2002年全国卷高考理科数学试题及答案
2002年全国卷高考理科数学试题及标准答案
2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21 (B )23 (C)1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A)N M = (B )N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B)1 (C )2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C)︒45 (D)︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B)0≤b (C)0>b (D)0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B)12种 (C)16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000亿元 (B)120000亿元 (C )127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα〉tgβ(C)若α、β是第三象限角,则cosα〉cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26。
2023年全国统一高考数学试卷(理科)(甲卷)(解析版)
2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
2003年高考.全国卷.理科数学试题及答案
003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示 )]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54co s =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z 18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与BA 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G (I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示)(II )求点1A 到平面AED 的距离 19.(本小题满分12分) 已知0>c ,设P :函数x c y =在R 上单调递减 Q :不等式1|2|>-+c x x 的解集为R 如果P 和Q 有且仅有一个正确,求c 的取值范围 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南102arccos (=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?D E KBCABFC G东21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由 22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{t s + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cos r r z +=,则复数.2rz 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞ 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有 .)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DGk k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分) (Ⅰ)解:用(t,s)表示22t s+,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3) — — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100ts a +=,只须确定正整数.,00t s数列}{n a 中小于02t的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C 依次为 (0,1,3) (0,2,3) (1,2,3) 23C (0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10).........(0,7,10)( 1,7,10)(2,7,10)(3,7,10) (2)7C +422222397()4145.k C C C C =+++++= 本试卷来源于《七彩教育网》。
2022年全国甲卷数学(理科)高考真题原卷及参考答案
既然已经出发,就一定能到达!2022年普通高等学校招生全国统一考试(全国甲卷)理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若1z =−,则1zzz =−( )。
A .1−+B .1−C .1i 33−+ D .1i 33−− 2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差- 2 -3.设全集{2,1,0,1,2,3}U =−−,集合{}2{1,2},430A B x x x =−=−+=∣,则()U A B =ð( )A .{1,3}B .{0,3}C .{2,1}−D .{2,0}−4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A .8B .12C .16D .20 5.函数()33cos x x y x −=−在区间ππ,22⎡⎤−⎢⎥⎣⎦的图像大致为( ) A . B .C .D .6.当1x =时,函数()ln bf x a x x=+取得最大值2−,则(2)f '=( ) A .1− B .12− C .12D .17.在长方体1111ABCD A B C D −中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则( )A .2AB AD = B .AB 与平面11ABCD 所成的角为30︒ C .1AC CB = D .1B D 与平面11BB C C 所成的角为45︒既然已经出发,就一定能到达!8.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A B C D 9.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )A B . C D .410.椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ的斜率之积为14,则C 的离心率为( )A .2 B .2 C .12 D .1311.设函数π()sin 3f x x ω⎛⎫=+⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( ) A .513,36⎡⎫⎪⎢⎣⎭ B .519,36⎡⎫⎪⎢⎣⎭ C .138,63⎛⎤ ⎥⎝⎦ D .1319,66⎛⎤⎥⎝⎦12.已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >> C .a b c >> D .a c b >>二、填空题:本题共4小题,每小题5分,共20分。
2003年高考.全国卷.理科数学试题及答案
(B)( 1, ) (D)( , 1) (1, )
()
(A)1 2
(B) 2 1
(C) 2
(D)2
5.已知圆 C: (x a) 2 ( y 2) 2 4 ( a 0 )及直线 l : x y 3 0 ,当直线 l 被 C 截
得的弦长为 2 3 时,则 a
如果 P 和 Q 有且仅有一个正确,求 c 的取值范围
20.(本小题满分 12 分) 在某海滨城市附近海面有一台风,据监测,当前
台 风 中 心 位 于 城 市 O( 如 图 ) 的 东 偏 南
2 ) 方 向 300km 的 海 面 P 处 , 并 以 ( arccos 10
20km/h 的速度向西偏北 45 方向移动,台风侵袭的范
2 5
,
2 3
)
11.
lim
n
C 22
n(C
1 2
C32 C31
C 42 C 41
Cn C2n1 )
()
(A)3
(B) 1 3
(C) 1 6
(D)6
12.一个四面体的所有棱长都为 2 ,四个顶点在同一球面上,则些球的表面积为( )
(A) 3 (B) 4
(C) 3 3
(D)
6
2003年普通高等学校招生全国统一考试(全国卷)
()
(A) 2
(B) 2 2
(C) 2 1
(D) 2 1
6.已知圆锥的底面半径为 R,高为 3R,在它的所有内接圆柱中,全面积的最大值是
()
(A) 2 R 2
(B) 9 R 2 4
(C) 8 R 2 3
2023年高考全国乙卷理科数学试题(含答案详解)
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学一、选择题1. 设252i1i iz +=++,则z =( ) A. 12i −B. 12i +C. 2i −D. 2i +2. 设集合U =R ,集合{}1M x x =<,{}12N x x =−<<,则{}2x x ≥=( ) A. ∁U (M ∪N ) B. N ∪∁U M C. ∁U (M ∩N )D. M ∪∁U N3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 25. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18 B.16C.14D.126. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.7. 甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A. 30种B. 60种C. 120种D. 240种8. 已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,120AOB ∠=︒,若PAB 的面积等于)A.πB.C. 3πD.9. 已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( ) A.15B.5C.D.2510. 已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A. -1B. 12−C. 0D.1211. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−12. 已知O 的半径为1,直线P A 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC的中点,若PO =PA PD ⋅的最大值为( )A.12B.12+C. 1+D. 2二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.15. 已知{}n a 为等比数列,24536a a a a a =,9108a a =−,则7a =______.16. 设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18. 在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.19. 如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ; (2)证明:平面ADO ⊥平面BEF ; (3)求二面角D AO C −−的正弦值.20. 已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.21. 已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)是否存在a ,b ,使得曲线1y f x ⎛⎫=⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由. (3)若()f x 在()0,∞+存在极值,求a 的取值范围.四、选做题【选修4-4】(10分)22. 在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23. 已知()22f x x x =+−. (1)求不等式()6f x x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+−≤⎩所确定的平面区域的面积.(2023·全国乙卷·理·1·★)设252i1i i z +=++,则z =( )(A )12i −(B )12i +(C )2i −(D )2i+答案:B解析:由题意,2252222i 2i 2i (2i)ii 2i 12i 1i i 11(i )i i iz ++++=====−−=−++−+,所以12i z =+. (2023·全国乙卷·理·2·★)设全集U =R ,集合{|1}M x x =<,{|12}N x x =−<<,则{|2}x x ≥=( ) (A )∁U (M ∪N ) (B )N ∪∁U M (C )∁U (M ∩N ) (D )M ∪∁U N 答案:A解析:正面求解不易,直接验证选项,A 项,由题意,{|2}MN x x =<,所以(){|2}U MN x x =≥ð,故选A.(2023·全国乙卷·理·3·★)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )(A )24(B )26(C )28(D )30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.答案详解(2023·全国乙卷·理·4·★★)已知e ()e 1xax x f x =−是偶函数,则a =( )(A )2− (B )1− (C )1 (D )2 答案:D解法1:要求a ,可结合偶函数的性质取特值建立方程,由()f x 为偶函数得(1)(1)f f −=,故1e ee 1e 1a a −−−=−− ①, 又111e e e e 11e e 1a a aa −−−−−−==−−−,代入①得1e e e 1e 1a a a −=−−, 所以1e e a −=,从而11a −=,故2a =, 经检验,满足()f x 为偶函数.解法2:也可直接用偶函数的定义来分析,因为()f x 为偶函数,所以()()f x f x −=恒成立,从而e e e 1e 1x x ax ax x x −−−=−−,故e e e 1e 1x x ax ax −−−=−−,所以e e e 1e e 1x ax x axax −−⋅=−−,从而e e e 1e 1ax x xax ax −=−−,故e e ax x x −=, 所以ax x x −=,故(2)0a x −=,此式要对定义域内任意的x 都成立,只能20a −=,所以2a =.(2023·全国乙卷·理·5·★)设O 为平面坐标系的原点,在区域22{(,)|14}x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于 π4 的概率为( )( ) (A )18(B )16(C )14(D )12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·理·6·★★)已知函数()sin()f x x ωϕ=+在区间2(,)63ππ单调递增,直线6x π=和23x π=为函数()y f x =的图象的两条对称轴,则5()12f π−=( ) (A) (B )12− (C )12(D答案:D解析:条件中有两条对称轴,以及它们之间的单调性,据此可画出草图来分析, 如图,2362T T πππ−=⇒=,所以22Tπω==,故2ω=±, 不妨取2ω=,则()sin(2)f x x ϕ=+, 再求ϕ,代一个最值点即可,由图可知,()sin(2)sin()1663f πππϕϕ=⨯+=+=−,所以232k ππϕπ+=−,从而52()6k k πϕπ=−∈Z , 故55()sin(22)sin(2)66f x x k x πππ=+−=−,所以5555()sin[2()]sin()sin 1212633f πππππ−=⨯−−=−==.(2023·全国乙卷·理·7·★★)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )(A )30种 (B )60种 (C )120种 (D )240种 答案:C解析:恰有1种课外读物相同,可先把相同的课外读物选出来,再选不同的, 由题意,先从6种课外读物中选1种,作为甲乙两人相同的课外读物,有16C 种选法,再从余下5种课外读物中选2种,分别安排给甲乙两人,有25A 种选法, 由分步乘法计数原理,满足题意的选法共1265C A 120=种.(2023·全国乙卷· 理· 8·★★★)已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,o 120AOB ∠=,若PAB ∆,则该圆锥的体积为( ) (A )π (B (C )3π (D ) 答案:B解析:求圆锥的体积只差高,我们先翻译条件中的PAB S ∆,由于P A ,PB 和APB ∠都未知,所以不易通过1sin 2PAB S PA PB APB ∆=⋅⋅∠求P A ,再求PO ,故选择AB 为底边来算PAB S ∆,需作高PQ ,而AB 可在AOB ∆中求得,在AOB ∆中,由余弦定理,222AB OA OB =+−2cos 9OA OB AOB ⋅⋅∠=,所以3AB =,取AB 中点Q ,连接PQ ,OQ ,则OQ AB ⊥,PQ AB ⊥, 所以1133222PAB S AB PQ PQ PQ ∆=⋅=⨯⨯=,又PAB S ∆=,所以32PQ =PQ =,在AOQ ∆中,o 1602AOQ AOB ∠=∠=,所以cos OQ OA AOQ =⋅∠=,故OP ==所以圆柱PO 的体积213V π=⨯.PO ABQ(2023·全国乙卷·理·9·★★★)已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角C ABD −−为o 150,则直线CD 与平面ABC 所成角的正切值为( )(A )15(B (C (D )25答案:C解析:两个等腰三角形有公共的底边,这种情况常取底边中点构造线面垂直, 如图,取AB 中点E ,连接DE ,CE ,由题意,DA DB =,AC BC =,所以AB DE ⊥,AB CE ⊥,故DEC ∠即为二面角C AB D −−的平面角, 且AB ⊥平面CDE ,所以o 150DEC ∠=, 作DO CE ⊥的延长线于O ,则DO ⊂平面CDE , 所以DO AB ⊥,故DO ⊥平面ABC ,所以DCO ∠即为直线CD 与平面ABC 所成的角,不妨设2AB =,则1CE =,DE = 因为o 150DEC ∠=,所以o 30DEO ∠=,故3cos 2OE DE DEO =⋅∠=,sin OD DE DEO =⋅∠=,52OC OE CE =+=,所以tan OD DCO OC ∠==. DACBEO【反思】两个等腰三角形有公共底边这类图形,常取底边中点,构造两个线线垂直,进而得出线面垂直.(2023·全国乙卷·理·10·★★★★)已知等差数列{}n a 的公差为23π,集合*{cos |}n S a n =∈N ,若{,}S a b =,则ab =( )(A )1− (B )12− (C )0 (D )12答案:B解析:由题意,S 中的元素为1cos a ,2cos a ,3cos a ,…,由于cos y x =周期为2π,恰为公差的3倍,所以cos n a 必以3为周期重复出现,故只需考虑前三个值. 但题干却说{,}S a b =,只有两个元素,为什么呢?这说明前三个值中恰有两个相等,若讨论是哪两个相等来求1a ,则较繁琐,我们直接画单位圆,用余弦函数的定义来看,如图,由三角函数定义可知,在终边不重合的前提下,余弦值相等的两个角终边关于x 轴对称,所以要使1cos a ,2cos a ,3cos a 中有两个相等,则1a ,2a ,3a 的终边只能是如图所示的两种情况,至于三个终边哪个是1a ,不影响答案,只要它们逆时针排列即可, 若为图1,则131cos cos 2a a ==,2cos 1a =−,所以S 中的元素是12和1−,故12ab =−;若为图2,则1cos 1a =,231cos cos 2a a ==−,所以S 中的元素是1和12−,故12ab =−.1图2图(2023·全国乙卷·理·11·★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可能为线段AB 中点的是( )(A )(1,1) (B )(1,2)− (C )(1,3) (D )(1,4)−− 答案:D解析:涉及弦中点,考虑中点弦斜率积结论,A 项,记(1,1)M ,由中点弦斜率积结论,9AB OM k k ⋅=,因为1OM k =,所以9AB k =,又直线AB 过点M , 所以AB 的方程为19(1)y x −=−,即98y x =− ①,只要该直线与双曲线有2个交点,那么A 项就正确,可将直线的方程代入双曲线方程,算判别式,将①代入2219y x −=整理得:272144730x x −+=, 21(144)47273144(144273)2880∆=−−⨯⨯=⨯−⨯=−<,所以该直线与双曲线没有两个交点,故A 项错误,同理可判断B 、C 也错误,此处不再赘述; D 项,记(1,4)N −−,则4ON k =,由中点弦斜率积结论,9AB OM k k ⋅=,所以94AB k =, 又直线AB 过点N ,所以AB 的方程为91(1)4y x −=−,整理得:9544y x =− ②, 将②代入2219y x −=整理得:263901690x x +−=, 判别式2290463(169)0∆=−⨯⨯−>,所以该直线与双曲线有两个交点,故D 项正确.(2023·全国乙卷·理·12·★★★★)已知⊙O 半径为1,直线P A 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO PA PD ⋅的最大值为( )(A (B (C )1 (D )2+答案:A解析:1OA =,1PO PA ===,所以cos cos PA PD PA PD APD PD APD ⋅=⋅∠=∠ ①, 且PAO ∆是等腰直角三角形,所以4APO π∠=,因为D 是BC 的中点,所以OD BC ⊥,求PA PD ⋅要用APD ∠,故可设角为变量,引入CPO ∠为变量,可与直角PDO ∆联系起来,更便于分析, 设CPO θ∠=,则04πθ≤<,有图1和图2两种情况,要讨论吗?观察发现图2的每一种PD ,在图1中都有一个对称的位置,二者PD 相同,但图2的夹角APD ∠更大,所以cos APD ∠更小,数量积也就更小,从而PA PD ⋅的最大值不会在图2取得,故可只考虑图1, 如图1,4APD APO CPO πθ∠=∠−∠=−,代入①得cos()4PA PD PD πθ⋅=− ①,注意到PD 与θ有关,故将它也用θ表示,统一变量, 由图可知,cos PD PO DPC θ=∠=, 代入①得:2cos cos()4PA PDπθθ⋅=−2)cos sin cos θθθθθθ==+ 1)1cos 214sin 2222πθθθ+++=+=,故当8πθ=时,sin(2)14πθ+=,PA PD ⋅取得最大值12+.A PODB C A PODBC1图2图θθ(2023·全国乙卷·理·13·★)已知点A 在抛物线2:2C y px=上,则点A 到C 的准线的距离为_____. 答案:94解析:点A 在抛物线上25212p p ⇒=⋅⇒=, 所以抛物线的准线为54x =−, 故A 到该准线的距离591()44d =−−=.(2023·全国乙卷·理·14·★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z ,联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8(2023·全国乙卷·理·15·★★)已知{}n a 为等比数列,24536a a a a a =,9108a a =−,则7a =_____. 答案:2−解析:已知和要求的都容易用通项公式翻译,故直接翻译它们,34252453611111a a a a a a qa q a q a q a q =⇒=,化简得:11a q = ①, 8921791011188a a a q a q a q =−⇒==− ②,由①可得11a q=,代入②得:158q =−,所以52q =− ③, 结合①③可得6557112a a q a q q q ==⋅==−.(2023·全国乙卷·理·16·★★★★)设(0,1)a ∈若函数()(1)x x f x a a =++在(0,)+∞上单调递增,则a 的取值范围是_____.答案: 解析:直接分析()f x 的单调性不易,可求导来看, 由题意,()ln (1)ln(1)x x f x a a a a '=+++,因为()f x 在(0,)+∞上,所以()0f x '≥在(0,)+∞上恒成立,即ln (1)ln(1)0x x a a a a +++≥,参数a 较多,没法集中,但x 只有两处,且观察发现可同除以x a 把含x 的部分集中起来,所以(1)ln ln(1)0x xa a a a+++≥,故1ln (1)ln(1)0x a a a +++≥ ①, 想让式①恒成立,只需左侧最小值0≥,故分析其单调性, 因为111a+>,11a +>,所以ln(1)0a +>,从而1ln (1)ln(1)x y a a a=+++在(0,)+∞上,故011ln (1)ln(1)ln (1)ln(1)ln ln(1)x a a a a a a a a+++>+++=++,所以①恒成立ln ln(1)0a a ⇔++≥,从而ln[(1)]0a a +≥,故(1)1a a +≥,结合01a <<1a ≤<.(2023·全国乙卷·理·17·★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验,选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,(1,2,,10)i y i =⋅⋅⋅,试验结果如下:记(1,2,,10)i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ,(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 解:(1)由题意,i z 的数据依次为9,6,8,8−,15,11,19,18,20,12, 所以10111()(9688151119182012)111010i i i z x y ==−=++−++++++=∑,10222222222111()[(911)(611)(811)(811)(1511)(1111)(1911)1010i i s z z ==−=−+−+−+−−+−+−+−+∑222(1811)(2011)(1211)]61−+−+−=.(2)由(1)可得z <,所以甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·理·18·★★★)在ABC ∆中,已知o 120BAC ∠=,2AB =,1AC =. (1)求sin ABC ∠;(2)若D为BC 上一点,且o 90BAD ∠=,求ADC ∆的面积.解:(1)(已知两边及夹角,可先用余弦定理求第三边,再用正弦定理求角)由余弦定理,22222o 2cos 21221cos1207BC AB AC AB AC BAC =+−⋅⋅∠=+−⨯⨯⨯=,所以BC =,由正弦定理,sin sin AC BC ABC BAC =∠∠,所以o sinsin AC BAC ABC BC ⋅∠∠===(2)如图,因为o 120BAC ∠=,o 90BAD ∠=,所以o 30CAD ∠=,(求ADC S ∆还差AD ,只要求出ABC ∠,就能在ABD ∆中求AD ,ABC ∠可放到ABC ∆中来求)由余弦定理推论,222cos 2AB BC AC ABC AB BC +−∠===⋅,所以cos AB BD ABC ==∠,AD ==,故o 11sin 1sin 3022ADC S AC AD CAD ∆=⋅⋅∠=⨯=.(2023·全国乙卷·理·19·★★★★)在三棱锥P ABC −中,AB BC ⊥,2AB =,BC =PB PC ==,BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥. (1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ; (3)求二面角D AO C −−的大小.PDBAFCOE解:(1)证法1:(由图可猜想DEFO 是平行四边形,故尝试证DE 平行且等于OF . 注意到D ,E ,O 都是所在棱的中点,故若能证出F 是中点,则DE ,OF 都平行且等于AB 的一半,问题就解决了. 那F 的位置由哪个条件决定呢?显然是BF AO ⊥,我们可以设AF AC λ=,利用向量来翻译BF AO ⊥,求出λ) 设AF AC λ=,则()(1)BF BA AF BA AC BA BC BA BA BC λλλλ=+=+=+−=−+, 12AO AB BO BA BC =+=−+,因为BF AO ⊥,所以1((1))()2BF AO BA BC BA BC λλ⋅=−+⋅−+ 22(1)4(1)402BA BC λλλλ=−+=−+=,解得:12λ=,所以F 是AC 的中点, 又D ,E ,O 分别是BP ,AP ,BC 的中点,所以DE 和OF 都平行且等于AB 的一半,故DE 平行且等于OF , 所以四边形DOFE 是平行四边形,故EF ∥OD ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO . 证法2:(分析方法同解法1,证明F 为AC 中点的过程,也可用平面几何的方法)如图1,在ABC ∆中,因为BF AO ⊥,所以o 2190AOB AOB ∠+∠=∠+∠=,故12∠=∠①, 又2AB =,BC =O 为BC 中点,所以BO =tan 1BO AB∠==,tan 3AB BC ∠==所以tan 1tan 3∠=∠,故13∠=∠,结合①可得23∠=∠,所以BF CF =, 连接OF ,因为O 是BC 中点,所以OF BC ⊥,又AB BC ⊥,所以OF ∥AB , 结合O 为BC 中点可得F 为AC 的中点,接下来同证法1.(2)(要证面面垂直,先找线面垂直,条件中有AO BF ⊥,于是不外乎考虑证AO ⊥面BEF 或证BF ⊥面AOD,怎样选择呢?此时我们再看其他条件,还没用过的条件就是一些长度,长度类条件用于证垂直,想到勾股定理,我们先分析有关线段的长度) 由题意,12DO PC ==,AD ==,AO ,所以222152AO DO AD +==,故AO OD ⊥,(此时结合OD ∥EF 我们发现可以证明AO ⊥面BEF ) 由(1)可得EF ∥OD ,所以AO EF ⊥,又AO BF ⊥,且BF ,EF 是平面BEF 内的相交直线, 所以AO ⊥平面BEF ,因为AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(3)解法1:(此图让我们感觉面PBC ⊥面ABC ,若这一感觉正确,那建系处理就很方便. 我们先分析看是不是这样的. 假设面PBC ⊥面ABC ,由于AB BC ⊥,于是AB ⊥面PBC ,故AB BD ⊥,但我们只要稍加计算,就会发现222AB BD AD +≠,矛盾,所以我们的感觉是不对的,也就不方便建系. 怎么办呢?那就在两个半平面内找与棱垂直的射线,它们的夹角等于二面角的大小. 事实上,这样的射线已经有了)由题意,AO BF ⊥,由前面的过程可知AO OD ⊥,所以射线OD 与BF 的夹角与所求二面角相等, (OD 与BF 异面,直接求射线OD 和BF 的夹角不易,故考虑通过平移使其共面,到三角形中分析) 因为OD ∥EF ,所以EFB ∠的补角等于射线OD 和BF 的夹角,由题意,AC ==12BF AC ==,12EF PC ==(只要求出BE ,问题就解决了,BE 是ABP ∆的中线,可用向量来算,先到ABD ∆中求cos ABP ∠) 在ABD ∆中,222cos 2AB BD AD ABP AB BD +−∠==⋅,因为1()2BE BA BP =+,所以222113(2)[4622(442BE BA BP BA BP =++⋅=⨯++⨯=,故BE =,在BEF ∆中,222cos 2BF EF BE BFE BF EF +−∠==⋅,所以o 45BFE ∠=,故二面角D AO C −−的大小为o 135.解法2:(得出所求二面角等于射线OD 与BF 夹角的过程同解法1. 要计算此夹角,也可用向量法. 观察图形可发现OA ,OB ,OD 的长度都已知或易求,两两夹角也好求,故选它们为基底,用基底法算OD 和BF 的夹角) 1113122()2()22222BF BC CF OB CA OB CB BA OB OB OA OB OB OA =+=−+=−++=−++−=−+,所以31313()cos 22222OD BF OD OB OA OD OB OD OA DOB BOD ⋅=⋅−+=−⋅+⋅=−∠=∠,又222cos 2OB OD BD BOD OB OD +−∠==⋅,所以3322OD BF ⋅=−=−,从而3cos ,6OD BF OD BF OD BF−⋅<>===⋅,故o ,135OD BF <>=,所以二面角D AO C −−为o 135. 解法3:(本题之所以不便建系,是因为点P 在面ABC 的射影不好找,不易写坐标.那有没有办法突破这一难点呢?有的,我们可以设P 的坐标,用已知条件来建立方程组,直接求解P 的坐标)以B 为原点建立如图2所示的空间直角坐标系,则(0,0,0)B ,(2,0,0)A ,C ,O ,设(,,)(0)P x yz z >,则(,,)222x y z D,由PB PC ⎧⎪⎨=⎪⎩2222226(6x y z x y z ⎧++=⎪⎨+−+=⎪⎩,解得:y =, 代回两方程中的任意一个可得224x z += ②,(此时发现还有AD =这个条件没用,故翻译它)又AD =,所以222222(2)5[(]244424x y z x y z −++=+−+,将y =代入整理得:22220xz x ++−= ③,联立②③结合0z >解得:1x =−,z =,(到此本题的主要难点就攻克了,接下来是流程化的计算)所以1(2D −,故1(2DO =−,(AO =−, 设平面AOD 的法向量为(,,)xy z =m ,则1022220DO x y z AO x ⎧⋅=+−=⎪⎨⎪⋅=−=⎩m m ,令1x =,则y z ⎧=⎪⎨=⎪⎩=m 是平面AOD 的一个法向量,由图可知(0,0,1)=n 是平面AOC的一个法向量,所以cos ,⋅<>==⋅m n m n m n , 由图可知二面角D AO C −−为钝角,故其大小为o 135.BAFC1图2图123O【反思】当建系后有点的坐标不好找时,直接设其坐标,结合已知条件建立方程组,求解坐标,这也是一种好的处理思路.(2023·全国乙卷·理·20·★★★)已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x+= (2)证明见详解解析:(1)由题意可得22223b a b c c ea ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++,因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++ ()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.(2023·全国乙卷·理·21·★★★★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)是否存在a ,b ,使得曲线1()y f x=关于直线x b =对称?若存在,求a ,b 的值;弱不存在,说明理由;(3)若()f x 在(0,)+∞上存在极值,求a 的取值范围.解:(1)当1a =−时,1()(1)ln(1)f x x x =−+,2111()ln(1)(1)1f x x x x x'=−++−⋅+,所以(1)0f =,(1)ln 2f '=−,故所求切线方程为0ln 2(1)y x −=−−,整理得:(ln 2)ln 20x y +−=. (2)由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭, 函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,−∞−⋃+∞, 定义域关于直线12x =−对称,由题意可得12b =−,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫−+=−−> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =−, 即()()11ln 22ln 2a a +=−,则12a a +=−,解得12a =,经检验11,22a b ==−满足题意,故11,22a b ==−.即存在11,22a b ==−满足题意.(3)由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=−+'++ ⎪ ⎪+⎝⎭⎝⎭, 由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点; 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++=, 令()()()2=1ln 1g x ax x x x +−++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=−+−+ 当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意; 当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增, 所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=, 所以()g x 在区间()0,∞+上无零点,不符合题意; 当102a <<时,由()''1201g x a x =−=+可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()0g x ''<,()g x '单调递减, 当11,2x a ⎛⎫∈−+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫−=−+⎪⎝⎭', 令()()1ln 01m x x x x =−+<<,则()10x m x x−+'=>, 函数()m x 在定义域内单调递增,()()10m x m <=, 据此可得1ln 0x x −+<恒成立,则1112ln 202g a a a ⎛⎫−=−+<⎪'⎝⎭, 令()()2ln 0h x x x x x =−+>,则()221x x h x x−++'=,当()0,1x ∈时,()()0,h x h x '>单调递增, 当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤−(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=−+>−+−+=−+⎣⎦',()()()()22122121210g a a a a a ⎡⎤−>−−−+−=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x . 当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增, 所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=−− ⎪⎝⎭,则()()22211111022x n x x x x−−⎛⎫=−+=≤ ⎪⎝⎭', 则()n x 单调递减,注意到()10n =, 故当()1,x ∈+∞时,11ln 02x x x ⎛⎫−−< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<− ⎪⎝⎭, 所以()()()2=1ln 1g x ax x x x +−++()()211>1121ax x x x x ⎡⎤+−+⨯+−⎢⎥+⎣⎦21122a x ⎛⎫=−+ ⎪⎝⎭,令211022a x ⎛⎫−+= ⎪⎝⎭得2x =0g >, 所以函数()g x 在区间()0,∞+上存在变号零点,符合题意. 综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =若直线y x m =+与12,C C均没有公共点,则m >0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x=+−(1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ⎧≤⎨+−≤⎩所确定的平面区域的面积. 答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩, 解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<, 因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x y x y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =−+⎧⎨+=⎩,解得(2,8)A −,由26y x x y =+⎧⎨+=⎩, 解得(2,4)C ,又(0,2),(0,6)B D , 所以ABC 的面积11|||62||2(2)|822ABC C A SBD x x =⨯−=−⨯−−=.。
2022年全国卷Ⅰ高考数学理科模拟试题卷含答案(2)
2022年全国卷Ⅰ高考数学理科模拟试题卷班级:_________________ 姓名:_________________ 座号:________________评卷人得分一、选择题(共12题,每题5分,共60分)1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.2.已知复数z=(a-3i)(3+2i)(a∈R)的实部与虚部的和为7,则a的值为A.1B.0C.2D.-23.函数y=log0.4(–x2+3x+4)的值域是A.(0,–2]B.[–2,+∞)C.(–∞,–2]D.[2,+∞)4.以AB为直径的半圆如图所示,其中||=8,O为其所在圆的圆心,OB的垂直平分线与圆弧交于点P,与AB交于点D,Q为PD上一点,若=0,则·=A.9B.15C.-9D.-155.已知lg a+lg b=0,函数f(x)=a x与函数g(x)=-log b x的图像可能是A BC D6.袋子中有四个小球,分别写有“和”“平”“世”“界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到才算完成.用随机模拟的方法估计恰好取三次便完成的概率.利用电脑随机产生0到3之间取整数值的随机数,0,1,2,3代表的字分别为“和”“平”“世”“界”,以每三个随机数为一组,表示取球三次的结果,随机模拟产生了以下24组随机数组:由此可以估计,恰好取三次便完成的概率为A. B. C. D.7.在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE 与平面BB1C1C所成的角为A.30°B.45°C.60°D.90°8.执行如图所示的程序框图,若输入的k=,则输出的S=A. B. C. D.9.已知等差数列的前项和分别为,若,则的值是A. B. C. D.10.若x1,x2∈R,则的最小值是A.1B.2C.3D.411.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为A.4x-3y-3=0B.3x-4y-3=0C.3x-4y-4=0D.4x-3y-4=012.若a,b是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是A.若a⊥b,b⊥α,α⊥β,则a⊥βB.若α⊥β,a⊥α,b∥β,则a⊥bC.若a∥α,a∥β,α∩β=b,则a∥bD.若a∥b,a⊥α,b∥β,则α∥β第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(共4题,每题5分,共20分)13.曲线y=在点(-1,-3)处的切线方程为.14.已知{a n}是递增的等差数列,其前n项和为S n,且S2=S7,写出一个满足条件的数列{a n}的通项公式a n= .15.已知数列{a n}的前n项和为S n,a n+2S n=3n,数列{b n}满足(3a n+2-a n+1)(n∈N*),则数列{b n}的前10项和为.16.已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线上.若△PF1F2为直角三角形,且tan∠PF1F2=,则双曲线的离心率为.评卷人得分三、解答题(共7题,共70分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且sin(+C)=.(1)求角A;(2)若a=4,△ABC的周长为9,求△ABC的面积.18.如图,已知四棱柱ABCD-A1B1C1D1的底面是菱形,BB1⊥底面ABCD,E是棱CC1的中点.(1)求证:AC∥平面B1DE;(2)求证:平面BDD1B1⊥平面B1D E.19.2020年12月10日,首届全国职业技能大赛在广州广交会展馆拉开帷幕,活动为期4天,2 557名参赛选手围绕86个比赛项目展开激烈角逐.大赛组委会秘书长、人社部职业能力建设司司长张立新表示,这次大赛是新中国成立以来规格最高、项目最多、规模最大、水平最高的综合性国家职业技能赛事.为了准备下一届比赛,甲、乙两支代表队各自安排了10名选手参与选拔活动,他们在活动中取得的成绩(单位:分,满分100分)如下:甲代表队:95 95 79 93 86 94 97 88 81 89乙代表队:88 83 95 84 86 97 81 82 85 99(1)分别求甲、乙两支代表队成绩的平均值,并据此判断哪支代表队的成绩更好;(2)甲、乙两支代表队的总负责人计划从这两支队伍得分超过90分的选手中随机选择4名参加强化训练,记参加强化训练的选手来自甲代表队的人数为X,求X的分布列和数学期望.20.已知椭圆的右焦点为,过且与轴垂直的弦长为3.(1)求椭圆的标准方程;(2)过作直线与椭圆交于两点,问在轴上是否存在点,使为定值,若存在,请求出点坐标,若不存在,请说明理由.21.已知函数f(x)=(x-2)e x-x2+ax,a∈R.(1)讨论函数f(x)的单调性;(2)若不等式f(x)+(x+1)e x+x2-2ax+a>0恒成立,求a的取值范围.请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。
2000年高考.全国卷.理科数学试题及答案
2000 年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷 1 至2 页。
第II 卷 3 至9 页。
共150 分。
考试时间120 分钟。
第I 卷(选择题共60 分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c 分别表示上、下底面周长,l 表示斜高或母线其中S′、S 分别表示上、下底面积,h 表示高一、选择题:本大题共12 分,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A 和B 都是自然数集合N,映射f:A→B 把集合A 中的元素n 映射到集合B 中的元素,则在映射f 下,象20 的原象是()(A)2 (B)3 (C)4 (D)5(2)在复平面内,把复数对应的向量按顺时针方向旋,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx 的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800 元的部分不必纳税,超过800 元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500 元的部分5%超过500 元至2000 元的部分10%超过2000 元至5000 元的部分15%……某人一月份应交纳此项税款26.78 元,则他的当月工资、薪金所得介于(A)800~900 元(B)900~1200 元(C)1200~1500 元(D)1500~2800 元(7)若,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1 为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(D)(11)过抛物线(a>0)的焦点F 作一直线交抛物线于P、Q 两点,若线段PF 与FQ 的长分别是p、q,则等于(A)2a (B)(C)4a (D)(12)如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II 卷(非选择题共90 分)注意事项:1.第II 卷共7 页,用钢笔或圆珠笔直接答在试题卷中。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3 (C)4 (D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q(8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于(A)2a (B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2000年高考全国卷理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3 (C)4 (D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于(A)2a (B)(C)4a (D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2024年全国高考甲卷理科数学试题及答案
绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A .10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9 C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.2D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件 B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥ ”的充分条件D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.3212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM平面CDE;(2)求二面角F BM E--的正弦值.20.设椭圆2222:1(0)x yC a ba b+=>>的右焦点为F,点31,2M⎛⎫⎪⎝⎭在C上,且MF x⊥轴.(1)求C的方程;(2)过点()4,0P的直线与C交于,A B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ y⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A.10iB.2iC.10D.2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9 C.{}1,2,3 D.{}2,3,5【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D3.若实数,x y满足约束条件43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y=-的最小值为()A.5B.12C.2-D.7 2-【答案】D【解析】【分析】画出可行域后,利用z的几何意义计算即可得.【详解】实数,x y满足43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y=-可得1155y x z=-,即z的几何意义为1155y x z=-的截距的15-,则该直线截距取最大值时,z有最小值,此时直线1155y x z=-过点A,联立43302690x yx y--=⎧⎨+-=⎩,解得321xy⎧=⎪⎨⎪=⎩,即3,12A⎛⎫⎪⎝⎭,则min375122z=-⨯=-.故选:D.4.等差数列{}n a的前n项和为n S,若510S S=,51a=,则1a=()A.2-B.73 C.1 D.2【答案】B【解析】【分析】由510S S=结合等差中项的性质可得8a=,即可计算出公差,即可得1a的值.【详解】由105678910850S S a a a a a a-=++++==,则8a=,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.5.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()2e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.2D.1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,3tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭,故选:B .9.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件 B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥”的充分条件D.“1x =-+”是“//a b”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.32【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.【答案】5【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r-,则两个圆台的体积之比=V V 甲乙______.【答案】4【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以((2121163143S S h V h V h S S h ++-===++甲甲甲乙乙乙.故答案为:64.15.已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.828【答案】(1)答案见详解(2)答案见详解【解析】【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p=,根据题意计算p+,结合题意分析判断.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+,所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18.记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅-(2)(21)31nn T n =-⋅+【解析】【分析】(1)利用退位法可求{}n a 的通项公式.(2)利用错位相减法可求n T .【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343nn T n =⋅+⋅+⋅++⋅ 所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅ ()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【答案】(1)证明见详解;(2)4313【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解.【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,13m n =,故二面角F BM E --的正弦值为4313.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k kk =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=-⎪⎝⎭-,故22223325252Qy y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【答案】(1)极小值为0,无极大值.(2)12a ≤-【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数,故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x ax f x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 101a xs x a x x x +=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据ρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为22x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页.第II卷3至9页。
共150分.考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα〉cosβ(D)若α、β是第四象限角,则tgα〉tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算.全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26。
2003年高考全国卷.理科数学试题及答案
2003年普通高等学校招生全国统一考试(全国卷)
数学(理工农医类)答案
一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.
1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A
直线GE的方程为: ②
从①,②消去参数k,得点P(x,y)坐标满足方程
整理得 当 时,点P的轨迹为圆弧,所以不存在符合题意的两点.
当 时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长
当 时,点P到椭圆两个焦点( 的距离之和为定值
当 时,点P 到椭圆两个焦点(0, 的距离之和为定值2 .
22.(本小题满分12分,附加题4分)
21.(本小题满分14分)
已知常数 ,在矩形ABCD中, , ,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且 ,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由
22.(本小题满分12分,附加题4 分)
(I)设 是集合 且 }中所有的数从小到大排列成的数列,即 , , , , , ,…
将数列 各项按照上小下大,左小右大的原则写成如下的三角形数表:
3
56
9 10 12
— — — —
…………
⑴写出这个三角形数表的第四行、第五行各数;
⑵求
(II)(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)
① ② ③ ④ ⑤
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤
17.(本小题满分12分)
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至9页。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2(B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。
2000年高考.全国卷.理科数学试题及答案
2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页.第II卷3至9页.共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα〉tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα〉tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。
全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b〉1,,则(A)R〈P〈Q(B)P<Q<R(C)Q〈P<R(D)P<R〈Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a〉0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.题号二三总分17 18 19 20 21 22分数二、填空题:本大题共4小题,每小题4分,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππY (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππY (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M I(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a ,Λ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a Λ ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55(Y -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有Λ)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+Λx b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n Λ当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b (Λ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k Λ于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。