天津市人教版七年级上册数学期末试卷及答案-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市人教版七年级上册数学期末试卷及答案-百度文库 一、选择题 1.一个角是这个角的余角的2倍,则这个角的度数是( )
A .30
B .45︒
C .60︒
D .75︒
2.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( )
A .9
B .327-
C .3-
D .(3)--
3.下列方程是一元一次方程的是( )
A .213+x =5x
B .x 2+1=3x
C .32y =y+2
D .2x ﹣3y =1
4.将图中的叶子平移后,可以得到的图案是()
A .
B .
C .
D .
5.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一
个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可
能取到的度数为()
A .60°
B .80°
C .150°
D .170°
6.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字
对调,得到一个新的两位数,则原两位数与新两位数之差为( )
A .9a 9b -
B .9b 9a -
C .9a
D .9a - 7.解方程121123
x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1
C .3(x +1)﹣2(2x ﹣1)=6
D .3(x +1)﹣2×2x ﹣1=6
8.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+ B .321x + C .22x x -
D .3221x x -+ 9.下列各数中,有理数是( ) A .2 B .π C .3.14
D .37 10.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513
B .﹣511
C .﹣1023
D .1025 11.将方程212134
x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+
C .(21)63(2)x x -=-+
D .4(21)123(2)x x -=-+
12.如图的几何体,从上向下看,看到的是( )
A .
B .
C .
D .
13.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD
∠的度数为( )
A .100
B .120
C .135
D .150
14.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( )
①AP=BP;②.BP=12
AB;③AB=2AP;④AP+PB=AB . A .1个
B .2个
C .3个
D .4个 15.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏
损20%,在这次买卖中,这家商店( )
A .不盈不亏
B .盈利 37.5 元
C .亏损 25 元
D .盈利 12.5 元
二、填空题 16.已知x =3是方程
(1)21343
x m x -++=的解,则m 的值为_____. 17.若|x |=3,|y |=2,则|x +y |=_____. 18.把5,5,35按从小到大的顺序排列为______.
19.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,
结果为
2k n (其中k 是使2k
n 为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:
若n =26,则第2019次“C 运算”的结果是_____.
20.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为
5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),
则桌面被这些方框盖住部分的面积是___________.
21.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为
________.
22.将520000用科学记数法表示为_____.
23.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则
符合条件的x 为_____.
24.计算:3+2×(﹣4)=_____.
25.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(
x y )2019的值为_____. 26.用“>”或“<”填空:13_____35
;223-_____﹣3. 27.8点30分时刻,钟表上时针与分针所组成的角为_____度.
28.已知代数式235x -与233
x -互为相反数,则x 的值是_______. 29.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.
30.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).
三、压轴题
31.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .
(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;
(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <
10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出
该定值;若发生变化,请说明理由.
(3)在(2)的条件下,当∠COF =14°时,t = 秒.
32.综合试一试
(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.
(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计
算()()532-⊗⊗-=⎡⎤⎣⎦______.
(3)a 是不为1的有理数,我们把11a
-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()
11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.
(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉
一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到
十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.
(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是
(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,
甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后
甲和乙、丙的距离相等.
33.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >
0)秒.
(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)
(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同
时出发,问多少秒时P 、Q 之间的距离恰好等于2?
(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同
时出发,问点P 运动多少秒时追上点Q ?
(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发
生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.
34.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填
数之和都相等.
6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;
(2)若前 k 个格子中所填数之和为 2019,求 k 的值;
(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算
|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,
求所有的|m-n|的和.
35.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾
客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:
说明:[
)a,b 表示在范围a b ~中,可以取到a ,不能取到b .
根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.
例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30
元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价
,
()1购买一件标价为500元的商品,顾客的实际付款是多少元?
()2购买一件商品,实际付款375元,那么它的标价为多少元?
()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.
36.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.
(1)求出数轴上B 点对应的数及AC 的距离.
(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.
①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)
②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .
③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?
直.接.写.出.相遇时P 点在数轴上对应的数
37.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.
(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.
①求t 值;
②试说明此时ON 平分∠AOC ;
(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;
(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.
38.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)
()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)
()2当点C、D运动了2s,求AC MD
+的值.
()3若点C、D运动时,总有2
MD AC
=,则AM=________(填空)
()4在()3的条件下,N是直线AB上一点,且AN BN MN
-=,求MN
AB
的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.
【详解】
解:根据题意列方程的:2(90°-α)=α,
解得:α=60°.
故选:C.
【点睛】
本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).
2.B
解析:B
【解析】
【分析】
由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.
【详解】
解:9,故排除A;
327
-=3-,选项B正确;
C. 3-=3,故排除C;
D. (3)
--=3,故排除D.
故选B.
【点睛】
本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.
3.A
解析:A
【解析】
【分析】
只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.
【详解】
解:A、
21
3
x
=5x符合一元一次方程的定义;
B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;
C、
3
2y
=y+2中等号左边不是整式,不是一元一次方程;
D、2x﹣3y=1含有2个未知数,不是一元一次方程;
故选:A.
【点睛】
解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.
4.A
解析:A
【解析】
【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.
【详解】
解:根据平移不改变图形的形状、大小和方向,
将所示的图案通过平移后可以得到的图案是A,
其它三项皆改变了方向,故错误.
故选:A.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.
5.A
解析:A
【解析】
【分析】
延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】
解:延长CD交直线a于E.
∵a ∥b ,
∴∠AED =∠DCF ,
∵AB ∥CD ,
∴∠DCF =∠ABC =70°,
∴∠AED =70°
∵∠ADC =∠AED +∠DAE ,
∴∠ADC >70°,
故选A .
【点睛】
本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
6.C
解析:C
【解析】
【分析】
分别表示出愿两位数和新两位数,进而得出答案.
【详解】
解:由题意可得,原数为:()10a b b ++;
新数为:10b a b ++,
故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.
故选C .
【点睛】
本题考查列代数式,正确理解题意得出代数式是解题关键.
7.C
解析:C
【解析】
【分析】
方程两边都乘以分母的最小公倍数即可.
【详解】
解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,
故选:C .
【点睛】
本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分
母的最小公倍数.
8.B
解析:B
【解析】
A. 2x2x1
-+是二次三项式,故此选项错误;
B. 3
+是三次二项式,故此选项正确;
2x1
C. 2x2x
-是二次二项式,故此选项错误;
D. 32
-+是三次三项式,故此选项错误;
x2x1
故选B.
9.C
解析:C
【解析】
【分析】
根据有理数及无理数的概念逐一进行分析即可得.
【详解】
B. π是无理数,故不符合题意;
C. 3.14是有理数,故符合题意;
D.
故选C.
【点睛】
本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键. 10.D
解析:D
【解析】
【分析】
观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】
解:观察数据,找到规律:第n个数为(﹣2)n+1,
第10个数是(﹣2)10+1=1024+1=1025
故选:D.
【点睛】
此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.11.D
解析:D
【解析】
【分析】
方程两边同乘12即可得答案.
【详解】
方程212
1
34
x x
-+
=-两边同时乘12得:4(21)123(2)
x x
-=-+
故选:D.
【点睛】
本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.A
解析:A
【解析】
【分析】
根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.
【详解】
从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,
故选:A.
【点睛】
本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.13.C
解析:C
【解析】
【分析】
首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.
【详解】
解:∵OB平分∠COD,
∴∠COB=∠BOD=45°,
∵∠AOB=90°,
∴∠AOC=45°,
∴∠AOD=135°.
故选:C.
【点睛】
本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.
14.A
解析:A
【解析】
①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;
②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;
③项,点P 可能是在线段BA 的延长线上且在点A 的一侧,此时也满足AB =2AP ,故③项错误;
④项,因为点P 为线段AB 上任意一点时AP +PB =AB 恒成立,故④项错误.
故本题正确答案为①.
15.D
解析:D
【解析】
【分析】
设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.
【详解】
解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..
故选:D
【点睛】
本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.
二、填空题
16.﹣.
【解析】
【分析】
把x =3代入方程得到关于m 的方程,求得m 的值即可.
【详解】
解:把x =3代入方程得1+1+=,
解得:m =﹣.
故答案为:﹣.
【点睛】
本题考查一元一次方程的解,解题的
解析:﹣83.
【解析】
【分析】
把x =3代入方程得到关于m 的方程,求得m 的值即可.
【详解】
解:把x =3代入方程得1+1+mx(31)4-=23
,
解得:m=﹣8
3
.
故答案为:﹣8
3
.
【点睛】
本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.
17.1或5.
【解析】
【分析】
根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.
【详解】
解:∵|x|=3,|y|=2,
∴x=±3,y=±2,
(1)x=3
解析:1或5.
【解析】
【分析】
根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.
【详解】
解:∵|x|=3,|y|=2,
∴x=±3,y=±2,
(1)x=3,y=2时,
|x+y|=|3+2|=5
(2)x=3,y=﹣2时,
|x+y|=|3+(﹣2)|=1
(3)x=﹣3,y=2时,
|x+y|=|﹣3+2|=1
(4)x=﹣3,y=﹣2时,
|x+y|=|(﹣3)+(﹣2)|=5
故答案为:1或5.
【点睛】
此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.18.【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:,5,都大于0,
则,
,
故答案为:.
【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进
5<<
【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:50,
则62636555=<=<,
5<<,
5<
<.
【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 19.【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果.
【详解】
解:由题意可得,
当n =26时,
第一次输出的结果为:13
解析:【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果.
【详解】
解:由题意可得,
当n =26时,
第一次输出的结果为:13,
第二次输出的结果为:40,
第三次输出的结果为:5,
第四次输出的结果为:16,
第五次输出的结果为:1,
第六次输出的结果为:4,
第七次输出的结果为:1
第八次输出的结果为:4
…,
∵(2019﹣4)÷2=2015÷2=1007…1,
∴第2019次“C 运算”的结果是1,
故答案为:1.
【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
20.【解析】
【分析】
根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.
【详解】
解:算出一个正方形方框的面积为:,
桌面被这些方框盖住部分的面积则为:
故填:.
【点睛】
本题结合求
解析:60200a -
【解析】
【分析】
根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.
【详解】
解:算出一个正方形方框的面积为:22
(10)a a --,
桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.
【点睛】
本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 21.26,5,
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x 的值.
【详解】
若经过一次输入结果得131,则5x +1=131,解得x =26;
若
解析:26,5,4 5
【解析】
【分析】
根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.
【详解】
若经过一次输入结果得131,则5x+1=131,解得x=26;
若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;
若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=4
5;
若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−1
25
(负数,
舍去);
故满足条件的正数x值为:
26,5,4
5.
【点睛】
本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.
22.2×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数
解析:2×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将520000用科学记数法表示为5.2×105.
故答案为:5.2×105.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<
10,n为整数,表示时关键要正确确定a的值以及n的值.
23.2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x的值为2.
故答案为:2.
【点睛】
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x的值为2.
故答案为:2.
【点睛】
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.24.﹣5
【解析】
【分析】
根据有理数的乘法法则和加法法则可以解答本题.
【详解】
3+2×(﹣4)
=3+(﹣8)
=﹣5.
故答案为:﹣5.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是
【解析】
【分析】
根据有理数的乘法法则和加法法则可以解答本题.
【详解】
3+2×(﹣4)
=3+(﹣8)
=﹣5.
故答案为:﹣5.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.﹣1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】
由题意得:x+2=0,y﹣2=0,
解得:x=﹣2,y=2,
所以,()2019=()201
解析:﹣1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.
【详解】
由题意得:x+2=0,y﹣2=0,
解得:x=﹣2,y=2,
所以,(x
y
)2019=(
2
2
)2019=(﹣1)2019=﹣1.
故答案为:﹣1.
【点睛】
本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.
26.<>
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
解:<;>﹣3.
故答
解析:<>
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:1
3
<
3
5
;
2
2
3
>﹣3.
故答案为:<、>.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.27.75
【解析】
钟表8时30分时,时针与分针所成的角的角的度数为
30×8-(6-0.5)×30=240-165=75度,
故答案为75.
解析:75
【解析】
钟表8时30分时,时针与分针所成的角的角的度数为
30×8-(6-0.5)×30=240-165=75度,
故答案为75.
28.【解析】
【分析】
根据互为相反数的两个数之和为0,建立方程求解即可.
【详解】
∵与互为相反数
∴
解得:
【点睛】
本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键
解析:27 8
【分析】
根据互为相反数的两个数之和为0,建立方程求解即可.【详解】
∵23
5
x-
与
2
3
3
x-互为相反数
∴232
30 53
-⎛⎫
+-=
⎪
⎝⎭
x
x
解得:
27
8 x=
【点睛】
本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.29.【解析】
【分析】
【详解】
由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.
考点:一元一次方程的概念及解
解析:5
x=-
【解析】
【分析】
【详解】
由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.
考点:一元一次方程的概念及解
30.>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小
解析:>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.
三、压轴题
31.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.
【解析】
【分析】
(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;
(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;
(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+
,解方程即可求出t 的值. 【详解】
解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022
︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;
(2)∠AOE ﹣∠BOF 的值是定值
由题意∠BOC =3t°,
则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,
∵OE 平分∠AOC ,OF 平分∠BOD ,
()11AOE AOC 1103t =22︒︒∴∠=
∠=⨯+3552t ︒︒+ ∴()
113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛
⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭
, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;
(3)根据题意得∠BOF =(3t+14)°, ∴3314202
t t +=+
, 解得4t =.
故答案为4.
【点睛】
本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.
32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)
25032
;(4)9.38;(5)0;(6)24或40
【解析】
【分析】
(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得
9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.
【详解】
(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,
故答案为23+(-3)3+43,73+(-5)3+(-6)3
(2)∵2a b a ab ⊗=-,
∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15
=(-5)2-(-5)×15
=100.
(3)∵a 1=2,
∴a 2=
1112=--, a 3=11(1)--=12
, 412112
a ==-
a 5=-1
…… ∴从a 1开始,每3个数一循环,
∵2500÷3=833……1,
∴a 2500=a 1=2,
∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032
.
(4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,
∴平均分为中间8个分数的平均分,
∵平均分精确到十分位的为9.4,
∴平均分在9.35至9.44之间,
9.35×8=74.8,9.44×8=75.52,
∴8个裁判所给的总分在74.8至75.52之间,
∵打分都是整数,
∴总分也是整数,
∴总分为75,
∴平均分为75÷8=9.375,
∴精确到百分位是9.38.
故答案为9.38
(5)2019÷4=504……3,
∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……
∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0
∴所得结果可能的最小非负数是0,
故答案为0
(6)设x分钟后甲和乙、丙的距离相等,
∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,
∴120x-400-100x=90x+800-120x
解得:x=24.
∵当乙追上丙时,甲和乙、丙的距离相等,
∴400÷(100-90)=40(分钟)
∴24分钟或40分钟时甲和乙、丙的距离相等.
故答案为24或40.
【点睛】
本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.
33.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.
【解析】
【分析】
(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=22,
∴点B表示的数是8﹣22=﹣14,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,
∴点P表示的数是8﹣5t.
故答案为:﹣14,8﹣5t;
(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=22,解得t=2.5;
②点P、Q相遇之后,
由题意得3t﹣2+5t=22,解得t=3.
答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;
(3)设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC﹣BC=AB,
∴5x﹣3x=22,
解得:x=11,
∴点P运动11秒时追上点Q;
(4)线段MN的长度不发生变化,都等于11;理由如下:
①当点P在点A、B两点之间运动时:
MN=MP+NP=1
2
AP+
1
2
BP=
1
2
(AP+BP)=
1
2
AB=
1
2
×22=11;
②当点P运动到点B的左侧时:
MN=MP﹣NP=1
2
AP﹣
1
2
BP=
1
2
(AP﹣BP)=
1
2
AB=11,
∴线段MN的长度不发生变化,其值为11.
【点睛】
本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
34.(1)6,-1;(2)2019或2014;(3)234
【解析】
【分析】
(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得
b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的。