长方体正方体专题练习
长方体和正方体全套练习题
第二单元长方体(一)全套练习练习一长文体正方体的认识一、填空1、长方体有()个面,它们一般都是()形,也可能有()个面是正方形.2、长方体的上面和下面、前面和后面、左面和右面都叫做(),它们的面积().3、长方体的12条棱,每相对的()条棱算作一组,12条棱可以分成()组.4、正方体有()个面,每个面都是()形,面积都().5、一个正方体的棱长是6厘米,它的棱长总和是().6、一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米.7、一个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是()厘米.8、把两个棱长1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米.二、判断题1、长方体和正方体都有6个面,12条棱,8个顶点.()2、长方体的6个面不可能有正方形.()3、长方体的12条棱中,长、宽、高各有4条.()4、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等.()5、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等.()6、一个长方体长12厘米,宽8厘米,高7厘米,把它切成一个尽可能大的正方体,这个正方体的棱长是8厘米.()三、选择题1、下列物体中,形状不是长方体的是()①火柴盒②红砖③茶杯④木箱2、长方体的12条棱中,高有()条.①4 ②6 ③8 ④123、下列三个图形中,能拼成正方体的是()4、把一个棱长3分米的正方体切成两个相等的长方体,增加的两个面的总面积是()平方分米.①18 ②9 ③36 ④以上答案都不对练习二长文体正方体的棱长和、表面积1、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?2、一个长方体的水池,长20厘米,宽10厘米,深2米,占地多少平方米?3、用96厘米长的铁丝焊接成一个正方体的框架,然后用纸给它的表面包裹起来,至少需要多少平方厘米的纸?4、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是多少平方厘米?5、用两个棱长为5厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?6、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。
长方体和正方体分类练习汇总
长方体和正方体分类练习汇总计算下面的表面积和体积一个长方体框架长8厘米,宽6厘米,高4厘米,做这个框架共要多少厘米铁丝,是求长方体,在表面贴上塑料板,共要多少塑料板是求,在里面能盛多少升水是求,这个盒子有多少立方米是求;一、求棱长总和1、一个长方体,长5分米,宽3分米,高4分米,求它的所有棱长的和;2、一个正方体的棱长是10厘米,它的棱长总和是多少厘米3、用钢筋做一个长和宽都是分米,高是10厘米的长方体框架,需多少分米的钢筋4、卖部要做一个长220厘米,宽40厘米,高80厘米的玻璃柜台各边都安上角铁,这个柜台需要多少米角铁5、某车间为制作一种长4米、宽2米、高3米的长方体铁架,至少需要钢筋多少米6、用塑料管做一个棱长是8厘米正方体教具,一共需要多少厘米的塑料管二、已知棱长总和,求棱长1.用一根168厘米的铁丝,焊接成一个长方体教具,长20厘米,宽12厘米,它的高是多少厘米2、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体3、用72分米长的铁丝做一个正方体的框架,这个正方体的棱长是多少4、用一根长120厘米的铁丝焊成一个长方体框架,如果长10厘米、宽7厘米,那么这个长方体框架的高是多少厘米5、一个长方体的长是15厘米,宽是12厘米,棱长总和是148厘米,求它的高;6、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米三、求表面积六个面1、制作一个长8分米、宽5分米、高6分米的长方体木盒,至少需要多少木板2、做一个长10厘米,宽6厘米,高5厘米的长方体硬纸盒,需要多少硬纸板3、用36厘米的铁丝焊接成一个正方体框架,这个正方体棱长是多少如果用纸糊满框架的表面,至少需要纸多少平方厘米4、制作一个长8分米、宽5分米、高6分米的长方体木盒,至少需要多少木板5、要制作140个棱长5厘米的正方体木块,至少需要木料多少立方分米四、求表面积五个面1、一个没有盖的长方体鱼缸,长60厘米,宽60厘米,高40厘米,共需要多少玻璃2、用铁皮做一个无盖的长方体油桶,长和宽都是4分米,高6分米,用铁皮多少平方分米3、学校要粉刷一间教室的四壁和天花;已知教室的长是9米,宽7米,高是3米,扣除门窗的面积平方米,要粉刷的面积是多少平方米4、天天游泳池,长25米,宽10米,深2米,在游泳池的四周和池底砌瓷砖,砌瓷砖的面积有多大5、一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米6、一个房间的长6米,宽4米,高3米,门窗面积是8平方米;现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米如果每平方米需要水泥4千克,一共要水泥多少千克7、有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做这样10只鱼缸需要多少的玻璃8、做一个长方体的浴缸无盖,长8分米,宽4分米,高6分米,至少需要多少平方分米的玻璃如果每平方分米玻璃4元钱,至少需要多少钱买玻璃9、木工做一只棱长是5分米的正方体无盖木箱至少要用木板多少平方分米10、一张办公桌有3个抽屉,每个抽屉长50厘米,宽30厘米,高10厘米,做1张桌的抽屉至少需要木板多少平方米11、用铁皮焊15个底面是边长25厘米的正方形,高4分米的长方体无盖水桶,至少要用多少铁皮12、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米;现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米如果每4平方米需要水泥1千克,一共要水泥多少千克五、求表面积四个面1、一个长方体食品盒,长10厘米,宽6厘米,高12厘米,如果围着它贴一圈商标纸,这圈商标纸至少有多少平方厘米2、有一个长方体的糖盒长和宽都是12厘米,高10厘米,在盒的四周贴上商标纸,这张商标纸的面积至少是多少3、在一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米做12节这样的通风管呢4、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米5、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米6、一个长方体通风管,长4米,宽20厘米、高15厘米;至少需要铁皮多少平方米7、楼房外壁用于流水的水管是长方体;如果每节长15分米,横截面是一个长方形,长1分米,宽分米;做一节水管,至少要用铁皮多少平方分米;8、一个长方体通风管,长4米,宽和高都是20厘米;做100根这样的通风管,至少需要铁皮多少平方米9、要做一种管口是正方形,边长为是10厘米的通气管子10根,管子长2米,至少需要铁皮多少平方米10、有一个长方体的糖盒长和宽都是12厘米,高10厘米,在盒的四周贴上商标纸,这张商标纸的面积至少是多少六、求一个面的面积1、一个长方体的水池,长20米,宽10米,深2米,占地多少平方米2、一个长4分米、宽3分米、高2分米的长方体纸盒放在地上,它占地面积最大是多少平方米最少是多少平方米3、一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米4、有一个长方体木箱,长0.7米,宽0.5米,高0.3米;怎样放,这个木箱占地面积最小最小是多少平方米七、求体积容积1、一块水泥砖长8厘米,宽6厘米,厚4厘米,它的体积是多少立方厘米2、一块砖长24厘米,宽分米,厚6厘米,它的体积是多少立方分米3、学校要挖一个长方形状沙坑,长4米,宽2米,深0.4米,需多少立方米的黄沙才能填满4、一个长方体的底面积是平方米,高是8分米,它的体积是立方分米.5、小敏房间的地面是长方形;长5米、宽3米,铺设了2厘米厚的木地板,至少需要木材多少立方米6、学校要修长50米,宽42米,的长方形操场;先铺10厘米的三合土,再铺5厘米的煤渣;需要三合土和煤渣各多少立方米7、实验小学修一条长60米,宽60米的长方形操场.先铺10厘米厚的三合土,再铺4厘米厚的煤渣.需要三合土、煤渣各多少立方米8、有一根长0.5米的方木料,横截面的边长为4平方厘米,这根方木有多少立方厘米9、一个长方体水箱的底面积是平方米,高是8分米,它最多能装多少升水10、某纸盒厂生产一种正方体纸板箱,棱长40厘米,它的体积是多少立方厘米合多少立方分米八、已知棱长总和,求表面积和体积1、用一根长48厘米的铁丝焊成一个正方体框架接头处不计,表面积是多少平方厘米体积是多少立方厘米2、一种正方体油桶,棱长之和是,这个铁桶能装多少升油3、用一根长96厘米的铁丝做成一个最大的正方体框架,这个正方体的棱长是多少厘米表面积是多少平方厘米,体积是多少立方厘米4、用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸九、已知体积,求棱长和底面积1、长方体的体积是36立方米,长是6米,宽是3米,高是多少米2、一个长方体油箱的容积是20升;这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米3、用15根规格完全相同的木板堆成一个体积是立方米的长方体;已知每根木板宽0.3米,厚0.2米,求每根木板的长;4、一个长方体的药水箱里装了60升的药水,已知药水箱里面长5分米,宽3分米,它的深是多少分米5、.一个水池长6米、宽5米、高1.5米,池里所储的水是36立方米,问现在水面距池口多少米6、挖一个长和宽都是5米的长方体菜窖,要使菜窖的容积是50立方米,应该挖米.十、正方体转化成长方体,求长方体棱长或底面积1、把一块棱长为10厘米的正方体铁块锻造成宽是5厘米、高是10厘米的长方体铁条,这个铁条的长是多少2、一个长方体和一个正方体的体积相等,已知正方体的棱长是8分米,长方体的高是4分米,求长方体的底面积;3、把一块棱长8分米的正方体方钢锻造成宽和高都是2分米的长方体,长方体的长是多少4、一块棱长是0.6米的正方体的钢坯,锻成横截面是平方米的长方体钢材,锻成的钢材有多长5、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少6、一个正方体水箱的容积是125立方分米,把这一满水箱水全部注入到一长方体水箱内;已知长方体水箱长10分米,宽5分米,这个水箱内的水深多少分米7、一个长方体和一个正方体的体积相等,已知正方体的棱长是8分米,长方体的高是4分米,求长方体的底面积;8、把一个棱长6分米的正方体钢锭熔铸成一个长方体钢锭,这个长方体长9分米,宽4分米,求这个长方体钢锭高多少分米9、把一个棱长6分米的正方体容器装满水,然后将水倒入一个长8分米、宽6分米的容器里,水深多少分米10、把一个棱长6分米的正方体钢块,锻造成横截面积为4平方分米的长方体钢锭,这根钢锭长多少米11、有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米12、把一块棱长8厘米的正方体钢坯,锻造成长16厘米,宽5厘米的长方体钢板,这钢板有多厚损耗不计十一、先求体积再求重量或其它1、一根长方体木材,长2.5米,宽0.4米,厚0.25米,每立方米木料重384千克,这根木料重多少千克2、一根方钢,长6米,横截面是一个边长为4厘米的正方形;这块方钢重多少1立方厘米钢重10克3、一个棱长是25厘米的正方体油桶装满油,如果每升油重4千克,这桶油重多少千克4、一个操场长80米,宽60米,在这个操场上铺5厘米厚的土;如果每天铺土160立方米,几天可以铺完5、一辆运煤车从里面量长2.5米、宽1.8米,装的煤高0.6米,平均每立方米煤重吨,这辆车装的煤有多少吨6、学校有一个长43分米,宽34分米,深5分米的沙坑,沙坑内沙面离坑口1分米;求沙坑内沙子的体积是多少立方分米若每立方分米沙子重千克,长满这个沙坑需要沙子多少千克7、一列火车有容积相同的车厢20节,每节车厢从里面量长13米,宽2.5米,装煤的高度是1.2米;这列火车每次运煤多少立方米每立方米煤重吨,这列火车共运煤多少吨8、用一种车厢是长方体的汽车运煤,从里面量的长是3米,宽是2.5米,高是0.4米,若每立方米煤重吨,一共有煤多少吨9、一块正方体的石头,棱长是5分米,每立方米的石头大约重千克,这块石头重有多少千克10、学校要砌一道长20米,宽分米、高2米的墙,每立方米需要砖525块,学校需要买多少块砖11、一个长方体的沙坑装满沙子,这个沙坑长3米,宽1.5米,深2米,每立方米沙子重1400千克;这个沙坑里共装沙子多少吨十二、求沉没物体的体积1、一个长方体玻璃缸,从里面量长40厘米,宽25厘米,缸内水深12厘米;把一块石头浸入水中后,水面升到16厘米,求石块的体积;2、一个长方体容器从里面测得长30厘米,宽20厘米,里面装7厘米深的水,将一块钢材放入,完全沉没,水面上升4厘米,这块钢材体积是多少立方厘米3、在一只长为30厘米,宽为10厘米的鱼缸里有10厘米深的水,现在往鱼缸里放入5条金鱼,水面上升到12厘米,5条金鱼的体积是多少4、一个长方体玻璃缸,底面积是200平方厘米,高8厘米,里面盛有4厘米深的水,现在将一块石头放入水中,水面升高2厘米;这块石头的体积是多少立方厘米5、有一个长方体玻璃缸,长3分米,宽2分米;放入一块不规则的石头后水深分米,捞出这块石头后,水面下降了分米;这块石头的体积是多少6、在一个长120厘米、宽60厘米的长方体水箱里,放入一块长方体的铁块后,水面就比原来上升2厘米;已知铁块的长和宽都是20厘米,求铁块的高;7、在一个棱长3分米的立方体水箱中装有半箱水,现把一块石头完全浸没在水中水面上升6厘米,这块石头的体积是多少十三、同时求表面积和体积1、一种无盖的长方体形铁皮水桶,底面是边长4分米的正方形,高1米;做一只这样的水桶至少要多少铁皮这只水桶能装水多少升2、用铁皮做一个无盖的长方体油箱;油箱的底面是边长4分米的正方形,高1.2米;至少要用铁皮多少平方米如果每升柴油重千克,那么这个油箱最多装柴油多少千克3、做一个长50厘米,宽60厘米,高20厘米的木抽屉,至少要用木板平方分米,它的容积约是升;4、一个长方体油箱,长6分米,宽5分米,高4分米;做这个油箱需要多少平方分米铁皮每升油重千克,这个油箱可装油多少千克5、有一种无盖的玻璃鱼缸,长20厘米,宽15厘米,高10厘米,做这样一对鱼缸需要多少平方厘米的玻璃,能装水多少升;6、一个游泳池长28米,宽15米,深1.8米;它的占地面积是多少平方米最多能蓄水多少立方米十四、平均分1、每瓶酒精50毫升,装200瓶,需要酒精升;如果有立方分米酒精,一共可以装瓶; 十五、切1、把一根长20厘米,宽5厘米,高3厘米的长方体木料沿横截面锯成2段,表面积增加多少2、一个长方体高26厘米,沿着水平方向横切成两个小长方体,表面积增加了80平方厘米,求原来长方体的体积;十六、拼1、把两块棱长分米的正方体木块粘接成一个长方体,这个长方体的体积和表面积各是多少2、两块大小相同的正方体木块拼成一个长方体,已知长方体的棱长总和是48厘米,那么,每块正方体的木块体积是多少。
小学数学六年级上册长方体与正方体专题训练
六年级数学长方体和正方体展开图测试姓名得分一、填空(每空4分,共76分)1、右图是一个正方体的展开图。
2、下图是一个长方体的展开图,找出相对的两个面,并说一说它们是长方体的哪几个面?(单位:m)相对的面是()号和()号,()号和()号以及()号和()号。
其中()号和()号是长方体的上、下面,()号和()号是长方体的前,后面,()号和()号是长方体的左、右面。
3、把相对应的字母填在括号里。
4、如下图,再用纸板制作的三个正方体中,各有3个面标有3个号码,其中()正方体展开后,能够得到右面的展开图。
1 3 23 2 1 21 3① ② ③5、一个正方体的六个面分别写着A.B.C.D.E.F ,根据下面3种摆放情况,判断D 的对面是( ),A 的对面是( ),B 的对面是( )二、判断(每题4分,共12分))1、长方体是特殊的正方体。
( )2、决定长方体的大小的是它的长、宽、高。
( )3、拼成一个稍大的正方体至少需要8个小正方体。
( )4、三、解决问题(12分)小红准备用长分别为10厘米、8厘米和6厘米的三种小棒各若干根来搭一个长方体或正方体框架。
塔一共有多少种不同的搭法?六年级数学上册一课一练姓名得分一、填空:(每空3分,共57分)1、长方体和正方体都有( ) 个面,( ) 条棱,( ) 个顶点。
2、长方体的每个面都是( )形或有一组相对的面是( )。
它有( )条棱,平行的( )条棱都相等。
3、相交于长方体一个顶点的三条棱的长度分别叫做它的()、()和()。
4、长方体有()个面,从不同的角度观察一个长方体,最多能看到()个面。
5、一个长方体的长是5分米,宽是4分米,高是3分米,6个面中最小的一个面的面积是(),最大的一个面的面积是()。
6、一个长方体,长4米,宽3米,高2米,它的占地面积最大是()平方米。
7、一个长方体模型,从前面看是从上面看是长方体右面的面积是()平方厘米。
8、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的长、宽、高分别是()、()、()。
小学教学:长方体与正方体专项练习(五年级下册数学)
认识长方体和正方体1.一个长、宽、高分别为40cm、30cm、20cm的小纸箱,在所有的棱上粘上一圈胶带,至少需要多长的胶带?2.小红为妈妈准备了一件生日礼物,下图是这件礼物的包装盒,长、宽、高分别是15cm、15cm、8cm。
现在用彩带把这个包装盒捆上,接头处长18cm。
一共需要多少厘米彩带?3.母亲节快到了,小红打算送妈妈一件礼物。
礼品盒长40cm,宽20cm,高15cm,如下图。
小红用彩带来包装礼品盒(结头部分总长30cm),一共要用彩带多少厘米?4.如图,把一个长是20cm、宽是15cm、高是18cm的礼品盒用彩带包扎起来,至少需要彩带多少厘米?(打结处每处长8cm)5.一种盒装纸巾的长、宽、高如图1所示。
用胶带将3盒这样的纸巾捆扎起来(如图2),至少需要多少厘米的胶带?(接头处忽略不计)。
6.某快递公司员工先把一个正方体形状的物体用纸箱包装好,再用胶带按如图所示的方法把它粘上3圈,每圈接头处多用4厘米胶带。
一共需要多少厘米的胶带?7.为迎接“五一”国际劳,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。
已知工人俱乐长90米,宽55米,高22米,工人叔叔至少需要多长的彩灯线?长方体和正方体的表面积(缺面问题)1.一个长方体的饼干盒,长10厘米,宽6厘米,高12厘米,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?2.一张长为30dm,宽为20dm的长方形铁皮,从四个角上各剪去边长为5dm的正方形,并焊成一个无盖的铁盒。
在铁盒外面的底面和侧面涂上油漆,涂油漆的面积是多少平方分米?3.一个新建的游泳池长50m,长是宽的2倍,深2.5m。
现在要在游泳池的四周和底面贴上瓷砖,一共需要贴多少平方米的瓷砖?4.学校要粉刷新教室。
已知教室的长是8m,宽是6m,高是3.5m,已知门窗的面积是21.5㎡。
如果要粉刷教室的墙壁和天花板,那么要粉刷的面积是多少平方米?5.做一个长120cm、宽和高都是10cm的通风管,至少需要多少平方米的铁皮?6.制作一个横截面为周长是1.5m的正方形、长3m的长方形通风管,至少需要多少平方米的铁皮?7.制作一根长方体铁皮烟囱,烟囱长1.5m,横截面是边长为0.2m的张方形。
长方体和正方体应用题专项练习(试题)-五年级下册数学 人教版
人教版五年级数学下册——正方体长方体专项训练1.一个底面是正方形的长方体,所有棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?2.把一个铁块放入一个长为40cm,宽为15cm的长方体水槽中,水面上升3cm,求这个铁块的体积是多少立方厘米?3.学校要挖一个长方形状沙坑,长4分米,宽2分米,深0.4米,需要多少立方分米的黄沙才能填满?4.一个长方体,高增加5米后,变成一个正方体,面积增加了160平方米,原来长方体的长是多少米?5.一个正方体木块,它的棱长是5分米,已知每立方分米重0.4千克,这个木块重多少千克?6.80根方木,垛成一个长2米,宽2米,高1.5米的长方体,平均每根方木的体积是多少立方米?合多少立方分米?7.在一个长20米,宽8米,深1.5米的长方体蓄水池里面贴瓷砖,瓷砖是边长为0.2米的正方形,贴完共需瓷砖多少块?8.一种长方体木料,长9dm,宽6dm,高2dm.8根这样的木料体积是多少?9.一间大厅有四根长方体柱子,每根高4米,长和宽都是0.6米,如果要油漆这些柱子,油漆的面积是多少平方米?10.一辆冷藏车的车厢从外部量长3m、宽2.2m、高2m,这个车厢的体积是多少?11.3个棱长都8厘米的正方体,拼成一个长方体,它的体积和表面积各是多少?12.用一种车箱是长方体的汽车运煤,从里面量长3米,宽2.5米,装煤高度是0.4米,每立方米煤重1.4吨,5辆同样的汽车共运煤多少吨?13.一块棱长是4dm的正方体铁块,,每立方分米的铁重7.8kg,这块铁重多少千克?14.一个长方体的沙坑装满沙子,这个沙坑长3米,宽1.5米,深2米,每立方米沙子重1400千克,这个沙坑里共装沙子多少吨?15.一列普通载客列车有12节车厢,每节车厢长16m、宽2.5m、高2.5m。
全列火车共有1416个座位,若坐满乘客,平均每位乘客占多大的空间?(得数保留两位小数)16.家具厂订购500根方木,每根方木横截面面积是25平方分米,长是3.8米,这些木料的体积是多少立方米?17.50本数学书摆成一个长18厘米,宽13厘米,高25厘米的长方体,平均每本书的体积是多少?18.一个正方体的棱长总和是108cm,这个正方体的体积是多少立方厘米?19.一个长5厘米,宽4厘米,高3厘米的长方体,截成两个形状,大小完全一样的长方体,表面积最少增加多少平方厘米?每个长方体的体积是多少立方厘米?20.一间教室长8.5米,宽6米、高3米,门窗面积是22.4m2,要粉刷教室四壁和教室顶部。
长方体和正方体的练习题
长方体和正方体的练习(1)姓名:签字:1、一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是多少厘米?表面积是多少平方厘米?体积是多少立方厘米?2、一种长方体硬纸盒,长0.5厘米,宽0.6厘米,高0.4厘米。
这个长方体的棱长总和是多少厘米?表面积是多少平方厘米?体积是多少立方厘米?3、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝多少厘米?4、做一个无盖长方体纸盒,长是25厘米,宽是20厘米,高是18厘米,至少需要多少平方厘米的纸板?5、做一个正方体的鱼缸,棱长是30分米,至少需要多少平方分米的玻璃?6、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,砌瓷砖面积是多少平方米?7、天天游泳池,长20米,宽25米,深1.6米,在游泳池的四周和池底砌瓷砖,每平方米用20块瓷砖,那么至少需用这种瓷砖多少块?8、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。
现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?9、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?10、一个正方体的棱长是6厘米,它的体积是多少立方厘米?11、一个长方体的长是5分米,宽和高都是4分米,这个长方体的体积是多少立方分米?12、一个长方体的横截面是边长是0.5米的正方形,长5米,这个长方体的体积是多少立方米?13、一块正方体的石头,棱长是5分米,每立方米的石头大约重2.7千克,这块石头重有多少千克?14、一列火车有容积相同的车厢20节,每节车厢从里面量长13米,宽2.5米,装煤的高度是1.2米。
这列火车每次运煤多少立方米?15、学校有一个长43分米,宽34分米,深5分米的沙坑,沙坑内装满沙。
求沙坑内沙子的体积是多少立方分米?若每立方分米沙子重 1.4千克,长满这个沙坑需要沙子多少千克?16、学校要砌一道长20米,宽2.4分米、高2米的墙,每立方米需要砖525块,学校需要买多少块砖?17、一个长方体的药水箱里装了60升的药水,已知药水箱里面长5分米,宽3分米,它的深是多少分米?18、在一个长20cm,宽12cm,高16cm,水深10cm的玻璃鱼缸里放入一些鹅卵石,水面上升到13cm。
长方体正方体经典习题
长方体和正方体练习题1、为迎接五一劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面四周不装)。
俱乐部的长90米,宽55米,高20米,至少需要多长的彩灯线?2、一个玻璃鱼缸的形状是正方体(无盖)棱长3dm,制作两个这个鱼缸需要多少平方米玻璃?3、用棱长1cm的小正方体摆成一个大正方体,至少需要几个小正方体?表面积是多少?体积是多少?4、亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(没有底面)至少需要用多少布?1、小卖部要做一个长2.2m,宽40cm,高80cm的玻璃柜台,现要在柜台各边装上角铁,这个柜台需要多少米角铁?2、一个饼干盒长10cm,宽6cm,高12cm,围着四周贴商标纸(上下不贴)商标纸的面积至少要多少平方厘米?3、加工一批洗衣机机套(没底)长59.5m,宽42.5m,高80m,做1000个需要多少平方米布?4、一个游泳池长50m,是宽的2倍,深2.5m。
要在四周和底面贴瓷砖,需要多少平方米瓷砖?1、公园修长15m,厚24cm,高3m的围墙。
每立方米用砖525块,这道围墙要用几块砖?2、妈妈送给奶奶的生日蛋糕长2dm、宽2dm、高0.6dm,奶奶把它平均分成4块长方体形状的小蛋糕,想一想她是怎样分,每个人分到多大的一块蛋糕?3、家具厂订购500根方木,每根方木的横截面的面积是24平方分米,长是3米。
这些木料一共是多少方?4、一个包装盒,如果从里面量长28cm、宽20cm、体积为11、76立方分米。
爸爸想用它包装一件长25cm,宽16cm,高18cm的玻璃器皿,是否可以装下?1、六一儿童节前,全市小学生代表用棱长3cm的正方体塑料品插积木在广场中央搭起了一面长6m,高2.7m,厚6cm的奥运心愿墙,算一算这面墙共用了多少块积木?2、一个长方体和一个正方体的棱长总和相等,已知长方体的长、宽、高分别是6dm、5dm、4dm,那么正方体的棱长是多少分米?它们的体积相等吗?3、一个长方体容器,长20厘米,宽10厘米,高8厘米,里面水深5厘米。
六年级长方体正方体练习(含解析)
六年级长方体正方体练习一.选择题(共7小题)1.一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量2.如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.13.下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.4.如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.406.一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.247.如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5二.填空题(共10小题)8.棱长总和是72cm的正方体,表面积是,体积是.9.如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的倍.10.用铁丝焊接一个棱长是5 厘米的正方体框架,至少需要铁丝厘米.如果用白纸贴满正方体的各个面,至少要用白纸平方厘米;这个正方体的体积是立方厘米.11.长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是平方厘米.12.一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是平方厘米,体积是立方厘米.13.一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是,体积是.14.一个棱长4dm的正方体钢坯的体积是dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是dm.15.一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是立方分米.16.用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方米.17.一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是厘米,这个长方体的表面积是平方厘米,体积是立方厘米.三.判断题(共5小题)18.正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍..(判断对错)19.棱长为6cm的正方体的体积与表面积相等..(判断对错)20.底面周长是8分米的正方体,它的表面积是24平方分米..(判断对错)21.如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.(判断对错)22.把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.(判断对错)四.解答题(共10小题)23.如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来?如果要包装这个盒子,至少需要多少平方厘米的包装纸?(单位:厘米)24.求出如图中长方体的体积和表面积.(单位:米)25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)26.一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?27.一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?28.一块长32厘米、宽25厘米的铁皮,从四个角各切掉一个边长为3厘米的正方形,然后做成盒子.这个盒子用了多少铁皮?它的容积有多少立方厘米?(如图)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.30.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水末溢出),水深15cm,取出钢球后,水深12cm.如果每立方分米钢重7.8千克,这个钢球重多少千克?31.把棱长为4dm的正方形钢坯熔铸成横截面是边长8cm的正方形的长方体钢条,这个钢条的长是多少分米?32.李老师用一根长56cm的铁丝,做成一个长6cm,宽5cm的长方体框架教具,这个教具的高是多少厘米?六年级长方体正方体练习(2)参考答案与试题解析一.选择题(共7小题)1.(2016春•卧龙区校级期中)一个冰箱从里面量长5分米,宽5分米,高4分米,装满水后水箱的()是100升.A.容积B.体积C.重量【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答即可.【解答】解:根据容积的意义可知:一个木箱装满水后水箱的容积是100升故选:A.【点评】此题考查的目的是理解掌握容积的意义及应用.2.(2016秋•如皋市月考)如图:将如图纸片折起来可以做成一个正方体.这个正方体的3号面的对面是()号面.A.2 B.3 C.4 D.1【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.【解答】解:如图,折叠成正方体后,1号面与5号面相对,2号面与3号面相对,4号面与6号面相对.故选:A.【点评】此题是考查正方体展开图的特征,正方体展开图有11种情况,折叠成正方体后哪些面相对是有规律的,最好是掌握规律,能快速解答此类题.3.(2016春•乐亭县校级月考)下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?()A.B.C.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】根据正方体展开图的11种特征,选项B不属于正方体展开图,不能折成正方体;选项A和选项C都属于正方体展开图的“1﹣4﹣1”型,都能折成正方体.【解答】解:根据正方体展开图的特征,选项B不能折成正方体;选项B和选项C都能折成正方体.故选:B.【点评】本题主要是考查正方体展开图的特征,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.4.(2015•绵阳)如图,有一个无盖的正方体纸盒,下底标有字母“M”,将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【考点】8M:正方体的展开图.【专题】462:立体图形的认识与计算.【分析】我们可以对四个选项用排除法,根据正方体展开图的特征,选项D不能折成无盖的正方体纸盒;选项A、B、C都能折成无盖的正方体纸盒,选项B、C中字母“M”都在侧面,只有选项A折成无盖的正方体纸盒,下底标有字母“M”.【解答】解:如图,根据正方体展开图的特征,将其剪开展成平面图形是:故选:A.【点评】此题是考查正方体展开图的特征,四个选项中除D外,其余几个都能折成无盖的正方体盒,关键是看哪个字母“M”在底上.5.(2015•德江县模拟)把一个长3cm、宽4cm、高5cm的长方体截成两个长方体,表面积最多增加()cm2.A.24 B.30 C.40【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;33 :假设法;462:立体图形的认识与计算.【分析】抓住长方体的切割特点可得,要使增加的表面积最多,则平行于最大面5×4面切割,则表面积就是增加2个5×4面,据此即可解答.【解答】解:5×4×2=20×2=40(平方厘米)答:表面积最多能增加40平方厘米.故选:C.【点评】根据长方体切割小长方体的方法,明确表面积增加的2个面是解决本题的关键.6.(2015•徐州模拟)一个汽油箱长60厘米,宽20厘米,高20厘米,这个油箱可盛汽油()升.A.240000 B.240 C.24 D.0.24【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据长方体的容积(体积)公式:v=abh,把数据代入公式解答.【解答】解:60×20×20=24000(立方厘米),24000立方厘米=24(升),答:这个油桶可以盛汽油24升.故选:C.【点评】此题主要考查长方体的容积(体积)公式的灵活运用,关键是熟记公式,注意:体积单位与容积单位之间的换算.7.(2015秋•射阳县校级期末)如图,用丝带捆扎一种礼品盒,结头处长25cm,要捆扎这种礼品盒,准备()分米的丝带比较合理.A.10 B.15 C.20 D.22.5【考点】8G:长方体的特征.【专题】12 :应用题;3B :代数方法;462:立体图形的认识与计算.【分析】由图形可知:丝带的长度等于长方体的两条长+两条宽+4条高,然后再加上打结用的25厘米就是所需要的长度,列式解答即可.【解答】解:30×2+20×2+25×4+25=60+40+100+25=225(厘米)=22.5(分米答:准备22.5分米的丝带比较合理.故选:D.【点评】此题考查的目的是理解掌握长方体的特征,相对棱的长度相等,关键是弄清如何捆扎的,进而确定是求哪几条棱的长度和.二.填空题(共10小题)8.(2016春•玉林期末)棱长总和是72cm的正方体,表面积是216平方厘米,体积是216立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】正方体的12条棱的长度都相等,用棱长总和除以12求出棱长,再根据正方体的表面积公式:s=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:72÷12=6(厘米),6×6×6=216(平方厘米),6×6×6=216(立方厘米),答:这个正方体的表面积是216平方厘米,体积是216立方厘米.故答案为:216平方厘米,216立方厘米.【点评】此题主要考查正方体的表面积公式、体积公式的灵活运用.9.(2016春•克州校级期中)如果正方体的棱长扩大到原来的3倍,那么它的表面积就扩大到原来的9倍.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的表面积公式s=6a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【解答】解:根据正方体的表面积公式s=6a2,一个正方体的棱长扩大到原来的3倍,表面积扩大到原来的3×3=9倍.答:它的表面积扩大到原来的9倍.故答案为:9.【点评】此题主要根据正方体表面积计算方法和积的变化规律解决问题.10.(2016秋•玄武区期末)用铁丝焊接一个棱长是5 厘米的正方体框架,至少需要铁丝60厘米.如果用白纸贴满正方体的各个面,至少要用白纸150平方厘米;这个正方体的体积是125立方厘米.【考点】AB:长方体和正方体的表面积;8G:长方体的特征;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据正方体的棱长总和=棱长×12,正方体的表面积公式:S=6a2,体积公式:v=a3,把数据分别代入公式解答.【解答】解:5×12=60(厘米);5×5×6=25×6=150(平方厘米);5×5×5=125(立方厘米);答:至少需要铁丝60厘米,至少要用白纸150平方厘米,它的体积是125立方厘米.故答案为:60、150、125.【点评】此题主要考查正方体的棱长总和公式、表面积公式、体积公式的灵活运用,关键是熟记公式.11.(2016春•扬州校级期末)长方形的右侧面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的表面积是52平方厘米.【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据长方体的特征.相对面的面积相等,已知长方体相邻三个面的面积,求这个长方体的表面积,也就是用相邻三个面的面积和乘2即可,据此解答.【解答】解:(6+8+12)×2=26×2=52(平方厘米)答:这个长方体的表面积是52平方厘米.故答案为:52.【点评】此题考查的目的是理解掌握长方体的特征,以及长方体的表面积公式的灵活运用.12.(2016秋•无锡期末)一个长方体,如果宽增加2厘米,就变成一个正方体,这时表面积比原来增加32平方厘米.原来长方体的表面积是64平方厘米,体积是32立方厘米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】12 :应用题;17 :综合填空题;462:立体图形的认识与计算.【分析】根据题意可知,一个长方体如果宽增加2厘米,就变成了一个正方体;说明长和高相等且比宽大2厘米,因此增加的32平方厘米是4个同样的长方形的面积和;由此可以求长方体的长=(32÷4)÷2=4厘米,由于长比宽多2厘米,那么宽=4﹣2=2厘米,由此再利用长方体的体积公式和表面积计算公式计算即可解答.【解答】解:32÷4÷2=4(厘米)4﹣2=2(厘米)(1)4×4×2+4×2×4=32+32=64(平方厘米)答:原来长方体的表面积是64平方厘米.(2)4×4×2=16×2=32(立方厘米)答:原来长方体的体积是32立方厘米.故答案为:64,32.【点评】本题主要考查长方体正方体表面积的实际应用,解答本题的关键是根据宽增加2cm,就变成一个正方体,可知增加的部分是长为2厘米的4个面,从而可以分别求出长方体的长、宽、高,进而利用长方体的表面积和体积的计算方法即可求解.13.(2016春•未央区期末)一个正方体木块,把它割成2个长方体后.表面积增加了18m2,这个木块原来的表面积是54平方米,体积是27立方米.【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】把一个正方体切成两个完全相同的长方体后,则表面积增加了两个边长和原来正方体棱长相同的两个横截面的面积,表面积增加了18平方米,则每个横截面的面积为18÷2=9平方米,即可求出正方体的边长为3米,再利用正方体的表面积公式S=6a2,体积公式V=a3,即可解答.【解答】解:18÷2=9(平方米)因为3×3=9,所以原来正方体的棱长是3米,表面积:3×3×6=9×6=54(平方米)体积:3×3×3=9×3=27(立方米)答:这个木块原来的表面积是54平方米,体积是27立方米.故答案为:54平方米、27立方米.【点评】此题主要考查正方体表面积公式和体积的计算,关键是求出正方体的棱长,再把数据代入表面积和体积公式解答即可.14.(2016春•仁怀市校级期末)一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是 3.2dm.【考点】AC:长方体和正方体的体积.【分析】(1)根据正方体的体积=棱长×棱长×棱长即可解答;(2)锻造前后的体积不变,根据长方体的体积公式,用上面求出的正方体的体积,除以这个长方体的底面积,即可得出长方体的高.【解答】解:(1)正方体钢坯的体积是:4×4×4=64(立方分米);(2)64÷20=3.2(分米),答:一个棱长4dm的正方体钢坯的体积是64dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是3.2分米.故答案为:64;3.2.【点评】此题考查了正方体和长方体的体积公式的灵活应用,抓住锻造前后的体积不变,是解决此类问题的关键.15.(2016春•日照期末)一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,这段长方体钢材的体积是800立方分米.【考点】AC:长方体和正方体的体积.【分析】根据长方体的面的特征,它的6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;由题意可知,一根长2米的长方体钢材,沿横截面截成两段后,表面积增加了0.8平方米,增加了两个截面的面积,0.8÷2=0.4平方米,长方体的体积=底面积×高;由此解答.【解答】解:1立方米=1000立方分米;0.8÷2×2=0.4×2=0.8(立方米);0.8立方米=800立方分米;答:这段长方体钢材的体积是800立方分米.故答案为:800.【点评】此题主要考查长方体的体积计算,关键是理解沿横截面截成两段后,表面积增加了0.8平方米,增加的是两个截面的面积即底面积,然后根据体积公式解答.16.(2016春•抚州校级期末)用一根24分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是8立方米.【考点】AC:长方体和正方体的体积;8G:长方体的特征.【专题】462:立体图形的认识与计算.【分析】用一根24分米长的铁丝围成一个最大的正方体形状的框架,也就是这个正方体的棱长总和是24分米,首先用棱长总和除以12求出棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答即可.【解答】解:24÷12=2(分米),2×2×2=8(立方分米),答:这个正方体的体积是8立方分米.故答案为:8.【点评】此题主要考查正方体的棱长总和公式、体积公式的灵活运用,关键是熟记公式.17.(2016秋•泰兴市校级期中)一根60厘米长的铁丝,如果做一个长8厘米、宽5厘米的长方体模型,这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.【考点】8G:长方体的特征;AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】17 :综合填空题;462:立体图形的认识与计算.【分析】用长60厘米的铁丝围一个长方体框架,也就是这个长方体的棱长总和是60厘米,用棱长总和除以4求出长、宽、高的和,已知长方体的长是8厘米,宽是5厘米,用长、宽、高的和减去长、宽,即可求出高,再根据长方体的表面积公式:s=(ab+ah+bh)×2,体积公式:v=abh,把数据分别代入公式解答.【解答】解:60÷4﹣8﹣5=15﹣8﹣5=2(厘米)表面积:(8×5+5×2+8×2)×2=(40+10+16)×2=62×2=124(平方厘米)体积:8×5×2=40×2=80(立方厘米)答:这个长方体的高是2厘米,这个长方体的表面积是124平方厘米,体积是80立方厘米.故答案为:2、124、80.【点评】此题主要考查长方体的棱长占公式、表面积公式、体积公式的灵活运用,关键是求出长方体的高.三.判断题(共5小题)18.(2017春•渭源县校级期末)正方体的棱长扩大到原来的2倍,它的表面积也就扩大到原来的2倍.×.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】18 :综合判断题;39 :找“定”法;462:立体图形的认识与计算.【分析】依据正方体的表面积公式S=a×a×6进行解答即可.【解答】解:原来的表面积:S=a×a×6=6a2,现在的表面积:S=2a×2a×6=24a2,表面积扩大:24a2÷6a2=4倍.所以题干的说法是错误的.故答案为:×.【点评】此题主要考查正方体的表面积公式的灵活应用.19.(2016•玉溪模拟)棱长为6cm的正方体的体积与表面积相等.×.(判断对错)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.【解答】解:表面积:6×6×6=216(平方厘米)体积:6×6×6=216(立方厘米)因为表面积和体积不是同类量,无法进行比较.故答案为:×.【点评】此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.20.(2016春•正定县校级期末)底面周长是8分米的正方体,它的表面积是24平方分米.√.(判断对错)【考点】AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】根据正方体的特征,正方体的6个面是完全相同的正方形,已知它的底面周长是8分米,首先用底面周长除以4求出底面边长,再根据正方体的表面积公式:s=6a2,把数据代入公式求出它的表面积,然后与24平方分米进行比较即可.【解答】解:8÷4=2(分米),2×2×6=4×6=24(平方分米),答:它的表面积是24平方分米.故答案为:√.【点评】此题主要考查正方形的周长公式、正方体的表面积公式的灵活运用,关键是熟记公式.21.(2016春•仁怀市校级期末)如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍.×(判断对错)【考点】AC:长方体和正方体的体积.【专题】18 :综合判断题;462:立体图形的认识与计算.【分析】根据长方体的体积计算方法和积的变化规律,长方体的体积=长×宽×高,积扩大的倍数等于因数扩大倍数的乘积.由此解答.【解答】解:长方体的体积=长×宽×高,长、宽、高都扩大3倍,它的体积就扩大:3×3×3=27倍;所以“如果长方体的长、宽、高都扩大3倍,则它的体积扩大3倍”的说法是错误的.故答案为:×.【点评】此题主要根据长方体的体积计算方法和积的变化规律解决问题.22.(2016春•黎平县校级期末)把一个长方体锻造成一个正方体铁块,形状变了,但体积不变.√(判断对错)【考点】AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.将一个长方体铁块锻造成正方体,只是形状变了,但体积不变.据此解答.【解答】解:把一块长方体的铁块锻造成正方体的铁块,形状改变了,但体积不变,所以本题说法正确;故答案为:√.【点评】此题主要考查了学生对正方体表面积及体积公式的掌握应用情况.四.解答题(共10小题)23.(2017春•渭源县校级期末)如图,如果把这个长方体完全沉没于盛满水的水槽中,会有多少水溢出来?如果要包装这个盒子,至少需要多少平方厘米的包装纸?(单位:厘米)【考点】AC:长方体和正方体的体积;AB:长方体和正方体的表面积.【专题】462:立体图形的认识与计算.【分析】(1)溢出的水的体积就等于长方体的体积,利用长方体的体积公式即可得解;(2)求包装纸的面积实际上是求长方体的面积,利用长方体的表面积公式即可求解.【解答】解:(1)13×2×8=208(立方厘米);答:会有208立方厘米水溢出来.(2)(13×2+13×8+2×8)×2,=(26+104+16)×2,=146×2,=292(平方厘米);答:至少需要292平方厘米的包装纸.【点评】此题主要考查长方体的表面积和体积的计算方法的灵活应用.24.(2016•安溪县模拟)求出如图中长方体的体积和表面积.(单位:米)【考点】AB:长方体和正方体的表面积;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,长方体的体积=长×宽×高,已知长是5厘米,宽是3厘米,高是4厘米.把数据分别代入公式解答.【解答】解:(3×4+3×5+4×5)×2=(12+15+20)×2=47×2=94(平方米)3×4×5=60(立方米)答:这个长方体的表面积是94平方米,体积是60立方米.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.25.(2016秋•玄武区期末)看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)【考点】8L:长方体的展开图;AC:长方体和正方体的体积.【专题】462:立体图形的认识与计算.【分析】我们通过观察得到这个长方体的长是6分米,宽是9﹣6=3分米,高是11﹣3=8厘米,由此运用长方体的体积公式进行解答即可.【解答】解:长方体的体积:6×(9﹣6)×(11﹣3),=6×3×8,=144(立方厘米);答;这个纸盒的表面积是136平方厘米,体积是80立方厘米.【点评】本题考查了学生对长方体的体积公式的运用掌握情况.重点考查了空间想象能力.26.(2016秋•毕节市期中)一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?【考点】AB:长方体和正方体的表面积.【分析】由题意知,粉刷的面积=教室的顶面面积+四面墙壁的面积﹣门窗和黑板的面积,据此列式解答即可.【解答】解:2×(8.5×4.2+6×4.2)+8.5×6﹣35.8=2×60.9+51﹣35.8=121.8+51﹣35.8=137(平方米).答:粉刷的面积有137平方米.【点评】本题主要考查长方体的表面积的知识点,长方体的表面积=2(长×宽+长×高+宽×高).本题需要注意减去地面的面积和教室的门窗和黑板的面积.27.(2016春•扬州校级期末)一个长方形的游泳池,从里面量长50米,宽20米,高2米,平均水深1.5米.粉刷它的四壁和地面,粉刷面积是多少平方米?【考点】AB:长方体和正方体的表面积.【专题】12 :应用题;462:立体图形的认识与计算.【分析】要在四壁和池底粉刷,只求它的5个面的总面积,根据长方体的表面积公式:S=2ab+2ah+2bh进行解答.【解答】解:(50×20+50×2+20×2)×2﹣50×20=(1000+100+40)×2﹣1000=1140×2﹣1000=2280﹣1000=1280(平方米)答:粉刷面积是1280平方米.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行解答问题.。
长方体与正方体必须掌握的九种题型练习及解析
长方体与正方体必须掌握的九种题型练习及解析一、长方体与正方体必须掌握的几种题型1 --高的变化引起表面积的变化1、一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是多少立方厘米?2、一个长方体,如果高减少2厘米就成了正方体,而且表面积要减少56平方厘米,原来这个长方体的体积是多少立方厘米?3、一个长方体,长a分米,宽b分米,高h分米,如果高减少3分米,这个长方体表面积比原来减少()平方分米?体积比原来减少()立方分米二、长方体与正方体必须掌握的几种题型2 --段的变化1、一个长方体长2米,截面是边长3厘米的正方形,将这个长方体木料锯成五段后,表面积一共增加了多少平方厘米2、将一个长3米的长方体木料平均截成3段,表面积一共增加了0.36平方分米,这根木料的体积是多少立方分米3、一段长2m的长方体木料,将它截成5段后,表面积增加了40平方分米,这根木料的体积是多少立方分米?4、把一根长3米的长方体木料据成3段后,表面积增加18平方分米这根木料原来的体积是多少立方米1、一个正方体的表面积是48平方厘米,将它平均分成两个小长方体,每个小长方体的表面积是多少2、一个正方体的表面积是96平方厘米,将它平均分成两个小长方体,每个小长方体的体积是多少立方厘米3、一个正方体的体积是125立方厘米,它的表面积是多少平方厘米4、一个正方体切成两个小长方体后,表面积增加18平方厘米。
两个小长方体表面积的和是多少?四、长方体与正方体必须掌握的几种题型4 --拼的变化1、用8个棱长都是2厘米的正方体拼成一个长方体,拼成的长方体的表面积最多是多少平方厘米最少是多少平方厘米?2、用12个棱长都是2厘米的正方体拼成一个长方体,一共有多少种拼法,每种拼法拼成的长方体的表面分别是多少?3、用四个棱长都是3厘米的正方体拼成一个长方体,拼成的长方体的表面积可能是多少4、用6个棱长是1厘米的正方体,拼成一个表面积是最小的长方体,这个长方体的表面积是多少?倍数1、一个正方体棱长扩大2倍,表面积扩大()倍,体积扩大()倍,表面积增加()倍,体积增加()倍。
长方体、正方体各种题型练习
•(2)如果把沙坑填满黄沙,要准备多少立方米的黄沙?
6.一根长1.8米,横截面是边长5厘米的正方形的长方体 铜条,铜条如果每立方分米重8千克,这根铜条共重多 少千克?
7.水泥厂制10根长方体铁皮通讯管道,管子横截面为边 长30厘米的正方形,管全长2米,共需多少平方米铁 皮?
长方体、正方体练习
消防队砌一道长8米、宽0.25米、高2米的 训练墙。如果每立方米用砖525块,这道墙 至少要多少块砖?
•1.一个长方体铁皮水箱,长80厘米,宽60厘米, 高60厘米,做这个水箱至少需要多少铁皮?每升 水重1千克,这个铁皮水箱能装多少千克水?
•2.一个长方体容器长10厘米、宽8厘米、高20厘米, 内装有水,水深15厘米,在水里完全浸没一个铁球, 水面上升了3厘米,这个铁球的体积是多少立方厘 米?
一个长方体容器,长8分米,宽4分米,高10分米。水 深6分米。在其中放入一个棱长是2分米的正方体铁块, 铁块完全浸没在水中。这时水面的高度是多少?
•用沙子填满一个长6.28米,宽4米, 深1.2米的沙坑,每立方米沙子重1400 千克,如果用载重6吨的货车来运动这 堆沙子,需要几趟才能全部运完?
•一个长方体前面的面积是12平方厘米,右面 是20平方厘米,上面是15平方厘米,它的表 面积是多少?体积是多少?
• 19、一个正方体的棱长扩大3倍,表面积扩大( )倍,底面周长扩大( )倍,棱 长总和扩大( )倍,体积扩大( )倍,体积增加( )倍。
• 20、一个横截面积是20平方厘米、长是2米的长方体,它的体积是多少立方厘米?
一个长方体容器,底面积是8平方分米,高10分米,水 深6分米。在其中放入一个体积是24立方分米的铁块, 铁块完全浸没在水中。这时水面上升多少分米?这时 水面的高度是多少?
长方体和正方体应用题专项练习
1、一个正方体的棱长是5cm,这个正方体的棱长总和是多少厘米?2、用 72cm长的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少厘米?3、用铁丝焊接成一个长12cm,宽 10cm,高 5cm的长方体的框架,起码需要铁丝多少厘米?4、有一根长52cm 的铁丝,恰巧能够焊接成一个长6cm,宽 4cm,高多少厘米的长方体?5、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5cm,宽为 3cm,高为 4cm,求正方体的棱长。
6、用一根铁丝恰巧焊成一个棱长 8cm的正方体框架,假如用这根铁丝焊成一个长 10cm、宽 7cm 的长方体框架,它的高应当是多少厘米?7、一个面的面积是36m2的正方体,它所有的棱长的和是多少厘米?8、一个长方体的水池,长20m,宽 10m,深 2m,占地多少平方米?9、一个长方体的长是25cm,宽是 20cm,高是 18cm,最大的面的长是()cm,宽是() cm,面积是() cm2;最小的面长是() cm ,宽是() cm ,面积是()cm2。
10、一个长方体,长12cm,宽和高都是 8cm,这个长方体前面的面积是多少平方厘米?后边呢?下边呢?(请画出长方体立体草图,标出相应数据后再计算)11、用36 cm长的铁丝做成一个正方体框架,这个正方体的体积是多少?12、把两块棱长5 cm的正方体拼成一个长方体,这个长方体的体积是多少立方厘米?13、一个底面是正方形的长方体,所有棱长的和是100cm,它的高是7 cm,这个长方体的体积是多少立方厘米?14、一个长方体鱼缸,长是8dm,宽是5 dm,高是6 dm,不当心左面的玻璃打碎了,维修时配上的玻璃的面积是多少平方米?这个鱼缸的体积是多少立方分米?15、施工队修建一条长2600m的路基,它的横截面是梯形,上底14m,下底16 m,高0. 8 m,一共需要挖土石多少立方米?16、教师节时,王婧想送给老师一件礼品,她丈量了一下,礼品长18cm,宽12 cm,高10c m,她想把它装在一个长20 cm,宽15 cm,体积为2 . 34立方米的包装盒里,可否装得下?17.把 12 升的水注入一个底面长 30cm、宽 25cm的长方体容器中,容器中的水面高多少厘米?18、一根方钢,长10cm,它的横截面是边长 1.5cm 的正方形,每立方厘米钢重7.8 克。
长方体和正方体专项练习题
长方体和正方体专项练习题长方体和正方体专项练习题试题是用于考试的题目,要求按照标准回答。
它是命题者按照一定的考核目的编写出来的。
以下是小编为大家整理的长方体和正方体专项练习题,欢迎阅读,希望大家能够喜欢。
长方体和正方体专项练习题篇11、长方体有( )条棱,相对的棱的长度( ),有( )个面,( )的面的面积相等。
2、用一根长132厘米的铁丝,围成一个正方体的模型,棱长应是( )。
3、把3个棱长1厘米的小正方体拼成长方体,这个长方体的棱长和是( )厘米,体积是( )立方厘米。
4、把一个正方体切成两个完全一样的长方体,表面积增加了20平方厘米。
这个正方体的表面积是( )平方厘米。
5、单位换算5400立方厘米=( )立方分米530平方分米=( )平方米9600立方厘米=( )毫升=( )升5立方米=( )立方分米2.8立方分米=( )立方厘米0.8升=( )毫升1.7立方米=( )立方分米4平方米=( )平方分米2.5立方米=( )立方分米6、7升=( )升( )毫升8500立方厘米=( )毫升=( )升470立方厘米=( )立方分米4800平方厘米=( )平方分米270毫升=( )升=( )立方分米4.5立方分米=( )升=( )毫升6、长方体和正方体都有( )个面,( )条棱,( )个顶点。
7、物体所占( )的大小叫做物体的体积。
8、在( )里填上合适的单位。
一个药水瓶的容积是200( )一个仓库的占地面积是30( )一只热水瓶容积2( )运货集装箱的体积约是40( )9、一个长方体,长5分米,宽4分米,高3分米,它的表面积是( ),体积是( ),棱长总和是( )。
10、一个正方体的棱长是5厘米,它的表面积是( ),体积是( )。
11、一个长方体的体积是60立方分米,高4分米,它的底面积是( )平方分米,如果这个长方体的长是6分米,那么宽是( )分米。
12、有一个长方体的底面是正方形,边长12分米,高为4.2分米,将这个长方体平均截成两个相同的长方体,表面积增加( )或( )13、一个正方体的棱长和是36厘米,它的表面积是( ),体积是( )。
(完整版)“长方体和正方体”练习题及答案
六年级第一学期“长方体和正方体”练习题姓名成绩一、填空题。
(每空1分,共24分)1、在括号里填上合适的单位名称。
⑴一小瓶红墨水是60()⑵一台电冰箱的体积约是240()⑶一种油箱的容积是0.6()⑷一只火柴盒的体积约是9.6()⑸一种水箱可容水约24()2、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,还有()个面的面积相等,长方体的表面积是()。
3、一个长方体的体积是162立方厘米,它的底面积是32.4平方厘米,底面长8.1厘米,这个长方体的高是( )厘米,宽是( )厘米。
4、一个长方体的体积是240立方厘米,长是8厘米,宽是6厘米,高是()厘米。
5、 6.4立方米=( )立方分米 4500毫升=( )升80立方厘米=()立方分米 3.8升 = ( )毫升7.05立方分米=( )升 50平方厘米=()平方分米6、右图是由棱长1厘米的小正方体拼成的,它的体积是()立方厘米,至少再加上()个小正方体,就能成为一个较大的正方体。
7、一个长方体,长、宽、高分别为a米、b米、c米,如果高增加4米,新的长方体比原来长方体增加了()立方米。
8、一个长方体的表面积是90平方分米,把它平均分开正好成两个相等的正方体,每个正方体的表面积是()平方分米。
9、用3个棱长4厘米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少()平方厘米。
10、一个长方体相邻三个面的面积分别为10平方厘米、15平方厘米和6平方厘米,这个长方体的体积为()。
11、一个长方体的宽和高都是5厘米,把它从长的中点截成两个相同的长方体后,得到其中一个长方体的表面积比原来大长方体的表面积减少120平方厘米。
原来长方体的体积是()立方厘米。
二、判断题。
(每题2分,共12分)1、正方体棱长扩大到原来的2倍,体积扩大到原来的8倍。
……………()2、a3=3a。
……………………………………………………………………()3、一个长方体茶叶罐,体积和容积相等。
长方体和正方体练习
长方体和正方体的认识·练习题一.填空1、长方体有( )个面,每个面都是( )形,也可能有两个相对的面是( )形,( )的面积相等。
有( )条棱,( )的棱的长度相等。
2、正方体有( )个面,每个面都是( )形,( )的面积都相等,有( )条棱,它们的长度( )3、因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。
4、一个正方体的棱长为a,棱长之和是(),当a =6cm时,这个正方体的棱长总和是()cm。
5、一个长方体长、宽、高分别是a、b、h,那么这个长方体的棱长总和是()。
6、用一根长()dm铁丝正好可以做一个长6cm、宽5cm、高4cm的长方体框架。
7、做一个长方体抽屉,需要()块长方形木板。
8、一个长方体水池,长20m,宽10m,深2m,这个水池占地()m2。
9、下面的图形中,能按虚线折成正方体的是()。
二、判断:1、正方体是由6个正方形围成的立体图形。
()2、一个长方体中,可能有4个面是正方形。
()3、4个正方体能拼成一个大正方体。
()4、由6个面围成的图形都是长方体。
()三.看图并填空(单位:cm)1、(1)这个长方体长( )cm,宽( )cm,高( )cm。
(2)由一个顶点引出的三条棱的长度和是( )cm。
(3)棱长总和是( )cm。
(4)上下两个面是( )形。
2、(1)这是一个( )体 (2)正方体的棱长是( )cm。
(3)棱长之和是( )cm (4)每个面的面积是( )平方cm。
三、应用题1、一个正方体的棱长是15cm,这个正方体的棱长总和是多少dm?2、用6dm长的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少cm?3、用多少dm的铁丝可以焊接成一个长12cm,宽10cm,高5cm的长方体的框架?4、有一根52cm的铁丝,恰好可以焊接成一个长6cm,宽4cm,高多少cm的长方体?5、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5cm,宽为3cm,高为4cm,求正方体的棱长。
长方体正方体专项练习题(解决问题)
长方体正方体单元练习题(应用题)1.一个长方体的长是10厘米,宽是8厘米,高是2厘米,这个长方体的棱长之和是多少厘米?表面积是多少?体积是多少?2.一根长96厘米的铁丝围成一个正方体,这个正方体的棱长是多少厘米?表面积?体积?4、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?6.一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方分米?最小是多少?表面积是多少平方米?7.用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸?8、一个长17厘米,高20厘米,宽15厘米的长方体饼干盒,如果在它的侧面贴上一圈商标纸,这张商标纸至少需要多少平方厘米?9.一个长方体通风管,长4米,宽和高都是20厘米(横截面是边长20厘米的正方形)。
做100根这样的通风管,至少需要铁皮多少平方米?10、要做一种管口是正方形,周长40厘米的通气管子10根,管子长2米,至少需要铁皮多少平方米?11.一个无盖的铁桶,底面是周长16分米的正方形,高是5分米,做20个这样的铁桶至少需铁皮多少平方分米?12、一个长方体游泳池,长20米,宽15米,深2米,现要将它的每个面先抹上水泥,再贴上边长4分米瓷砖,需要这样的瓷砖多少块?13.一种长方体铁皮烟囱,底面是边长3分米的正方形,高4米,制这样一节烟囱至少要用铁皮多少平方米?14、一个正方体木块,若把它切成3个完全相等的长方体后,表面积增加了80平方厘米,这个正方本木块原来的表面积是多少平方厘米?15、三个同样大的正方体拼成一个长方体后,表面积减少了144平方厘米,这个长方体的表面积是多少?16、一间长5.2米,宽3米,高2.6米的房间。
它的四面墙的下部刷了1.1米高的浅绿色油漆(开门处1m²不刷),如果1m²浅绿色油漆造价10元,一共要用多少钱?17、一个长方体的宽和高相等,都是8分米,如果将长去掉2分米,这个长方体就变成了正方体。
长方体正方体必考题型练习题
如果长方体的长、宽、高分别扩大到原来的2倍, 3倍,4倍,那么体积扩大 到 原来 的 倍
一根长方体的木料的体积是20立方分米,横截面 积是4平方分米,木料长是〔 〕
一根2米长的长方体钢材,沿横截面平均截成两段
后,外表积增加0.6平方分米,这段长方体钢材原
来的体积是
立方分米。
一个正方形的铁皮,边长8分米,在它的四角各 剪去一个边长为2分米的正方形后,再把剩下的
倍.
一根长方体木料,它的横截面积是9平方厘米,把它
截成2段,外表积增加
cm2
一个无盖的长方体金鱼缸,长8分米,宽6分米, 高7分米。制作这个鱼缸共需玻璃多少平方分米? 这个鱼缸能装水多少升?〔玻璃厚度忽略不计〕
第6页,共20页。
正方体的外表积=棱长×棱长×6
把一个棱长为a的正方体,切成两个长方体,
几个物体锻造成一个物体,体积不变 把8块边长是1分米的正方体铁块熔成一个大正
方体,这个大正方体的体积和外表积各是多少?
体积:1×1×1×8=8〔dm3〕 大正方体的棱长为:2分米 大正方体的外表积:2×2×6=24〔dm2〕
第16页,共20页。
物体浸入水中的体积=排开水的体积
有一个底面积是300平方厘米、高10厘米的长方 体,里面盛有5厘米深的水。现在把一块石头浸 没到水里,水面上升2厘米。这块石头的体积是 多少立方厘米?
大正方体的棱长是小正方体的棱长的2倍,那么大
正方体的外表积是小正方体外表积的〔
〕
倍,大正方体的体积是小正方体体积的〔 〕倍。
第9页,共20页。
长方体的体积=长×宽×高
一个长方体的长、宽、高都扩大2倍,它的外表积扩大 倍,体积扩大 倍。
一个长方体的长、宽、高分别是a米、b米、h米。如果高
长方体正方体 练习题含答案
长方体正方体练习题含答案1.需要计算的是长方体的周长,公式是(长+宽+高)×2×2,计算结果为320厘米。
2.需要计算的是长方体的周长,公式是(长+宽)×2+高×4,计算结果为370米。
3.需要在长方体的每个面上都安装角铁,计算公式是(长+宽+高)×4,计算结果为13.6米。
4.需要计算的是长方体的表面积,公式是(长×高+宽×高)×2,计算结果为384平方厘米。
5.(1)需要计算正方体的表面积,公式是边长的平方×6,计算结果为平方厘米。
(2)需要计算正方体的周长,公式是边长×4,计算结果为184厘米,换算成米为1.84米,因此一卷长4.5米的胶带纸不够用。
6.需要计算正方体的表面积,公式是边长的平方×6,计算结果为45平方分米。
7.需要计算长方体的表面积,公式是(长×宽+长×高+宽×高)×2,计算结果为12.96平方分米。
8.需要计算长方体的表面积,减去门窗的面积,公式是(长×宽+长×高+宽×高)×2-门窗面积,计算结果为120.6平方米,乘以每平方米的涂料费用4元,计算结果为482.4元。
长方形木料的长为5m,横截面的面积为0.08平方米。
计算木料的体积,可以使用公式“体积=底面积×高”,即0.08×5=0.4立方米。
因此,这根木料的体积是0.4立方米。
有500根方木,每根方木横截面的面积是2.6平方分米,长为3m。
求这些木料的总体积。
首先将横截面的面积转换为平方米,即2.6平方分米=0.024平方米。
然后使用公式“体积=底面积×高×数量”,即0.024×3×500=36方。
因此,这些木料的总体积是36方。
要砌一道长15m、厚24cm、高3m的砖墙,每立方米需要用520块砖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体正方体专题练习芸桥培训学校 Eva 2018年5月18日2长方体和正方体专题练习第一部分:重点知识理解背诵1、 长方体和正方体的特征形体 面顶点 棱 关系 长方体6个 至少4个面是长方形相对面 完全相同 8个12 条 相对的棱 长度相等 正方体 是特殊 的长方 体正方体6个 正方形6个面 完全相同8个 12 条12条长度 都相等2、表面积概念及计算 【长方体或正方体6个面的总面积,叫做它们的表面积】算法:长方体 (长×宽+长×高+宽×高)×2 (ab+ah+bh )×2正方体 棱长×棱长×6a ×a ×6=62a注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等。
3、体积概念及计算体积(容积)定义 形体 体积(容积) 计算方法 体积单位 进率物体所占空间的 大小叫做它们的 体积;容器所能 容纳其它物体的 体积叫做它的容 积。
长方 体V=ab hV=S h立方米 立方分米 立方厘米13m =10003dm 13dm =10003cm=1L=1000mL正方 体 V=3a手指头的体积大约是1 cm ³,粉笔盒的体积大约是1 dm ³. 表面积的变化规律:(立方体的个数-1)×2=少几个面4、正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵正方体:中间四个面,上下各一面(6种摆法-141)中间三个面,一二隔河见(3种摆法-132、231) 中间二个面,楼梯天天见(1种摆法-222) 中间没有面,三三连一线(1种摆法-33)“田”“凹”应弃之第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
芸桥培训学校 Eva 2018年5月18日3口诀:中间四个面,上下各一面(上下面随便放)第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
口诀:中间没有面,三三连一线(1种摆法-33)第五:巧排除“7”、“凹”、“田” (这是错误的,没有这种展开图)5、阿基米德原理:(求不规则物体的体积)只要牢记水面上升是由于被放入的体积所引起的问题,就容易解决了。
(现高-原高)×底面积=阿基米德的体积 6、物体浸液问题分三种情况:阿基米德的体积=(现高-原高)×底面积 V 物=(h 现-h 原)×S 表现高=水体积÷改变后的底面积 现高=水体积改变后的底面积 h 现= V 水S 新h 现=h 容7、表面涂色的正方体的个数(1) 3面涂色的小正方体都在大正方体顶点的位置,因此都是8个。
(2) 2面涂色的小正方体的都在大正方体的棱上,一条棱上至少2个,所以个数是12的倍数。
如果用n 表示把大正方体的棱平均分的份数,用a 表示2面涂色的小正方体的个数,公式为 a=(n-2)×12(3) 1面涂色的小正方体的个数都是6的倍数。
用表示b 一 面涂色的正方体的个数, 公式为 b=(n-2)(n-2)×6 (4)没有涂色的小正方体的个数,用表示b 没有涂色的正方体的个数公式为 b=(n-2)(n-2)×(n-2)第二部分:专题巩固1、长方体正方体展开图1 2 34 5芸桥培训学校 Eva 2018年5月18日4例1.(2004海口市实验区)下面的平面图形中,是正方体的平面展开图的是( )例2(2004扬州)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如右图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示.)例3如图是3个完全相同的正方体的三种不同放置方式,下底面依次是______。
例4小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是 ( )例5 下面各图都是正方体的表面展开图,若将它们折成正方体,•则其中两个正方体各面图案完全一样,它们是_______。
2、长方体和正方体的转换问题例1 一个长方体底面是一个边长为20cm 的正方形,高为40cm 。
如果把它的高增加5m ,它的表面积会增加多少?例2一个底面是正方形的长方体纸盒,将它的侧面展开正好是一个边长为6分米的正方形。
做这个纸盒至少需要多少纸板?例3 一块长方体木块,沿着高锯掉2cm 后,成为一个正方体,表面积减少40平方厘米。
求原来长方体木块的体积。
例4 有一个长方体,从上面截下一个高是2cm 的长方体后正好得到一个正方体。
正方体的表面积比原来长方体的表面积减少了48平方厘米。
求原来长方体的体积。
例5 一个长方体的高减少了2厘米后,它就变成了一个正方体,表面积比原来减少了32平方厘米。
长方体的体积是多少?BAC例6 一个正方体的高增加2厘米,得到的新长方体的表面积比原来正方体的表面积增加了56平方厘米。
求原来正方体的体积。
例7 一个长方体,如果高增加3厘米,就变成一个正方体。
这时表面积比原来增加84平方厘米。
原来长方体的体积是多少立方厘米。
3、图形拼切问题例1 把5个完全一样的正方体拼成一个长方体,这个长方体的表面积是198平方厘米。
求一个正方体的表面积。
例2 把一个长是10cm、宽是8cm、高是6cm的长方体沿水平方向切一刀,再沿着竖直方向切一刀。
表面积一共增加了多少平方厘米?例3 一个长方体的表面积是40平方厘米,正好可以把它平均分成两个相同的正方体,每个正方体的表面积是多少平方厘米?例4 将两个长6cm、宽5cm、高4cm的长方体拼成一个大长方体。
这个大长方体的表面积最多比原来减少多少平方厘米?最少呢?例5:用4个棱长5厘米的正方体粘成一个长方体,这个长方体的表面积比这四个长方体的表面积总和至少少多少平方厘米?粘成的长方体的体积多少立方厘米?例6 :一个棱长8厘米的正方体木块,沿着它的高切成连个完全一样的长方体,每个长方体的表面积是多少?体积是多少?例7 :用三个棱长为9厘米的正方体木块拼成一个长方体,长方体的表面积是多少?棱长之和是多少?4、阿基米德问题(求不规则物体体积)例1 一只装有水的长方体玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为14厘米的长方体铁块竖放在水中后.现在水深多少厘米?5例2 一只装有水的长方体玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?例3 有甲、乙两只长方体玻璃杯,其底面积分别为20平方厘米和10平方厘米,杯中盛有适量的水。
甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢。
这时乙杯中的水位上升了多少厘米?例4 一个正方体容器的棱长是25厘米,里面水深23厘米。
将一根高20厘米,横截面是500平方厘米的长方体铁块垂直插入水中,水会溢出来多少立方厘米?例5 一个长方体玻璃容器,从内测量长宽均为2分米,向容器内倒入5.8升水,再把一个苹果放入水中,这时量得容器内的水深是15厘米。
你知道这个苹果的体积是多少?一、课前检测:1、长方体的长是6厘米,宽是4厘米,高是2厘米,它的棱长总和是()厘米。
2、一个正方体的棱长为6厘米,这个正方体的棱长总和是()厘米。
3、一个正方体的棱长总和是48分米,它的棱长是()。
4、—个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是()厘米。
5、—个长方体长6厘米,宽4厘米,高3厘米。
这个长方体上下两个面的面积各是()平方厘米,前后两个面的面积各是()平方厘米,左右两个面的面积各是()平方厘米。
二、长方体和正方体的表面积:例1:计算下面图形的表面积:6芸桥培训学校 Eva 2018年5月18日74c2c4c练习1:一个长方体微波炉,长是27厘米,宽是50厘米,高是24厘米,要做一个微波炉的包装箱,至少要用多少平方厘米的硬纸板。
练习2:一个正方体墨水盒,棱长为6.5厘米,制作这个墨水盒至少需要多少平方厘米的硬纸板。
练习3:一个长方体宽是8分米,高是11分米,长是高的2倍,这个长方体的表面积是多少平方分米。
练习4:手工课上同学们要把棱长为50厘米的正方体纸箱的各面都贴上红纸,他们至少要准备多少平方厘米的红纸。
例2:一个长方体的棱长和是52厘米,它的长是8厘米,宽2厘米,它的表面积是多少平方厘米?5c芸桥培训学校 Eva 2018年5月18日8练习1:用36分米长的铁丝做一个正方体的框架,然后在各面都贴上一层纸,至少需要多少平方分米的纸?练习2:学校要在一个长25厘米,宽50厘米,高60厘米的玻璃柜的各边安装上花边,那么要多少厘米的花边? 如果要做一个这样的玻璃柜,需要多少平方厘米的玻璃?例3:一只无盖的长方体鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?练习1:张大爷制作了一种卖苹果用的长方体木箱(无盖),它的长是60厘米,宽40厘米,高30厘米。
做这种箱子至少用多少木板至少平方厘米?练习2:一间教室长8米、宽6米,高3米,现在要用涂料粉刷它的四壁和顶棚。
(1)如果扣除门、窗和黑板24平方米,求要粉刷的面积有多大?(2)如果每平方米用涂料0.15千克,一共需要多少千克涂料?芸桥培训学校 Eva 2018年5月18日9练习3:一个长方体游泳池,长20分米,宽15分米,深5分米。
(1)现要将它的每个面贴上边长4分米瓷砖,需要这样的瓷砖多少块?(2)如果每平方分米用水泥5千克,要用去多少水泥?例4:一个长方体包装盒,长宽高分别为8厘米、4厘米和5厘米,需要在包装盒四周贴上商标,需要商标纸的 面积是多少?练习1:有一个长方体的糖盒长和宽都是12厘米,高10厘米,在盒的四周贴上商标纸,这张商标纸的面积是多少?练习2:一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?练习3:在一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?做12节这样的通风管呢?芸桥培训学校 Eva 2018年5月18日10练习4:一种长方体铁皮烟囱,底面是边长3分米的正方形,高4米,制这样一节烟囱至少要用铁皮多少平方米?练习5:一款抽纸盒,长、宽、高分别是20cm, 12cm, 5cm,上面有长14cm,宽3cm 的抽纸口,做这款抽纸盒需要多少硬纸片?例5:一个长方体蓄水池,长12m,宽8m,深3m,这个水池占地面积多少平方米?练习1:有一个长方体木箱,长0.7米,宽0.5米,高0.3米。