2)由题意得到3a+4b=26,根据a、b均为正整数,即可求出a、b的值.(3)求出每种方案下的租金数,经比较、分析,即可解决问题.[详解]解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货λ吨、μ吨,由题意得:210211λμλμ+=⎧⎨+=⎩,解得:34λμ=⎧⎨=⎩故1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意和(1)得:3a+4b=26,∵a、b均非负整数,∴62ab=⎧⎨=⎩或25ab=⎧⎨=⎩,∴共有2种租车方案:①租A型车6辆,B型车2辆,②租A型车2辆,B型车5辆.(3)方案①的租金为:6×100+2×120=840(元),方案②的租金为:2×100+5×120=800(元),∵840>800,∴最省钱的租车方案为方案②,租车费用为800元.[点睛]根据题意设未知数列方程,并确保计算的正确性.。

人教版数学七年级下册《期中检测题》及答案解析

人教版数学七年级下册《期中检测题》及答案解析

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 82.下列调查中,适宜采用全面调查是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 834.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a85.下列等式从左到右变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B. ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C x2+3x﹣1=x(x+3)﹣1D. x2+y2=(x+y)2﹣2xy6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 18.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A. 5B. 4C. 3D. 29.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确的说法是()A. ①④B. ①③④C. ②③D. ①②二、填空题(共6小题)11.因式分解:a2﹣4=_____.12.当x=____时,分式321xx--的值为0.13.已知x2+1,则代数式x2﹣2x+1值为____.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.15.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度. 16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.三、解答题(共7小题)17.计算与化简: (1)02000(21)(1)-+-; (2)(10a 2﹣5a )÷(5a ). 18.解方程或方程组: (1)24342x y x y +=⎧⎨-=⎩;(2)33233x x x-=--. 19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题: (1)这次共抽取了 名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是 ,频率是 ;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.20.(1)分解因式:2mx2﹣4mxy+2my2.(2)先化简,再求值:211122-⎛⎫-÷⎪++⎝⎭xx x,其中x=2020.21.(1)已知x2+y2=34,x﹣y=2,求(x+y)2的值.(2)设y=kx(x≠0),是否存在实数k,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2?若能,请求出满足条件k的值;若不能,请说明理由.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.(3)将图2中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠F AD=m°,∠ABC=n°,其他条件不变,得到图3,请你求出∠BED的度数(用含m,n的式子表示).答案与解析一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 8[答案]A[解析][分析]根据负整数指数幂的运算法则解答即可.[详解]解:1122-=.故选:A.[点睛]本题考查了负整数指数幂的运算法则,属于基础题型,熟练掌握运算法则是解题关键.2.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查[答案]A[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.[点睛]本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 83[答案]B[解析][分析]原式提取公因式分解因式后,判断即可.[详解]解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B.[点睛]本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.4.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a8[答案]D[解析][分析]直接利用幂指数的运算法则和合并同类项法则即可得到答案.[详解]A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.(a4)2=a8,故本选项符合题意.故选:D.[点睛]考查了同底数幂的乘法、同底数幂的除法、幂的乘方与积的乘方以及合并同类项.准确掌握法则是解题的关键.5.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B. ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D. x2+y2=(x+y)2﹣2xy[答案]B[解析][分析]根据因式分解的意义,可得答案.[详解]解:A.属于整式乘法运算,不属于因式分解;B.﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2,属于因式分解;C.右边不是几个整式积的形式,不属于因式分解;D.右边不是几个整式积的形式,不属于因式分解.故选:B.[点睛]本题考查了因式分解的意义,利用因式分解的意义是解题关键.6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°[答案]C[解析][分析]先根据平行线的性质,可得∠AEG的度数,根据EF⊥CD可得EF⊥AB,再根据垂直和平角的定义可得到∠2的度数.[详解]解:∵AB∥CD,∠1=60°,∴∠AEG=60°.∵EF⊥CD,∴EF⊥AB,∴∠2=180°﹣60°﹣90°=30°.故选:C.[点睛]本题主要考查了平行线的性质的运用,解题时注意:两条平行线被第三条直线所截,同位角相等.7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 1 [答案]C[解析][分析]根据二元一次方程组的解及解二元一次方程组即可解答. [详解]解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得2425a b b a +=⎧⎨+=⎩解得:12a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C .[点睛]此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.8.如图,△ABC 沿BC 所在的直线平移到△DEF 的位置,且C 点是线段BE 的中点,若AB =5,BC =2,AC =4,则AD 的长是( )A. 5B. 4C. 3D. 2[答案]B [解析] [分析]利用平移的性质解决问题即可. [详解]解:由平移的性质可知,AD=BE . ∵BC=CE ,BC=2, ∴BE=4, ∴AD=4. 故选:B .[点睛]本题考查平移的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x 个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=[答案]D[解析][分析]根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400个用的时间=6,即可列出方程.[详解]解:设该厂原来每天加工x个零件,根据题意得:10040062x x+=.故选D.[点睛]此题考查了由实际问题抽象出分式方程,分析题意,根据关键描述语,找到合适的等量关系是解决问题的关键.10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确的说法是()A. ①④B. ①③④C. ②③D. ①②[答案]A[解析][分析]利用平行公理对①判断,利用平方差公式的特点对②分析,③通过0指数、底数为1,底数为-1对代数式进行分类讨论得结果,④抓住a取每一个值方程的解都相同,求出x、y的值.[详解]①按照平行公理可判断在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项正确;②当k为负值时,多项式x2﹣ky2不能分解成两个一次因式积的形式,故本选项不正确;③当t=4、32时,(t ﹣3)3﹣2t =1,故本选项不正确; ④新方程为(a ﹣1)x+(a+2)y=2a ﹣5.∵a 每取一个值时,就有一个方程,而这些方程总有一个公共解,∴当a=1时,y=﹣1,当a=﹣2时,x=3,∴公共解是31x y =⎧⎨=-⎩.综上正确的说法是①④. 故选:A .[点睛]本题考查了平行公理、因式分解、零指数幂和二元一次方程组的解等知识点,熟练掌握相关性质定理及运算法则是解题的关键.二、填空题(共6小题)11.因式分解:a 2﹣4=_____. [答案](a+2)(a ﹣2). [解析]试题分析:直接利用平方差公式分解因式a 2﹣4=(a+2)(a ﹣2).故答案为(a+2)(a ﹣2). [考点]因式分解-运用公式法. 12.当x =____时,分式321x x --的值为0. [答案]3 [解析] [分析]根据分式的值为0可得30x -=,由此可得出x 的值,再代入分式的分母进行检验即可. [详解]由题意得:30x -=, 解得3x =,当3x =时,2123150x -=⨯-=≠, 则当3x =时,分式321x x --的值为0, 故答案为:3.[点睛]本题考查了分式的值为0、分式有意义的条件,掌握分式的值为0的求值方法是解题关键.13.已知x +1,则代数式x 2﹣2x +1的值为____. [答案]2. [解析]利用完全平方公式将所求的代数式进行变形,然后代入求值即可.[详解]解:原式为:2x-2x+12=(x-1),将x=21代入上式,=(x-1)=(2+1-1)=2原式22故答案为:2.[点睛]此题考察了完全平方公式计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.[答案]24.[解析][分析]先根据最喜爱体操的学生所占百分比及其对应的人数求出总人数,然后用总人数乘以最喜爱“3D打印”的学生所占百分比即得答案.[详解]解:∵选最爱体操的学生所占百分比为1﹣(10%+35%+40%)=15%,其对应人数为9人,∴被调查的总人数为9÷15%=60(人),∴最喜爱“3D打印”学生数为60×40%=24(人).故答案为:24.[点睛]本题考查了扇形统计图的相关知识,属于基本题型,读懂统计图提供的信息、掌握求解的方法是关键.15.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.[答案]70或30.[解析]分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.[详解]解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.[点睛]本题考查是平行线的性质,在解答此题时要注意分类讨论.16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.[答案]7.[解析][分析]设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16-x-y )枚,根据这些硬币的总值为8元(即80角),即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论.[详解]解:设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16﹣x ﹣y )枚,依题意,得:x +5y +10(16﹣x ﹣y )=80,∴y =16﹣95x . ∵x ,y 均为正整数,∴x =5,y =7.故答案为:7.[点睛]本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题(共7小题)17.计算与化简:(1)020001)(1)-+-;(2)(10a 2﹣5a )÷(5a ).[答案](1)2;(2)2a ﹣1.[解析](1)分别根据0指数幂的意义和﹣1的偶次幂计算每一项,再合并即可;(2)根据多项式除以单项式的法则解答即可.[详解]解:(1)020001)(1)+-=1+1=2;(2)(10a2﹣5a)÷(5a)=2a﹣1.[点睛]本题考查了0指数幂、实数混合运算以及多项式除以单项式等知识,属于常见题型,熟练掌握上述基础知识是解题的关键.18.解方程或方程组:(1)24 342 x yx y+=⎧⎨-=⎩;(2)33233xx x-=--.[答案](1)21xy=⎧⎨=⎩;(2)x=﹣9.[解析][分析](1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解..[详解](1)24342x yx y+=⎧⎨-=⎩①②,①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩;(2)分式方程整理得:33xx-﹣2=﹣33x-,去分母得:3x﹣2(x﹣3)=﹣3, 去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.[点睛]本题考查了解分式方程,以及解二元一次方程组,熟练掌握各自的解法是解题的关键.19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是,频率是;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.[答案](1)400;(2)108,0.27;(3)678人.[解析][分析](1)将频数直方图内所有的频数求和,即可算得参加调查的总人数;(2)由频数直方图可查用时在2.45-3.45小时的频数是108,频率=频数总人数;(3)在400人中,求出用时在0.45-3.45小时频率,再乘以1200,即可求得全校电子产品用时在0.45-3.45小时的人数.[详解]解:(1)这次共抽取了50+68+108+82+52+40=400(人),故答案为:400;(2)由直方图可得:用时在2.45-3.45小时这组的频数是108,频率是108÷400=0.27;故答案为:108,0.27;(3)用时在0.45-3.45小时频率(50+68+108)÷400=0.565,(人),1200人中用时在0.45-3.45小时的人数为:12000.565=678答:一周电子产品用时在0.45﹣3.45小时的学生有678人.[点睛]本题考察了频数与频率之间的关系以及用样本的某种“率”推测总体的“率”,解题的关键在于掌握频率=频数总人数.20.(1)分解因式:2mx 2﹣4mxy +2my 2.(2)先化简,再求值:211122-⎛⎫-÷ ⎪++⎝⎭x x x ,其中x =2020. [答案](1)2m (x ﹣y )2;(2)11x -,12009. [解析][分析](1)原式先提取公因式,再运用完全平方公式分解;(2)括号内先通分化简,再计算除法,然后把x 的值代入化简后的式子计算即可.[详解]解:(1)2mx 2﹣4mxy +2my 2=2m (x 2﹣2xy +y 2)=2m (x ﹣y )2; (2)211122-⎛⎫-÷ ⎪++⎝⎭x x x =()()112122x x x x x +-+-÷++ =()()12211x x x x x ++⋅++- =11x -, 当x =2020时,原式=11202012019=-. [点睛]本题考查了多项式的因式分解和分式的化简求值,属于常考题型,熟练掌握分解因式的方法和分式的混合运算法则是解题的关键.21.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.[答案](1)64;(2)k =2或﹣2[解析][分析](1)先利用完全平方公式求得2xy的值,再根据(x+y)2=x2+y2+2xy即可求得;(2)先根据完全平方公式和平方差公式将多项式进行化简,再将y=kx代入,整理,根据结果为28x2即可求得k 的值.[详解]解:(1)把x﹣y=2两边平方得:(x﹣y)2=4,即x2﹣2xy+y2=4.∵x2+y2=34,∴2xy=30,则(x+y)2=x2+y2+2xy=34+30=64;(2)原式=9x2﹣6xy+y2﹣x2+4y2+6xy=8x2+5y2,把y=kx代入得:原式=8x2+5k2x2=(5k2+8)x2=28x2,∴5k2+8=28,即k2=4,开方得:k=2或﹣2,则存在实数k=2或﹣2,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2.[点睛]本题考查平方差公式和完全平方公式.熟记公式,并能灵活运用对公式进行变形是解题关键.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.[答案](1)A种型号的电风扇的销售单价为100元,B种型号的电风扇的销售单价为300元;(2)能实现利润为8000元的目标,可采购A种型号的电风扇50台,B种型号的电风扇70台.[解析][分析](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据前两周的销售数量及销售收入,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,根据该超市一共采购这两种型号的电风扇共120台且销售完毕后可获得8000元利润,即可得出关于m ,n 的二元一次方程组,解之即可得出结论.[详解](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,依题意,得:6521004103400x y x y +=⎧⎨+=⎩, 解得:100300x y =⎧⎨=⎩. 答:A 种型号的电风扇的销售单价为100元,B 种型号的电风扇的销售单价为300元.(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,依题意,得:()()120100803002008000m n m n +=⎧⎨-+-=⎩, 解得:5070m n =⎧⎨=⎩. 答:能实现利润为8000元的目标,可采购A 种型号的电风扇50台,B 种型号的电风扇70台.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB ∥CD ,则∠AEC =∠BAE +∠DCE 成立吗?请说明理由.(2)如图2,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠F AD =50°,∠ABC =40°,求∠BED 的度数.(3)将图2中的线段BC 沿DC 所在的直线平移,使得点B 在点A 的右侧,若∠F AD =m °,∠ABC =n °,其他条件不变,得到图3,请你求出∠BED 的度数(用含m ,n 的式子表示).[答案](1)成立,理由见解析;(2)45°;(3)∠BED 度数改变,∠BED =180°﹣12n °+12m °. [解析][分析](1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.[详解]解:(1)如图1中,作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE.(2)如图2,过点E作EH∥AB,∵AB∥CD,∠F AD=50°,∴∠F AD=∠ADC=50°.∵DE平分∠ADC,∠ADC=50°,∴∠EDC=12∠ADC=25°.∵BE平分∠ABC,∠ABC=40°,∴∠ABE=12∠ABC=20°.∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=25°, ∴∠BED=∠BEH+∠DEH=45°.(3)∠BED的度数改变.过点E作EG∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠GAD=m°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=12m°∵AB∥CD,∴AB∥CD∥EG,∴∠BEG=180°﹣∠ABE=180°﹣12n°,∠CDE=∠DEG=12m°,∴∠BED=∠BEG+∠DEG=180°﹣12n°+12m°.故答案为:180°﹣12n°+12m°.[点睛]本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.。

人教版七年级下册数学《期中考试试题》含答案解析

人教版七年级下册数学《期中考试试题》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下列各项中,是一元一次方程的是( )A. x ﹣2y=4B. xy=4C. 3y ﹣1=4D. 144x - 2. 已知x y >,则下列不等式成立的是( ) A. 11x y -<- B. 33x y < C. x y -<- D.22x y < 3. 用“加减法”将方程组325353x y x y -=⎧⎨+=-⎩中的x 消去后得到的方程是() A. 32y = B. 78y = C. 72y -= D. 78y -= 4. 不等式组12x ≤<的解集在数轴上可表示为() A.B. C. D.5. 不等式组 26x m x x >⎧⎨-+<-⎩的解集是x 4>,那么m 的取值范围是 A. m 4≤B. m 4≥C. m 4<D. m 4= 6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A. 1、2 B. 1、5 C. 5、1 D. 2、47. 下列变形正确的是( )A 若m >n ,则mc >ncB. 若m >n ,则mc 2>nc 2C. 若m >b ,b <c ,则m >cD. 若m+c 2>n+c 2,则m >n8. 不等式组211112x x -≤⎧⎪⎨-<⎪⎩的整数解的个数为( ) A 0个 B. 2个 C. 3个 D. 无数个 9. 一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元. 若设这件羽绒服的成本是x 元,根据题意,可得到的方程是A x(1+50%) 80%=x-250B. x(1+50%) 80%=x+250C. (1+50%x) 80%=x-250D. (1+50%x) 80%=250-x10. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑( )A. 3分钟B. 4分钟C. 4.5分钟D. 5分钟二 填空题( 每小题3分,共15分)11. 把二元一次方程2x+y —3=0化成用x 表示y 的形式,则y=_____.12. x 3倍与5的和大于8,用不等式表示为________________ .13. 已知:237x y y z x z +=⎧⎪+=⎨⎪+=⎩,则x y z ++=__________.14. 不等式1﹣2x <6的负整数解是___________.15. 如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是_____.三.解答题(共8小题,共75分)16. 解下列方程:(1)2(x +3)=5(x -3)2123x -()=435x --x 17. 解二元一次方程组:27{320x y x y -=+=. 18. 解不等式223x x -≤+,并把它的解集表示在数轴上. 19. 解不等式组:{3(x 2)x 42x 13>x 1-≥-+-①②并写出它的所有的整数解.20. 已知23x y =-⎧⎨=-⎩和41x y =⎧⎨=⎩是二元一次方程35mx ny -=的两个解. (1)求、的值;(2)若x<-2,求的取值范围.21. 已知方程组331x y ax y a+=+⎧⎨-=-⎩的解是一对正数,求的取值范围.22. 一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作.()1求甲、乙合作多少天才能把该工程完成.()2在()1条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.23. 某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.答案与解析一、选择题(每小题3分,共30分)1. 下列各项中,是一元一次方程的是( )A. x ﹣2y=4B. xy=4C. 3y ﹣1=4D. 144x - [答案]C[解析][分析]根据一元一次方程的定义进行分析判断即可.[详解]A 选项中的方程24x y -=中有两个未知数,所以不是一元一次方程;B 选项中的方程4xy =中有两个未知数,所以不是一元一次方程;C 选项中的方程314y -=是一元一次方程,所以可以选C ;D 选项中的式子144x -不是方程,所以不能选D. 故选C.[点睛]熟知“一元一次方程的定义:含有一个未知数,且含未知数的项的次数都是1的整式方程叫做一元一次方程”是解答本题的关键.2. 已知x y >,则下列不等式成立的是( )A. 11x y -<-B. 33x y <C. x y -<-D. 22x y < [答案]C[解析][分析]根据不等式的性质逐项分析.[详解]A 在不等式的两边同时减去1,不等号的方向不变11x y ->-,故A 错误;B 在不等式的两边同时乘以3,不等号的方向不变33x y >,故B 错误;C 在不等式的两边同时乘以-1,不等号的方向改变,故C 正确;D 在不等式的两边同时乘以12,不等号的方向不变22x y >,故D 错误. [点睛]本题主要考查不等式的性质,(1)在不等式的两边同时加上或减去同一个数,不等号的方向不变;(2)在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;(3)在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变.3. 用“加减法”将方程组325353x y x y -=⎧⎨+=-⎩中的x 消去后得到的方程是() A. 32y =B. 78y =C. 72y -=D. 78y -= [答案]D[解析][分析]根据方程组中每一个方程中未知数x 的系数可知,两方程相减即可消去x ,据此即可得.[详解]325353x y x y -=⎧⎨+=-⎩①②, ①-②,得:-7y=8,故选D.[点睛]本题考查了二元一次方程组的解法——加减法,根据方程组的特点灵活选用加减法或代入法进行求解是关键.4. 不等式组12x ≤<的解集在数轴上可表示为() A.B. C.D.[答案]C[解析] [分析]先在数轴上表示出不等式组的解集,然后再根据选项选出即可.[详解]不等式组1≤x<2的解集在数轴上可表示为:,故选C.[点睛]本题考查了在数轴上表示不等式的解集,能把不等式组的解集要数轴上表示出来是解此题的关键.5. 不等式组 26x m x x >⎧⎨-+<-⎩的解集是x 4>,那么m 的取值范围是 A. m 4≤B. m 4≥C. m 4<D. m 4=[答案]A[解析][分析]先求出不等式的解集,再根据不等式组的解集得出答案即可.[详解]解:26x m x x >⎧⎨-+<-⎩①②,解不等式②,得:x 4>,∵不等式组 26x m x x >⎧⎨-+<-⎩的解集是x 4>, ∴m 4≤故选择:A[点睛]本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A. 1、2B. 1、5C. 5、1D. 2、4 [答案]C[解析][分析]把x =2代入x+y=3求出y,再将x,y 代入2x+y 即可求解.[详解]根据 {x 2y ==,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C .[点睛]主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键. 7. 下列变形正确的是( )A. 若m >n ,则mc >ncB. 若m >n ,则mc 2>nc 2C. 若m >b ,b <c ,则m >cD. 若m+c 2>n+c 2,则m >n[答案]D[解析][分析]直接利用不等式的基本性质分别判断得出答案.[详解]A 、若m >n ,则mc >nc ,只有c 为正数时成立,故此选项错误;B 、若m >n ,则mc ²>nc ²,只有c 不等于0时成立,故此选项错误;C 、若m >b ,b <c ,则m >c ,不一定成立,故此选项错误;D 、若m +c ²>n +c ²,则m >n ,故此选项正确.故选:D .[点睛]此题主要考查了命题与定理,正确把握不等式的基本性质是解题关键.8. 不等式组211112x x -≤⎧⎪⎨-<⎪⎩的整数解的个数为( ) A. 0个B. 2个C. 3个D. 无数个[答案]C[解析][详解]可把不等式组化为 211112x x -≤⎧⎪⎨-<⎪⎩,即21x -<≤,整数为:-1,0,1, 故答案选C.考点:不等式组的整数解.9. 一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元. 若设这件羽绒服的成本是x 元,根据题意,可得到的方程是A. x(1+50%) 80%=x-250B. x(1+50%) 80%=x+250C. (1+50%x) 80%=x-250D. (1+50%x) 80%=250-x[答案]B[解析]标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%, 则可列方程为:(1+50%)x×80%=x+250, 故选B .10. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑( )A. 3分钟B. 4分钟C. 4.5分钟D. 5分钟[答案]B[解析][分析]设这人跑了x分钟,则走了(18-x)分钟,根据速度×时间=路程结合要在18分钟内到达,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的最小值即可得出结论.[详解]解:设这人跑了x分钟,则走了(18-x)分钟,根据题意得:210x+90(18-x)≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B.[点睛]本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.二填空题( 每小题3分,共15分)11. 把二元一次方程2x+y—3=0化成用x表示y的形式,则y=_____.[答案]3-2x.[解析][分析]题意得将原式表示成y=ax+b的形式.[详解]∵2x+y=3,∴y=3-2x,故答案为:y=3-2x.[点睛]此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数.12. x的3倍与5的和大于8,用不等式表示为________________ .x+>[答案]358[解析][分析]先表示出x的3倍,再表示出与5的和,最后根据大于8即可得不等式.[详解]x的3倍为3x,x的3倍与5的和为3x+5,所以x的3倍与5的和大于8为:3x+5>8,故答案为3x+5>8.[点睛]本题考查由实际问题抽象出一元一次不等式,根据关键语句,弄清运算的先后顺序和不等关系,从而得出不等式是关键.13. 已知:237x yy zx z+=⎧⎪+=⎨⎪+=⎩,则x y z++=__________.[答案]6[解析][分析]根据方程组的特点,三个方程相加即可求出x+y+z的值.[详解]237x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,(①+②+③)÷2,得x+y+z=6,故答案为6.[点睛]本题考查了三元一次方程组的特殊解法,根据方程组中每一个方程的系数特点确定合适的解法是关键.14. 不等式1﹣2x<6的负整数解是___________.[答案]﹣2,﹣1[解析]试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x >﹣,∴不等式的负整数解是﹣2,﹣1,故答案为﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.15. 如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是_____.[答案]675cm 2[解析][分析]假设小长方形的长、宽分别为a 、b ,通过图形中大长方形的边长关系,可列出二元一次方程组,求得a 、b 的值,进而求得面积.[详解]设小长方形的长、宽分别为acm 、bcm.由题意可列方程组:a+b=602a=a+3b ⎧⎨⎩, 解得:a=45b=15⎧⎨⎩, 每块小长方形地砖的面积:45×15=675(cm 2), 故填:675cm 2.[点睛]本题考查二元一次方程组在几何问题中的应用,结合图形找到两组等量关系是关键.三.解答题(共8小题,共75分)16. 解下列方程:(1)2(x +3)=5(x -3)2123x -()=435x --x [答案](1)x=7;(2)x=12. [解析][分析]按:去分母,去括号,移项,合并同类项,系数化为1等步骤解方程.[详解]解:(1)去括号,得 2x+6=5x-15移项,得2x-5x=-6-15合并同类项,得-3x=-21系数化为1,得x=7(2)去分母,得 5(2x-1) =3(4-3x) – 15x去括号,得10x – 5=12-9x-15x移项,合并同类项,得34x=17 ,系数化为1,得 x=12[点睛]本题考核知识点:解一元一次方程.解题关键点:理解解方程的一般步骤.17. 解二元一次方程组:27{320x y x y -=+=. [答案]2{3x y ==-.[解析][分析] 解此方程组利用加减消元法求出解即可.详解]解:27{320x y x y -=+=①②①×2+②得:7x=14,即x=2,把x=2代入①得:y=-3,则方程组的解为2{3x y ==-.[点睛]本题考查解二元一次方程组.18. 解不等式223x x -≤+,并把它的解集表示在数轴上. [答案]1x ≥-,数轴见解析[解析][分析]按照去分母,去括号,移项,合并同类项,系数化为1的步骤解不等式即可,然后按照大于向右画,小于向左画,有等号是实心圆点,没有等号是空心圆点即可在数轴上表示出解集.[详解]去分母得,23(2)x x -≤+,去括号得,263x x -≤+,移项得,362x x --≤-,合并同类项得,44x -≤,系数化为1得,1x≥-,数轴如图:[点睛]本题主要考查解一元一次不等式,掌握不等式的解法及用数轴表示不等式解集的方法是解题的关键.19. 解不等式组:{3(x2)x42x13>x1-≥-+-①②并写出它的所有的整数解.[答案]1、2、3[解析][分析]解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解即可.[详解]解:解不等式①得,x≥1,解不等式②得,x<4,∴不等式组的解集是1≤x<4.∴不等式组的所有整数解是1、2、3.[点睛]解一元一次不等式组,一元一次不等式组的整数解.20. 已知23xy=-⎧⎨=-⎩和41xy=⎧⎨=⎩是二元一次方程35mx ny-=的两个解.(1)求、的值;(2)若x<-2,求的取值范围.[答案](1)21mn=⎧⎨=⎩(2)y<-3[解析]分析:(1)把x与y的两对值代入方程计算求出m与n的值即可;(2)由方程求出x的表达式,解不等式即可.详解:(1)把23xy=-⎧⎨=-⎩和41xy=⎧⎨=⎩代入方程得:295435m nm n-+=⎧⎨-=⎩,解得:21mn=⎧⎨=⎩;(2)当21m n =⎧⎨=⎩时,原方程变为:2x -3y =5,解得:x =532y +. ∵x <-2,∴532y +<-2,解得:y <-3. 点睛:本题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解答本题的关键.21. 已知方程组331x y a x y a +=+⎧⎨-=-⎩的解是一对正数,求的取值范围. [答案]1 2.2a -<<[解析][分析]先解方程组,再由题意列不等式组可得答案.详解]解:331x y a x y a +=+⎧⎨-=-⎩①② ①+②得:242,x a =+21,x a ∴=+把21x a =+代入①得:2,y a =-+21,2x a y a =+⎧∴⎨=-+⎩0,0x y ⎧⎨⎩>> 21020a a +⎧∴⎨-+⎩>> ③④ 解③得:1,2a -> 解④得:2,a <不等式组的解是12.2a -<< a ∴的取值范围是1 2.2a -<<. [点睛]本题考查的是二元一次方程组与一元一次不等式组联系,掌握其解法是解题关键.22. 一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作.()1求甲、乙合作多少天才能把该工程完成.()2在()1的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.[答案](1)甲、乙合作20天才能把该工程完成;(2)完成此项工程需付给甲、乙两队共120000元.[解析][分析](1)设甲、乙合作x天才能把该工程完成,由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的140,乙每天做整个工程的150,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1,根据等量关系列出方程,然后求解即可;(2)根据甲、乙两队工作天数以及每个队每天的施工费用,每天的施工费用×施工天数即可求得. [详解]()1设甲、乙合作x天才能把该工程完成,根据题意得:1114x1 404050⎛⎫⨯++=⎪⎝⎭,解得:x20=.答:甲、乙合作20天才能把该工程完成;()2甲队的费用为()250020460000(⨯+=元),乙队的费用为30002060000(⨯=元),6000060000120000(+=元).答:完成此项工程需付给甲、乙两队共120000元.[点睛]本题考查了一元一次方程的应用,弄清题意,找到等量关系是解题的关键.23. 某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.[答案](1)甲种商品购进100件,乙种商品购进60件.(2)有两种购货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.[解析][分析](1)设甲种商品购进x件,乙种商品购进y件,根据题意列出二元一次方程组即可求解;(2)设甲种商品购进a件,则乙种商品购进(160-a)件,根据题意列出不等式组,再根据实际情况进行求解.[详解]解:(1)设甲种商品购进x件,乙种商品购进y件.根据题意,得1605101100x yx y+=⎧⎨+=⎩解得100,60.xy=⎧⎨=⎩答:甲种商品购进100件,乙种商品购进60件. (2)设甲种商品购进a件,则乙种商品购进(160-a)件.根据题意,得1535(160-)4?300, 510(160-)1?260.a aa a+<⎧⎨+>⎩解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴ 160-a相应取94,93.所以有两种购货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.[点睛]此题主要考查不等式组的应用,解题的关键是根据题意列出方程组或不等式组进行求解.。

2024年 人教版七年级下册数学期中测试(含评分标准)

2024年 人教版七年级下册数学期中测试(含评分标准)

2023—2024学年度下学期期中测试七年级数学试卷命题学校: 考试时间:120分钟 总分:120分 一、选择题(本大题共12小题,每小题3分,共36分)1.某同学读了《庄子》中的“子非鱼,安知鱼之乐”后,兴高采烈地利用电脑画出了几幅鲸鱼的图案,由图中所示的图案通过平移后得到的图案是( )2.如图,直线a,b 相交于点O,如果∠1+∠2=60°,那么∠3=( )A.150°B.120°C.60°D.30°3.已知点(1,4)A m m −+在y 轴上,则m 的值为( ) A .4−B .1−C .1D .44.下列各式中,正确的是( ) A .255=±B .164±=C .311=±D .2(5)5−=5.一把直尺和一个含30︒,60︒角的三角板如图所示摆放,直尺一边与三角板的两直角边分别交于F ,A 两点,另一边与三角板的两直角边分别交于D ,E 两点,且50CED ∠=︒,那么BAF ∠的大小为( )A .10︒B .20︒C .30︒D .40︒6.把点(,2)A m m +先向左平移2个单位长度,在向上平移3个单位长度得到点B ,点B 正好落在x 轴上,则点B 的坐标为( ) A .(5,0)−B .(7,0)−C .(4,0)D .(3,0)7.若4m +与2m −是同一个正数的两个平方根,则m 的值为( )A .3B .3−C .1D .1−8.下列命题为真命题的是( ) A .同旁内角互补 B .若22a b =,则a b =C .在同一平面内,垂直同一条直线的两条直线互相平行D .如果一个整数能被3整除,那么这个数也能被6整除9.如图所示,点E 在BA 的延长线上,点F 在BC 的延长线上,则下列条件中能判定AB ∥CD 的是( )A .∠1=∠2B .∠DAE =∠BC .∠D +∠BCD =180°D .∠3=∠410.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( ) A .(4,0)− B .(6,0) C .(4,0)−或(6,0)D .(0,12)或(0,8)11.如图,直线l 1∥l 2,直线l 3与l 1,l 2分别交于A,B 两点,过点A 作AC ⊥l 2,垂足为C,若 ∠1=52°,则∠2的度数是( )A.32°B.38°C.48°D.52°12.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点1(1,1)A ;把点1A 向上平移2个单位,再向左平移2个单位,得到点2(1,3)A −;把点2A 向下平移3个单位,再向左平移3个单位,得到点3(4,0)A −;把点3A 向下平移4个单位,再向右平移4个单位,得到点4(0,4)A −,⋯;按此做法进行下去,则点2023A 的坐标为( )A.(2024,0)−B .(2022,0)−C .(0,2024)−D .(0,2022)−二、填空题。

人教版数学七年级下册《期中考试题》附答案解析

人教版数学七年级下册《期中考试题》附答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共12个小题1.在实数2π, 无理数有( )个 A. 1 B. 2 C. 3 D. 42. 在平面直角坐标系中,将点()2,6P 向下平移3个单位长度,得到点的坐标为( )A ()2,3 B. ()2,9 C. ()1,6- D. ()5,6 3. 下列等式:① 2x + y = 4;② 3xy = 7;③220x y +=;④12y x -=;⑤ 2x + y + z = 1二元一次方程的个数是( )A. 1B. 2C. 3D. 44. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A. (﹣3,4)B. ( 3,﹣4)C. (﹣4,3)D. ( 4,﹣3) 5. 不等式组31027x x +>⎧⎨<⎩的整数解的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个6. 在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶5∶6,③∠A=90°-∠B ,④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有 ( )A. 1个B. 2个C. 3个D. 4个 7. 我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( ) A. 999114100097x y x y +=⎧⎪⎨+=⎪⎩ B. 100097999114x y x y +=⎧⎪⎨+=⎪⎩ C. 10009928999,x y x y +=⎧⎨+=⎩ D. 100011499997x y x y +=⎧⎪⎨+=⎪⎩8. 下列说法不一定成立的是( )A. 若a b >,则a c b c +>+B. 若a c b c +>+,则a b >C. 若a b >,则22ac bc >D. 若22ac bc >,则a b >9. 为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a 的值分别是( )A. 全面调查;26B. 全面调查;24C. 抽样调查;26D. 抽样调查;2410. 若一个多边形的内角和与外角和之和是1800°,则此多边形是( )边形.A. 八B. 十C. 十二D. 十四11. 根据下列已知条件,不能唯一画出ABC 的是( )A. AB = 5, BC = 3, AC = 6B. AB = 4, BC = 3, ∠A = 50︒C. ∠A = 50︒, ∠B = 60︒, AB = 4D. AB = 10, BC = 20, ∠B = 80︒12. 如图,ABC 中, ∠A = 20︒,沿 BE 将此三角形对折,又沿BA '再一次对折,点C 落在BE 上的处,此时74C DB '∠=︒,则原三角形的∠C 的度数为( )A. 74︒B. 76︒ X. 79︒ ∆. 83︒二、填空题(本大题共6个小题) 13. 16 ⎽⎽⎽⎽⎽.14. 已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________. 15. 若一个三角形的两边长分别为5和8,则下列长度:①14;②10;③3;④2.其中,可以作为第三边长的是_____(填序号)16. 某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打_______折.17. 已知点(1,0)A 、(0,2)B ,点P 在轴上,且PAB △的面积为5,则点P 的坐标为__________. 18. 如图,已知 CB ⊥AD ,AE ⊥CD ,垂足分别为 B 、E ,AE 、BC 相交于点 F ,AB=BC ,若 AB=8,CF=2,则 BD=______.三、解答题:本大题共8个小题.19. 计算:23(2)9813---. 20. (1)解方程组:217126x y x y x y -=⎧⎪+-⎨+=⎪⎩; (2)解不等式组:2(2)3321123x x x x +≥+⎧⎪+-⎨->⎪⎩; 21. 由于新型冠状病毒的袭击,2020 春季各个学校不得不推迟开学,但停课不停学.各地都展开了网络学习,我校为了解七年级学生上网课的情况,开学后从该年级学生中随机抽取了部分学生进行数学科目的测试(把测试结果分为四个等级: A 级:优秀; B 级:良好; C 级:合格; D 级:不合格),并将测试记录绘成如下两幅完全不同的统计图,请根据统计图中的信息解答下列问题:(1)参加本次抽样测试的学生数是多少?(2)求图1 中A级扇形的圆心角∠a的度数,并把图2 中的条形统计图补充完整;(3)我校七年级共有1700 名学生,如果全部参加这次数学科目测试,请估计不合格的人数.22. 如图,△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上点,且AM=DN.(1)求证:△ABE≌△DBC.(2)探索BM和BN的关系,并证明你的结论.23. 某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?24. 如图,AD为ABC的高,AE,BF为ABC的角平分线,若∠CBF = 32︒,∠AFB = 72︒.(1)∠BAD =︒;(2)求∠DAE的度数;(3)若点G为线段BC上任意一点,当GFC为直角三角形时,则求∠BFG的度数.25. (1)在关于x,y的二元一次方程组中2x yx y a-=⎧⎨+=⎩中,x >1,y < 0,求a的取值范围.(2)已知x - 2 y = 4,且x > 8,y < 4,求3x + 2 y的取值范围.(3)已知a -b =m,在关于x,y二元一次方程组21258x yx y a-=-⎧⎨+=-⎩中,x < 0,y > 0,化简含有绝对值的式子2334a b m m a b+-++-++(结果用含的式子表示)26. 同学们应该都见过光线照射在平面镜上出现反射光线的现象。

人教版数学七年级下册《期中检测题》含答案解析

人教版数学七年级下册《期中检测题》含答案解析

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共12小题,每小题3分,共36分)1. 在平面直角坐标系中,点P(2,﹣3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如图所示,点P到直线l距离是( )A. 线段PA的长度B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度3. 下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.4. 下列各数中,不是无理数的是()A. 7B. 0.5C. 2πD. 335. 如图,已知直线AB,CD 相交于点O,EF⊥AB 于点O,若∠BOC=55°,则∠DOF=()A. 35°B. 45°C. 55°D. 90°6. 已知12xy=-⎧⎨=⎩是二元一次方程组3+21x y mnx y=⎧⎨-=⎩的解,m n-=()A. ﹣3B. 1C. 2D. 47. 如图,已知 AB ∥CD ,BC 平分∠ABE ,∠C=35°,则∠C EF=( )A. 35°B. 55°C. 70°D. 110°8. 已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A. 18030x y x y +=⎧⎨=-⎩B. 180+30x y x y +=⎧⎨=⎩C. 9030x y x y +=⎧⎨=-⎩D. 90+30x y x y +=⎧⎨=⎩9. 在平面直角坐标系中,若//AB y 轴,3AB =,点A 的坐标为()2,3-,则点B 的坐标为( )A. ()2,6-B. ()1,3C. ()2,6-或()2,0-D. ()1,3或()5,3- 10. 如图,由点测量点方向,得到( )A. 点在点北偏西30°的方向上B. 点在点南偏东30°的方向上C. 点在点南偏东60°方向上D. 点在点北偏西60°的方向上 11. 已知关于x ,y 二元一次方程组321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k =( ) A. ﹣2 B. ﹣1 C. 1 D. 212. 甲、乙、丙、丁一起研究一道数学题,如图,已知 EF ⊥AB ,CD ⊥AB ,甲说:“如果还知道∠CDG=∠BFE ,则能得到∠AGD=∠ACB .”乙说:“如果还知道∠AGD=∠ACB ,则能得到∠CDG=∠BFE .”丙说:“∠AGD 一定大于∠BFE .”丁说:“如果连接 GF ,则 GF ∥AB .”他们四人中,正确是( )A. 0 个B. 1 个C. 2 个D. 3 个二、填空题(本大题共6小题,每小题3分,共18分)13. 3的算术平方根是___.14. 点 A 的坐标(﹣3,4),它到 y 轴的距离为_____.15. 较大小:37__________2. 16. 二元一次方程2=5x y +的正整数解为___________.17. 如图,AB ∥CD ,∠B=160°,∠D=120°,则∠E=_________18. 如图,长方形BCDE 各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是____.三、解答题(本大题共6小题,共计46分)19. 计算:239(0.5)8116-+-- 20. 解方程组:23321x y x y -=⎧⎨+=⎩. 21. 小明在拼图时,发现8个一样大小的长方形如图1那样,恰好可以拼成一个大的长方形.小红看见了,说:“我来试一试.”结果小红七拼八凑,拼成如图2那样的一个洞,恰好是边长为2mm 的小正方形!求每个长方形的长、宽.22. 如图,AB ∥CD .∠1=∠2,∠3=∠4,试说明 AD ∥BE ,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().23. 如图,△A'B'C'是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P'(x1+6,y1﹣5).(1)请写出△ABC平移的过程;(2)分别写出点A',B',C'的坐标;(3)△ABC的面积为.24. 嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE,经研究发现(1)如图2,当AB与DE重合时,∠CDF=°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=°;拓展(3)如图4,继续旋转使得AC垂直DE于点G,此时AC与EF位置关系,此时∠AED=°;探究(4)如图5,图6继续旋转,使得AC∥DF图5中此时∠AED=°,图6中此时∠AED=°.答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1. 在平面直角坐标系中,点P (2,﹣3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]D[解析][分析]根据各象限内点的坐标特征解答即可.[详解]∵横坐标为正,纵坐标为负, ∴点()23P -,在第四象限, 故选:D .[点睛]本题考查的是点的坐标与象限的关系,熟记各象限内点的坐标特征是解答本题的关键. 2. 如图所示,点P 到直线l 的距离是( )A. 线段PA 的长度B. 线段PB 的长度C. 线段PC 的长度D. 线段PD 的长度[答案]B[解析] 由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度, 故选B.3. 下列图形中,不能通过其中一个四边形平移得到的是( ) A. B. C. D.[答案]D[解析][分析][详解]解:A 、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.4. 下列各数中,不是无理数的是()A. 7B. 0.5C. 2πD. 33[答案]B[解析]分析]根据无理数的定义及无理数的三种表现形式依次作出判断.[详解]解:A.7是无理数,故该选项不符合题意;B.0.5是有理数,不是无理数,故该选项符合题意;C.2π是无理数,故该选项不符合题意;D.33是无理数,故该选项不符合题意.故选:B.[点睛]本题考查无理数的定义,算术平方根和立方根.熟记初中阶段无理数的三种表现形式是解决此题的关键.无理数的三种表现形式:①开方开不尽的数;②无限不循环小数;③含有π的数.5. 如图,已知直线AB,CD 相交于点O,EF⊥AB 于点O,若∠BOC=55°,则∠DOF=()A. 35°B. 45°C. 55°D. 90°[答案]A[解析][分析]已知∠BOC=55°,利用对顶角相等可求∠AOD,因为EF⊥AB,则∠AOD+∠DOF=90°,即可求∠DOF.[详解]解:∵直线AB 、EF 相交于点O ,∴∠AOD=∠BOC=55°,∵AB ⊥CD ,∴∠DOF=90°-∠AOD=90°-55°=35°.故选:A .[点睛]本题考查了垂直的定义和对顶角的性质.能正确识别对顶角并理解对顶角相等是解决此题的关键. 6. 已知12x y =-⎧⎨=⎩是二元一次方程组3+21x y m nx y =⎧⎨-=⎩的解,那么m n - =( ) A. ﹣3B. 1C. 2D. 4 [答案]C[解析][分析]将12x y =-⎧⎨=⎩代入3+21x y m nx y =⎧⎨-=⎩求得m 和n 的值,再将值代入m n -求解即可. [详解]解:将12x y =-⎧⎨=⎩代入3+21x y m nx y =⎧⎨-=⎩得 3(1)+2221m n ⨯-⨯=⎧⎨--=⎩,解得13m n =⎧⎨=-⎩, ∴1(3)42m n -=--==.故选:C .[点睛]本题考查二元一次方程组的解.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.7. 如图,已知 AB ∥CD ,BC 平分∠ABE ,∠C=35°,则∠C EF=( )A. 35°B. 55°C. 70°D. 110°[答案]C[解析][分析]先根据两直线平行内错角相等得∠ABC=∠C=35°,再根据角平分线定义得∠ABF=2∠ABC=70°,然后根据两直线平行,同位角相等可得∠CEF=∠ABF=70°.[详解]解:∵AB ∥CD ,∴∠ABC=∠C=35°,∵BC 平分∠ABE ,∴∠ABF=2∠ABC=70°,∵AB ∥CD ,∴∠CEF=∠ABF=70°.故答案为70°.[点睛]本题考查平行线的性质定理和角平分线的有关计算.熟记平行线的性质定理并能正确识图完成角度之间的转换是解决此题的关键.8. 已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A. 18030x y x y +=⎧⎨=-⎩B. 180+30x y x y +=⎧⎨=⎩C. 9030x y x y +=⎧⎨=-⎩D. 90+30x y x y +=⎧⎨=⎩[答案]D[解析] 试题解析:∠A 比∠B 大30°, 则有x=y+30,∠A,∠B 互余,则有x+y=90.故选D .9. 在平面直角坐标系中,若//AB y 轴,3AB =,点A 的坐标为()2,3-,则点B 的坐标为( )A. ()2,6-B. ()1,3C. ()2,6-或()2,0-D. ()1,3或()5,3-[答案]C[解析][分析]直接利用已知画出图形,进而得出符合题意答案.[详解]解:如图所示:点的坐标为(2,3)-,//AB y 轴,∴点B 的横坐标为,又∵3AB =,∴点B 的纵坐标为336+=或330-=,∴点B 的坐标为()2,6-或(2,0)-.故选C .[点睛]此题主要考查了坐标与图形的性质,正确分类讨论是解题关键. 10. 如图,由点测量点方向,得到( )A. 点在点北偏西30°的方向上B. 点在点南偏东30°的方向上C. 点在点南偏东60°的方向上D. 点在点北偏西60°的方向上[答案]C[解析][分析]根据方向角的大小不变,方向正好相反,可得答案.[详解]解:∵A 在B 店的北偏西60°,∴B 点在A 点南偏东60°的方向上,故选:C . [点睛]本题考查了方向角,利用方向角大小不变,方向正好相反是解题关键. 11. 已知关于x ,y 的二元一次方程组321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k =( ) A. ﹣2 B. ﹣1 C. 1 D. 2[答案]A[解析][分析]根据已知条件x,y互为相反数知x+y=0,得出关于k的方程,解方程即可.[详解]解:由题意得:x+y=0,则21 x yx y+=⎧⎨+=-⎩,解得:11 xy=⎧⎨=-⎩,∴1﹣3=k,k=﹣2,故选:A.[点睛]本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于k的方程是解决问题的关键.12. 甲、乙、丙、丁一起研究一道数学题,如图,已知EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”乙说:“如果还知道∠AGD=∠ACB,则能得到∠CDG=∠BFE.”丙说:“∠AGD 一定大于∠BFE.”丁说:“如果连接GF,则GF∥AB.”他们四人中,正确的是( )A. 0 个B. 1 个C. 2 个D. 3 个[答案]C[解析][分析]根据EF⊥AB,CD⊥AB,可得EF//CD,①根据∠CDG=∠BFE结合两直线平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根据两直线平行,同位角相等可得甲的结论;②根据∠AGD=∠ACB可得DG//BC,再根据平行线的性质定理可得乙的结论;③根据已知条件无法判断丙的说法是否正确;④根据已知条件无法判断丁的说法是否正确.[详解]解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠BFE=∠BCD,①∵∠CDG=∠BFE,∴∠CDG=∠BCD,∴DG∥BC,∴∠AGD=∠ACB,∴甲正确;②∵∠AGD=∠ACB,∴DG∥BC,∴∠CDG=∠BCD,∴∠CDG=∠BFE,∴乙正确;③DG不一定平行于BC,所以∠AGD不一定大于∠BFE;④如果连接GF,则只有GF⊥EF时丁的结论才成立;∴丙错误,丁错误;故选:C.[点睛]本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13. 3的算术平方根是___.[答案[解析]试题分析:3考点:算术平方根.14. 点A 的坐标(﹣3,4),它到y 轴的距离为_____.[答案]3[解析][分析]根据点到y轴的距离是点的横坐标的绝对值,可得答案.[详解]解:点A 的坐标(-3,4),它到y 轴的距离为|-3|=3,故答案为:3.[点睛]本题考查了求点到坐标轴的距离.理解点到y 轴的距离是点的横坐标的绝对值,点到x 轴的距离是点的纵坐标的绝对值是解决此题的关键.15. 2.[答案]<[解析][分析]2分别求其立方的值,立方数大的则原数也大.[详解]∵)3=7,23=8,故答案是:<.[点睛]考查了实数的大小比较,和2分别求其立方的值,再根据立方数大的则原数也大进行比较.16. 二元一次方程2=5x y +的正整数解为___________.[答案]13x y =⎧⎨=⎩,21x y =⎧⎨=⎩[解析][分析][详解]试题分析:将x 看做已知数求出y ,即可确定出正整数解.解:方程2x+y=5,解得:y=﹣2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解为13x y =⎧⎨=⎩,21x y =⎧⎨=⎩, 故答案为13x y =⎧⎨=⎩,21x y =⎧⎨=⎩点评:此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.17. 如图,AB ∥CD ,∠B=160°,∠D=120°,则∠E=_________[答案]40°[解析][分析]延长AB交DE于F,由平行线的性质得出同位角相等∠EFB=∠D=120°,再由三角形的外角性质即可求出∠E 的度数.[详解]解:延长AB交DE于F,∵AB∥CD,∠D=120°,∴∠EFB=∠D=120°,∴∠E=∠B-∠EFB=40°.故答案为40°.[点睛]本题考查平行线的性质、三角形的外角性质;熟练掌握平行线的性质,并能进行推理计算是解题关键.18. 如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是____.[答案](﹣1,﹣1)[解析][分析]利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.[详解]解:矩形边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2018÷3=672…2,故两个物体运动后的第2018次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE边相遇;此时相遇点的坐标为:(﹣1,﹣1).[点睛]此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.三、解答题(本大题共6小题,共计46分)19.9 1 16[答案]1 316 -[解析][分析]根据算术平方根和立方根的性质计算即可.[详解]解:原式9 0.5(2)116 =+--1316=-[点睛]本题考查了算术平方根和立方根的性质,正确运用算术平方根和立方根的性质是解决本题的关键,注意算术平方根是非负数.20. 解方程组:23 321 x yx y-=⎧⎨+=⎩.[答案]11 xy=⎧⎨=-⎩.[解析][分析]①×2+②后即可消去y ,求出x ,将x 的值代入①式即可求出y ,由此可得方程组的解. [详解]解:23321x y x y -=⎧⎨+=⎩①② 由 ①×2+②,得 7x=7, 解之得x=1,把x=1代入①式,得2﹣y=3,解得y=﹣1,所以原方程组的解为11x y =⎧⎨=-⎩. [点睛]本题考查解二元一次方程组.熟练掌握解二元一次方程组的两种方法,并灵活运用是解题的关键. 21. 小明在拼图时,发现8个一样大小的长方形如图1那样,恰好可以拼成一个大的长方形.小红看见了,说:“我来试一试.”结果小红七拼八凑,拼成如图2那样的一个洞,恰好是边长为2mm 的小正方形!求每个长方形的长、宽.[答案]10、6[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个加2长的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设长方形的长为x ,宽为y ,则35222x y x x y ⎧⎨++⎩== 解得:106x y ==⎧⎨⎩.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.22. 如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.23. 如图,△A'B'C'是△ABC经过平移得到的,△ABC中任意一点P(x1,y1)平移后的对应点为P'(x1+6,y1﹣5).(1)请写出△ABC平移过程;(2)分别写出点A',B',C'的坐标;(3)△ABC的面积为.[答案](1)见解析;(2)A′(2,﹣1),B′(1,﹣4),C′(5,﹣2);(3)5[解析][分析](1)根据点的坐标的变化规律可得△ABC向右平移6个单位,向下平移5个单位得到△A′B′C′;(2)首先确定A、B、C三点坐标,然后再每个点的坐标横坐标加6,纵坐标减5即可;(3)根据(2)中A′,B′,C′的坐标画出图形即可.[详解]解:(1)∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1﹣5).∴△ABC向右平移6个单位,向下平移5个单位得到△A′B′C′;(2)如图:∴A',B',C'的坐标为:A′(2,﹣1),B′(1,﹣4),C′(5,﹣2);(3)如图,S△ABC=S长方形BEGF-S△AEB-S△BCF-S△AGC=111 34314231 222⨯-⨯⨯-⨯⨯-⨯⨯=5.故答案为:5.[点睛]本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.24. 嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE,经研究发现(1)如图2,当AB与DE重合时,∠CDF=°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=°;拓展(3)如图4,继续旋转使得AC垂直DE于点G,此时AC与EF位置关系,此时∠AED=°;探究(4)如图5,图6继续旋转,使得AC∥DF图5中此时∠AED=°,图6中此时∠AED=°.[答案](1)105°;(2)24°;(3)平行,30°;(4)75°,105°.[解析][分析](1)根据度数求和即可;(2)根据∠ABC+∠DEF=∠CEF+∠DEA=180°求解;(3)①根据∠CGE=∠DEF=90°来说明;②在直角△CDE中计算∠CED,根据∠CEA=90°求解;(4)图5在三角形DBH中求解,图6根据∠AED=∠D+∠A求解.[详解]解:(1)∵∠CAB=60°,∠EDF=45°,∴∠CDF=105°,故答案为:105°;(2)∵∠ACB+∠DEF=∠CEF+∠DEA=180°,∠CEF=156°, ∴∠DEA=24°;故答案为:24°;(3)①平行∵∠CGE=∠DEF=90°,∴AC∥EF;②∵∠C=30°,∠CGE=90°,∴∠CEG=60°,又∠CBA=90°,∴∠AED=30°;故答案为:平行,30°;(4)如图5,∵AC∥DF,∴∠DHB=∠A=60°,又∠D=45°,∴∠AED=75°;如图6,∵AC∥DF,∴∠AED=∠D+∠A=105°.故答案为:75°,105°.[点睛]本题考查三角形和平行线性质,熟练应用三角形内角和及平行线性质是解答关键.。

人教版数学七年级下册《期中检测试题》含答案解析

人教版数学七年级下册《期中检测试题》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列给出的方程中,是二元一次方程的是( )A. 5xy =B. 65x y =C. 16x y +=D. 246x y += 2. 下列计算正确的是( )A. 93=±B. 33-=-C. 93-=-D. 239-= 3. 有下列实数:317,-π,3.141 59,8,327-,12.其中无理数有( ). A. 2个 B. 3个 C. 4个 D. 5个4. 点M (m+2,m-5)在轴上,则点M 坐标为( ).A. (0,-7)B. (2,0)C. (7,0)D. (0,7)5. 如图,Rt ABC ∆中,∠ACB=90°,DE 过点C ,且DE ∥AB ,若∠ACD=65°,则∠B 的度数是( )A 25° B. 35° C. 45° D. 55°6. 下列命题:①两条直线相交,一角两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③如果一个数的立方根是这个数本身,那么这个数是1或0;④无限小数都是无理数;⑤如果点A 与点B 关于x 轴对称,则它们的横坐标相同.其中正确的个数为( ).A. 4B. 3C. 2D. 17. 线段AB 两端点坐标分别为A (1,4-),B (4,1-),现将它向右平移4个单位长度,向下平移2个单位长度,得到线段A 1B 1,则A 1、B 1坐标分别为( )A. A 1(1,8),B 1(-2,5)B. A 1(3,2),B 1(0,-1)C. A 1(-3,8),B 1(-6,5)D. A 1(-5,2),B 1(-8,-1)8. 如果∠α与∠β是对顶角且互补,则它们两边所在的直线( ).A. 互相垂直B. 互相平行C. 即不垂直也不平行D. 不能确定9. 关于x,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x yb x y ++-=⎧⎨+--=-⎩的解为( ) A. 34x y =⎧⎨=⎩ B. 71x y =⎧⎨=-⎩ C. 3.50.5x y =⎧⎨=-⎩ D. 3.50.5x y =⎧⎨=⎩10. 如图,体育课上测量跳远成绩的依据是( )A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线11. 在平面直角坐标系中,若点P(x , x -4)在第四象限,则x 的取值范围为( )A. x >0B. x <4C. 0<x <4D. x >412. 请你观察、思考下列计算过程:因为112=121,所以121=11:,因为1112=12321所以12321=111…,由此猜想12345678987654321=( )A. 111111B. 1111111C. 11111111D. 111111111二、填空题13. 如图,已知AB ∥CD ,∠B=25°,∠D=45°,则∠E=__度.14. 如图,AC ⊥BC, 且BC=6,AC=8,AB=10,则点A 到BC 的距离是______点B 到点A 的距离是_______.15. 已知点的坐标(3-a ,3a -1),且点到两坐标轴的距离相等,则点的坐标是_______________.16. 已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 17. 有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.18. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有______个.三、计算题19. (1)|32- | -|32-| +2(2)- (2)225360x -=20. (1)28325x y x y -=⎧⎨+=⎩(2)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩四、应用题21. 根据下列证明过程填空如图,因∠A =_____(已知),所以AC ∥ED ( )因∠2=_____(已知),所以AC ∥ED ( )因为∠A +_____=180°(已知), 所以AB ∥FD ( )因为AB ∥_____(已知),所以∠2+∠AED =180°( ) 因为AC ∥_____(已知),所以∠C =∠3( )22. 如图,ABC ∆在方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出ABC ∆各点的坐标;(2)求出ABC ∆的面积;(3)若把ABC ∆向上平移2个单位,再向右平移2个单位得到A B C '''∆,请在图中画出A B C '''∆.23. 如图,点D 、E 、F 分别在AB 、BC 、AC 上,且DE ∥AC,EF ∥AB,求证:∠A+∠B+∠C=180°.24. 某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?25. 某加工厂加工一批绿色蔬菜,若12个大加工车间和15个小加工车间一天同时加工,则可加工绿色蔬菜1575吨;若3个大加工车间和5个小加工车间一天同时加工,则可加工绿色蔬菜450吨.(1)每个大车间和每个小车间每天各加工多少吨绿色蔬菜?(2)若该工厂有25个大加工车间,20个小加工车间;每个大车间每天耗费3000元,每个小车间每天耗费2500元,现有2250吨绿色蔬菜,要求一天之内加工完,如何分配车间才能更省钱?答案与解析一、选择题1. 下列给出的方程中,是二元一次方程的是( )A. 5xy =B. 65x y =C. 16x y +=D. 246x y += [答案]B[解析][分析]二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.[详解]解:A. 5xy =是二元二次方程,故该选项错误;B. 65x y =二元一次方程,故该选项正确;C. 16x y+=是分式方程,故该选项错误; D. 246x y +=是二元二次方程,故该选项错误.故选B .[点睛]本题主要考查了二元一次方程的定义.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.2. 下列计算正确的是( )3=± B. 33-=- C. 3=- D. 239-=[答案]C[解析][分析]根据算术平方根的定义,绝对值的性质,乘方的计算法则依次判断即可.[详解3=,故A 错误; 33-=,故B 错误;3=-,故C 正确;239-=-,故D 错误,故选:C.[点睛]此题考查算术平方根的定义,绝对值的性质,乘方的计算法则,熟练掌握各计算方法是解题的关键.3. 有下列实数:317,-π,3.141 59,8,327-,12.其中无理数有().A. 2个B. 3个C. 4个D. 5个[答案]A[解析]试题分析:在下列实数中,317是分数,3.14159是小数,3-27=-3均是有理数,-π,8是无理数,故选A.考点:无理数的定义.4. 点M(m+2,m-5)在轴上,则点M坐标为().A. (0,-7)B. (2,0)C. (7,0)D. (0,7)[答案]C[解析][分析]根据x轴上点的坐标的性质得出纵坐标为0,求出m的值,进而求出M的坐标.[详解]解:∵点M(m+2,m-5)在轴上∴m-5=0解得m=5∴m+2=5+2=7∴点M的坐标为(7,0).故选C.[点睛]本题主要考查了点的坐标性质.根据x轴上点的坐标的性质得出纵坐标为0是解题的关键.5. 如图,Rt ABC∆中,∠ACB=90°,DE 过点C,且DE∥AB,若∠ACD=65°,则∠B的度数是()A. 25°B. 35°C. 45°D. 55°[答案]A[解析][分析]根据“∠ACB=90°”和“∠ACD=65°”先求出∠BCE的度数,再“根据两直线平行,内错角相等”得出∠B的度数.[详解]解:∵∠ACB=90°,∠ACD=65°∴∠BCE=180°-∠ACB-∠ACD=180°-90°-65°=25° ∵DE ∥AB∴∠B=∠BCE=25°故选A .[点睛]本题主要考查了平行线性质.熟记平行线的性质是解题的关键.6. 下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③如果一个数的立方根是这个数本身,那么这个数是1或0;④无限小数都是无理数;⑤如果点A 与点B 关于x 轴对称,则它们的横坐标相同.其中正确的个数为( ).A. 4B. 3C. 2D. 1[答案]C[解析][分析]利用邻补角的定义,垂直的定义,立方根的定义,无理数的定义,平面直角坐标系中点的坐标特征等知识进行判断即可.[详解]解:①两条直线相交,同角的两邻补角一定相等,但这两条直线不一定垂直,错误;②两条直线相交,一角与其邻补角相等,说明这个角等于90°,则这两条直线垂直,正确;③如果一个数的立方根是这个数本身,那么这个数可能是1或0,还可能是-1,错误;④无限不循环小数都是无理数,但无限循环小数是有理数,错误;⑤如果点A 与点B 关于x 轴对称,则它们的横坐标相同,正确.故选C .[点睛]本题考查了命题与定理的知识.解题的关键是掌握邻补角的定义,垂直的定义,立方根的定义,无理数的定义,平面直角坐标系中点的坐标特征等知识.7. 线段AB 两端点坐标分别为A (1,4-),B (4,1-),现将它向右平移4个单位长度,向下平移2个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( )A. A 1(1,8),B 1(-2,5)B. A 1(3,2),B 1(0,-1)C. A 1(-3,8),B 1(-6,5)D. A 1(-5,2),B 1(-8,-1) [答案]B[解析][分析]直接利用平移中点的变化规律求解即可.[详解]解:线段先向右平移4个单位长度,即让原横坐标都加4,纵坐标保持不变,向下平移2个单位长度,即让原横坐标保持不变,纵坐标都减2,所以A 1的横坐标为:-1+4=3,纵坐标为:4-2=2;B 1的横坐标为:-4+4=0,纵坐标为:1-2=-1,所以A 1坐标为(3,2),B 1坐标为(0,-1).故选B .[点睛]本题考查了图形的平移变换.关键是要懂得左右平移时点的纵坐标不变,上下平移时点的横坐标不变.平移中点的变化规律是:横坐标左加右减,纵坐标上加下减.8. 如果∠α与∠β是对顶角且互补,则它们两边所在的直线( ).A. 互相垂直B. 互相平行C. 即不垂直也不平行D. 不能确定 [答案]A[解析][分析]∠α与∠β是对顶角且互补,根据对顶角的性质,判断这两个对顶角相等,且都为90°,因此它们两边所在的直线互相垂直.[详解]∵∠α与∠β对顶角,∴∠α=∠β,又∵∠α与∠β互补,∴∠α+∠β=180°,可求∠α=90°.故选A .[点睛]本题考查垂线的定义和对顶角的性质,是简单的基础题9. 关于x,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A. 34x y =⎧⎨=⎩ B. 71x y =⎧⎨=-⎩ C. 3.50.5x y =⎧⎨=-⎩ D. 3.50.5x y =⎧⎨=⎩ [答案]C[解析]分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得.详解:由题意知:3{4x yx y+=-=①②,①+②,得:2x=7,x=3.5,①﹣②,得:2y=﹣1,y=﹣0.5,所以方程组的解为3.50.5 xy=⎧⎨=-⎩.故选C.点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x、y的方程组.10. 如图,体育课上测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线[答案]C[解析][分析]根据垂线段最短即可得.[详解]体育课上测量跳远成绩是:落地时脚跟所在点到起跳线的距离,依据的是垂线段最短故选:C.[点睛]本题考查了垂线段最短的应用,掌握体育常识和垂线段公理是解题关键.11. 在平面直角坐标系中,若点P(x, x-4)在第四象限,则x的取值范围为()A. x>0B. x<4C. 0<x<4D. x>4[答案]C[解析][分析]根据第四象限内点的坐标符号特点列出关于x的不等式组,解之即可.[详解]解:∵点P(x, x-4)在第四象限∴40xx⎧⎨-⎩><解得0<x<4.故选C.[点睛]本题考查了点的坐标及解一元一次不等式组.正确求出每一个不等式的解集是基础.12. 请你观察、思考下列计算过程:因为112=121,所以121=11:,因为1112=12321所以12321=111…,由此猜想12345678987654321=( )A. 111111B. 1111111C. 11111111D. 111111111[答案]D[解析]分析:被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.详解:∵121=11,12321=111…,…,∴12345678987654321═111 111 111.故选D.点睛:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.二、填空题13. 如图,已知AB∥CD,∠B=25°,∠D=45°,则∠E=__度.[答案]70.[解析][分析]首先过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,然后根据两直线平行,内错角相等即可求出答案.[详解]解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∵∠B=25°,∠D=45°∴∠1=∠B=25°,∠2=∠D=45°∴∠BED=∠1+∠2=25°+45°=70°故答案为70.[点睛]本题考查了平行线的性质.掌握辅助线的作法是解题的关键,注意数形结合思想的应用.14. 如图,AC ⊥BC, 且BC=6,AC=8,AB=10,则点A 到BC 的距离是______点B 到点A 的距离是_______.[答案] (1). 8. (2). 10.[解析][分析]点到直线的距离是指垂线段的长度,两点间的距离是连接两点的线段的长度.[详解]解:点A 到BC 的垂线段是AC ,所以线段AC 的长即为点A 到直线BC 的距离,即点A 到BC 的距离是8;点B 到点A 的距离是线段AB 的长,即点B 到点A 的距离是10.故答案为8;10.[点睛]本题考查了点到直线的距离的定义及两点间的距离定义.注意点到直线的距离是垂线段的长度,不是垂线段.15. 已知点的坐标(3-a ,3a -1),且点到两坐标轴的距离相等,则点的坐标是_______________.[答案](2,2)或(4,-4).[解析][分析]点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.[详解]解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).[点睛]本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16. 已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. [答案]-3[解析]分析:解出已知方程组中x,y 的值代入方程x+2y=k 即可. 详解:解方程组236x y x y +=⎧⎨-=⎩, 得33x y ⎧⎨-⎩==, 代入方程x+2y=k,得k=-3.故本题答案:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组. 17. 有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.[答案]120.[解析][分析]设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,建立方程组,整体求解即可.[详解]解:设购一件甲商品需要x 元,一件乙商品需要y 元,一件丙商品需要z 元,由题意得32315234285x y z x y z ++=⎧⎨++=⎩把这两个方程相加,得5x+5y+5z=600即5(x+y+z)=600∴x+y+z=120∴购甲、乙、丙三种商品各一件共需120元.故答案为120.[点睛]本题考查了三元一次方程组的建模及其特殊解法.根据系数特点,将两式相加,整体求解. 18. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有______个.[答案]40[解析]第1个正方形(实线)四条边上的整点个数有4个,第2个正方形(实线)四条边上的整点个数有8个,第3个正方形(实线)四条边上的整点个数有12个,依次多4,故第10个正方形(实线)四条边上的整点个数有41040⨯=个三、计算题19. (1)3232| +2(2)- (2)225360x -=[答案](1)32;(2)65x =±. [解析][分析](1)原式利用绝对值代数意义化简,计算即可得到结果;(2)方程变形后,开方即可求出x 的值.[详解]解:(1)原式323)+2 32332(2)225360x -=252x =362x =3625 65x =± 故答案为(1)(2)65x =±. [点睛]本题考查了实数的运算及解一元二次方程.利用绝对值的代数意义去绝对值是解(1)题的关键.20. (1)28325x y x y -=⎧⎨+=⎩(2)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩[答案](1)32x y =⎧⎨=-⎩;(2)51x y =⎧⎨=⎩. [解析][分析](1)方程组利用加减消元法求出解即可;(2)先将方程组进行整理,利用加减消元法求出解即可.[详解]解:(1)28325x y x y -=⎧⎨+=⎩①② ①×2,得4x-2y=16③ ②+③,得7x=21∴x=3把x=3代入①,得 2×3-y=8 解得 y=-2∴32x y =⎧⎨=-⎩(2)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩方程组整理,得61 29x yx y-=-⎧⎨-=⎩①②①×2,得2x-12y=-2③②-③,得11y=11∴y=1把y=1代入①,得x-6=-1 解得x=5∴51 xy=⎧⎨=⎩故答案为(1)32xy=⎧⎨=-⎩;(2)51xy=⎧⎨=⎩.[点睛]本题考查了解二元一次方程组.解二元一次方程组的基本思想是“消元思想”,方法有“代入消元法”和“加减消元法”.四、应用题21. 根据下列证明过程填空如图,因为∠A=_____(已知),所以AC∥ED( )因为∠2=_____(已知),所以AC∥ED( )因为∠A+_____=180°(已知),所以AB∥FD( )因为AB∥_____(已知),所以∠2+∠AED=180°( )因为AC∥_____(已知),所以∠C=∠3( )[答案]∠BED ;同位角相等,两直线平行;∠DFC ;内错角相等,两直线平行;∠AFD ;同旁内角互补,两直线平行;FD ;两直线平行,同旁内角互补;ED ;两直线平行,同位角相等.[解析][分析]根据平行线的性质和判定求解.[详解]解:∵∠A =∠BED(已知)∴AC ∥ED (同位角相等,两直线平行)∵∠2=∠DFC (已知)∴AC ∥ED (内错角相等,两直线平行)∵∠A+∠AFD=180°(已知)∴AB ∥FD (同旁内角互补,两直线平行)∵AB ∥FD (已知)∴∠2+∠AED=180°(两直线平行,同旁内角互补)∵AC ∥ED (已知)∴∠C =∠3(两直线平行,同位角相等)故答案为∠BED ;同位角相等,两直线平行;∠DFC ;内错角相等,两直线平行;∠AFD ;同旁内角互补,两直线平行;FD ;两直线平行,同旁内角互补;ED ;两直线平行,同位角相等.[点睛]本题考查了平行线的判定与性质.正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键.22. 如图,ABC ∆在方格纸中,方格纸中的每个小方格都是边长为1个单位长度的正方形.(1)请写出ABC ∆各点的坐标;(2)求出ABC ∆的面积;(3)若把ABC ∆向上平移2个单位,再向右平移2个单位得到A B C '''∆,请在图中画出A B C '''∆.[答案](1)(1,1)A --,(4,2)B ,(1,3)C ;(2)7ABC S ∆=(3);见解析.[解析][分析](1)由图可得点的坐标;(2)利用割补法求解可得;(3)根据平移的定义分别作出平移后的对应点,再顺次连接可得.[详解].解:(1)由图可知,(1,1)A --,(4,2)B ,(1,3)C(2)11145241335222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯ 31520422=--- 7=(3)如图,A B C '''∆即为所求[点睛]本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23. 如图,点D 、E 、F 分别在AB 、BC 、AC 上,且DE ∥AC,EF ∥AB,求证:∠A+∠B+∠C=180°.[答案]证明见解析[解析][分析]根据两直线平行,同位角相等可得∠1=∠C ,∠A=∠4,∠3=∠B ,两直线平行,内错角相等可得∠4=∠2,然后等量代换整理即可得证.[详解]证明:∵DE ∥AC ,∴∠1=∠C ,∠A=∠4,∵EF ∥AB ,∴∠3=∠B ,∠4=∠2,∴∠2=∠A ,∵∠1+∠2+∠3=180°,∴∠A+∠B+∠C=180°.考点:平行线的性质.24. 某商场购进甲,乙两种服装后,都加价50%标价出售.春节期间,商场搞优惠促销,决定将甲,乙两种服装分别按标价的七折和八折出售.某顾客购买甲,乙两种服装共付款186元,两种服装标价和为240元.问:这两种服装打折之后售出的利润是多少元?[答案]26元.[解析][分析]通过理解题意,可知本题存在两个等量关系,即甲种服装的标价+乙种服装的标价=240元,甲种服装的标价×0.7+乙种服装的标价×0.8=186元,根据这两个等量关系可列出方程组求出甲、乙服装的进价,用售价减进价即可求出利润.[详解]解:设甲种服装的进价是x 元,乙种服装的进价是y 元.由题意得(150%)(150%)240(150%)0.7(150%)0.8186x y x y +++=⎧⎨+⨯++⨯=⎩ 解,得40120x y =⎧⎨=⎩186-(40+120)=26(元)答:这两种服装打折之后售出的利润是26元.故答案为26元.[点睛]本题考查了二元一次方程组的应用.解题的关键是弄清题意,找到合适的等量关系,列出方程组,在设未知量时知道到底设哪个更简单,否则较难列出方程.25. 某加工厂加工一批绿色蔬菜,若12个大加工车间和15个小加工车间一天同时加工,则可加工绿色蔬菜1575吨;若3个大加工车间和5个小加工车间一天同时加工,则可加工绿色蔬菜450吨.(1)每个大车间和每个小车间每天各加工多少吨绿色蔬菜?(2)若该工厂有25个大加工车间,20个小加工车间;每个大车间每天耗费3000元,每个小车间每天耗费2500元,现有2250吨绿色蔬菜,要求一天之内加工完,如何分配车间才能更省钱?[答案](1)每个大车间每天加工75吨绿色蔬菜,每个小车间每天加工45吨绿色蔬菜.(2)25个大车间,9个小车间同时加工更省钱.[解析][分析](1)设每个大车间每天加工x 吨绿色蔬菜,每个小车间每天加工y 吨绿色蔬菜.根据“若12个大加工车间和15个小加工车间一天同时加工,则可加工绿色蔬菜1575吨;若3个大加工车间和5个小加工车间一天同时加工,则可加工绿色蔬菜450吨.”列出二元一次方程组即可;(2)设每天耗费W 元,需要a 个大加工车间,则需要22507545a -个小加工间.根据题意得到W 的一次函数,根据一次函数的特征即可得到结果. [详解]解:(1)设每个大车间每天加工x 吨绿色蔬菜,每个小车间每天加工y 吨绿色蔬菜.由题意得1215157535450x y x y +=⎧⎨+=⎩解得7545x y =⎧⎨=⎩答:每个大车间每天加工75吨绿色蔬菜,每个小车间每天加工45吨绿色蔬菜.(2)设每天耗费W 元,需要a 个大加工车间,则需要22507545a -个小加工间.由题意,得 W=3000a+2500×22507545a -=-35003a+125000(0≤a≤25) ∴当a 最大时,W 最小∴需要25个大车间,可以加工25×75=1875(吨) 需要小车间:(2250-1875)÷45=253≈9(个) 答:25个大车间,9个小车间同时加工更省钱.[点睛]本题考查了二元一次方程组的应用及一次函数的应用.解题的关键是正确理解题意,根据题意找到等量关系.。

人教版数学七年级下册《期中检测题》(带答案)

人教版数学七年级下册《期中检测题》(带答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 如图,∠1与∠2构成对顶角的是( ) A. B. C. D.2. 如图,直线a ,b 被直线c 所截,a ∥b ,若∠2=45°,则∠1等于( )A. 125°B. 130°C. 135°D. 145°3. 在1,052--,,这四个数中,最大的数是( )A. B. C. 5 D.4. 下列实数为无理数的是( )A. -5B. 227C. 0D. 25. 实数﹣8的倒数是( )A. ﹣18B. 18C. 8D. ﹣86. 在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为( )A. (2,15)B. (2,5)C. (5,9)D. (9,5)7. 在平面直角坐标系中,将点(﹣2,﹣4)向下平移3个单位长度后得到的点的坐标是( )A. (﹣2,﹣1)B. (﹣5,﹣4)C. (1,﹣4)D. (﹣2,﹣7) 8. 二元一次方程21x y -=有无数多个解,下列四组值中是该方程的解的是( )A. 00.5x y =⎧⎨=⎩B. 53x y =⎧⎨=-⎩C. 11x y =⎧⎨=-⎩D. 47x y =⎧⎨=⎩9. 下列方程是二元一次方程的是( )A. 2y xy -+=B. 3115x x -=C. 32x y =+D. 2612x y -= 10. 已知两数x ,y 之和是10,且x 比y 的2倍大3,则下列所列方程组正确的值是( )A. 1023x y y x +=⎧⎨=+⎩B. 1023x y y x +=⎧⎨=-⎩C. 1023x y x y +=⎧⎨=+⎩D. 1023x y x y +=⎧⎨=-⎩二.填空题(共10小题)11. 把命题“在同一平面内,垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式为____________________________________________________.12. 如图,AB ∥CD ,DE ∥CB ,∠B =35°,则∠D =_____°.13. 925的算术平方根是_______. 14. 计算:143⎛⎫-- ⎪⎝⎭=_____.15. 如果某数的一个平方根是﹣2,那么这个数是_____.16. 已知点A 在第三象限,且到x 轴,y 轴的距离分别为4、5,则A 点的坐标为_____.17. 若点P (m ﹣2,2m +1)在x 轴上,则m 的值是___.18. 若21x y =⎧⎨=⎩是关于,的二元一次方程21x ay -+=-的一个解,则a =__________. 19. 已知二元一次方程y ﹣2x =1,用含x 代数式表示y ,则y =_____.20. 如图,CD ⊥AB ,点D 为垂足,DE 平分∠CDB ,则∠ADE 是_____度.三.解答题(共7小题)21. (1)求式中x 的值:2(1)16x -=;(2)计算:2020312527--22. 如图,△ABC 中.(1)画△ABC 向右平移4个单位,再向下平移3个单位得到△A 'B 'C ';(2)写出平移后A '、B '、C '三点的坐标.(3)求三角形ABC 的面积.23. 如图,点,,A O B 在同一条直线上,OE 平分BOC ∠,OD OE ⊥于点,如果66COD ∠=︒,求AOE ∠度数.24. 已知2x +是27的立方根,31x y +-的算术平方根是4,求73x y +平方根.25. 解方程组:(1)12232x y x y =-⎧⎨+=-⎩(2)321121x y x y +=⎧⎨-=⎩26. 在元旦节来临之际,小明准备给好朋友赠送一些钢笔和笔记本作为元旦礼物,经调查发现,支钢笔和个笔记本要元;支钢笔和个笔记本要元.(1)求一支钢笔和一个笔记本分别要多少元?(2)小明购买了支钢笔和个笔记本,恰好用完元钱.若两种物品都要购买,请你帮他设计购买方案.答案与解析一.选择题(共10小题)1. 如图,∠1与∠2构成对顶角的是( )A. B.C. D.[答案]C[解析][分析]根据对顶角的定义,可得答案.[详解]A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A选项错误;B、∠1与∠2没有公共顶点,不是对顶角,故B选项错误;C、∠1与∠2的两边互为反向延长线,是对顶角,故C选项正确;D、∠1与∠2的两边不是互为反向延长线,不是对顶角,故D选项错误.故选:C.[点睛]本题考查了对顶角,利用∠1的两边与∠2的两边互为反向延长线是解题的关键.2. 如图,直线a,b被直线c所截,a∥b,若∠2=45°,则∠1等于( )A. 125°B. 130°C. 135°D. 145°[答案]C[解析][分析]根据两直线平行,同位角相等可得∠3=∠2,再根据邻补角的定义解答.[详解]如图,∵a∥b,∠2=45°,∴∠3=∠2=45°,∴∠1=180°−∠3=135°,故选:C .[点睛]本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补. 定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.3. 在1,02--,这四个数中,最大数是( )A.B. C. D. [答案]B[解析][分析]根据有理数的大小比较法则比较即可.[详解]解:4个数中,-1,,2为正数,正数大于0,0大于负数,∴最大的数是2.故选B.[点睛]本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键. 4. 下列实数为无理数的是( )A. -5B. 227C. 0 [答案]D[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]A 、−5是整数,是有理数,选项错误;B 、227是分数,是有理数,选项错误; C 、0是整数,是有理数,选项错误;D 是无理数,选项正确;故选:D.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5. 实数﹣8的倒数是( )A. ﹣18B.18C. 8D. ﹣8[答案]A[解析][分析]根据倒数的知识直接回答即可.[详解]解:实数﹣8的倒数是﹣18,故选:A.[点睛]本题是对倒数知识的考查,熟练掌握倒数知识是解决本题的关键.6. 在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为()A. (2,15)B. (2,5)C. (5,9)D. (9,5)[答案]C[解析][分析]根据用(2,15)表示2排15号可知第一个数表示排,第二个数表示号,进而可得答案.[详解]∵(2,15)表示2排15号可知第一个数表示排,第二个数表示号∴5排9号可以表示为(5,9),故选:C.[点睛]本题是有序数对的考查,解题关键是弄清楚有序数对中的数字分别对应的是行还是列7. 在平面直角坐标系中,将点(﹣2,﹣4)向下平移3个单位长度后得到的点的坐标是( )A. (﹣2,﹣1)B. (﹣5,﹣4)C. (1,﹣4)D. (﹣2,﹣7) [答案]D[解析][分析]根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可.[详解]解:将点(﹣2,﹣4)向下平移3个单位长度,所得到的点的坐标是(﹣2,﹣7),故选:D.[点睛]此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.8. 二元一次方程21x y -=有无数多个解,下列四组值中是该方程的解的是( )A. 00.5x y =⎧⎨=⎩B. 53x y =⎧⎨=-⎩C. 11x y =⎧⎨=-⎩D. 47x y =⎧⎨=⎩ [答案]D[解析][分析]将选项中的,x y 的值代入方程中,若方程等号两边相等则是方程的解,否则就不是方程的解.[详解]解:选项A ,将0,0.5==x y 代入,方程左边200.5=0.5-=--≠x y 右边,故不是方程解; 选项B ,将5,3x y ==-代入,方程左边210+3=13-=≠x y 右边,故不是方程的解;选项C ,将1,1x y ==-代入,方程左边21+1=2-=≠x y 右边,故不是方程的解;选项D ,将4,7x y ==代入,方程左边287=1=-=-x y 右边,是方程的解;故答案为:D.[点睛]本题考查二元一次方程的解,是方程的解就是将未知数代入方程中,等号左边等于等号右边. 9. 下列方程是二元一次方程的是( )A. 2y xy -+=B. 3115x x -=C. 32x y =+D. 2612x y -= [答案]C[解析][分析]根据二元一次方程的定义对各选项分析判断后利用排除法求解.[详解]解:A 、2y xy -+=是二元二次方程,故本选项错误;B 、3115x x -=是一元一次方程,故本选项错误;C 、32x y =+是二元一次方程,故本选项正确;D 、不是整式方程,故本选项错误.故选C .[点睛]本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.10. 已知两数x ,y 之和是10,且x 比y 的2倍大3,则下列所列方程组正确的值是( )A. 1023x y y x +=⎧⎨=+⎩B. 1023x y y x +=⎧⎨=-⎩C. 1023x y x y +=⎧⎨=+⎩D. 1023x y x y +=⎧⎨=-⎩ [答案]C[解析][分析] 根据x ,y 之和是10,列出方程10x y +=,再由x 比y 的2倍大3,列出方程23x y =+,最后写成方程组形式即可解题.[详解]根据题意列出方程组,得:1023x y x y +=⎧⎨=+⎩故选C .[点睛]本题考查由实际问题抽象出二元一次方程组的知识,是重要考点,找到等量关系,掌握相关知识是解题关键.二.填空题(共10小题)11. 把命题“在同一平面内,垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式为____________________________________________________.[答案]“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”[解析][分析]命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行.[详解]“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果−−−,那么−−−”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.故答案为在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.12. 如图,AB ∥CD ,DE ∥CB ,∠B =35°,则∠D =_____°.[答案]145根据平行线的性质可得∠B=∠C=35°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.[详解]解:∵AB∥CD,∴∠C=∠B=35°.∵DE∥CB,∴∠D=180°﹣∠C=145°.故答案为:145.[点睛]此题考查了平行线的性质,解答关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.13. 925的算术平方根是_______.[答案]3 5[解析][分析]根据算术平方根的定义即可解答.[详解]解:925的算术平方根是35,故答案为:35.[点睛]本题考查了算术平方根的概念,解题的关键是熟知算术平方根的概念.14.13⎛⎫-⎪⎝⎭=_____.[答案]7 3[解析][分析]根据实数的运算法则即可求解.[详解13⎛⎫-⎪⎝⎭=2+1733=故答案为:73.[点睛]此题主要考查实数的运算,解题的关键是熟知其运算法则.15. 如果某数的一个平方根是﹣2,那么这个数是_____.[答案]4.计算﹣2的平方为4,可解答.[详解]解:∵某数的一个平方根是﹣2,∴这个数4.故答案为:4.[点睛]此题考查的是已知一个数的平方根,求这个数,掌握平方根的定义是解决此题的关键. 16. 已知点A 在第三象限,且到x 轴,y 轴的距离分别为4、5,则A 点的坐标为_____.[答案](54)A --,[解析][分析]根据坐标系中第三象限点的坐标特征:横坐标为负数,纵坐标为负数解题即可.[详解]点A 在第三象限,设坐标为(,)x y00,x y ∴<<A 到x 轴,y 轴的距离分别为4、5,54x y ∴=-=-,(54)A ∴--,故答案为:(54)A --,[点睛]本题考查各象限点坐标的特征,是重要考点,难度容易,掌握相关知识是解题关键. 17. 若点P (m ﹣2,2m +1)在x 轴上,则m 的值是___.[答案]﹣12. [解析][分析]直接利用x 轴上点的坐标特点得出2m +1=0,进而得出答案.[详解]∵点P (m ﹣2,2m +1)在x 轴上,∴2m +1=0, 解得:m =﹣12, 故答案为:﹣12.[点睛]此题主要考查了点的坐标,正确掌握x轴上点的纵坐标为0是解题关键.18. 若21xy=⎧⎨=⎩是关于,的二元一次方程21x ay-+=-的一个解,则a=__________.[答案]3[解析][分析]根据二元一次方程的解定义,将x和y的值代入求解即可.[详解]由题意,将21xy=⎧⎨=⎩代入二元一次方程21x ay-+=-得:221a-⨯+=-解得3a=故答案为:3.[点睛]本题考查了二元一次方程的解定义,掌握解的定义是解题关键.19. 已知二元一次方程y﹣2x=1,用含x的代数式表示y,则y=_____.[答案]2x+1[解析][分析]把x看作已知数,解关于y的方程即可.[详解]解:由y﹣2x=1,得到y=2x+1.故答案为:2x+1[点睛]此题考查了二元一次方程,一般表示谁,就把谁看作未知数,解方程即可.20. 如图,CD⊥AB,点D为垂足,DE平分∠CDB,则∠ADE是_____度.[答案]135[解析][分析]根据CD⊥AB,可得∠ADC=∠BDC=90°,再根据角平分线的性质可得∠CDE=12∠BDC=12×90°=45°,利用角的和差关系即可求出∠ADE的度数.[详解]∵CD⊥AB,∴∠ADC =∠BDC =90°,∵DE 平分∠CDB ,∴∠CDE =12∠BDC =12×90°=45°, ∴∠ADE =∠ADC+∠CDE =90°+45°=135°.故答案:135.[点睛]本题考查了角的度数问题,掌握垂线的性质、角平分线的性质、角的和差关系是解题的关键.三.解答题(共7小题)21. (1)求式中x 的值:2(1)16x -=;(2)计算:20201-[答案](1)x =5或﹣3;(2)﹣9.[解析][分析](1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.[详解](1)(x ﹣1)2=16,x ﹣1=±4,解得:x =5或﹣3;(2)20201-=﹣1﹣5﹣3=﹣9.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.22. 如图,在△ABC 中.(1)画△ABC 向右平移4个单位,再向下平移3个单位得到的△A 'B 'C ';(2)写出平移后A '、B '、C '三点的坐标.(3)求三角形ABC 的面积.[答案](1)答案见解析;(2)A '(3,1)、B '(0,﹣4)、C '(5,﹣2);(3)9.5.[解析][分析](1)分别画出△ABC 各个顶点的对应点,顺次连接起来,即可;(2)根据网格的特点以及A '、B '、C '三点的位置,直接写出坐标即可;(3)根据网格的特点,利用割补法,即可求解.[详解](1)如图所示,△A 'B 'C '即为所求;(2)由图可知,A '(3,1)、B '(0,﹣4)、C '(5,﹣2);(3)5×5-3×5÷2-2×3÷2-2×5÷2=9.5.[点睛]本题主要考查图形与坐标以及平移变换,掌握图形的平移变换以及割补法求三角形的面积,是解题的关键.23. 如图,点,,A O B 在同一条直线上,OE 平分BOC ∠,OD OE ⊥于点,如果66COD ∠=︒,求AOE ∠的度数.[答案]156°[解析][分析]根据垂直的意义和性质,判断出∠DOE 的度数,根据∠COE 与∠COD 的关系,求出∠COE 的度数,然后利用角平分线的性质得出∠BOE ,再根据互补角的意义,即可求出∠AOE 的度数.[详解]解:∵OD ⊥OE 于O ,∴∠DOE =90°,又∵因为∠COD =66°,∴∠COE =∠DOE -∠COD =90°-66°=24°, ∵OE 平分∠BOC ,∴∠BOE =∠COE =24°,又∵点A ,O ,B 在同一条直线上,∴∠AOB =180°,∴∠AOE =∠AOB -∠BOE =180°-24°=156°.[点睛]本题考查了垂直的意义,角平分线的性质,解决本题关键是正确理解题意,能够根据题意找到角与角之间的关系.24. 已知2x +是27的立方根,31x y +-的算术平方根是4,求73x y +平方根.[答案]7±[解析][分析]根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x 、y 的值,再计算73x y +的值,根据平方根的定义,可得答案.[详解]由题意得:24x ⎧+=⎪=,解得:114x y =⎧⎨=⎩, ∴7374249x y +=+=,∵49平方根为±7,∴73x y +的算术平方根为±7.[点睛]本题考查了立方根,平方根和算术平方根,根据题意得出二元一次方程组是解题的关键.25. 解方程组:(1)12 232 x yx y=-⎧⎨+=-⎩(2)321121 x yx y+=⎧⎨-=⎩[答案](1)74xy=-⎧⎨=⎩(2)31xy=⎧⎨=⎩[解析][分析](1)根据代入消元法即可求解;(2)根据加减消元法即可求解.[详解](1)12232 x yx y=-⎧⎨+=-⎩①②把①代入②得2(1-2y)+3y=-2 解得y=4把y=4代入①得x=1-8=-7∴原方程组的解为74 xy=-⎧⎨=⎩(2)321121x yx y+=⎧⎨-=⎩①②①+②得4x=12解得x=3把x=3代入②得3-2y=1 解得y=1∴原方程组的解为31 xy=⎧⎨=⎩.[点睛]此题主要考查二元一次方程组的求解,解题的关键是熟知其解法.26. 在元旦节来临之际,小明准备给好朋友赠送一些钢笔和笔记本作为元旦礼物,经调查发现,支钢笔和个笔记本要元;支钢笔和个笔记本要元.(1)求一支钢笔和一个笔记本分别要多少元?(2)小明购买了支钢笔和个笔记本,恰好用完元钱.若两种物品都要购买,请你帮他设计购买方案.[答案](1)一支钢笔需15元,一个笔记本需10元;(2)有两种购买方案,方案一:购买2支钢笔,5个笔记本;方案二:购买4支钢笔,2个笔记本.[解析][分析](1)设一支钢笔需x元,一个笔记本需y元,,然后根据关键语“支钢笔和个笔记本要元;支钢笔和个笔记本要元”,列方程组求解即可;(2)可列出关于a、b的二元一次方程,根据a、b均为非负整数,求出方程的正整数解即可得到结果.[详解]解:(1)设一支钢笔需x元,一个笔记本需y元,由题意得:235355x yx y+=⎧⎨+=⎩,解得:1510xy=⎧⎨=⎩.答:一支钢笔需15元,一个笔记本需10元.(2)由题意得,15a+10b=80,化简得3a+2b=16,因为a,b都是正整数,所以符合条件的解为:24,52a ab b==⎧⎧⎨⎨==⎩⎩.则有两种购买方案,方案一:购买2支钢笔,5个笔记本;方案二:购买4支钢笔,2个笔记本.[点睛]此题主要考查了二元一次方程组和二元一次方程的应用,关键是正确理解题意,找出等量关系,列出二元一次方程组以及二元一次方程.。

人教版数学七年级下册《期中考试题》含答案解析

人教版数学七年级下册《期中考试题》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共24分)1.下列调查中,最适宜采用普查方式是( )A. 对全国初中学生视力状况的调査B. 对“十一国庆”期间全国居民旅游出行方式的调查C. 旅客上飞机前的安全检查D. 了解某种品牌手机电池的使用寿命2.如图,下列结论中错误的是( )A. 1∠与2∠同旁内角B. 1∠与6∠是内错角C. 2∠与5∠是内错角D. 3∠与5∠是同位角3.下列方程组中是二元一次方程组的是( ) A. 346564x y z y +=⎧⎨-=⎩B. 3112x y x y +=⎧⎪⎨-=⎪⎩C. 2228x y x y +=⎧⎨-=⎩D. 2.54x y x y +=⎧⎨-=⎩4.如图,OA OB ⊥,若3420BOC '∠=︒,则AOC ∠的度数是( )A. 5520'︒B. 5540'︒C. 5560'︒D. 5580'︒ 5.某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法:①这600名学生的“中华经典诵读”大赛成绩的全体是总体.②每个学生个体.③50名学生是总体的一个样本.④样本容量是50名.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个6.某公司的生产量在1-7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A. 2-6月生产量逐月减少B. 1月份生产量最大C. 这七个月中,每月生产量不断增加D. 这七个月中,生产量有增加有减少7.二元一次方程3x+2y=15正整数解有( )组.A. 1B. 2C. 3D. 无数组8.某公司有学徒工和熟练工两个工种的工人,已知一个学徒工每天制造的零件比一个熟练少20个,一个学徒工与两个熟练工每天共可制造220个零件,求一个学徒工与一个熟练工每天各能制造多少个零件?设一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题意可列方程组为( )A.202220y xx y-=⎧⎨+=⎩B.202220x yx y-=⎧⎨+=⎩C.202220y xx y-=⎧⎨+=⎩D.202220x yx y-=⎧⎨+=⎩二.填空题(共6小题,每小题3分,满分18分)9.如图,从点P向直线l所画的4条线段中,线段__最短,理由是__.10.如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠BOM的度数是__.11.已知方程组|a|-(-1)5y (-5)3y a x b xy =⎧⎨+=⎩是关于x,y 的二元一次方程组,则a b 的值是____. 12.对某中学同年级70名男生的身高进行了测量,得到一组数据,其中最大值是183cm ,最小值是146cm ,对这组数据进行整理时,确定它的组距为5cm ,则至少应分__________组.13.六一儿童节将至,孩子王儿童商店推出甲、乙、丙三种特价玩具,若购甲3件,乙2件,丙1件需要400元;购甲1件,乙2件,丙3件需要440元,则购买甲乙丙三种玩具各一件需要_________元.14.对于X ,Y 定义一种新运算“*”:X *Y =aX +bY ,其中a ,b 为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么2*3=________.三.解答题(共58分)15.先化简,再求值:()22223m mn m mn +--,其中1m =-,2n =.16.解下列方程组:(1)312236x y x y +=⎧⎨-=⎩; (2)2(1)54(1)2(5)x y y x -=+⎧⎨-=+⎩. 17.请在图中,过P 点分别画OA 、OB 的垂线.18.网络时代新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个调查活动:选取四个热词A :“硬核人生”,B :“好嗨哦”,C :“双击666”,D :“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名路人?(2)补全条形统计图,并求出a 的值;(3)请算出扇形图中的b 的值.19.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表: 批发价(元) 零售价(元) 黑色文化衫25 45 白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.20.如图,直线AB ,CD ,EF 相交于点O .(1)请写出,AOC ∠,AOE ∠EOC ∠的对顶角;(2)若50AOC ︒∠=,求,BOD ∠BOC ∠的度数.21.在等式y =ax 2+bx +c 中,当x =﹣1时,y =3;当x =0时,y =1,当x =1时,y =1,求这个等式中a 、b 、c 的值. 22.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户?23.若规定a c b d =ad ﹣bc ,如2130-=2×0﹣3×(﹣1)=3 (1)计算:2531-; (2)计算:35x y-; (3)解方程组:321325y x x y ⎧-=⎪⎪⎨⎪=-⎪⎩.24.“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.25.如图,∠1=28°,AB⊥CD ,垂足为O,EF 经过点O .求∠2、∠3的度数.答案与解析一.选择题(每小题3分,共24分)1.下列调查中,最适宜采用普查方式的是( )A. 对全国初中学生视力状况的调査B. 对“十一国庆”期间全国居民旅游出行方式的调查C. 旅客上飞机前的安全检查D. 了解某种品牌手机电池的使用寿命[答案]C[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]A .对全国初中学生视力状况的调査,范围广,适合抽样调查,故A 错误;B .对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B 错误;C .旅客上飞机前的安全检查,适合普查,故C 正确;D .了解某种品牌手机电池的使用寿命,适合抽样调查,故D 错误.故选:C .[点睛]本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.如图,下列结论中错误的是( )A. 1∠与2∠同旁内角B. 1∠与6∠是内错角C. 2∠与5∠是内错角D. 3∠与5∠是同位角[答案]C[解析][分析]利用同位角、内错角、同旁内角的定义判断即可.[详解]解;A .1∠与2∠是同旁内角,所以此选项正确;B .1∠与6∠是内错角,所以此选项正确;C .∠2、∠5既不是同位角、不是内错角,也不是同旁内角,所以此选项错误;D .3∠与5∠是同位角,所以此选项正确,故选:C .[点睛]考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.3.下列方程组中是二元一次方程组的是( )A. 346564x y z y +=⎧⎨-=⎩ B. 3112x y x y +=⎧⎪⎨-=⎪⎩ C. 2228x y x y +=⎧⎨-=⎩D. 2.54x y x y +=⎧⎨-=⎩[答案]D[解析][分析] 由二元一次方程组的定义:两个方程都为整式方程;一共含有2个未知数;最高次项的次数是1;从而可得到答案.[详解]解:A 、该方程组中含有三个未知数,属于三元一次方程组,故本选项不符合题意;B 、第二个方程不是整式方程,不符合二元一次方程组的定义,故本选项不符合题意;C 、第二个方程中未知数的最高次数是2,该方程组属于二元二次方程组,故本选项不符合题意;D 、符合二元一次方程组的定义,故本选项符合题意.故选:D .[点睛]本题考查的是二元一次方程组的定义,掌握定义是解题的关键.4.如图,OA OB ⊥,若3420BOC '∠=︒,则AOC ∠的度数是( )A. 5520'︒B. 5540'︒C. 5560'︒D. 5580'︒[答案]B[解析][分析] 因为OA OB ⊥,所以90AOB ∠=︒,再利用AOC AOB BOC ∠=∠-∠即可得出答案.[详解]∵OA OB ⊥∴90AOB ∠=︒∴903420'5540'AOC AOB BOC ∠=∠-∠=︒-︒=︒故选B[点睛]本题主要考查角和与差,掌握角的运算是解题的关键.5.某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法:①这600名学生的“中华经典诵读”大赛成绩的全体是总体.②每个学生是个体.③50名学生是总体的一个样本.④样本容量是50名.其中说法正确的有( )A. 1个B. 2个C. 3个D. 4个[答案]A[解析][分析]”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,考查对象是组织了一次全县600名学生参加的“中华经典诵读”大赛的成绩,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.[详解]①这600名学生的“中华经典诵读”大赛成绩的全体是总体,正确;②每个学生的成绩是个体,故原说法错误;③50名学生的成绩是总体的一个样本,故原说法错误;④样本容量是50,故原说法错误.所以说法正确有①,1个.故选:A.[点睛]考查统计知识的总体,样本,个体,等相关知识点,要明确其定义.易错易混点:学生易对总体和个体的意义理解不清而错选.6.某公司的生产量在1-7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A. 2-6月生产量逐月减少B. 1月份生产量最大C. 这七个月中,每月的生产量不断增加D. 这七个月中,生产量有增加有减少[答案]C[解析][分析]根据增长率均为正数,即后边的月份与前面的月份相比是增加的,据此即可求出答案.[详解]图示为增长率的折线图,读图可得:这七个月中,增长率为正,故每月生产量不断上涨,故A,B,D均错误;故选C.[点睛]本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长率.7.二元一次方程3x+2y=15的正整数解有( )组.A. 1B. 2C. 3D. 无数组[答案]B[解析][分析]把方程变形为:25,3x y=-由是3的倍数直接写出方程的正整数解即可.[详解]解:3x+2y=15,25,3x y =- ,x y 为正整数,方程在正整数解为:31,.36x x y y ==⎧⎧⎨⎨==⎩⎩则方程的正整数解有2组.故选:B .[点睛]本题考查的是二元一次方程的正整数解,掌握求二元一次方程的正整数解的方法是解题的关键. 8.某公司有学徒工和熟练工两个工种的工人,已知一个学徒工每天制造的零件比一个熟练少20个,一个学徒工与两个熟练工每天共可制造220个零件,求一个学徒工与 一个熟练工每天各能制造多少个零件?设一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题意可列方程组为( )A. 202220y x x y -=⎧⎨+=⎩B. 202220x y x y -=⎧⎨+=⎩C. 202220y x x y -=⎧⎨+=⎩D. 202220x y x y -=⎧⎨+=⎩[答案]A[解析][分析]根据题意找到两个等量关系列出方程组即可. [详解]解:一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题中:一个学徒工每天制造的零件比一个熟练少20个,以及一个学徒工与两个熟练工每天共可制造220个零件可得方程组:202220y x x y -=⎧⎨+=⎩. 故选A.[点睛]本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够根据题意找到两个等量关系,这是列方程的依据.二.填空题(共6小题,每小题3分,满分18分)9.如图,从点P 向直线l 所画的4条线段中,线段__最短,理由是__.[答案] (1). PB (2). 从直线外一点,到直线上各点所连的线段中,垂线段最短[解析][分析]根据“从直线外一点,到直线上各点所连的线段中,垂线段最短”,进行判断即可.[详解]解:根据“垂线段最短”可知,PB 最短,理由是从直线外一点,到直线上各点所连的线段中,垂线段最短,故答案为:PB ,从直线外一点,到直线上各点所连的线段中,垂线段最短.[点睛]本题考查的是“直线外一点与直线上各点所连的线段中,垂线段最短”,掌握这个基本事实是解题的关键.10.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 的度数是__.[答案]140°[解析][分析]先根据对顶角相等得出∠AOC =80°,再根据角平分线的定义得出∠COM ,最后解答即可.[详解]解:∵∠BOD =80°,∴∠AOC =80°,∠COB =100°,∵射线OM 是∠AOC 的平分线,∴∠COM =40°,∴∠BOM =40°+100°=140°,故答案为:140°.[点睛]此题考查对顶角和角平分线的定义,关键是得出对顶角相等.11.已知方程组|a|-(-1)5y (-5)3y a x b xy =⎧⎨+=⎩是关于x,y 的二元一次方程组,则a b 的值是____.[答案]-1[解析][分析]利用二元一次方程组的定义确定出a与b的值,代入原式计算即可得到结果.[详解]解:由题意得:|a|=1,b-5=0,a-1≠0,解得:a=-1,b=5,则原式=(-1)5=-1.故答案为-1.[点睛]此题考查了二元一次方程组的定义,熟练掌握二元一次方程组的定义是解本题的关键.12.对某中学同年级70名男生的身高进行了测量,得到一组数据,其中最大值是183cm,最小值是146cm,对这组数据进行整理时,确定它的组距为5cm,则至少应分__________组.[答案]8[解析][分析]根据组数的计算公式即可得出答案.组数=(最大值-最小值)组距,计算结果为小数或分数时,用进一法来确定组数.[详解]解:∵1831467.45-=∵计算结果为小数,我们利用进一法来确定组数,因此组数为8.故答案为:8.[点睛]本题考查的知识点是组数的计算,此类题目要根据题意找出样本数据的最大值和最小值,结合组距,利用公式来求解.13.六一儿童节将至,孩子王儿童商店推出甲、乙、丙三种特价玩具,若购甲3件,乙2件,丙1件需要400元;购甲1件,乙2件,丙3件需要440元,则购买甲乙丙三种玩具各一件需要_________元.[答案]210[解析][分析]设甲玩具的单价为x元,乙玩具的单价为y元,丙玩具的单价为z元,根据“购甲3件,乙2件,丙1件需400元:购甲1件,乙2件,丙3件需440元”,即可得出关于x,y,z的三元一次方程组,再利用(①+②)÷4,即可求出结论.[详解]设甲玩具的单价为x元,乙玩具的单价为y元,丙玩具的单价为z元,依题意,得:32=40023=440x y z x y z ++⎧⎨++⎩①② , (①+②)÷4,得:x+y+z=210. 故答案为:210.[点睛]此题考查三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键. 14.对于X ,Y 定义一种新运算“*”:X *Y =aX +bY ,其中a ,b 为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么2*3=________.[答案]2[解析][分析]利用题中的新定义列出方程组,求出方程组的解得到a 与b 的值,代回到新定义的式子中,然后再根据新定义计算2*3即可.[详解]∵X*Y=aX+bY , 3*5=15,4*7=28,∴35154728a b a b +=⎧⎨+=⎩, 解得3524a b =-⎧⎨=⎩, ∴X*Y=-35X+24Y ,∴2*3=-35×2+24×3=2, 故答案为2.[点睛]本题考查了新定义运算与解二元一次方程组,求出a 、b 的值是解题的关键.三.解答题(共58分)15.先化简,再求值:()22223m mn m mn +--,其中1m =-,2n =.[答案]254m mn -+;13-[解析][分析]根据整式的加减法则进行化简,再代数求值即可.[详解]原式=22262m mn m mn +-+=254m mn -+当1m =-,2n =时,原式= ()()251412-⨯-+⨯-⨯ 5813=--=-.[点睛]本题以代数求值方式考查整式的加减与代数计算,熟练掌握整式加减运算是解答关键.16.解下列方程组:(1)312236x y x y +=⎧⎨-=⎩; (2)2(1)54(1)2(5)x y y x -=+⎧⎨-=+⎩. [答案](1)62x y =⎧⎨=⎩;(2)77x y =⎧⎨=⎩[解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.[详解]解:(1)312236x y x y +=⎧⎨-=⎩①②, ①+②得:3x =18,解得:x =6,把x =6代入①得:y =2,则方程组的解为62x y =⎧⎨=⎩; (2)方程组整理得:272414x y x y -=⎧⎨-=-⎩①②, ①﹣②得:3y =21,解得:y =7,把y =7代入①得:x =7,则方程组的解为77x y =⎧⎨=⎩. [点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 17.请在图中,过P 点分别画OA 、OB 的垂线.[答案]详见解析[解析][分析]根据垂线的定义利用尺规即可过P点分别画OA、OB的垂线.[详解]解:如图,PC和PD即为所求.[点睛]本题考查了作图-基本作图,解决本题的关键是掌握基本作图过程.18.网络时代新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个调查活动:选取四个热词A:“硬核人生”,B:“好嗨哦”,C:“双击666”,D:“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名路人?(2)补全条形统计图,并求出a的值;(3)请算出扇形图中的b的值.[答案](1)300名;(2)图见解析,a=90;(3)b=90[解析](1)根据选择A的人数和扇形统计图中所对的圆心角的度数,可以求得本次调查了多少名路人;(2)根据扇形统计图中的数据可以求得选择C和选择D的人数,从而补全统计图;(3)根据条形统计图中的数据可以求得b的值.[详解]解:(1)本次调查中,一共调查了:120÷144360︒=300(名);(2)选D的有:a=300×108360︒︒=90(名)选C的有300﹣120﹣75﹣90=15(名), 补全的条形统计图如下图所示:(3)b°=360°×75300=90°,则b=90.[点睛]本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.19.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元) 零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.[答案](1)学校购进黑文化衫80件,白文化衫20件;(2)该校这次义卖活动共获得1900元利润.[分析](1)设学校购进黑文化衫x 件,白文化衫y 件,根据两种文化衫100件共花费2400元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总利润=每件利润×数量,即可求出结论.[详解]解:(1)设学校购进黑文化衫x 件,白文化衫y 件,依题意,得:10025202400x y x y +=⎧⎨+=⎩; 解得: 8020x y =⎧⎨=⎩答:学校购进黑文化衫80件,白文化衫20件.(2)(45-25)×80+(35-20)×20=1900(元). 答:该校这次义卖活动共获得1900元利润.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 20.如图,直线AB ,CD ,EF 相交于点O .(1)请写出,AOC ∠,AOE ∠EOC ∠的对顶角;(2)若50AOC ︒∠=,求,BOD ∠BOC ∠的度数.[答案](1)AOC ∠的对顶角是BOD ∠,AOE ∠的对顶角是BOF ∠,EOC ∠的对顶角是DOF ∠;(2)50BOD ︒∠=,130BOC ︒∠=[解析][分析](1)根据对顶角的定义写出对顶角即可;(2)根据对顶角的性质和邻补角的性质即可得出结论.[详解](1)AOC ∠的对顶角是BOD ∠,AOE ∠的对顶角是BOF ∠,EOC ∠的对顶角是DOF ∠.(2)因为AOC ∠的对顶角是BOD ∠,50AOC ︒∠=,所以50BOD ︒∠=.因为BOC ∠是BOD ∠的邻补角,所以18050130BOC ︒︒︒∠=-=.[点睛]此题考查的是对顶角的定义及性质和邻补角的性质,掌握对顶角的定义、对顶角相等和邻补角互补是解决此题的关键.21.在等式y =ax 2+bx +c 中,当x =﹣1时,y =3;当x =0时,y =1,当x =1时,y =1,求这个等式中a 、b 、c 的值.[答案]a =1,b =﹣1,c =1.[解析][分析]根据题意列出三元一次方程组,解方程组即可.[详解]由题意得,311a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得,a =1,b =﹣1,c =1.[点睛]本题考查的是三元一次方程组的解法,解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.②然后解这个二元一次方程组,求出这两个未知数的值.③再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.④解这个一元一次方程,求出第三个未知数的值,得到方程组的解.22.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 家庭大约有多少户?[答案](1)12户和0.08;补图见解析;(2)68%;(3)120户.[解析][分析](1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;(2)根据(1)中所求即可得出不超过15t 的家庭总数即可求出,不超过15t 的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过20t 的家庭数,即可得出1000户家庭超过20t 的家庭数.[详解](1)如图所示:根据0<x≤5中频数为6,频率为0.12,则6÷0.12=50,50×0.24=12户,4÷50=0.08, 故表格从上往下依次是:12户和0.08;(2)6121650++×100%=68%; (3)1000×(0.08+0.04)=120户,答:该小区月均用水量超过20t 的家庭大约有120户.考点:1.频数(率)分布直方图;2.用样本估计总体;3.频数(率)分布表.23.若规定a cb d =ad ﹣bc ,如2130-=2×0﹣3×(﹣1)=3 (1)计算:2531-; (2)计算:35x y -;(3)解方程组:321325 y xx y⎧-=⎪⎪⎨⎪=-⎪⎩.[答案](1)﹣17;(2) 5x+3y;(3)11 xy=⎧⎨=-⎩[解析][分析](1)根据所给的式子求出代数式的值即可;(2)根据所给的式子得出关于x、y的方程即可;(3)先根据题意得出关于x、y的二元一次方程组,求出x、y的值即可.[详解]解:(1)∵a bb c=ad﹣bc,∴原式=﹣2﹣15 =﹣17;(2)原式=5x+3y;(3)由题意可得321 325 x yy x+=⎧⎨-=-⎩,解得11 xy=⎧⎨=-⎩.[点睛]本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.24.“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.[答案]两种购买方法:甲种型号手机购买30部,乙种型号手机购买10部;或甲种型号手机购买20部,丙种型号手机购买20部[解析]分析]分三种情况:①设分别购进甲乙两种手机为x、y部,根据两种不同型号的手机共40部,并将60000元恰好用完可以列出方程组,解方程组即可解决问题;②设分别购进甲丙两种手机为x、z部,根据两种不同型号的手机共40部,并将60000元恰好用完可以列出方程组,解方程组即可解决问题;③设分别购进乙丙两种手机为y、z部,根据两种不同型号的手机共40部,并将60000元恰好用完可以列出方程组,解方程组即可解决问题.[详解]解:分三种情况:①设分别购进甲乙两种手机为x、y部,依题意得,40 180060060000 x yx y+=⎧⎨+=⎩,解得:3010 xy=⎧⎨=⎩,即可以购进甲乙两种手机分别是30部、10部;②设分别购进甲丙两种手机为x、z部,依题意得,40 1800120060000 x zx z+=⎧⎨+=⎩,解得:2020 xz=⎧⎨=⎩,即可以购进甲丙两种手机分别是20部、20部;③设分别购进乙丙两种手机为y、z部,依题意得,40 600120060000 y zy z+=⎧⎨+=⎩,解得:2060yz=-⎧⎨=⎩(不合题意,舍去),答:有两种购买方法:甲种型号手机购买30部,乙种型号手机购买10部;或甲种型号手机购买20部,丙种型号手机购买20部;[点评]本题考查了二元一次方程组的应用,比较复杂,解题的关键是根据已知条件分类讨论,然后在可能的情况下分别列出方程组,解方程组根据解的情况就可以确定购买方案.25.如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.[答案]62°[解析][分析]利用余角和对顶角的关系,即可求得角的度数.[详解]解:∵直线AB、EF相交于O点,∠1=28°,∴∠3=∠1=28°(对顶角相等),又∵AB⊥CD,∴∠2=90°-∠3=62°,[点睛]本题考查了垂线,对顶角、邻补角.注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(下)期中试题
一、选择题(本大题共15小题,每小题分,共30分)
1、在-3.14, 2, 0, π, 16, 0.101001……中无理数的个数有( ) A 、3个 B 、2个 C 、1个 D 、4个
2、下列说法正确的是: ( )A .5-是25的平方根 B .25的平方根是5-C .5-是2
(5)-的算术平方根 D .5±是2
(5)-的算术平方根 3、点P (1,-5)所在的象限是( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限 4、若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )
A 、(0,3)
B 、(0,3)或(0,-3)
C 、(3,0)
D 、(3,0)或(-3,0) 5、一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1), (2,1),则第四个顶点的坐标为( )
A 、(2,2)
B 、(3,2)
C 、(2,-3);
D 、(2,3) 6、下列语句中,假命题的是( )
A 、如果A(a ,b)在x 轴上,那么
B (b ,a )在y 轴上 B 、如果直线a 、b 、c 满足a ∥b ,b ∥c 那么a ∥c B 、如果直线a 、b 、c 满足a ∥b ,b ∥c 那么a ∥c D 、相等的两个角是对顶角 7、下列说法中,正确的是( )
A 、无理数包括正无理数,0和负无理数
B 、无理数是用根号形式表示的数
C 、无理数是开方开不尽的数
D 、无理数是无限不循环小数
8、如图,AD ∥BC ,∠B=30°,DB 平分∠ADE ,则∠DEC 的度数为( ) 30° B .60° C .90° D .120°
9、如下图,直线a b ∥,则A ∠的度数( )。

A.38° B.48° C.42° D.39°
10、如下图,若m ∥n ,∠1=105º,则∠2=( ) (A )55º (B )60º (C )65º(D )75º
11.已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( ) A . 30° B . 35° C . 40° D .
45° 12、有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的邻补角相等;④垂直于同一条直线的两条直线互相平行.其中真命题的个数为( ) A .1 B .2 C .3 D .4
13、如果甲图形上的点P(-2,4)经平移变换后是Q(3,-2),则甲图上的点M(1,-2)经这样平移后的对应点的坐标是 ( )
A 、(5,3 )
B 、(-4,4)
C 、 (6,-8)
D 、(3,-5)
14.由
12
3=-y
x ,可以得到用x 表示y 的式子( ) A. 322-=
x y B. 3
1
32-=
x y C. 232-=x y D. 322x y -=
15.方程组⎩
⎨⎧=-=+1347
23y x y x 的解是( )
A. ⎩⎨
⎧=-=31y x B. ⎩⎨⎧-==13y x C. ⎩⎨⎧-=-=13y x D. ⎩⎨⎧-=-=3
1
y x
二、填空题(24分)
16. 在同一平面内,两条直线有 种位置关系,它们是 ; 17、如图3,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC = . 18、如图4,AB ∥EF ,BC ∥DE ,则∠E+∠B 的度数为 .
19、3-绝对值是 ,-343的立方根是 ,81的平方根是 20、已知212+++b a =0,则
a
b
= . 21.若点M (a+5,a-3)在y 轴上,则点M 的坐标为 ,到X 轴的距离为 22、在数轴上离表示 π 点距离为5的点表示的数是____________
23、如果p (a,b )在第二象限,那么点Q (a,-b) 在第 象限.
24、把命题“在同一平面内,垂直于同一条直线的两条直线平行”改写成“如果... ...那
么... ...的形式是_____________________________________________
25.已知⎩
⎨⎧-==81
y x 是方程3m x -y =-1的解,则m = .
26.若方程m x +n y =6的两个解是⎩⎨⎧==,1,1y x ⎩

⎧-==12
y x ,则m = ,n = . 27.如果512-+=+-y x y x =0,那么x = ,y
= .
2
1
m n
四.解答题(46分)
28、计算: (16分)
(1) 322769----)( (2)|2-3|+|2-1 |-2
)632(-
(3) 08142=-x (4) ()08123
=+-x
(5)⎪⎩⎪
⎨⎧=-++=--+162
4)(4)(3y x y x y x y x
29、(5分)已知a 、b 、c
a b b c
++
+
30.(5分)已知2a -7的平方根是±5,2a +b -1的算术平方根是4,求-a +b 的值。

31.(本题7分)已知,如图∠B=∠EDC ,∠1+∠2=1800

FG ⊥BC ,求证AD ⊥BC
32、(5分)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示。

可是她忘记了在图中标出原点和x 轴、y 轴。

只知道马场的坐标为(-1,-2),你能帮她建立平面直角坐标系并求出其他各景点的坐标?(图中每个小正方形的边长为1 )
33.(8分)某蔬菜公司收购到某种蔬菜260吨,准备
加工 后上市销售.该公司的加工能力是:每天可以精加工8吨或粗加工18吨.现计划用20天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?
c
a
O
b。

相关文档
最新文档