新鲁教版六年级数学下册《整式的乘法(1)》导学案

合集下载

鲁教版(五四制)六年级下册6.5整式的乘法(第一课时)学案()

鲁教版(五四制)六年级下册6.5整式的乘法(第一课时)学案()

6.5 整式的乘法(第一课时)学案学习目标: 1、 能准确说出,并理解单项式乘单项式的法则。

2、熟练应用单项式乘单项式的法则进行单项式的乘法运算。

学习重点:单项式乘法的法则,以及应用法则进行单项式的乘法运算。

学习难点:应用法则进行单项式的乘法运算时,符号问题和前面几个法则的综合运用。

情境导入:京京用两张大小相同的纸(长为1.2x,宽为x ),精心制作了两幅画,如下图所示,第一幅画的大小与纸的大小相同,第二幅画在纸的上、下方各留有xm 81的空白,(1) 第一幅画的面积是多少?第二幅呢?你是怎样计算的?(同桌交流方法)(2) 若把图中的长1.2xm 改为xm ,其他不变,两幅图画的面积又是多少呢? 说说你的想法。

新课学习:一、 想一想:(1)z y xyz ab b a 22223••和怎样计算,说说你的做法。

(让学生分别说说自己的想法)(2)总结一下,如何进行单项式乘单项式的运算。

二、单项式乘单项式的法则单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

如:3a 2b ·2ab 2=(3×2)·(a 2·a )·(b ·b 2)=6a 3b 3 三、 例题学习:例1 计算:(先让学生看课本36页,自学) (2)[]3332326)()3()2()3()2(b a b a a a b a =•••-⨯-=-•- (3)2432222222847)2(7z y x z y x xy xyz z xy =•=•说明:在今后的运算中,单项式和其它单项式或多项式作运算时,本身可以不加括号。

随堂练习:计算: 提高练习:(学生板演,订正)计算 四、 问题解决:(1) 一家住房的结构如图所示,这家房子的主人打算把卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地砖每平方米的价格是a 元,那么购买所需地砖至少需要多少元?(2) 已知房屋的高度为h 米,那么至少需要多少平方米的壁纸?如果壁纸每平方米的价格是b 元,那么购买所需壁纸至少需要多少元?(计算时不扣除门窗所占的面积) 分析:(1)客厅的面积:2x ·4y 卧室的面积:2x ·2y 厨房的面积:x ·2y 卫生间的面积:xy32233232222533)(2)()6()()()5(8552)4()()3()2()2(4)1(c a abc ab y x z xy xyz y x xy c ab b a xy xy ••--•-•-••-•2225323222223)(631)6()4()2()5(2)4(23)3()4()3()2(25)1(ac c b a b a xy y x z y yz a ab b ab yx x -••-•••-•-•2xxy2y4x卫生间厨房卧室客厅你能类似分析需要壁纸的面积吗? (自己列式计算,小组对照) 五、 集中练习; 选择题1.计算2322)(xy y x -⋅的结果是( ) A. 105y x B. 84y x C. 85y x - D.126y x2.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( )A. z y x 663B. z y x 663-C. z y x 553D.z y x 553- 3.计算22232)3(2)(b a b a b a -⋅+-的结果为( ) A. 3617b a - B. 3618b a - C. 3617b a D. 3618b a 4.992213y x yxyx n nm m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定 5.下列计算错误的是( )A.122332)()(a a a =-⋅ B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=--- 填空题:1..___________))((22=x a ax 2.3522)_)((_________y x y x -= 3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)(4)3(523232=-⋅-b a b a5.解答题 1.计算下列各题(1))83(4322yz x xy -⋅ (2))312)(73(3323c b a b a - (3))125.0(2.3322n m mn - (4))53(32)21(322yz y x xyz -⋅⋅-2、已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

鲁教版数学六下整式的乘法学案(20201124144624)

鲁教版数学六下整式的乘法学案(20201124144624)

文档从网络中收集,已重新整理排版.word版本可编借•欢迎下载支持.整式的乘法学法指导例1计算(l)(-3.5x2y2) • (0.6A>I4Z)⑵(-6/Z?3)2• (~a2b)点拨:先确定运算顺序,再利・用单项式乘单项式的法则进行讣算.(1)直接作乘法即可,(2)先作乘方运算,再作乘法运算.解:(1)(-3.5灼2)・(0 6兀我)(在疋・兀中,x的指数是1,不要漏掉)⑵(-d/?3)2• (~a2b)“炉・(~a2b)——先算乘方=-(a2・a2)(b6・b)——再算乘法=-a4b7例2计算(1)R"(N”-R+9)(2)(4,)2 ・[T-x ・(W-l)]点拨:先确定运算顺序,再运用相应的公式进行计算.(2)中用到了幕的乘方,单乘多及去括号儿种运算公式及方法,要一步步进行.解:(1)0 (宀/+9)=a,n・a m~a in・加+9宀=a2m~a m+3+9a m(2)(4X3)2・[x3— x ・丄2疋一1)]=16炉_ 2 y+力——r先算乘方=16X6[-X3+A]——合并中括号里的同类项= -16x9+16x7例3计算(1 )(2a+3b)(3a+2b)(2)(3m-n)2点拨:这两题都需运用多项式相乘的法则进行计算,能合并同类项的要将结果化文档从网络中收集,已重新整理排版.word 版本可编辑:•欢迎下载支持.到最简的形式•注意第(2)题要化为多乘多的形式.解:(1) (2d+3b)(3"+2b 「)=2a • 3a+2a • 2b+3b • 3a+3b • 2b=6(r+4ah+9ab+6h 2=6(r+13ab+()b 2(2) (3m-n)2注意乘方的意义=(3〃”)(3d) =3m • 3m -3m • n -n • 3m+n • n=9m 2-3mn-3rnn+n 2=9nr-6mn+n 2例4 (1)(冷小2)2・[巧(*刃+与2] r(2)(-3x)2-2(x-5)(x-2)点拨:对于混合运算,一定要注意运算顺序,尤其是乘方运算,每次运算后的结 果要打上括号才能进行下一步运算.「解:(1)(- ^xy 2)2 • [_xy(2x-y)+xy 2^\9(2)(-3X )2-2(X -5)(X -2)=9X 2-2(X 2-Z¥-5,V + 10)=9启2(启7.丫+]0.)=9^-2^2+14^-20=lx 2+\4x-20说明:一般来说,为了简化运算,能合并同类项的可先合并同类项,减少项 数,再进行下一步的运算.= -x 4y 5例5解下列方程8.r-(2x-3)(4x+2)=14文档从网络中收集,已重新整理排版.word版本可编输欢迎下载支持. 点拨:利用多"乘多法则将方程左边部分化简,再运用解方程的方法求出X.解:8X2-(Z V-3)(4X+2)=148.r-(8x2+4.v-12x-6)=148.r-(8x2-8x-6)=148,V2-8,V2+8A+6=148*8x=\例6长方形的一边长3〃?+2“,另一边比它大〃求长方形的面积.点拨:先分别求出长和宽,再根据长方形的面积二长X宽”求出面积.列式的时候,表示每条越的多项式都要用括号括起来.解:长方形的宽:3m+2n长方形的长=(3m+2n)+(m-n)=4m+n长方形的面积:(3m+2n) • (4m+n)=3m • 4m+3m • n+2n • 4m+2n T• n=12nr+3mn+Smn+2n2=\2nr+\\nm+hr答:长方形的面积是\2m2+llmn+2n2.。

中学六年级数学下册 6.5 整式的乘法(第1课时)导学案(无答案)(新版)鲁教版五四制 学案

中学六年级数学下册 6.5 整式的乘法(第1课时)导学案(无答案)(新版)鲁教版五四制 学案

6.5 整式的乘法〔第1课时〕【学习目标】1.通过观察,能归纳出单项式乘以单项式的运算法那么。

2.会熟练利用单项式乘单项式的法那么进展相关运算.【学教过程】复习回忆1. 同底底数幂的乘法: 幂的乘方: 积的乘方: 同底数幂的除法:2. 叫单项式。

叫单项式的系数。

3.计算:①22()a = ②32(2)-= ③231[()]2-= ④-3m 2·2m 4 = ⑤ ()()=-÷-a a 5 其中④⑤题计算结果的系数分别是 , 。

新知探究1光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?列式为:该式的结果等于多少呢?〔运用交换律和结合律〕× =〔 〕×〔 〕=2如果将上式中的数字改为字母,即ac 5·bc 2,这是何种运算?你能算吗?ac 5·bc 2=〔 〕×〔 〕=3.仿照第2题写出以下式子的结果(1)3a 2·2a 3 = 〔 〕×〔 〕= (2) -3m 2·2m 4 =〔 〕×〔 〕=(3)x 2y 3·4x 3y 2 = 〔 〕×〔 〕= (4)2a 2b 3·3a 3= 〔 〕×〔 〕=4.观察第3题的每个小题的式子有什么特点?由此你能得到的结论是:单项式与单项式相乘,新知应用〔写出计算过程〕①〔13a 2〕·〔6ab 〕 ②4y· (-2xy 2) ③2(5)(3)a b a -- ④〔2x 3〕·22 ⑤2333(3)(2)a b abc -- ⑥(-3x 2y) ·(-2x)2归纳总结: (1)通过计算,我们发现单项式乘单项式法那么实际分为三点:一是先把各因式的__________相乘,作为积的系数;二是把各因式的_____ 相乘,底数不变,指数相加;三是只在一个因式里出现的________,连同它的________作为积的一个因式。

六年级数学下册 6.5.1 整式的乘法导学案1(无答案) 鲁教版五四制

六年级数学下册 6.5.1 整式的乘法导学案1(无答案) 鲁教版五四制

6.5.1整式的乘法【学习目标】1、理解并熟记单项式乘法法则;2、能熟练进行单项式乘法法则进行相关运算。

【学习重点】单项式乘法运算法则的应用。

【学习过程】一、复习回顾、引入新课。

3、问题思考:如何进行单项式乘以单项式的运算?4、将自己不会的问题记录在下面:三、学生展示、教师点拨。

1、学生展示自主学习成果。

2、教师点拨,知识点总结。

单项式与单项式相乘,把它们的_________、____________分别相乘,其余字母________________________,_______________。

3、学生展示随练,学生订正,教师点评。

4、巩固练习:写课本习题6.8的习题。

(写在下在的空白处)并有学生板书过程,并点评。

四、分层训练、人人达标。

A组:1、判断,不对的加以改正( 1 ) 3a2 ·2a3 = 6a6 ( ),改正:__________________( 2 ) 2x2 ·3x2=6x4 ( ) ,改正:__________________( 3 ) 3x2 ·4x2=12x2 ( ) ,改正:__________________( 4 ) 5y3 ·3y5=15y15 ( ) ,改正:__________________2、计算下列各题:(1)3a2b · 2ab3c; (2)(xyz2)·(4y2z3)(3)(2xy2)·3xyz (4)(2xy)2 ·3xyzB 组:1、计算(1));2(53ab ab -∙ (2) abc b a 944332∙(3) 22)-2ab b a (∙ (4) 3223)(2z x xyz xy ∙∙-(5)(31ab 2)3 · 27a 2bc (6)()2351091031⨯⋅⎪⎭⎫⎝⎛⨯五、拓展提高,知识延伸若(a m+1 b n+2)·(a 2n-1 b 2m )=a 5 b 3,则m+n 的值为多少?六、课堂小结:七、作业布置:2、必做题:完成基训基础园、缤纷园。

鲁教版六年级下册第6章 整式的乘除-教案(含答案)

鲁教版六年级下册第6章 整式的乘除-教案(含答案)

一、同底数幂的乘法(一) 知识点知识点1 同底数幂的意义及同底数幂的乘法法则 ★1.同底数幂的意义同底数幂是指底数相同的幂。

如32与52有相同底数2,()52-与()72-有相同底数-2,(ab)³与(ab)7有相同底数ab ,(x-y)²与(x-y)³有相同底数(x-y )等. ★2.同底数幂的乘法法则:nm nmaa a +=⋅(m ,n 都是正整数)。

同底数幂相乘,底数不变,指数相加。

★注意:(1)用同底数幂的意义来解释法则∶a m ·a n = am a a a 个)(•••⋅⋅⋅·an a a a 个)(•••⋅⋅⋅= an m a a a 个)(+•••⋅⋅⋅=a m+n (2)单个字母或数字可以看成指数为1的幂.(3)底数a 可以是数,也可以是单项式或多项式,指数必须是正整数. (4)底数不同的幂相乘不能应用此法则,如3223⋅.(5)有些底数不同的幂可设法转化为相同的底数,再按法则计算,如底数互为相反数的幂 (6)特别注意符号问题:当n 为正整数且a>0时,()n na a 22-= ()1212--±±=n n a a(7)三个或三个以上同底数幂相乘时,也具有这一性质,如∶pn m pnma a a a ++=⋅⋅(m ,n ,p 都是正整数).【小试牛刀】 1. 计算(1) (-3)7×(-3)6; (2) (101)3×(101);(3) -x 3·x 5;(4) b 2m ·b 2m+1.【答案】 D 解:(1)(-3)7×(-3)6=(-3)7+6=(-3)13;(2)(101)3×(101)=(101)3+1=(101)4; (3)-x 3·x 5=[(-1)×x 3]·x 5=(-1)[x 3·x 5]=-x 8; (4)b 2m ·b 2m+1=b 2m+2m+1=b 4m+1. 2. 计算(1)52×57;(2)7×73×72; (3) -x 2·x 3; (4) (4)(-c)3·(-c)m .【答案】 解:(1)52×57=59;(2)7×73×72=71+3+2=76; (3)-x 2·x 3=-(x 2·x 3)=-x 5; (4)(-c)3·(-c)m =(-c)3+m .3. 补充练习:判断(正确的打“√”,错误的打“×”)(1)x 3·x 5=x 15( ) (2)x·x 3=x 3( ) (3)x 3+x 5=x 8( )(4)x 2·x 2=2x 4( )(5)(-x)2·(-x)3=(-x)5=-x 5 ( ) (6)a 3·a 2-a 2·a 3=0( )(7)a 3·b 5=(ab)8( )(8)y 7+y 7=y 14( )【答案】解:(1)×.因为x 3·x 5是同底数幂的乘法,运算性质应是底数不变,指数相加,即x 3·x 5=x 8.(2)×.x·x 3也是同底数幂的乘法,但切记x 的指数是1,不是0,因此x·x 3=x 1+3=x 4.(3)×.x 3+x 5不是同底数幂的乘法,因此不能用同底数幂乘法的性质进行运算,同时x 3+x 5是两个单项式相加,x 3和x 5不是同类项,因此x 3+x 5不能再进行运算.(4)×.x 2·x 2是同底数幂的乘法,直接用运算性质应为x 2·x 2=x 2+2=x 4. (5)√.(6)√.因为a 3·a 2-a 2·a 3=a 5-a 5=0.(7)×.a 3·b 5中a 3与b 5这两个幂的底数不相同.(8)×.y 7+y 7是整式的加法且y 7与y 7是同类项,因此应用合并同类项法则,得出y 7+y 7=2y 7.知识点2 逆用同底数幂的乘法法则 ★逆用::n m nm a a a⋅=+(m ,n 都是正整数)如:33154262222222⋅=⋅=⋅=【小试牛刀】1. 已知m2=3,n2=4,求nm 2+的值;2. 已知x2=3,求3x 2+的值.【答案】 1. 12 2. 24(二) 例题精讲题型一 同底数幂的乘法与合并同类项 计算:4353a a a a a ⋅⋅+⋅【答案】 一定要先确定运算顺序,再计算 82a 题型二 同底数幂乘法法则中的方程思想 已知31123x x xx m m =⋅⋅+(x>0且x ≠1),求m 的值【答案】解∶因为'·311m 23123x x x x x m m m ==⋅⋅++++,所以3+2m+1+m=31,所以m=9.题型三 同底数幂乘法法则在科学计数法中的运用一个长方体的水池,长为3.6×10³cm ,宽为2.5×10²cm ,高为1.2x10²cm ,求它的容积. 【答案】分析∶首先应根据题意正确列出算式,然后再计算.解∶3.6x10³×2.5×10²×1.2x10²=108x10=1.08×108(cm ³). 所以它的容积为1.08×108cm ³ 题型四 拓展创新题1. 计算:2-22-23-24-25-26-27-28-29+210.【答案】[过程]注意到210-29=29·2-29×1=29·(2-1)=29,同理,29-28=28,…23-22=22,即2n +1-2n =2·2n -2n =(2-1)·2n =2n .逆用同底数幂的乘法的运算性质将2n+1化为21·2n .[结果]解:原式=210-29-28-27-26-25-24-23-22+2=2·29-29-28-27-26-25-24-23-22+2=29-28-27-26-25-24-23-22+2=…=22+2=62. 比较大小∶218×310与210x315【答案】分析∶就本题而言,先计算出它们的结果,再比较大小是相当困难的.若逆用同底数幂的乘法法则,找出它们相同的因数,再比较不同因数的大小就可以将问题简化。

鲁教版小学数学六年级下册《整式的乘法(1)》参考教案

鲁教版小学数学六年级下册《整式的乘法(1)》参考教案

6.5 整式的乘法(一)●教学目标(一)教学知识点1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算.2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想.(二)能力训练要求1.发展有条理的思考和语言表达能力.2.培养学生转化的数学思想.(三)情感与价值观要求在探索单项式与单项式相乘的过程中,利用乘法的运算律将问题转化,使学生从中获得成就感,培养学习数学的兴趣.●教学重点单项式与单项式相乘的运算法则及其应用.●教学难点灵活地进行单项式与单项式相乘的运算.●教学方法引导——发现法●教具准备投影片四张第一张:问题情景,记作(§6.5.1A)第二张:想一想,记作(§6.5.1B)第三张:例题,记作(§6.5.1C)第四张:练习,记作(§6.5.1D)●教学过程Ⅰ.创设问题情景,引入新课[师]整式的运算我们在前面学习过了它的加减运算,还记得整式的加减法是如何运算的吗?[生]如果遇到有括号,利用去括号法则先去括号,然后再根据合并同类项法则合并同类项.[师]很棒!其实整式的运算就像数的运算,除了加减法,还应有整式的乘法,整式的除法.下面我们先来看投影片§6.5.1A 中的问题:为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画.受他的启发,京京用两张同样大小的纸,精心制作了两幅画,如图6-1所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有81x 米的空白.图6-1(1)第一幅画的画面面积是 米2; (2)第二幅画的画面面积是 米2.[生]从图形我们可以读出条件,第一个画面的长、宽分别为x 米,mx 米;第二个画面的长、宽分别为mx 米、(x -81x -81x)即43x 米.因此,第一幅画的画面面积是x·(mx)米2;第二幅画的画面面积是(mx)·(43x)米2.[师]我们一起来看这两个运算:x·(mx),(mx)·(43x).这是什么样的运算.[生]x,mx,43x 都是单项式,它们相乘是单项式与单项式相乘.[师]大家都知道整式包括单项式和多项式,从这节课开始我们就来研究整式的乘法.我们先来学习单项式与单项式相乘.Ⅱ.运用乘法的交换律、结合律和同底数幂乘法的运算性质等知识,探索单项式与单项式相乘的运算法则出示投影片(§6.5.1B)想一想:(1)对于上面的问题小明也得到如下的结果:第一幅画的画面面积是x·(mx)米2;3x)米2.第二幅画的画面面积是(mx)·(4可以表达的更简单些吗?说说你的理由.(2)类似地,3a2b·2ab3和(xyz)·y2z可以表达得更简单些吗?为什么?(3)如何进行单项式与单项式相乘的运算?[师]我们来看“想一想”中的三个问题.[生]我认为这两幅画的画面面积可以表达的更简单些.x·(mx)=m·(x·x)——乘法交换律、结合律=mx2——同底数幂乘法运算性质3x)(mx)·(43m)(x·x)——乘法交换律、结合律=(43mx2——同底数幂乘法运算性质=4[生]类似地,3a2b·2ab3和(xyz)·y2z也可以表达得更简单些.3a2b·2ab3=(3×2)·(a2·a)·(b·b3)——乘法交换律、结合律=6a3b4——同底数幂乘法运算性质(xyz)·y2z=x·(y·y2)·(z·z)——乘法交换律、结合律=xy3z2——同底数幂乘法的运算性质[师]很棒!这两位同学恰当地运用了乘法交换律、结合律以及同底数幂乘法的运算性质将这几个单项式与单项式相乘的结果化成最简.在(1)(2)的基础上,你能用自己的语言描述总结出单项式与单项式相乘的运算法则吗?你们一定做得会更棒.[生]单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.[师]我们接下来就用这个法则去做几个题,出示投影片(§6.5.1C) [例1]计算: (1)(2xy 2)·(31xy);(2)(-2a 2b 3)·(-3a);22(3)7(2)xy z xyz ⋅.解:(1)(2xy 2)·(31xy)=(2×31)·(x·x)(y 2·y)=32x 2y 3;(2)(-2a 2b 3)·(-3a)=[(-2)·(-3)](a 2a)·b 3=6a 3b 3;222222343(3)7(2)7428.xy z xyz xy z x y z x y z ⋅=⋅=[师生共析]单项式与单项式相乘的乘法法则在运用时要注意以下几点: 1.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,如2a 3·3a 2=6a 5,而不要认为是6a 6或5a 5.2.相同字母的幂相乘,运用同底数幂的乘法运算性质.3.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.4.单项式乘法法则对于三个以上的单项式相乘同样适用.5.单项式乘以单项式,结果仍是一个单项式.Ⅲ.练习,熟悉单项式与单项式相乘的运算法则,及每一步运算的算理 出示投影片(§6.5.1D) 1.计算: (1)(5x 3)·(2x 2y); (3)(-3ab)·(-4b 2); (3)(2x 2y)3·(-4xy 2).2.一种电子计算机每秒可做4×109次运算,它工作5×102秒,可做多少次运算?(由几位同学板演,最后师生共同讲评) 1.解:(1)(5x 3)·(2x 2y)=(5×2)(x 3·x 2)·y=10x 3+2y=10x 5y; (2)(-3ab)·(-4b 2)=[(-3)×(-4)]a·(b·b 2)=12ab 3;(3)(2x 2y)3·(-4xy 2) =[23(x 2)3·y 3]·(-4xy 2) =(8x 6y 3)·(-4xy 2)=[8×(-4)]·(x 6·x)(y 3·y 2)=-32x 7y 5 2.解:(4×109)×(5×102) =(4×5)×(109×102) =20×1011=2×1012(次)答:工作5×102秒,可做2×1012次运算. Ⅳ.课时小结这节课我们利用乘法交换律和结合律及同底数幂乘法的法则探索出单项式相乘的运算法则,并能熟练地运用.Ⅴ.课后作业 课本习题6.8 Ⅵ.活动与探究若(a m+1b n+2)·(a 2n -1b 2m )=a 5b 3,则m+n 的值为多少?[过程]根据单项式乘法的法则,可建立关于m,n 的方程,即(a m+1b n+2)·(a 2n-1b 2m )=(a m+1·a 2n -1)·(b n+2·b 2m )=a 2n+m b 2m+n+2=a 5b 3,所以2n+m=5①,2m+n+2=3即2m+n=1②,观察①②方程的特点,很容易就可求出m+n.[结果]根据题意,得2n+m=5①,2m+n=1②,①+②得3n+3m=6,3(m+n)=6,所以m+n=2.●板书设计§6.5 整式的乘法(一)——单项式与单项式相乘问题:如何将x·(mx);(mx)·(43x)化成最简?探索:x·(mx)=m·(x·x)——乘法交换律、结合律 =mx 2——同底数幂乘法运算性质(mx)·(43x)=(43m)·(x·x)——乘法交换律、结合律3mx2——同底数幂乘法运算性质=4类似地,3a2b·2ab3=(3×2)(a2·a)(b·b3)=6a3b4;(xyz)·y2z=x·(y·y2)(z·z)=xy3z2.归纳:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.例题:例1.(师生共析)练习:(学生板演,师生共同讲评)●备课资料有趣的“3x+1问题”现有两个代数式:3x+1 ①1x ②2如果随意给出一个正整数x,那么我们都可以根据代数式①或②求出一个对应值.我们约定:若正整数x为奇数,我们就根据①式求出对应值;若正整数x 为偶数,我们就根据②式求出对应值.例如,根据这种规则,若取正整数x为18(偶数),则由②式求得对应值为9;而9是奇数,由①式求得对应值为28;同样正整数28(偶数)对应14……我们感兴趣的是,从某一个正整数出发,不断地这样对应下去,会是一个什么样的结果呢?也许这是一个非常吸引人的数学游戏.下面我们以正整数18为例,不断地做下去,如a所示,最后竟出现了一个循环:4,2,1,4,2,1…再取一个奇数试试看,比如取x为21,如b所示,结果是一样的——仍然是一个同样的循环.大家可以随意再取一些正整数试一试,结果一定同样奇妙——最后总是落入4,2,1的“黑洞”,有人把这个游戏称为“3x+1问题”.是不是从所有的正整数出发,最后都落入4,2,1的“黑洞”中呢?有人借助计算机试遍了从1到7×10的所有正整数,结果都是成立的.遗憾的是,这个结论至今还没有人给出数学证明(因为“验证”得再多,也是有限多个,不可能把正整数全部“验证”完毕).这种现象是否可以推广到整数范围?大家不妨取几个负整数或0再试一试.。

鲁教版六年级数学下册整式的乘除全章教案

鲁教版六年级数学下册整式的乘除全章教案
2、引导学生建立幂的运算法则
计算103×102.
解:103×102=(10×10×10)×(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)
=105.
若将上题中的指数用m,n表示,你会计算吗?即 =?
用字母m,n表示正整数,则有
即am·an=am+n
3.引导学生剖析法则
(1)等号左边是什么运算?
措施
自学引导
教法
探索发现法
学法
教师引导,学生自主学习
教学准备
多媒体课件
教师活动
学生活动
二次备课
一:复习回顾
二、讲授新课
1、导入新课:
现在看两个具体的幂:102103
思考:这两个幂之间有什么关系呢?
结论:我们把这种底数相同的幂叫做同底数幂
如果我们让这两个幂相乘得到的结果会是什么呢?这就是我们今天要学习的内容------同底数幂的乘法
3.保证基本的运算技能。




1.注重对运算法则的探索过程以及对算理的理解,发展有条理的思考能力与表达能力。
2.注重在代数学习中发展学生的推理能力。教学中,教师应有意识的培养学生的推理能力,鼓励学生通过合情推理了进行大胆推测,利用符号间的3.运算验证猜测或解决问题,同时鼓励学生有条理的表达自己的思考过程。
2.了解零指数幂和负整数指数幂的意义
3.理解整式乘法和整式除法运算的算理,发展有条理的思考能力及语言表达能力
4.会推导平方差公式以及完全平方公式,并能运用公式进行简单的计算




1.经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考能力及语言表达能力。

六年级下数学教学设计整式的乘除_鲁教版

六年级下数学教学设计整式的乘除_鲁教版

六年级下数学教学设计整式的乘除_鲁教版
第六章整式的乘除
教学目标1、知识目标:在现实情境中认识线段、射线、直线、角、多边形、扇形、圆等简单平面图形,了解其含义及性质,并能用符号表示,会用比较线、角的大小,知道两角的和、差的意义,了解线段的中点、角平分线的意义。

2、技能目标:观察、操作、合作交际,画图、比较、归纳
3、情感态度价值观目标:能通过角的比较等体验数、符号和图形是描述现实世界的重要手段。

教学重点应用图形与几何的知识解释生活中的现象以及解决简单的实际问题。

教学难点学生形成初步完整的几何概念,丰富学生基本几何图形概念的认识。

个人备课
小结:学
科知识构建
反思
与重建。

六年级数学下册 整式的乘除导学案(新版)鲁教版五四制

六年级数学下册 整式的乘除导学案(新版)鲁教版五四制

六年级数学下册整式的乘除导学案(新版)鲁教版五四制【学习目标】1、回顾同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法、零指数幂与负整数指数幂的运算法则,并能灵活运用法则进行运算。

2、回顾单项式乘单项式、单项式乘多项式、多项式乘多项式的运算法则及平方差公式、完全平方公式、立方公式,并能灵活运用法则及公式进行运算。

3、回顾单项式除以单项式、多项式除以单项式的运算法则,并能灵活运用法则进行运算。

【学教过程】问题一:回顾同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法、零指数幂与负整数指数幂的运算法则,准备交流。

问题反馈一:(做在练习本上,认真审题,6分钟内完成。

)1、如果,求的值。

2、已知求的值。

3、计算:(1)(2)4、已知则a,b,c的大小关系是?5、若6、若则,(-5)= 问题二:回顾单项式乘单项式、单项式乘多项式、多项式乘多项式的运算法则及平方差公式、完全平方公式、立方公式,准备交流。

问题反馈二:(认真审题,15分钟内完成。

)1、用乘法公式进行计算:(1)xx1991-20002 (2)(3)(4)(5)(2x2+7)(4x2-14x+49)2、公式变形的应用:(1)已知则(2)已知则=(3)已知则3、完全平方式:【课堂回顾】对照目标,回顾本节课所学内容。

【课堂检测】基础题:1、若y2+ay+9是完全平方公式,则a等于() (A)3 (B)-6 (C)6 (D)6或-62、计算(1)(2)能力题:已知a+b=7,ab=12,求a2+b2 , a2-ab+b2 , (a-b)2 的值。

整式的乘法(导学案)

整式的乘法(导学案)
学习过程
学习感悟
一、回顾旧知,温故知新
1、回忆幂的运算性质:
am·an=am+n(m,n都是正整数)
即同底数幂相乘,底数不变,指数相加.
(am)n=amn(m,n都是正整数)
即幂的乘方,底数不变,指数相乘.
(ab)n=anon(n为正整数)
即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
单项式乘以单项式,结果一定是单项式()
两个单项式相乘,积的系数是两个单项式系数的积()
两个单项式相乘,积的次数是两个单项式次数的积()
两个单项式相乘,每一个因式所含的字母都在结果里出现()
2、计算:
3、已知 求 的值
4、求证: 能被13整除
整式的乘法(一)(导学案)
班级姓名
课 题
整式的乘法
课型
新授
学习目标
1、探索并了解单项式与单项式相乘的法则,并运用它们进行运算.
2、让学生主动参与到探索过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力.
学习重点
单项式与单项式相乘的法则.
学习难点
计算时系数、字母及其指数的注意点.
2、探究新知:
如果将上式中的数字改为字母,即ac5·bc2,这是何种运算?你能算吗?
(学生自我思考后,小组内交流.)
(教师黑板演Biblioteka )3、试一试:(1) (2)
上面两式都是单项式相乘,通过刚才的尝试,归纳出如何进行单项式乘法?
单项式与单项式相乘,
4、新知应用:
三、巩固成果,加强练习
四、课堂反馈
1、判断:
2、计算:
= =
= =
= =

7.6 整式的乘法教案(鲁教版六年级下)doc

7.6 整式的乘法教案(鲁教版六年级下)doc

【47中八年级提高系列讲座】数学B 组 第七讲《整式的乘法(一)》1. 计算:(1)、432))(()()(c b a b a c b a c c b a -+--+---+;解:原式=432))](([])([)(c b a c b a c b a c b a -+-+-+-+--+=55)()(c b a c b a -+--+-=5)(2c b a -+-(2)、))((2111--+-+++-n n n n n n a a a a aa ; 解:原式=)()(2111111211-----+---++++-+++n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a aa =)()(32221222212212-----++++-+++n n n n n n n n a a a a a a a a=3212-+-n n a a(3)、 +++++-+++++++---21132132121)(())((a a a a a a a a a a a a n n n n )n a +。

解:设M a a a n =+++-132则原式=)())((11n n a M a M a M M a ++-++=……=21a a2.若32=a ,62=b,122=c ,求证:c a b +=2。

证明:方法一:∵36662222=⨯==b b b ,36123222=⨯==+c a c a , ∴c a b +=222 ∴2b =a +c方法二:∵12223262+=⨯⨯==a a b = ∴b=a+1,① 又∵122262122+=⨯⨯==b b c = ∴c=b+1, 即 b=c-1,② ①+②,得: 2b =a +c3.试判断2000199919992000+的末位数字。

解: 1999×1999的末位数为1,所以20001999的末位数为1, 又∵19992000的末位数为0,原式的末位数为1。

14.1.4《整式的乘法(1)》教案

14.1.4《整式的乘法(1)》教案

14.1整式的乘法(第3课时) 14.1.4 整式的乘法(第1课时)一、教学目标 (一)学习目标1.以实际问题为背景引入,激发学生对新知探索的欲望,调动学生的学习积极性. 2.理解单项式与单项式相乘的法则和单项式与多项式相乘的法则,并会运用法则进行计算.3.两个法则的熟练,灵活运用.(二)学习重点单项式与单项式、单项式与多项式相乘的运算法则的理解及其运用.(三)学习难点灵活地运用单项式与单项式、单项式与多项式相乘的法则进行计算.二、教学设计 (一)课前设计 1.预习任务(1)单项式与单项式相乘的法则:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. (2)单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 2.预习自测(1)计算:3425a b a【知识点】单项式与单项式相乘的法则. 【数学思想】【解题过程】343434725(25)()1010a b a a a b a b a b +=⨯== 【思路点拨】利用单项式与单项式相乘的法则计算. 【答案】 710a b . (2)计算:23()(2)a a -【知识点】单项式与单项式相乘的法则.【数学思想】【解题过程】23235()(2)()(8)8a a a a a -=-=-【思路点拨】先进行积的乘方运算,再利用单项式与单项式相乘的法则计算. 【答案】 58a -. (3)322(3)c c -【知识点】单项式与多项式相乘的法则. 【数学思想】转化思想【解题过程】32323532(3)22326c c c c c c c -=-⨯=-【思路点拨】先转化成单项式与单项式相乘,再利用单项式与单项式相乘的法则. 【答案】5326c c -. (4)23(3)(41)m m m --+【知识点】单项式与多项式相乘的法则. 【数学思想】转化思想 【解题过程】23232322532(3)(41)9(41)994919369m m m m m m m m m m m m m m --+=-+=-+⨯=-+【思路点拨】先转化成单项式与单项式相乘,再利用单项式与单项式相乘的法则,注意符号的确定.【答案】5329369m m m -+. (二)课堂设计 1.知识回顾(1)同底数幂的乘法的性质:同底数幂相乘,底数不变,指数相加. 即m n m n a a a +=(m ,n 为正整数).(2)幂的乘方的性质:幂的乘方,底数不变,指数相乘. 即()m n mn a a =(m ,n 为正整数).(3)积的乘方的性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即()n n n ab a b =(n 为正整数). 2.问题探究探究一:回顾旧知,创设情境,引入新课.●活动① 回顾旧知,回忆乘法交换律,乘法结合律,乘法分配律 乘法交换律:a b b a = 乘法结合律:()()ab c a bc =乘法分配律:()m a b c ma mb mc ++=++【设计意图】通过对旧知识的复习,为新知识的学习作铺垫. ●活动② 整合旧知,引出课题问题1:探索火星、月球以及其他星球的奥秘已逐渐被世人关注,飞向月球、进入太空也不再是遥远的事,浩瀚的宇宙期待着人们的光临.天文学上计算星球之间的距离的一种单位叫“光年”,即光在一年里通过的距离.一年约等于7310⨯s ,光的速度约为5310⨯km /s ,则1光年大约是多少千米? 学生容易得出:1光年大约是(7310⨯)×(5310⨯)km . 问题2:如何计算(7310⨯)×(5310⨯)呢? 师:学习了今天的知识,你一定就会迎刃而解了.【设计意图】用光年知识,激发学生对新知主动探索的欲望,调动学生学习兴趣.●活动①大胆猜想,探究单项式与单项式相乘的法则.问题1:怎样计算(7310⨯)×(5310⨯)?计算过程中用到哪些运算律及运算性质? 学生计算后,展示计算过程: (7310⨯)×(5310⨯)7512(33)(1010)910=⨯⨯⨯=⨯运用了乘法交换律、乘法结合律及同底数幂的乘法的性质.问题2:如果将上式中的数字改为字母,比如52ac bc ,怎样计算这个式子呢? 学生独立思考后,展示:52527()()ac bc a b c c abc ==.【设计意图】学生通过类比(7310⨯)×(5310⨯)的计算,来计算52ac bc ,体会由特殊到一般,具体的数字抽象到字母的学习方法,让学生在独立思考,实践中获得计算的方法. 问题3:你能根据52ac bc 的计算方法,来计算下列式子吗? (1)2732m m ; (2)23425(2)(3)p q p q m --. 学生动手计算.展示答案:(1)96m ; (2)6556p q m .【设计意图】让学生通过类比(7310⨯)×(5310⨯)和52ac bc 的计算方法,用前面获得经验来计算2732m m 和23425(2)(3)p q p q m --,从四个题目的计算,使单项式与多项式相乘的法则在学生心中基本成型.●活动② 集思广益,归纳单项式与单项式相乘的法则.师:观察52ac bc ,2732m m ,23425(2)(3)p q p q m --都是单项式与单项式相乘,通过刚才的尝试,究竟怎样进行单项式与单项式的乘法运算呢? 先独立思考,再小组讨论. 小组派代表发表小组的观点. 学生发言,老师完善,得出结论:单项式与单项式相乘的法则:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.【设计意图】通过小组合作,用文字语言表述单项式与单项式相乘的法则,培养学生的独立思考,观察,猜想,归纳,语言表达能力,和小组合作意识. 例1计算:(1)2(5)(3)a b a --;(2)32(2)(5)x xy -. 【知识点】单项式与单项式相乘的法则 【数学思想】【解题过程】解:(1)2(5)(3)a b a --[]23(5)(3)()15a a b a b=-⨯-=(2)32(2)(5)x xy -[]3232428(5)8(5)()40x xy x x y x y =-=⨯-=- 【思路点拨】注意运算顺序,先算乘方,再算乘法,先确定运算中的符号,再利用单项式与单项式相乘的法则进行计算. 【答案】(1)315a b ;(2)4240x y -.练习:1.计算: (1)2335x x ;(2)32(2)(3)a a --. 【知识点】单项式与单项式相乘的法则 【数学思想】【解题过程】(1)2335x x =515x ;(2)32(2)(3)a a --=518a -【思路点拨】确定运算顺序,先算乘方,再算乘法,注意确定运算中的符号,再利用单项式与单项式相乘的法则进行计算. 【答案】(1)515x ; (2)518a -.2.下面计算对不对?如果不对,应当怎样改正? (1)326326a a a =;(2)3515538y y y =. 【知识点】单项式与单项式相乘的法则 【数学思想】【解题过程】(1)325326a a a =;(2)3585315y y y = 【思路点拨】利用单项式与单项式相乘的法则来判断 【答案】(1)不对,应当为56a ;(2)不对,应当为815y . 【设计意图】巩固新知,达到强化的目的.回顾课前引例,1光年大约是多少千米?怎样计算(7310⨯)×(5310⨯)? (7310⨯)×(5310⨯)7512(33)(1010)910=⨯⨯⨯=⨯实际上就是把(7310⨯)×(5310⨯)看作是单项式与单项式相乘,运用单项式与单项式相乘的法则计算得到.【设计意图】解决引例,前后照应,让学生对引例问题豁然开朗,同时也让给学生感受到数学源于生活,又服务于生活.探究三:再探新知,升华提高,探究单项式与多项式相乘的法则,并会运用法则计算.★●活动①展示实际问题,引出单项式与多项式相乘的法则的思考.问题1:如图,为了扩大绿地面积,要把街心花园的一块长m米,宽b米的长方形绿地,向两边加宽a米和c米,你能用几种方法表示扩大后的绿地面积?学生思考.师生共同得出结论:方法一:()++;m a b c++.方法二:ma mb mc师:这两种方法结果有什么样的关系?学生思考得出关系:相等关系,即:()++=++.m a b c ma mb mc师:观察上式,左边是一个单项式与一个多项式的乘积,右边是几个单项式的和,怎样进行单项式与多项式的乘法运算呢?【设计意图】由生活中的实际问题,从不同的面积计算方法,引发对单项式与多项式相乘的运算法则的思考,体现数学源于生活,渗透数形结合思想.同时让学生从直观上感知单项式与多项式的乘法运算.●活动②集思广益,归纳单项式与多项式相乘的法则.师:观察式子()++=++,可以根据运算律得到这个等式吗?m a b c ma mb mc思考得出:可以根据乘法对加法的分配律得到.师:你能说说单项式与多项式的相乘的法则吗?学生独立思考,再小组讨论,小组派代表发表看法学生发言,老师完善,得出结论:单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【设计意图】让学生从面积问题和乘法分配律两个角度,得到单项式与多项式的相乘的法则,使得学生理解更深入,通过法则的得出,培养学生的合作意识和归纳能力.例2 计算(1)2(4)(31)x x -+;(2)221(2)32ab ab ab -.【知识点】单项式与多项式相乘的法则.【数学思想】将单项式与多项式相乘转化成单项式与单项式相乘,渗透转化思想 【解题过程】解:(1)2(4)(31)x x -+222232(4)(3)(4)1(43)()(4)124x x x x x x x x =-+-⨯=-⨯+-=--(2)221(2)32ab ab ab -22322211(2)32213ab ab ab ab a b a b =+-=-【思路点拨】利单项式与多项式相乘的法则计算,要注意(1)单项式乘多项式,结果仍是多项式,且项数与原多项式的项数相同;(2)符号的确定.【答案】(1)32124x x --;(2)232213a b a b -.练习:1.计算:(1)3(52)a a b -;(2)(3)(6)x y x --. 【知识点】单项式与多项式相乘的法则. 【数学思想】【解题过程】(1)3(52)a a b -=2156a ab -; (2)(3)(6)x y x --=2618x xy -+.【思路点拨】运用单项式与多项式相乘的法则计算 【答案】(1)2156a ab -;(2)2618x xy -+. 2.化简:(1)2(1)3(25)x x x x x x -++--.【知识点】单项式与多项式相乘的法则,合并同类项. 【数学思想】【解题过程】(1)2(1)3(25)x x x x x x -++--222222615316x x x x x x x x=-++-+=-+【思路点拨】运用单项式与多项式相乘的法则计算,注意各项符号的确定. 【答案】2316x x -+.【设计意图】巩固新知,达到强化的目的. ●活动③ 灵活运用两个法则进行计算.例3 化简求值: 2224(2)(3)(3)(2)y x y x x y x y --++-,其中4x =-,12y =【知识点】单项式与单项式,单项式与多项式相乘的法则,合并同类项 【数学思想】【解题过程】2224(2)(3)(3)(2)y x y x x y x y --++-2322223222232223483(3)(4)48312(4312)8118xy y x xy x y xy y x xy xy xy y xx xy y =---+-=----=----=---当4x =-,12y =时,223118x xy y ---=-6【思路点拨】根据单项式与单项式,单项式与多项式相乘的法则计算,打开括号,注意各项符号的确定,再根据整式加法的合并同类项法则得223118x xy y ---,最后把4x =-,12y =值代入223118x xy y ---从而求解. 【答案】-6练习:化简求值:223(43)(2)(3)a a a a a -+--,其中2a =-【知识点】单项式与单项式,多单项式与多项式相乘的法则,合并同类项. 【数学思想】【解题过程】223(43)(2)(3)a a a a a -+--322323321239(2)(9)123918639a a a a a a a a a a a a=-+-=-+-=--+当2a =-时,3263918a a a --+=【思路点拨】根据单项式与单项式,单项式与多项式相乘的法则计算,打开括号,注意各项符号的确定,再根据整式加法合并同类项法则得32639a a a --+,再把2a =-代入32639a a a --+从而求解.【答案】18【设计意图】巩固所学两个法则,灵活运用两个法则进行计算. 例4已知22x y =,求523(243)xy x y x y x --的值. 【知识点】单项式与多项式相乘的法则 【数学思想】整体代换思想【解题过程】解:523(243)xy x y x y x --63422232222432()4()3x y x y x y x y x y x y=--=--因为22x y =,所以:23222322()4()32242326x y x y x y --=⨯-⨯-⨯=-【思路点拨】用单项式与多项式相乘的法则对式子化简,再观察条件22x y =中,x y 的可能值较多,不可能逐一代入求解,所以考虑整体代换思想,将22x y =整体代入,从而求解. 【答案】-6练习:已知3mn =,求322(234)(2)m n m n m n -+-的值. 【知识点】单项式与多项式相乘的法则 【数学思想】整体代换思想【解题过程】解:322(234)(2)m n m n m n -+-3322324684()6()8m n m n mn mn mn mn=-+-=-+-因为3mn =,所以:32324()6()8436383108542478mn mn mn -+-=-⨯+⨯-⨯=-+-=-【思路点拨】用单项式与多项式相乘的法则对式子化简,再观察条件3mn =中,m n 的可能值较多,不可能逐一代入求解,所以考虑整体代换思想,将3mn =整体代入,从而求解.【答案】-78【设计意图】熟练运用法则进行计算,渗透整体代换的数学思想. 3.课堂总结 知识梳理(1)单项式与单项式相乘的法则:单项式与单项式相乘,把他们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(3)计算时要注意的方面:运算顺序,符号的确定 重难点归纳:(1)两个法则的理解及灵活熟练运用;(2)学习和运用法则过程中,类比,特殊到一般等方法的运用,渗透了转化,整体代换,数形结合等数学思想. (三)课后作业 基础型 自主突破1.计算262x x 结果正确的是( )A .212xB .38xC .28xD .312x 【知识点】单项式与单项式相乘法则 【数学思想】【解题过程】236212x x x =【思路点拨】利用单项式与单项式相乘法则计算 【答案】D .2.下列计算正确的是( )A .23622x x x =B .2324(2)2ab a b a b -=-C .2236611()28x y xy x y -=- D .322398()(3)27m n mn m n --=-【知识点】单项式与单项式相乘法则 【数学思想】【解题过程】3223623698()(3)(27)27m n mn m n m n m n --=-=- 【思路点拨】利用单项式与单项式相乘法则计算【答案】D .3.计算42(31)x x -结果正确的是( )A .552x x -B . 561x -C . 562x x -D .462x x -【知识点】单项式与多项式相乘的法则【数学思想】【解题过程】452(31)62x x x x -=-【思路点拨】利用单项式与多项式相乘的法则计算【答案】C .4.下列计算正确的是( )A.22()xy x y x y xy -=+B.2323(21)363m m m m m m --=--C.23(1)1x x x x x --=--D.2322(1)222a a a a a a ---=---【知识点】单项式与多项式相乘的法则【数学思想】【解题过程】2323(21)363m m m m m m --=--【思路点拨】利用单项式与多项式相乘的法则计算,注意符号的确定.【答案】B .5.若2(2)()x ax x -+-的展开式中2x 项的系数为4-,则a 的值为( )A.4-B.2-C.2D.4【知识点】单项式与多项式相乘的法则【数学思想】对应思想【解题过程】2(2)()x ax x -+-322x ax x =-+-因为原式中的2x 的系数为4-,所以4a =-【思路点拨】单项式与多项式相乘的法则,展开括号,再根据要求,对应求出a .【答案】A .6.通过计算几何图形的面积可表示一些代数恒等式,如图所示的几何图形的面积可表示的代数恒等式是( )A.222()2a b a ab b +=++B.22()()a b a b a b +-=-C.222()2a b a ab b -=-+D.22()22a a b a ab +=+【知识点】通过面积恒等反映单项式与多项式相乘的运算方法.【数学思想】数形结合思想【解题过程】几个图形的面积相加得:222a ab +,长乘以宽得长方形的面积为2()a a b +,即:22()22a a b a ab +=+【思路点拨】大长方形由两个面积相等的正方形和两个面积相等的的长方形组成,因此,面积有两种算法:一是由几个图形的面积相加得:22222a a ab ab a ab +++=+;二是由长乘以宽得长方形的面积为2()a a b +,所以可以得到一个恒等式:22()22a a b a ab +=+【答案】D .能力型 师生共研7.“三角”表示3abc ,“方框” 表示4y z x w -,则×=__________.【知识点】单项式与单项式相乘的法则【数学思想】对应思想【解题过程】525236(33)(4)9(4)36mn n m mn n m m n ⨯-=-=-【思路点拨】根据题中新定义化简所求的式子,利用单项式与单项式相乘的法则计算即可得结果.【答案】3636m n -.8.解下列方程:24(3)3(3)(2)0a a a a a a +--++-+=【知识点】单项式与多项式相乘的法则,解一元一次方程.【数学思想】【解题过程】24(3)3(3)(2)0a a a a a a +--++-+=2224412932031204a a a a a a a a +----+=--==-【思路点拨】利用单项式与多项式相乘的法则计算,把左边化简,再解关于a 一元一次方程.【答案】4a =-.探究型 多维突破9.有理数,m n 满足条件2231(35)0m n m n -++++=,求代数式222(2)()(6)mn n mn --的值.【知识点】单项式与单项式相乘的法则,等式的非负性.【数学思想】方程思想【解题过程】222222236(2)()(6)4()(6)24mn n mn m n n mn m n --=-=- 因为2231(35)0m n m n -++++= 所以22310,(35)0m n m n -+≥++≥2310350m n m n -+=⎧⎨++=⎩ 解得21m n =-⎧⎨=-⎩,所以3624192m n -= 【思路点拨】根据单项式与单项式相乘的法则进行计算化简,在化简过程中注意运算顺序和符号的确定,再根据等式非负性组成方程组求出,m n 的值,将,m n 的值代入化简的式子,从而求解.【答案】192.10.试说明:对于任意自然数x ,代数式[](3)(9)6x x x x +--+的值能被6整除.【知识点】单项式与多项式相乘的法则,合并同类项【数学思想】【解题过程】[](3)(9)6x x x x +--+22223(96)3961266(21)x x x x x x x x x x =+--+=+-+-=-=-因为代数式[](3)(9)6x x x x +--+计算后的结果为6和21x -的积,所以原代数式能被6整除.【思路点拨】化简式子后,观察是6的倍数.【答案】见解答过程.自助餐1.若51015()m n x y xy x y =,则3(1)m n +的值为( )A .9B .15C .18D .10【知识点】单项式与单项式相乘的法则【数学思想】对应思想【解题过程】51155555()()m n m n m n x y xy x y x y ++++==因为 51015()m n x y xy x y =,所以 55551015m n x y x y ++=,所以55105515m n +=⎧⎨+=⎩,解得:12m n =⎧⎨=⎩,即3(1)9m n += 【思路点拨】先计算括号内单项式与单项式的乘法,再利用积的乘方得到55551015m n x y x y ++=,组成方程组55105515m n +=⎧⎨+=⎩,求出m ,n 的值,再代入式子求解.【答案】A .2.若三角形的底边为21x +,高为2x ,则此三角形的面积为( )A .241x +B .242x x +C . 2122x x +D .22x x + 【知识点】单项式与多项式相乘的法则【数学思想】 【解题过程】21(21)222x x x x +=+ 【思路点拨】根据三角形面积公式求面积【答案】D .3.计算232221()3(2)2a b ab c ab -=____________ 【知识点】单项式与单项式相乘的法则【数学思想】 【解题过程】232221()3(2)2a b ab c ab - 6322499134832a b ab c a b a b c =-=- 【思路点拨】根据单项式与单项式相乘法则计算,对于三个单项式相乘,单项式与单项式相乘法则仍然适用. 【答案】9932a b c -. 4.单项式A 、B 满足234(3)7x A x x y B -=+,则A =_________,B =_________.【知识点】单项式与多项式相乘的法则【数学思想】对应思想【解题过程】24(3)412x A x Ax x -=-因为234(3)7x A x x y B -=+,所以2347Ax x y =,212B x =-所以 374A xy = 【思路点拨】利用单项式与多项式相乘的法则化简,与右边部分对应相等,从而求解【答案】 374A xy =,212B x =-. 5.小敏家新购了一套结构如图的住房,正准备装修.(1)试用代数式表示这套住房的总面积;(2)若x =2.6m ,y =3.1m, ,装修客厅和卧室至少需要准备多少面积的木地板?【知识点】单项式与单项式相乘的法则【数学思想】数学源于生活,又服务于生活【解题过程】解:(1)24222x y x y x y x y +++15xy =(2)客厅和卧室的总面积为:4812xy xy xy +=,将x =2.6,y =3.1代入,得12xy =12×2.6×3.1=96.72(2m ).【思路点拨】先根据单项式乘以单项式法则求出总面积,再根据条件,代入求出答案.【答案】(1)15xy ;(2)96.72(2m ).6.已知2232(2)(36)4m m pm m m ----+中不含3m 项,求p 的值.【知识点】单项式与多项式相乘的法则,合并同类项.【数学思想】【解题过程】解:2232(2)(36)4m m pm m m ----+43232432621246(24)13m pm m m m m p m m=-++-+=-+-+因为原式不含3m 项,所以240p -=,p =2 【思路点拨】先利用单项式与多项式相乘的法则将式子化简,在合并同类项,得出3m 的系数为24p -,再根据条件,得到240p -=,从而求出p 值.【答案】2.。

《整式的乘法》第一课时教案

《整式的乘法》第一课时教案

《整式的乘法》第一课时教案《《整式的乘法》第一课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1.教学内容(1)单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.地位与作用单项式乘单项式综合用到有理数的乘法、幂的运算性质等知识,它是学习多项式乘法的基础,在整式乘法中,它有承前启后的作用,是整式乘法的关键.单项式乘多项式是研究多项式与多项式相乘、整式的除法和因式分解的基础,同时也是学习物理、化学等学科不可缺少的工具.本节课的教学效果将直接影响后续课程的教学.3.教学重点(1)单项式与单项式相乘法则的概括过程和运用.(2)单项式与多项式相乘法则的概括过程和运用.二、目标解析1.目标(1)理解单项式乘单项式、单项式乘多项式法则.(2)能够运用单项式乘单项式、单项式乘多项式法则进行运算.(3)在探索单项式与多项式相乘法则中,发展学生的运算能力,体会转化思想和数形结合的思想.2.目标解析(1)学生能理解并掌握单项式与单项式相乘、单项式与多项式相乘法则.(2)学生能运用单项式与单项式、单项式与多项式相乘法则.(3)结合具体的实例,让学生体会从特殊到一般的数学思想及类比的学习方法.三、学情诊断八年级学生已经掌握了有理数的乘法,并对幂的运算性质有一定的认知水平,再利用单项式与单项式相乘法则过程中,符号是计算过程中极易出错的问题.单项式与多项式相乘是利用乘法分配律展开,结果是一个多项式,其项数与多项式中的项数相同,学生往往出现漏乘现象.四、教学策略1.教学手段利用多媒体和导学案辅助教学,提高课堂效率和学生的积极性.2.教学工具电脑和投影仪.五、教学过程本节课以教材为蓝本,以学生为主体,以高效为目标,以多媒体和导学案为手段,我将整个教学过程设计为以下8个环节:1.观看视频,激发热情首先让学生欣赏一段天宫二号起飞的视频,再提出问题:“天宫二号飞行的高度怎么求?”,由于学生已经学过路程问题,他们很快能说出“速度乘时间”.【设计意图】由天宫二号起飞视频入手,提高学生的学习积极性,既能让学生体会到数学来源于生活,也能服务于生活,更能激发学生的爱国热情.2.引入问题,探索新知新课标指出,教师是课堂教学的组织者、引导者、合作者,学生才是学习的主体.因此在这一环节,我引导学生探索,设置了问题1.问题1“天宫二号”垂直起飞的平均的速度约7×103m/s,垂直飞行的时间约2×102s,你知道“天宫二号”垂直飞行路程约是多少吗?问题1是由学生观看的视频抽象出来数学问题,并提出问题:“天宫二号”的垂直飞行的路程是多少呢?学生根据已经学过的知识,很容易的得出结论(7×103)×(2×102)m.我接着问:“那么(7×103)×(2×102)等于多少呢”,学生根据整数与整数的乘法和科学记数法等知识,能求出结果是1.4×106.肯定学生的回答后,再次追问了一个问题:在计算(7×103)×(2×102)的过程中,运用了哪些运算律和运算性质?这个问题不是很难,学生能够回答,结论是:乘法交换律、乘法结合律以及幂的运算性质.为了进一步引导,我追问了两个问题.追问1如果将数据7×103改为7c3,2×102改为2c2,怎样计算7c3·2c2这个式子?追问2如果将数据7c3改为ac3,那怎样计ac3·2c2这个式子?追问1是将问题1中物理问题转化为纯数学问题,把数据10换成c.追问2是将思考题1中的7换成了a.通过追问1和追问2,我把“数”的运算转化为“式”的运算,并在此基础上,让小组合作讨论、归纳和总结出“式”的运算规律,即单项式与单项式相乘法则.【设计意图】第一个环节,是为探索单项式与单项式相乘法则做知识铺垫,第二个环节通过由特殊到一般,由具体到抽象,通过类比得出单项式与单项式相乘法则,同时也培养学生了探索新知的方法3.总结新知,应用新知通过问题1探究,归纳提炼出单项式与单项式相乘法则,即:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.在这个运算法则里,要强调三个方面的内容,即系数、同底数幂和只在一个单项式里含有的字母.为了引导学生使用这个法则,我设置了例题1.例1计算:(1)(-5a2b)(-3a)(2) (2x)3(-5xy2)运用法则解决问题时,首先要认清式子的结构,即是否单项式与单项式相乘.显然例1第一题符合这样的结构,而例1第二题不符合这样的结构,式子里面有一个积的乘方运算,所以先运算积乘方,然后转化为单项式与单项式相乘.【设计意图】引导学生使用法则,加深学生对法则的理解.4.应用新知提高能力为了突出难点1,我设置了练习1和练习2.练习1口算下列各题,看谁算得又对又快:(1) 6x2·3xy(2) 4y·(-2xy2)(3) (-3ab)·2ab2(4) (-3x)2·5x3练习2计算:(1) (-3x)2·4x2(2) (-2a)3·(-3a)2练习1是一个抢答题,不但提高了学生的积极性,也活跃了课堂气氛,更让学生加强了对法则的理解和应用.练习2由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,适时提醒学生注意符号问题.练习1、练习2加强了单项式与单项式相乘法则的应用.【设计意图】第一个环节是为了激发学生的积极性,活跃课堂氛围,初步检查了部分学生的掌握情况.第二个环节是检验全体学生的掌握情况.5.引入问题再探新知为了突破重点2,我引入了问题2,把实验中学的“思源广场”花坛抽象成为数学问题.问题2为了扩大绿地面积,实验中学把“思源广场”的一块长pm,宽bm的长方形绿地,向两边分别加宽am和cm,你能用几种方法表示扩大后的整个绿地面积?学生根据数形结合思想,用两种不同方式表示花坛的面积,利用面积不变这一条件,得到一个单项式乘多项式等于多项式,并由小组合作探究单项式与多项式相乘的规律.【设计意图】由校园内的“思源广场”引出新知,可以增加学生的学习兴趣.在推导法则过程中,体会转换和数形结合的思想的应用.6.归纳新知应用新知根据小组探究结果,由小组代表总结出单项式与多项式相乘法则,即:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.在得出单项式与多项式相乘法则后,引导学生发现,单项式与多项式相乘,实质是利用乘法分配律转化为单项式与单项式相乘,再把所得的积相加.这一过程体现了转化的数学思想.为了突破难点2,我设置了例题2.例2计算:(1)(-4x)·(3x+1)(2)【设计意图】加强对法则的理解,由老师根据法则完成例题2,并适时提醒学生避免出现“漏乘”现象,并注意符号问题.7.训练新知拓展提升第一个环节,为了突破难点2,我设置了练习3.练习3计算:(1)3a(5a-2b)(2)(x-3y)(-6x)练习3由学生独立完成,学生代表板书.师生共同点评学生代表板书结果,并了解下面学生掌握情况,适时提醒可能出现的问题.【设计意图】由学生独立完成,学生代表板书,可以检验学生对法则的掌握情况为了培养学生的发散思维,第二个环节设置了一个拓展提升题:如图是改造后的“思源广场”花坛,你能求出它的整个面积吗?在这个环节中,小组内再次合作交流,从不同角度看待这个问题,通过一题多思,一题多解培养学生的探索精神和创新意识.通过学生发言讲解,体现学生是课堂的主体,把课堂真正还给学生.【设计意图】用不同方法求面积,培养学生的发散思维.8.总结收获课后反思为了让学生能清晰的理出本节课所学的知识,我引导学生从两个方面进行总结:(1)本节课在数学知识上你有哪些收获?(2)本节课体现出了哪些数学思想?【设计意图】通过归纳总结,优化知识结构,完善知识体系,体会数学思想,提高认知水平,同时培养了学生的归纳能力、语言表达能力.本节课同学们共同探讨了单项式与单项式相乘、单项式与多项式相乘法则,知识点都是学生通过探索、归纳发现的.对知识的理解步步深入,达到了各层次的目标要求,并且本节课注重了知识的拓展延伸,使课堂效益达到最佳状态.《整式的乘法》第一课时教案这篇文章共10120字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.5 整式的乘法(一)
一、学习目标与要求:
1、经历探索单项式乘法法则的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则
2、会利用法则进行单项式的乘法运算
3、理解单项式乘法运算的算理,发展有条理的思考能力和语言表达能力
二、重点与难点:
重点:单项式乘法法则及其应用
难点:理解运算法则及其探索过程
三、学习过程:
复习巩固:运用幂的运算性质计算下列各题:
(1)(-a 5)5
(2) (-a 2b)3
(3) (-2a)2(-3a 2)3
(4) (-y n )2 y n-1
探索发现:
一、探索单项式乘法法则
1、如图,你能不能表示出两幅画的面积
(说明:两张纸的大小是一样的,第一幅画
的大小与纸的大小相同,第二幅上下个留有18x 米的空白) (1)第一幅画的画面面积是_____________米2;
(2)第二幅画的画面面积是____________米2
2、说说你的方法,并思考上面的结果能不能表达的更简单?说说你的理由
3、类似地,你能把下面的算式表达的更简单吗?
(1)2332a b ab ⋅
(2) 2()xyz y z ⋅
4、你能说出上面的运算属于什么运算吗?_____________,你能归纳一下这种运算的方
法吗?
5、经历了上面的探索过程,请在下面写出单项式乘法法则:
___________________________________________________________________________________
二、巩固与练习
例1 计算(请利用单项式乘法法则进行计算,并归纳计算的注意事项或者技巧) (1) 21(2)()3xy xy ⋅ (2) 23(2)(3)a b a -⋅- 22(3)7(2)xy z xyz ⋅
巩固练习:
1、计算:
(1) 32(5)(2)x x y ⋅
(2) 2(3)(4)ab b -⋅- (3) 2325()()58x y xyz ⋅
(4) 38(210)(810)⨯⋅⨯
(5) 232(2)(4)x y xy ⋅- (6) 23223()()xy z x y -⋅-
2、一种电子计算机每秒可做9410⨯次运算,它工作2510⨯秒,可做多少次运算?
3、一家住房的结构如图示,房子的主人打算把卧室以外的部分
全都铺上地砖,至少需要多少平方米的地转?如果某种地砖的
价格是a 元/平方米,那么购买所需地砖至少需要多少元?
4、122153())m n n a b a b a b m n ++-⋅⋅=+若(求的值?,
学习小结:谈一谈本节课你的收获。

相关文档
最新文档