《图形的相似》专题练习含答案解析

合集下载

图形的相似经典测试题及答案解析

图形的相似经典测试题及答案解析

∵四边形 ABCD 是正方形
∴AE=BF,AD=AB,∠EAD=∠B= 90
∴△ADE≌△BAF
∴∠ADE=∠BAF,∠AED=∠BFA
∵∠DAO+∠FAB= 90 ,∠FAB+∠BFA= 90 ,
∴∠DAO=∠BFA,
∴∠DAO=∠AED
∴△AOD∽△EAD
∴ AO AE 1 DO AD 2
故选:D
A.1.5cm 【答案】B 【解析】 【分析】 【详解】
B.1.2cm
C.1.8cm
D.2cm
由图 2 知,点 P 在 AC、CB 上的运动时间时间分别是 3 秒和 4 秒,
∵点 P 的运动速度是每秒 1cm ,
∴AC=3,BC=4.
∵在 Rt△ABC 中,∠ACB=90°,
∴根据勾股定理得:AB=5.
AE / / AB,
DAE DAB ,

AD 2 AD
SADE SABD
,即
AD 2 AD 1
2
9 8
9 16

解得 AD 3 或 AD 3 (舍), 7
故选: B . 【点睛】 本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的 性质、相似三角形的判定与性质等知识点.
3.如图,将 ABC 沿 BC 边上的中线 AD 平移到 ABC 的位置.已知 ABC 的面积为 16,阴影部分三角形的面积 9.若 AA 1,则 AD 等于( )
A.2
【答案】B 【解析】
B.3
C.4
D. 3 2
【分析】
由 S△ABC=16、S△A′EF=9 且 AD 为 BC 边的中线知
SADE
解得:{
5.

图形的相似专题练习含答案解析

图形的相似专题练习含答案解析

图形的相似1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于()A.B.C.D.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.544.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.7.计算:﹣2sin45°+(2﹣π)0﹣.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q 也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.图形的相似参考答案与试题解析1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于()A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,=MN•AC=AM•MC,又S△AMC∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,故选A.【点评】位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.考查位似图形的概念.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【考点】相似三角形的性质.【专题】压轴题.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:∠B=∠1或,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)【考点】相似三角形的判定.【专题】压轴题;开放型.【分析】此题属于开放题,答案不唯一.注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【解答】解:此题答案不唯一,如∠C=∠2或∠B=∠1或.【点评】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似.要注意正确找出两三角形的对应边、对应角,根据判定定理解题.5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】此题的图形比较复杂,需要仔细分析图形.(1)根据平行四边形的性质,可得到角相等.∠BPC=∠BRE,∠BCP=∠E,可得△BCP ∽△BER;(2)根据AB∥CD、AC∥DE,可得出△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系.【解答】解:(1)∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠BAP=∠PCQ,∵∠APB=∠CPQ,∴△PCQ∽△PAB;∵△PCQ∽△RDQ,△PCQ∽△PAB,∴△PAB∽△RDQ.(2)∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,∵AC∥DE,∴BC:CE=BP:PR,∴BP=PR,∴PC是△BER的中位线,∴BP=PR,又∵PC∥DR,∴△PCQ∽△RDQ.又∵点R是DE中点,∴DR=RE.,∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP:PQ:QR=3:1:2【点评】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.【考点】实数的运算;零指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题.【分析】根据实数的有关运算法则计算.【解答】解:原式==﹣.【点评】本题考查实数的基本运算,难度适中.7.(2012•遂宁)计算:﹣2sin45°+(2﹣π)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题;压轴题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.【考点】特殊角的三角函数值;绝对值;零指数幂;二次根式的性质与化简.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣3+1﹣=﹣2.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.注意:任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】计算题;压轴题.【分析】由题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.【解答】解:在Rt△BCD中,CD=BC×sin60°=20×=10又DE=AB=1.5,∴CE=CD+DE=CD+AB=10+1.5≈18.8答:此时风筝离地面的高度约是18.8米.【点评】本题考查直角三角形知识在解决实际问题中的应用.10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形Rt△BCD、Rt△ACD,应利用其公共边DC构造方程关系式,进而可解即可求出答案.【解答】解:在Rt△BCD中,tan45°==1,∴CD=BC.在Rt△ACD中,tan30°=,∴.∴.∴3CD=CD+10.∴CD=+5≈13.66(米)∴条幅顶端D点距离地面的高度为13.66+1.44=15.1(米).【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:皮尺,标杆;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.【考点】相似三角形的应用.【专题】方案型;开放型.【分析】树比较高不易直接到达,因而可以利用三角形相似解决,利用树在阳光下出现的影子来解决.【解答】解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.【点评】本题运用相似三角形的知识测量高度及考查学生的实践操作能力,应用所学知识解决问题的能力.本题答案有多种,测量方案也有多种,如(1)皮尺、标杆、平面镜;(2)皮尺、三角尺、标杆.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形,据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:作BD⊥AC于D.在Rt△ADB中,sin∠ABD=.∴AD=AB•sin∠ABD=15×sin21°≈5.38米.(3分)∵cos∠ABD=.∴BD=AB•cos∠ABD=15×cos21°≈14.00米.(5分)在Rt△BDC中,tan∠CBD=.∴CD=BD•tan∠CBD≈14.00×tan38°≈10.94米.(8分)∵cos∠CBD=.∴BC=≈≈17.77米(10分)∴AD+CD+BC≈5.38+10.94+17.77=34.09≈34.1米(11分)答:折断前发射塔的高约为34.1米.(12分)注意:按以下方法进行近似计算视为正确,请相应评分.①若到最后再进行近似计算结果为:AD+CD+BC=34.1;②若解题过程中所有三角函数值均先精确到0.01,则近似计算的结果为:AD+CD+BC≈5.40+10.88+17.66=33.94≈33.9.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【专题】计算题;压轴题.【分析】(1)由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED 全等,根据全等三角形的对应边相等即可得证;(2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB﹣AE可求出EB的长,再由(1)∠AED=90°,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB﹣CD表示出BD=12﹣x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长.【解答】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的∠BAC的平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);(2)∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==.【点评】此题考查了圆周角定理,勾股定理,以及全等三角形的判定与性质,利用了转化的思想,本题的思路为:根据圆周角定理得出直角,利用勾股定理构造方程来求解,从而得到解决问题的目的.灵活运用圆周角定理及勾股定理是解本题的关键.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.【考点】作图﹣位似变换;二次函数图象与几何变换;待定系数法求二次函数解析式;矩形的性质.【专题】压轴题;网格型.【分析】(1)A,E,D三点坐标已知,可用一般式来求解;(2)延长OA到A′,使OA′=3OA,同理可得到其余各点;(3)根据二次项系数是否相同即可判断两个函数是否由平移得到.【解答】解:(1)设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c∵A(1,),E(,2),D(2,)(1分)∴,解之,得∴过A,E,D三点的抛物线的表达式为y=﹣2x2+6x﹣.(4分)(2)如图.(7分)(3)不能,理由如下:(8分)设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′∵A′(3,),E′(,6),D′(6,)∴,解之,得a=﹣2,,∴a≠a′∴经过A′,E′,D′三点的抛物线不能由(1)中的抛物线平移得到.(8分)【点评】一般用待定系数法来求函数解析式;位似变化的方法应熟练掌握;抛物线平移不改变a的值.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?【考点】作图—应用与设计作图.【专题】压轴题;方案型.【分析】(1)由题意可得,供水站建在点M处,根据垂线段最短、两点之间线段最短,可知铺设到甲村某处和乙村某处的管道长度之和的最小值为MB+MD,求值即可;(2)作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,且证明P点与D点重合,即AM'过D点.求出AM'的值即是铺设到点A和点M处的管道长度之和最小的值;(3)作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM',可证得N,D两点重合,即M'N过D点.求GM+GD=M'D 的值就是最小值.【解答】解:方案一:由题意可得:∵A在M的正西方向,∴AM∥OE,∠BAM=∠BOE=30°,又∵∠BMA=60°∴MB⊥OB,∴点M到甲村的最短距离为MB,(1分)∵点M到乙村的最短距离为MD,∴将供水站建在点M处时,管道沿MD,MB线路铺设的长度之和最小,即最小值为MB+MD=3+(km);(3分)方案二:如图①,作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,PE∥AM,PE=AM,∵AM=2BM=6,∴PE=3,(4分)在Rt△DME中,∵DE=DM•sin60°=×=3,ME=DM=×,∴PE=DE,∴P点与D点重合,即AM'过D点,(6分)在线段CD上任取一点P',连接P'A,P′M,P'M',则P'M=P′M',∵AP'+P'M'>AM',∴把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小,即最小值为AD+DM=AM'=;(7分)方案三:作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM 于点H,连接GM,则GM=GM',∴M'N为点M'到OE的最短距离,即M'N=GM+GN在Rt△M'HM中,∠MM'N=30°,MM'=6,∴MH=3,∴NE=MH=3,∵DE=3,∴N,D两点重合,即M'N过D点,在Rt△M'DM中,DM=,∴M'D=(10分)在线段AB上任取一点G',过G'作G'N'⊥OE于N'点,连接G'M',G'M,显然G'M+G'N'=G'M'+G'N'>M'D,∴把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小,即最小值为GM+GD=M'D=,(11分)综上,∵3+<,∴供水站建在M处,所需铺设的管道长度最短.(12分)【点评】此题主要考查线路最短问题的作图和求值问题,有一定的难度.17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q 也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是25;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.【考点】相似三角形的判定与性质;三角形中位线定理;矩形的判定与性质.【专题】压轴题.【分析】(1)由中位线定理即可求出DF的长;(2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;(3)①当点P在EF上(2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;②当点P在FC上(5≤t≤7)时,PB=PF+BF就可以得到;(4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.【解答】解:(1)Rt△ABC中,∠C=90°,AB=50,∵D,F是AC,BC的中点,∴DF为△ABC的中位线,∴DF=AB=25故答案为:25.(2)能.如图1,连接DF,过点F作FH⊥AB于点H,∵D,F是AC,BC的中点,∴DE∥BC,EF∥AC,四边形CDEF为矩形,∴QK过DF的中点O时,即过矩形CDEF的中点,QK把矩形CDEF分为面积相等的两部分此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.故t==.(3)①当点P在EF上(2≤t≤5)时,如图2,QB=4t,DE+EP=7t,由△PQE∽△BCA,得.∴t=4;②当点P在FC上(5≤t≤7)时,如图3,已知QB=4t,从而PB===5t,由PF=7t﹣35,BF=20,得5t=7t﹣35+20.解得t=7;(4)如图4,t=1;如图5,t=7.(注:判断PG∥AB可分为以下几种情形:当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻,如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7当时,点P,G均在FC上,也不存在PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG ∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB)【点评】本题主要运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.【考点】相似三角形的判定;平行四边形的性质.【专题】压轴题;开放型.【分析】根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.【解答】解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)【点评】考查了平行线的性质及相似三角形的判定定理.。

中考数学总复习《图形的相似》专项提升训练(带有答案)

中考数学总复习《图形的相似》专项提升训练(带有答案)

中考数学总复习《图形的相似》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.两个相似三角形的相似比是1:2,则其对应中线之比是( )A .1:1B .1:2C .1:3D .1:42.如图,在ABC 中2AC =,BC=4,D 为BC 边上的一点,且CAD B ∠=∠.若ADC △的面积为2,则ABD △的面积为( )A .4B .5C .6D .73.若35a b =,则下列各式一定成立的是( )A .53a b =B .35a b =C .65a b a +=D .145a b += 4.如图,在ABC 中DE BC ∥,AD=1,BD=2,AC=6,则CE 的长为( )A .2B .3C .4D .55.如图,在等边ABC 中,点D ,E 分别是BC AC ,上的点72AB CD ==,,60ADE ∠=︒则AE 等于( )A .5B .397C .6D .4176.下列命题正确的是( )A .方程210x x --=没有实数根B .两边成比例及一角对应相等的两个三角形相似C .平分弦的直径垂直于弦D .反比函数的图像不会与坐标轴相交7.已知ABC DEF ∽△△,:1:2AB DE =且ABC 的周长为6,则DEF 的周长为( ) A .3 B .6 C .12 D .248.在平面直角坐标系xOy 中,已知点()()()0,0,1,2,0,3O A B .若OA B ''△与OAB 是原点O 为位似中心的位似图形,且点B 的对应点为()0,9B '-,则点A 的对应点A '坐标为( ) A .()3,6 B .()3,6-- C .()3,6- D .()3,6- 9.如图,D 是ABC 边AB 上一点,添加一个条件后,仍不能使ACD ABC △∽△的是( )A .ACDB ∠=∠ B .ADC ACB ∠=∠ C .AD CD AC BC = D .AC AB AD AC = 10.如图,已知ABC DAC △∽△,37B ∠=︒和116∠=︒D ,则BAD ∠的度数为( )A .37︒B .116︒C .153︒D .143︒二、填空题11.如图,在矩形ABCD 中,8AB =和4BC =,连接AC ,EF AC ⊥于点O ,分别与AB 、CD 交于点E 、F ,连接AF 、CE ,则AF CE +的最小值为 .12.如图,在ABC 中,点D 、E 分别为AB 、AC 的中点,点F 为DE 中点,连接BF 并延长交AC 于点G ,则:AG GE = .13.如图AC ,AD 和CE 是正五边形ABCDE 的对角线,AD 与CE 相交于点F .下列结论:(1)CA 平分BCF ∠;(2)2CF EF =;(3)四边形ABCF 是菱形;(4)2AB AD EF =⋅.其中正确的结论是 .(填写所有正确结论的序号)14.如图AC 、BD 交于点O ,连接AB 和CD ,若要使AOB COD ∽,可以添加条件 .(只需写出一个条件即可)15.如图,在ABC 中4AC AB ==和30C ∠=︒,D 为边BC 上一点,且3CD =,E 为AB 上一点,若30ADE ∠=︒,则BE 的长为 .16.在ABC 中,6810AC BC AB D ===,,,是AB 的中点,P 是CD 上的动点,若点P 到ABC 的一边的距离为2,则CP 的长为 .17.如图,M 是Rt ABC △斜边AB 上的中点,将Rt ABC △绕点B 旋转,使得点C 落在射线CM 上的点D 处,点A 落在点E 处,边ED 的延长线交边AC 于点F .如果3BC =.4AC =那么BE 的长为 ;CF 的长为 .18.如图,在ABC 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若:3:1BF FD =,8BC =则CE 的长为 .三、解答题19.已知O 为ABCD 两对角线的交点,直线l 过顶点D ,且绕点D 顺时针旋转,过点A ,C 分别作直线l 的垂线,垂足为点E ,F .(1)如图1,若直线l 过点B ,求证:OE OF =;(2)如图2,若EFO FCA ∠=∠,2FC AE =求CFO ∠的度数;(3)如图3,若ABCD 为菱形4AE =,6AO =和8EO =直接写出CF 的长. 20.如图,在ABC 中2BAC C ∠=∠,利用尺规作图法在BC 上求作一点D ,使得ABDCBA .(不写作法,保留作图痕迹)21.如图,在Rt ABC △中90ACB ∠=︒,D 是AB 的中点,连接CD ,过点A 作AE CD ⊥于点E ,过点E 作EF CB ∥交BD 于点F .(1)求证:ACE BAC ∽△△;(2)若5AC =,5AB =求CE 及EF 的长.22.如图,在直角梯形OABC 中BC AO ∥,=90AOC ︒∠点A 、B 的坐标分别为()5,0、()2,6点D 为AB 上一点,且2BD AD =.双曲线()0k y x x=>经过点D ,交BC 于点E .求点E 的坐标.23.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .求证:APE FPA △∽△.24.如图1,菱形AGBD 边长为3,延长DB 至点C ,使得5BC =.连接AB ,AB AD =点E ,F 分别在线段AD 和AB 上,且满足DE AF =,连接BE ,DF 交于点O ,过点B 作BM BE ⊥,交DF 延长线于点M ,连接CM .图1 图2(1)求OB 与BM 之间的数量关系;(2)当DMB DCM △∽△时,求DO 的长度;(3)如图2,过点M 作MN CD ⊥交CD 于N ,求MN MC的最大值. 1.B2.C3.A4.C5.B6.D7.C8.B9.C10.C11.1012.2:113.①①①14.A C ∠=∠(答案不唯一)15.9416.103或52或3512 17. 59418.16519.(2)60CFO ∠=︒(3)CF 的长为7 21.(2)1CE = 655EF =. 22.4,63⎛⎫ ⎪⎝⎭/11,63⎛⎫ ⎪⎝⎭ 24.(1)3BM OB =(2)1OD =(3)1014101911316206517MN CN ++=。

中考压轴图形的相似问题综合(解析版)

中考压轴图形的相似问题综合(解析版)
与B,C重合),CNDM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:
的结论有(

A.①②③④
【标准答案】C
【思路点拨】
B.②③④
C.②③④⑤
D.②③⑤
①由特殊值法可判断,当点P与BD中点重合时,CM=0,显然FM≠CM;
②由SAS可证△ABP△CBP,可得AP=CP,由矩形的性质可得EF=PC=AP;
③由SSS可证△APD△CPD,可得∠DAP=∠DCP,由平行线的性质可得∠DCP=∠H,由
∴四边形GBED为平行四边形,
∴GD=BE,
1
∵BE=BC,
2
1
∴GD=AD,
2
即G是AD的中点,
故②正确,
∵BG//DE,
∴∠GBP=∠BPE,
故③正确.
∵BG//DG,AF⊥DE,
∴AF⊥BG,
∴∠ANG=∠ADF=90°,
∵∠GAM=∠FAD,
∴△AGM∽△AFD,
设AG=a,则AD=2a,AF=5a,
B.2个
C.3个
D.4个
【标准答案】C
【思路点拨】
1
根据正方形性质得出ADBCDC;ECDFBC;ADFDCE,证
2
ADF≌DCESAS,推出AFDDEC,求出DGF90即可判断
①;证明四边形
GBED为平行四边形,则可知②正确;由平行线的性质可得③正确;证明AGM∽AFD,
可得出SAGM:SDEC1:5.则④不正确.
D.5
【标准答案】D
【思路点拨】
①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∠NAD=∠BAM,
∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠AND+∠NAD=90°,等量代换得

(易错题精选)初中数学图形的相似全集汇编含答案

(易错题精选)初中数学图形的相似全集汇编含答案

(易错题精选)初中数学图形的相似全集汇编含答案一、选择题1.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .【答案】B【解析】【分析】 根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选:B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.2.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG=2,则线段AE 的长度为( )A .6B .8C .10D .12【答案】D【解析】 分析:根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD==2,结合FG=2可求出AF 、AG 的长度,由CG ∥AB 、AB=2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解.详解:∵四边形ABCD 为正方形,∴AB=CD ,AB ∥CD ,∴∠ABF=∠GDF ,∠BAF=∠DGF ,∴△ABF ∽△GDF , ∴AF AB GF GD==2, ∴AF=2GF=4,∴AG=6. ∵CG ∥AB ,AB=2CG ,∴CG 为△EAB 的中位线,∴AE=2AG=12. 故选D .点睛:本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.3.如图,在ABC V 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A .AD AE AB EC= B .AG AE GF BD = C .OD AE OC AC = D .AG AC AF EC = 【答案】C【解析】【分析】 由//DE BC 可得到DEO V ∽CBO V ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵//DE BC ,∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE V ∽ABC V ,DEO V ∽CBO V ,DE AE BC AC ∴=,DE OD BC OC = . OD AE OC AC∴= ,故正确; D. ∵//DE BC ,∴AG AE AF AC= ,故不正确; 故选C .【点睛】 本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.4.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点, 12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.5.如图,□ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =21:7;④FB 2=OF •DF .其中正确的是( )A .①②④B .①③④C .②③④D .①③ 【答案】B【解析】【分析】 ①正确.只要证明EC=EA=BC ,推出∠ACB=90°,再利用三角形中位线定理即可判断. ②错误.想办法证明BF=2OF ,推出S △BOC =3S △OCF 即可判断.③正确.设BC=BE=EC=a ,求出AC ,BD 即可判断.④正确.求出BF ,OF ,DF (用a 表示),通过计算证明即可.【详解】解:∵四边形ABCD 是平行四边形,∴CD ∥AB ,OD=OB ,OA=OC ,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC 平分∠DCB ,∴∠ECB=12∠DCB=60°, ∴∠EBC=∠BCE=∠CEB=60°,∴△ECB 是等边三角形,∴EB=BC ,∵AB=2BC ,∴EA=EB=EC ,∴∠ACB=90°,∵OA=OC ,EA=EB ,∴OE ∥BC ,∴∠AOE=∠ACB=90°,∴EO ⊥AC ,故①正确,∵OE ∥BC ,∴△OEF ∽△BCF ,∴12OE OF BC FB == , ∴OF=13OB , ∴S △AOD =S △BOC =3S △OCF ,故②错误, 设BC=BE=EC=a ,则AB=2a ,3,223(72)a a +, ∴7a ,∴AC :3a 7217,故③正确,∵OF=137, ∴7, ∴BF 2=79a 2,7a•7779⎫=⎪⎪⎝⎭ a 2, ∴BF 2=OF•DF ,故④正确,故选:B .【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.6.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DE DB BC = B .BF EF BC AB = C .AE EC FC DE =D .EF BF AB BC = 【答案】C【解析】【分析】 根据相似三角形的判定与性质逐项分析即可.由△ADE ∽△ABC ,可判断A 的正误;由△CEF ∽△CAB ,可判定B 错误;由△ADE ~△EFC ,可判定C 正确;由△CEF ∽△CAB ,可判定D 错误.【详解】解:如图所示:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC ,∴DE AD AD BC AB DB=≠, ∴答案A 错舍去;∵EF ∥AB ,∴△CEF ∽△CAB , CF EF BC A B B BF C=≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC ,∴AE DEEC FC=,C正确;又∵EF∥AB,∴∠CEF=∠A,∠CFE=∠B,∴△CEF∽△CAB,∴EF CE FC BF AB AC BC BC==≠,∴答案D错舍去;故选C.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.7.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:4【答案】C【解析】【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S△EFC=3S△DEF,∴DF:FC=1:3 (两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.8.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论. 【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA , ∴251522BOD OAC S OB S OA ⎛⎫==÷= ⎪⎝⎭△△, ∴5OB OA=∴tan ∠BAO=5OB OA=. 故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.9.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴=-=,538DE =+=,ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.10.如图,边长为4的等边ABC V 中,D 、E 分别为AB ,AC 的中点,则ADE V 的面积是( )A 3B .32C .334D .23【答案】A【解析】【分析】 由已知可得DE 是△ABC 的中位线,由此可得△ADE 和△ABC 相似,且相似比为1:2,再根据相似三角形的面积比等于相似比的平方,可求出△ABC 的面积.【详解】Q 等边ABC V 的边长为4,2ABC 3S 4434∴=⨯=V , Q 点D ,E 分别是ABC V 的边AB ,AC 的中点,DE ∴是ABC V的中位线, DE //BC ∴,1DE BC 2=,1AD AB 2=,1AE AC 2=, 即AD AE DE 1AB AC BC 2===, ADE ∴V ∽ABC V,相似比为12, 故ADE S V :ABC S 1=V :4,即ADE ABC 11S S 43344==⨯=V V , 故选A .【点睛】本题考查了等边三角形的性质、相似三角形的判定与性质、三角形中位线定理,解题的关键是熟练掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.11.如图,Rt ABC V 中,90,60ABC C ∠=∠=o o ,边AB 在x 轴上,以O 为位似中心,作111A B C △与ABC V 位似,若()3,6C 的对应点()11,2C ,则1B 的坐标为( )A .()1,0B .3,02⎛⎫ ⎪⎝⎭C .()2,0D .()2,1【答案】A【解析】【分析】 如图,根据位似图形的性质可得B 1C 1//BC ,点B 在x 轴上,由∠ABC=90°,可得B 1C 1⊥x 轴,根据C 1坐标即可得B 1坐标.【详解】如图,∵111A B C △与ABC V 位似,位似中心为点O ,边AB 在x 轴上,∴B1C1//BC,点B在x轴上,∵∠ABC=90°,∴B1C1⊥x轴,∵C1坐标为(1,2),∴B1坐标为(1,0)故选:A.【点睛】本题考查位似图形的性质,位似图形的对应边互相平行,对应点的连线相交于一点,这一点叫做位似中心.12.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则DGCF()A.23B.22C3D3【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则2 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.13.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=3 2【答案】D 【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=22,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.14.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=483x -+.故选C .15.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .33 【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA =【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12,∴2()OB OA =121=12 , ∴2OB OA , 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解16.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠BB .∠BDE +∠C =180° C .AD •BC =AC •DED .AD •AB =AE •AC【答案】C【解析】【分析】 A 、根据有两组角对应相等的两个三角形相似,进行判断即可;B :根据题意可得到∠ADE=∠C ,根据有两组角对应相等的两个三角形相似,进行判断即可;C 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A 、由∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ;B 、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ;C 、由AD•BC=AC•DE ,得不能判断△ADE ∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D、由AD•AB=AE•AC得,∠A=∠A,故能确定△ADE∽△ACB,故选:C.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角);有两组角对应相等的两个三角形相似.17.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A.AD AEBD EC=B.AF DFAE BE=C.AE AFEC FE=D.DE AFBC FE=【答案】D【解析】【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴AD AEBD EC=,故A正确;∵DF//BE,∴△ADF∽△ABF, ∴AF DFAE BE=,故B正确;∵DF//BE,∴AD AFBD FE=,∵AD AEBD EC=,∴AE AFEC FE=,故C正确;∵DE//BC,∴△ADE∽△ABC,∴DE ADBC AB=,∵DF//BE,∴AF ADAE AB=,∴DE AFBC AE=,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.18.若△ABC的每条边长增加各自的50%得△A'B'C',若△ABC的面积为4,则△A'B'C'的面积是()A.9 B.6 C.5 D.2【答案】A【解析】【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,根据相似三角形的性质即可得到结论.【详解】解:∵△ABC 的每条边长增加各自的50%得△A ′B ′C ′,∴△ABC 与△A ′B ′C ′的三边对应成比例,∴△ABC ∽△A ′B ′C ′, ∴214()150%9ABC A B C S S '''==+V V , ∵△ABC 的面积为4,则△A'B'C'的面积是9.故选:A .【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定是解题的关键.19.如图,点D 是ABC V 的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD V 的面积为15,那么ABC V 的面积为( )A .20B .22.5C .25D .30 【答案】A【解析】【分析】先证明C ABD BA ∽△△,再根据相似比求出ABC V 的面积即可.【详解】∵,BAD C B B ∠=∠=∠∠∴C ABD BA ∽△△∵2AC AD =∴4S ABD S CBA =V V∴43S ACD S CBA =V V ∵ACD V 的面积为15∴44152033S CBA S ACD ==⨯=VV 故答案为:A .【点睛】 本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.20.如图,O 是平行四边形ABCD 的对角线交点,E 为AB 中点,DE 交AC 于点F ,若平行四边形ABCD的面积为8,则DOE的面积是()A.2B.32C.1D.94【答案】C【解析】【分析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.【详解】解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,∴EM:AN=BE:AB,∵E为AB中点,∴BE=12 AB,∴EM=12 AN,∵平行四边形ABCD的面积为8,∴2×12×AN×BD=8,∴AN×BD=8∴S△OED=12×OD×EM=12×12BD×12AN=18AN×BD=1.故选:C.【点睛】本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.。

部编数学九年级下册专题03图形的相似(重难点突破)(解析版)_new含答案

部编数学九年级下册专题03图形的相似(重难点突破)(解析版)_new含答案

专题03 图形的相似重点了解线段的比和成比例的线段难点相似多边形的有关性质易错求线段的比时,线段的长度单位不一致;找错相似多边形的对应边一、相似图形判断两个图形是否相似,就是看两个图形是不是形状相同,与图形的大小、位置无关,这也是相似图形的本质.【例1】选项图形与如图所示图形相似的是( )A.B.C.D.【答案】D【详解】因为相似图形的形状相同,A、B、C三个选项中的图形形状与题干所给图形形状不同,均不符合题意;D选项中的图形形状与题干所给图形形状相同,符合题意;故选:D.【例2】下列关于“相似形”的说法中正确的是()A.相似形形状相同、大小不同B.图形的放缩运动可以得到相似形C.对应边成比例的两个多边形是相似形D.相似形是全等形的特例【答案】B【详解】解:A:相似形形状相同、大小不一定相同,但是可以相同,故选项A错误;B:图形的放缩运动可以得到相似形,选项B正确;C:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形,故选项C错误;D:全等形是相似形的特例,故选项D错误.二、比例线段一般地,四条线段a,b,c,d的单位应该一致,有时为了计算方便,a,b的单位一致,c,d的单位一致也可以.【例3】已知四条线段a ,b ,c ,d 是成比例线段,其中3cm b =,4cm c =,6cm d =,则线段a 的长度为( )A .8cmB .4cmC .2cmD .1cm【答案】C【详解】解:∵四条线段a 、b 、c 、d 是成比例线段,∴::a b c d =,即:34:6a =,∴2cm a =.故选:C .【例4】已知线段b 是线段a 和线段c 的比例中项,若2a =,4c =,则b 的值是( )A .2B .3C .D .【答案】C【详解】解:根据题意得::a b b c =,即2::4b b =,解得b =或b =-,所以b 的值为故选:C .三、相似多边形两个多边形相似,必须同时具备两个条件:(1)角分别相等;(2)边成比例.【例5】如图,平行于正多边形一边的直线,将正多边形分割成两部分,则阴影部分多边形与原多边形相似的是( )A .B .C .D .【答案】A 【详解】解:A 、阴影三角形与原三角形的对应角相等、对应边的比相等,符合相似多边形的定义,符合题意;B、阴影矩形与原矩形的对应角相等,但对应边的比不相等,不符合相似多边形的定义,不符合题意;C、阴影五边形与原五边形的对应角相等,但对应边的比不相等,不符合相似多边形的定义,不符合题意;D、阴影六边形与原六边形的对应角相等,但对应边的比不相等,不符合相似多边形的定义,不符合题意;故选:A.【例6】下列四组平面图形中,一定相似的是()A.等腰三角形与等腰三角形B.正方形与菱形C.正五边形与正五边形D.菱形与菱形【答案】C【详解】因为等腰三角形与等腰三角形不一定相似,所以A错误,不符合题意;因为正方形与菱形不一定相似,所以B错误,不符合题意;正五边形与正五边形一定相似,所以C正确,符合题意;菱形与菱形不一定相似,所以D错误,不符合题意;故选:C.一、单选题1.下列图形中不一定是相似图形的是()A.两个圆B.两个菱形C.两个等腰直角三角形D.两个等边三角形【答案】B【详解】解:A、两个圆的形状相同,是相似图形,故选项A不符合题意;B、两个菱形的各角不一定相等,故不一定相似,故选项B符合题意;C、两个等腰直角三角形形状相同,是相似图形,故选项C不符合题意;D、两个等边三角形形状相同,是相似图形,故选项D不符合题意;故选:B.2.下面四个选项中的一般三角形、等边三角形、正方形、矩形的各边分别等距向外扩张1个单位,那么扩张后的几何图形与原几何图形不一定相似的是( )A .B .C .D .【答案】D 【详解】解:A :形状相同,符合相似形的定义,对应角相等,所以三角形相似,故A 选项不符合要求;B :形状相同,符合相似形的定义,故B 选项不符合要求;C :形状相同,符合相似形的定义,故C 选项不符合要求;D :两个矩形,虽然四个角对应相等,但对应边不一定成比例,故D 选项符合要求;故选:D .3.若53m n m +=,则n m =( )A .23B .25C .35D .73【答案】A【详解】解:∵53m n m +=,∴53()m m n =+,整理得:23m n =,∴23n m =,故选:A .4.如图,在ABC V 中,2310DE BC AD BD AC ===,,,∥,则AE 的长( )A .3B .4C .5D .6【答案】B 【详解】解:∵23AD BD ==,,∴5AB AD BD =+=,∵DE BC ∥,∴AE AD AC AB =,即2105AE =,∴4AE =,故选B .5.一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人身材好.如图,是一个参加空姐选拔的选手的实际身高情况,如果要使身材好,那么她穿鞋子的高度最好为( )cm .(精确到1cm 0.618≈)A .5B .8C .10D .12【答案】C【详解】解:设她应该穿cm x 高的鞋子,根据题意,得:6559x =+.解得:10x ≈,故选:C .6.如图,已知一组平行线a b c ∥∥,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且34 4.8AB BC EF ===,,,则DE =( )A .7.2B .6.4C .3.6D .2.4【答案】C 【详解】解:∵a b c ∥∥,∴DE AB EF BC =,即34.84DE =,解得, 3.6DE =,故选:C .二、填空题7.在比例尺是1:20000的地图上,若某条道路长约为3cm ,则它的实际长度约为______km .【答案】0.6##35【详解】解:设它的实际长度约为cm x ,依题意得:1320000x=,解得:60000x =,经检验:60000x =是原方程的解且符合题意,∵60000cm=0.6km ,∴它的实际长度约为0.6km .故答案为:0.6.8.如图,已知AD 为ABC V 角平分线,DE AB ∥,如果31AE AC =,6AB =,那么DE =______.【答案】4【详解】解:∵DE AB ∥,DE EC AB AC\=,又13AE AC =Q ,23DE EC AB AC \==,=6AB Q ,4DE \=.故答案为:4.三、解答题9.根据条件求值.(1)若15ab =,求a b b+的值;(2)若13x y =,求2x y x y +-的值.【答案】(1)65(2)﹣52【详解】(1)∵1a b a b b +=+∴当15a b =时,161155a b a b b +=+=+=∴65a b b +=.(2)∵13x y =∴3y x=∴22355322x y x x x x y x x x ++==-=---∴252x y x y +=--.10.如图,在ABC V 中,D ,E 分别是AB 和AC 上的点,且DE BC ∥.(1)如果7,3,2AD DB EC ===,那么AE 的长是多少?(2)如果10,6,3AB AD EC ===,那么AE 的长是多少?【答案】(1)143AE =(2)92AE =【详解】(1)∵DE BC ∥,∴AD AE DB EC =,∴732AE =,∴143AE =;(2)∵10,6AB AD ==,∴1064BD =-=,∵DE BC ∥,∴AD AE DB EC =,∴643AE =,∴92AE =.一、单选题1.下列四条线段成比例的是( )A .2a =,b =c =,d =B .a =2b =,1c =,dC .4a =,6b =,5c =,10d =D .12a =,8b =,15c =,11d =【答案】B【详解】解:A 、按照从小到大排列:d =2a =,b =,c =,则2¹错误;B 、按照从小到大排列:1c =,a =d =2b =21=´,故本选项正确;C 、按照从小到大排列:4a =,5c =,6b =,10d =,则41056´¹´,故本选项错误;D 、按照从小到大排列:8b =,11d =,12a =,15c =,则1211158´¹´,故本选项错误;故选:B .2.如图,已知在ABC V 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE BC ∥,EF AB ∥,且AD :3DB =:5,那么DE :CF 等于( )A .5:3B .3:8C .3:5D .2:5【答案】C 【详解】解:∵DE BC ∥,EF AB ∥,∴四边形BFED 为平行四边形,∴DE BF =,∵DE BC ∥,AD :3DB =:5,∴AE :CE =AD :3DB =:5,∵EF AB ∥,∴BE :CF =AE :3CF =:5,∴DE :3CF =:5,故选:C .3.如图,已知点C 是线段AB 的黄金分割点,且BC AC >.若1S 表示以BC 为边的正方形的面积,2S 表示长为()AD AD AB =、宽为AC 的矩形的面积,则1S 与2S 的大小关系为( )A .12S S =B .12S S >C .12S S <D .无法确定【答案】A 【详解】解:∵点C 是线段AB 的黄金分割点∴AC BC BC AB=,即2BC AC AB =×由题意可得:21S BC =,2S AC AD AC AB=´=´∴12S S =故选:A4.如图,四边形ABCD :四边形EFGH ,80A Ð=°,70F Ð=°,90G Ð=°,则D Ð等于( )A . 70°B . 80°C . 110°D . 120°【答案】D 【详解】∵四边形ABCD :四边形EFGH ,80A Ð=°,70F Ð=°,90G Ð=°,∴70Ð=Ð=°B F ,90C G Ð=Ð=°∴360360807090120D A B C Ð=°-Ð-Ð-Ð=°-°-°-°=°故选:D5.如图,正方形ABCD 中,E F ,分别在边AD CD ,上,AF BE ,相交于点G , 若3AE ED DF CF ==,,则 AGGF 的值是( )A .13B .54C .65D .76【答案】C【详解】解:如图,作FN AD ∥,交AB 于N ,交BE 于M .∵四边形ABCD 是正方形,∴AB CD ∥,∵FN AD ∥,∴四边形ANFD 是平行四边形,∵90D Ð=°,∴四边形ANFD 是矩形,∵3AE DE =,设DE a =,则3,4,2,AE a AD AB CD FN a AN DF a =======∵,AN BN MN AE =∥,∴BM M E =,∴3,2MN a =∴5,2FM a =∴36,55AG AE a GF FM ===故选:C6.如图,F 是平行四边形ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误的是( )A .ED DF EA AB =B .DE EF AD FB =C .BC BF DE BE =D .BF BE EAD A =【答案】C【详解】∵平行四边形ABCD∴AD BC =,AB CD =,AD BC ∥,AB CD ∥,∵AB FD∥∴ED DF EA AB=,故选项A 正确,不符合题意;DE EF AD FB=,故选项B 正确;,不符合题意∵AD BC∥∴F BC BF DE E =,故选项C 错误,符合题意;∴BF BE EAD A =,故选项D 正确,不符合题意;故选:C .二、填空题7.如图,已知直线123l l l ∥∥,直线4l 分别与直线1l 、2l 、3l 相交于点A 、B 、C .直线5l 分别与直线1l 、2l 、3l 相交于点D 、E 、F ,直线4l 与5l 交于点G .如果:1:2AB BC =,12DF =,那么EF 的长为______.【详解】解:123l l l ∥∥Q ,12DE AB EF BC \==,12DE EF \=,32DF DE EF EF \=+=,12DF =Q ,8EF \=,故答案为:8.8.如图,菱形ABCD 的对角线AC ,BD 交于点O ,8AC =,6BD =,点E 在BC 上,OE AB ∥,则OEC V 的面积是______.【答案】3【详解】因为菱形ABCD 的对角线AC ,BD 交于点O ,8AC =,6BD =,所以菱形的面积116822BD AC ´´=´´=24,OA =OC ,所以6OBC S =V ,因为OE AB ∥,OA =OC ,所以1OC EC OA EB==,所以EC =EB ,OEC V 的面积是:116322OBC S =´=V .故答案为:3.三、解答题9.如图,点D 是ABC V 边BC 上一点,连接AD ,过AD 上点E 作EF BD ∥,交AB 于点F ,过点F 作FG AC P 交BC 于点G ,已知32AE ED =,4BG =.(1)求CG 的长;(2)若2CD =,在上述条件和结论下,求EF 的长.【答案】(1)6(2)245【详解】(1)∵EF BD ∥,∴32AF AE FB ED ==,∵FG AC P ,∴23BG BF CG AF ==,∵4BG =,∴334622CG BG ==´=.(2)∵2CD =,6CG =,∴4DG CG CD =-=,∵4BG =,∴8BD BG DG =+=,∵32AF BF =,∴35AF AB =,∵EF BD ∥,∴EF AF BD AB =,∴385EF =,∴245EF =.10.如图,AC ∥EF ∥BD .(1)求证:1AC + 1BD =1EF;(2)若AC =3,EF =2,求BD 的值.【答案】(1)见解析(2)6【详解】(1)证明:∵EF ∥BD ,∴EF AF BD AB=①,∵EF ∥AC ,∴EF BF AC BA=②,①+②得1EF EF AF BF BD AC AB ++==,∴111AC BD EF+=;(2)解:111AC BD EF +=Q ,11132BD \+=,∴BD =6.。

初二数学图形的相似试题答案及解析

初二数学图形的相似试题答案及解析

初二数学图形的相似试题答案及解析1.小丽同学想利用树影测量校园内的树高,她在某一时刻测得小树高为1.5m时,其影长为1.2 m,此时她测量教学楼旁的一棵大树影长为5m,那么这棵大树高约 m.【答案】6.25【解析】设大树的高度约为xm,由题意得,,解得x=6.25,即这棵大树高约6.25m.故答案为:6.25.【考点】相似三角形的应用2.如图,在△PAB中,点C、D在边AB上,PC=PD=CD,∠APB=120°.(1)试说明△APC与△PBD相似.(2)若CD=1,AC=x,BD=y,请你求出y与x之间的函数关系式.(3)小明猜想:若PC=PD=1,∠CPD=α,∠APB=β,只要α与β之间满足某种关系式,问题(2)中的函数关系式仍然成立.你同意小明的观点吗?如果你同意,请求出α与β所满足的关系式;若不同意,请说明理曲.【答案】(1)说明见解析(2)(3)同意,2β-α=180°【解析】(1)根据PC=PD=CD,得∠PCD=∠PDC=∠CPD=60°,则∠ACP=∠BDP=120°,可证明∠A=∠BPD,从而证得△APC与△PBD;(2)由(1)得,则,从而得出y与x的函数关系式;(3)根据题意仍可得出(2)中的函数关系式,则同意这种说法.试题解析:(1)∵PC=PD=CD,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠BDP=120°,∵∠A+∠APC=60°,∠APC+∠BPD=∠APB-∠CPD=120°-60°=60°,∴∠A=∠BPD∴△APC∽△PBD由(1)得△APC∽△PBD,,∴,即(3)同意,2β-α=180°【考点】相似三角形的判定与性质3.如图,矩形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,3),D(1,3).(1)将矩形各顶点的横、纵坐标都乘以2,写出各对应点A1B1C1D1的坐标;顺次连接A1B1C1D1,画出相应的图形.(2)求矩形A1B1C1D1与矩形ABCD的面积的比_________.(3)将矩形ABCD的各顶点的横、纵坐标都扩大n倍(n为正整数),得到矩形An BnCnDn,则矩形A n B n C n D n 与矩形ABCD 的面积的比为 _________ .【答案】(1)画图见解析;(2)4:1;(3)(n+1)2:1. 【解析】(1)根据题意得出对应点坐标进而画出图形; (2)利用已知图形求出两图形面积,进而得出其面积比;(3)利用横纵坐标变化得出相似比,进而得出矩形AnBnCnDn 与矩形ABCD 的面积的比.试题解析:(1)如图所示:A 1(2,2),B 1(4,2),C 1(4,6),D 1(2,6); (2)∵S 矩形ABCD =1×2=2,S 矩形A1B1C1D1=2×4=8,∴矩形A 1B 1C 1D 1与矩形ABCD 的面积的比:4:1;(3)∵将矩形ABCD 的各顶点的横、纵坐标都扩大n 倍(n 为正整数),得到矩形A n B n C n D n , ∴两图形相似比为:(n+1):1,∴矩形A n B n C n D n 与矩形ABCD 的面积的比为:(n+1)2:1. 【考点】作图-位似变换.4. 已知点C 是线段AB 的黄金分割点,且AC >BC ,AB=2,则AC 的长为 . 【答案】. 【解析】根据黄金分割点的定义,知AC 为较长线段;则AC=AB ,代入数据即可得出AC的值.试题解析:由于C 为线段AB=2的黄金分割点,且AC >BC ,AC 为较长线段; 则AC=2×.【考点】黄金分割.5. 如图,在矩形ABCD 中,AB=6,BC=8,若将矩形折叠,使B 点与D 点重合,则折痕EF 的长为( )A .B .C .5D .6【答案】A.【解析】EF与BD相交于点H,∵将矩形沿EF折叠,B,D重合,∴∠DHE=∠A=90°,又∵∠EDH=∠BDA,∴△EDH∽△BDA,∵AD=BC=8,CD=AB=6,∴BD=10,∴DH=5,∴EH=,∴EF=.故选A.【考点】三角形相似.6.如图,A、B两点被池塘隔开,在 AB外选一点 C,连结 AC和 BC,并分别找出它们的中点M、N.若测得MN=15m,则A、B两点的距离为【答案】30m【解析】由M、N分别为AC、BC的中点可知MN为△ABC的中位线,再根据三角形的中位线定理求解.解:∵M、N分别为AC、BC的中点∴∵MN=15m∴A、B两点的距离为30m.【考点】三角形的中位线定理点评:解题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.7.如图,在□ABCD中,E为CD中点,AE与BD相交于点O,S△DOE =12cm2,则S△AOB等于 cm2.【答案】48【解析】根据平行四边形的性质可得AB∥DC,即可证得△AOB∽△DOE,再结合E为CD中点根据相似三角形的性质求解即可.解:∵□ABCD∴AB∥DC,AB=DC∴△AOB∽△DOE∵E为CD中点∴∵S△DOE =12cm2∴S△AOB=48cm2.【考点】平行四边形的性质,相似三角形的判定和性质点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.一根竹竿的高为1.5cm,影长为2cm,同一时刻某塔影长为40cm,则塔的高度为______cm。

中考数学《图形的相似》专项练习题及答案

中考数学《图形的相似》专项练习题及答案

中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。

备战中考数学(北师大版)专项练习图形的相似(含解析)

备战中考数学(北师大版)专项练习图形的相似(含解析)

备战中考数学(北师大版)专项练习图形的相似(含解析)一、单选题1.如图,点G、F分别是△BCD的边BC、CD上的点,BD的延长线与GF的延长线相交于点A ,DE∥BC交GA于点E,则下列结论错误的是()A.B.C. D.2.如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC,假如,AC=6,那么AE的长为()A.3B.4C.9D.123.一只蚂蚁沿直角三角形的边长爬行一周需2秒,假如将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需()A.6秒B.5秒C.4秒D.3秒4.如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,则CD的长是()A.1B.4C.3D.25.假如两个相似三角形的周长比为1:4,那么这两个三角形的相似比为()A.1:2B.1:4C.1:8D.1:166.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE=BF,EF=BD,且AD:DB=3:5,那么CF:CB等于()A.3:5B.3:8C.5:8D.2:57.如图,在△ABC中,点D、E分别在边AB、AC上,且DE不行于B C,则下列条件中不能判定△ABC∽△ADE的是()A.∠AED=∠BB.∠ADE=∠CC.=D.=8.一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张二、填空题9.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是___ _____10.如图,△ABC的内接正方形EFGH中,EH∥BC,其中BC=4,高A D=6,则正方形的边长为________.11.位似图形的相似比也叫做________12.如图,矩形中,点是边的中点,交对角线于点,则与的面积比等于________.13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为________14.如图,Rt△ABC中,∠A=90°,AB=6,AC=8,点E为边AB上一点,AE=2,点F为线段AB上一点,且BF=3,过点E作AC的平行线交B C于点D,作直线FD交AC于点G,则FG=________.15.如图,已知图中的每个小方格差不多上边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是________.16.如图是小明在建筑物AB上用激光仪测量另一建筑物CD高度的示意图,在地面点P处水平放置一平面镜,一束激光从点A射出经平面镜上的点P反射后刚好射到建筑物CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=15米,BP=20米,PD=32米,B、P、D在一条直线上,那么建筑物CD的高度是________米.三、解答题17.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?什么缘故?18.如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.四、综合题19.小明利用灯光下自己的影子长度来测量路灯的高度.如图,CD和E F是两等高的路灯,相距27m,身高1.5m的小明(AB)站在两路灯之间(D、B、F共线),被两路灯同时照耀留在地面的影长BQ=4m,BP=5m.(1)小明距离路灯多远?(2)求路灯高度.20.如图,在△ABC中,∠C=90°,AC=4,BC=3,点P从点A动身,以每秒4个单位长度的速度沿折线AC-CB运动,到点B停止.当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB 于点Q,再以PQ为斜边作等腰直角三角形△PQR,且点R与△ABC的另一条直角边始终在PQ同侧,设△PQR与△ABC重叠部分图形的面积为S(平方单位).点P的运动时刻为t(秒).(1)求点P在AC边上时PQ的长,(用含t的代数式表示);(2)求点R到AC、PQ所在直线的距离相等时t的取值范畴;(3)当点P在AC边上运动时,求S与t之间的函数关系式;(4)直截了当写出点R落在△ABC高线上时t的值.21.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(1,2),B(7,2),C(5,6).(1)请以图中的格点为顶点画出一个△A1B1C ,使得△A1B1C ∽△ABC ,且△A1B1C与△ABC的周长比为1:2;(每个小正方形的顶点为格点)(2)依照你所画的图形,直截了当写出顶点A1和B1的坐标.22.如图,梯形ABCD中,AB∥DC ,∠B=90°,E为BC上一点,且AE⊥ED .若BC=12,DC=7,BE:EC=1:2,(1)求AB的长.(2)求△AED的面积答案解析部分一、单选题1.【答案】C【考点】平行线分线段成比例【解析】解答:∵DE∥BC交GA于点E ,∴,,,A,B,D正确,故选C.分析:利用平行线分线段成比例定理即可得到答案.2.【答案】B【考点】平行线分线段成比例【解析】【解答】解:∵DE∥BC,∴,又AC=6,∴AE=4,故选:B.【分析】依照平行线分线段成比例定理,得到比例式,把已知数据代入运算即可.3.【答案】C【考点】相似三角形的应用【解析】【分析】本题依照放大后的三角形与三角形相似,故可依照相似三角形的性质求解,两个相似三角形对应边之比的比值叫做相似比.【解答】直角三角形各边的长度扩大一倍,周长扩大1倍,故爬行时刻扩大一倍.故只蚂蚁再沿边长爬行一周需4秒.故选C.【点评】熟练运用相似三角形的性质.4.【答案】C【考点】相似三角形的判定与性质【解析】【分析】先由∠BAC=90°,AD⊥BC,∠B=∠B证得△AB D∽△CBA,再依照相似三角形的性质求得BD的长,即可求得结果。

初二数学图形的相似试题答案及解析

初二数学图形的相似试题答案及解析

初二数学图形的相似试题答案及解析1.如图,点F是□ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A.B.C.D.【答案】C【解析】:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选C.【考点】1、平行线分线段成比例;2、平行四边形的性质.2.如图,在□ABCD中,点E在BC上,∠CDE=∠DAE.(1)求证:△ADE∽△DEC;(2)若AD=6,DE=4,求BE的长.【答案】(1)证明见解析;(2)BE=.【解析】(1)根据AD∥BC,可以证得∠ADE=∠DEC,然后根据∠CDE=∠DAE即可证得;(2)根据相似三角形对应边的比相等,即可求得EC的长,则BE即可求解.试题解析:(1)∵□ABCD中AD∥BC,∴∠ADE=∠DEC,又∵∠CDE=∠DAE,∴△ADE∽△DEC;(2)∵△ADE∽△DEC,∴,∴,∴EC=.又∵BC=AD=6,∴BE=6﹣=.【考点】1、相似三角形的判定与性质;2、平行四边形的性质3.已知点C是线段AB的黄金分割点,且AC>BC,AB=2,则AC的长为 .【答案】.【解析】根据黄金分割点的定义,知AC为较长线段;则AC=AB,代入数据即可得出AC的值.试题解析:由于C为线段AB=2的黄金分割点,且AC>BC,AC为较长线段;则AC=2×.【考点】黄金分割.4.如图,在△ABC中,D是边AB的中点,DE∥BC交AC于点E.求证:AE=EC【答案】见解析【解析】先判定△ADE和△ABC相似,再根据相似三角形对应边成比例列式求解即可.试题解析:∵DE∥BC,∴△ADE∽△ABC,∴,∵D点是边AB的中点,∴AB=2AD,∴,∴AC=2AE,∴AE=CE.考点: 三角形中位线定理.5.如图,已知等边△ABC中,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在处,分别交边AC于M、H点,若∠ADM=50°,则∠EHC的度数为().A.45°B.50°C.55°D.60°【答案】B【解析】由对顶角相等可得∠AMD=∠HMB1∠CHE=∠MHB1,由两角对应相等可得△ADM∽△B1HM∽△CHE,那么所求角等于∠ADM的度数.由翻折可得∠B1=∠B=60°,所以∠A=∠B1=∠C=60°,因为∠AMD=∠HMB1,所以△ADF∽△B1MH,所以∠ADM=∠B1HM=∠CHE=50°.【考点】1、相似三角形的判定与性质;2、轴对称-翻折变换.6.一根竹竿的高为1.5cm,影长为2cm,同一时刻某塔影长为40cm,则塔的高度为______cm。

图形的相似全集汇编附答案解析

图形的相似全集汇编附答案解析

图形的相似全集汇编附答案解析一、选择题1.如图Rt ABC V 中,90ABC ∠=︒,4AB =,3BC =,D 为BC 上一动点,DE BC ⊥,当BD CE =时,BE 的长为( ).A .52B .125C .5158D .3418【答案】D【解析】【分析】利用90ABC ∠=︒,DE BC ⊥得到相似三角形,利用相似三角形的性质求解,,BD DE 再利用勾股定理计算即可.【详解】解:90,ABC ∠=︒Q DE BC ⊥,//,DE BA ∴,CED CAB ∴∆∆:,CE CD ED CA CB AB∴== 90,4,3,ABC AB BC ∠=︒==Q 5,AC ∴=设,BD x = Q BD CE =,,3,BD CE x CD x ∴===-3,534x x ED -∴== 3155,x x ∴=-15,8x ∴= 158,54ED ∴= 3,2ED ∴= Q DE BC ⊥,2222153341()().828BE DB DE ∴=+=+=故选D .【点睛】本题考查的是三角形相似的判定与性质,勾股定理的计算求解,掌握相关知识点是解题关键.2.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q , 3EF ∴=, 22534AE ∴=-=,538DE =+=,ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.3.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a -),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=2为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,则△BEO ∽△OFA ,∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b=, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b+=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=2 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.4.如图所示,在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,作CD 的中垂线与CD 交于点E ,与BC 交于点F .若CF =x ,tanA =y ,则x 与y 之间满足( )A .2244x y +=B .2244x y -=C .2288x y -=D .2288x y+= 【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CD =12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.【详解】解:如图所示:∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,∴CD =12AB =AD =4, ∴∠A =∠ACD ,∵EF 垂直平分CD , ∴CE =12CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,∴∠ACD =∠FCE ,∴△CEG ∽△FEC , ∴GE CE =CE FE, ∴y =2FE ,∴y 2=24FE , ∴24y=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4,∴24y=x 2﹣4, ∴24y+4=x 2, 故选:A .【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.5.如图,正方形ABCD 中,点E 在边BC 上,BE EC =,将DCE ∆沿DE 对折至DFE ∆,延长EF 交边AB 于点G ,连接DG ,BF .给出以下结论:①DAG DFG ∆≅∆;②2BG AG =;③EBF DEG ∆∆:;④23BFC BEF S S ∆∆=.其中所有正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 根据正方形的性质和折叠的性质可得AD =DF ,∠A =∠GFD =90°,于是根据“HL”判定Rt △ADG ≌Rt △FDG ,可判断①的正误;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,根据勾股定理得到x =13a ,得到BG =2AG ,故②正确;根据已知条件得到△BEF 是等腰三角形,易知△GED 不是等腰三角形,于是得到△EBF 与△DEG 不相似,故③错误;连接CF ,根据三角形的面积公式得到S △BFC =2S △BEF .故④错误.【详解】解:如图,由折叠和正方形性质可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG ⎧⎨⎩==, ∴Rt △ADG ≌Rt △FDG (HL ),故①正确;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,∵BE =EC ,∴EF =CE =BE =12a∴GE=12a+x 由勾股定理得:EG 2=BE 2+BG 2,即:(12a+x)2=(12a)2+(a-x)2解得:x =13∴BG =2AG ,故②正确;∵BE =EF ,∴△BEF 是等腰三角形,易知△GED 不是等腰三角形,∴△EBF 与△DEG 不相似,故③错误;连接CF ,∵BE =CE ,∴BE =12BC , ∴S △BFC =2S △BEF .故④错误,综上可知正确的结论的是2个.故选:B .【点睛】本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.6.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.7.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .8【答案】B【解析】【分析】 证明△ADC ∽△ACB ,根据相似三角形的性质可推导得出AC 2=AD•AB ,由此即可解决问题.【详解】∵∠A=∠A ,∠ADC=∠ACB ,∴△ADC ∽△ACB ,∴AC AD AB AC=, ∴AC 2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.8.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.5【答案】B【解析】【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C==,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.9.如果两个相似正五边形的边长比为1:10,则它们的面积比为()A .1:2B .1:5C .1:100D .1:10【答案】C【解析】 根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C .点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.10.如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,AF 与DE 相交于点O ,则AO DO=( ).A .13B 25C .23D .12【答案】D【解析】【分析】由已知条件易证△ADE ≌△BAF ,从而进一步得△AOD ∽△EAD .运用相似三角形的性质即可求解.【详解】∵四边形ABCD 是正方形∴AE=BF ,AD=AB ,∠EAD=∠B=90︒∴△ADE ≌△BAF∴∠ADE=∠BAF ,∠AED=∠BFA∵∠DAO+∠FAB=90︒,∠FAB+∠BFA=90︒,∴∠DAO=∠BFA ,∴∠DAO=∠AED ∴△AOD ∽△EAD∴12AO AE DO AD == 故选:D【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质.11.如图,Rt ABC V 中,90,60ABC C ∠=∠=o o ,边AB 在x 轴上,以O 为位似中心,作111A B C △与ABC V 位似,若()3,6C 的对应点()11,2C ,则1B 的坐标为( )A .()1,0B .3,02⎛⎫ ⎪⎝⎭C .()2,0D .()2,1【答案】A 【解析】【分析】 如图,根据位似图形的性质可得B 1C 1//BC ,点B 在x 轴上,由∠ABC=90°,可得B 1C 1⊥x 轴,根据C 1坐标即可得B 1坐标.【详解】如图,∵111A B C △与ABC V 位似,位似中心为点O ,边AB 在x 轴上,∴B 1C 1//BC ,点B 在x 轴上,∵∠ABC=90°,∴B 1C 1⊥x 轴,∵C 1坐标为(1,2),∴B 1坐标为(1,0)故选:A .【点睛】本题考查位似图形的性质,位似图形的对应边互相平行,对应点的连线相交于一点,这一点叫做位似中心.12.矩形ABCO 如图摆放,点B 在y 轴上,点C 在反比例函数y k x=(x >0)上,OA =2,AB =4,则k 的值为( )A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD85=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴25424CD OD==,∴CD855=,OD55=,∴C(455,855),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.13.在平面直角坐标系中,把△ABC 的各顶点的横坐标都除以14,纵坐标都乘13,得到△DEF ,把△DEF 与△ABC 相比,下列说法中正确的是( )A .横向扩大为原来的4倍,纵向缩小为原来的13 B .横向缩小为原来的14,纵向扩大为原来的3倍 C .△DEF 的面积为△ABC 面积的12倍D .△DEF 的面积为△ABC 面积的112 【答案】A【解析】【分析】【详解】解:△DEF 与△ABC 相比,横向扩大为原来的4倍,纵向缩小为原来的13;△DEF 的面积为△ABC 面积的169, 故选A.14.如图,在ABC V 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A .4B .23C .33D .3【答案】D【解析】【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC V V ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】 此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.15.(2016山西省)宽与长的比是51-(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【答案】D【解析】【分析】 先根据正方形的性质以及勾股定理,求得DF 的长,再根据DF=GF 求得CG 的长,最后根据CG 与CD 的比值为黄金比,判断矩形DCGH 为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF 中,22125DF =+=5FG ∴=51CG ∴=-51CG CD -∴= ∴矩形DCGH 为黄金矩形故选:D .【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是51-的矩形叫做黄金矩形,图中的矩形ABGH 也为黄金矩形.16.如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N ,设BPQ ∆,DKM ∆,CNH ∆的面积依次为1S 、2S 、3S ,若1320S S +=,则2S 的值为( )A .6B .8C .10D .1【答案】B【解析】【分析】 由已知条件可以得到△BPQ ∽△DKM ∽△CNH ,然后得到△BPQ 与△DKM 的相似比为12,△BPQ 与△CNH 的相似比为13,由相似三角形的性质求出1S ,从而求出2S . 【详解】解:∵矩形AEHC 是由三个全等矩形拼成的,∴AB=BD=CD ,AE ∥BF ∥DG ∥CH ,∴四边形BEFD 、四边形DFGC 是平行四边形,∠BQP=∠DMK=∠CHN ,∴BE ∥DF ∥CG ,∴∠BPQ=∠DKM=∠CNH ,∴△ABQ ∽△ADM ,△ABQ ∽△ACH ,∴12 AB BQAD DM==,13BQ ABCH AC==,∴△BPQ∽△DKM∽△CNH,∵12BQMD=,13BQCH=,∴1214SS=,1319SS=,∴214S S=,319S S=,∵1320S S+=,∴12S=,∴2148S S==;故选:B.【点睛】本题考查了相似三角形的判定和性质,矩形的性质以及平行四边形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质,正确得到214S S=,319S S=,从而求出答案.17.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)【答案】A【解析】【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DCOB AB=,又OB=6,AB=3,∴OD=2,CD=1,∴点C 的坐标为:(2,1),故选A .【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.18.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BGBD BD ==,∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EFBD =, ∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形,∴1176824 AGH EFCABCDSSS+=+=V V四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.19.平面直角坐标系xOy中,点P(a,b)经过某种变换后得到的对应点为P′(12a+1,12b﹣1).已知A,B,C是不共线的三个点,它们经过这种变换后,得到的对应点分别为A′,B′,C′.若△ABC的面积为S1,△A′B′C′的面积为S2,则用等式表示S1与S2的关系为()A.S112=S2B.S114=S2C.S1=2S2D.S1=4S2【答案】D【解析】【分析】先根据点P及其对应点判断出变换的类型,再依据其性质可得答案.【详解】由点P(a,b)经过变换后得到的对应点为P′(12a+1,12b﹣1)知,此变换是以点(2,﹣2)为中心、2:1的位似变换,则△ABC的面积与△A′B′C′的面积比为4:1,∴S1=4S2,故选:D.【点睛】本题主要考查几何变换类型,解题的关键是根据对应点的坐标判断出其几何变换类型.20.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=21:7;④FB2=OF•DF.其中正确的是()A.①②④B.①③④C.②③④D.①③【答案】B【解析】【分析】①正确.只要证明EC=EA=BC ,推出∠ACB=90°,再利用三角形中位线定理即可判断. ②错误.想办法证明BF=2OF ,推出S △BOC =3S △OCF 即可判断.③正确.设BC=BE=EC=a ,求出AC ,BD 即可判断.④正确.求出BF ,OF ,DF (用a 表示),通过计算证明即可.【详解】解:∵四边形ABCD 是平行四边形,∴CD ∥AB ,OD=OB ,OA=OC ,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC 平分∠DCB ,∴∠ECB=12∠DCB=60°, ∴∠EBC=∠BCE=∠CEB=60°,∴△ECB 是等边三角形,∴EB=BC ,∵AB=2BC ,∴EA=EB=EC ,∴∠ACB=90°,∵OA=OC ,EA=EB ,∴OE ∥BC ,∴∠AOE=∠ACB=90°,∴EO ⊥AC ,故①正确,∵OE ∥BC ,∴△OEF ∽△BCF ,∴12OE OF BC FB == , ∴OF=13OB , ∴S △AOD =S △BOC =3S △OCF ,故②错误,设BC=BE=EC=a ,则AB=2a ,3,223(72)a a +, ∴7a ,∴AC :3a 7217,故③正确,∵OF=13OB=6a ,∴,∴BF 2=79a 2,a•79⎫=⎪⎪⎝⎭ a 2, ∴BF 2=OF•DF ,故④正确,故选:B .【点睛】 此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.。

中考数学《图形的相似》真题汇编含解析

中考数学《图形的相似》真题汇编含解析

图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。

人教版数学九年级下27.1《图形的相似》测试(含答案及解析)

人教版数学九年级下27.1《图形的相似》测试(含答案及解析)

人教版数学九年级下27.1《图形的相似》测试(含答案及解析)1 / 11图形的相似测试时间:60 总分:100一、选择题(本大题共9小题,共36.0分)1. 下列四组图形中,一定相似的图形是A. 各有一个角是 的两个等腰三角形B. 有两边之比都等于2:3的两个三角形C. 各有一个角是 的两个等腰三角形D. 各有一个角是直角的两个三角形2. 下列说法正确的是A. 矩形都是相似图形B. 各角对应相等的两个五边形相似C. 等边三角形都是相似三角形D. 各边对应成比例的两个六边形相似3. 下列结论中,错误的有:所有的菱形都相似;放大镜下的图形与原图形不一定相似;等边三角形都相似;有一个角为110度的两个等腰三角形;所有的矩形不一定相似.A. 1个B. 2个C. 3个D. 4个4. 下列图形一定是相似图形的是A. 任意两个菱形B. 任意两个正三角形C. 两个等腰三角形D. 两个矩形5. 在下面的图形中,相似的一组是A.B.C.D.6. 如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有A. 1个B. 2个C. 3个D. 4个 7. 下列图形一定相似的是A. 两个矩形B. 两个等腰梯形C. 对应边成比例的两个四边形D. 有一个内角相等的菱形8.在下列命题中,正确的是A. 邻边之比相等的两个平行四边形一定相似B. 有一个角是两个等腰三角形一定相似C. 两个直角三角形一定相似D. 有一个角是的两个菱形一定相似9.用放大镜将图形放大,应该属于A. 平移变换B. 相似变换C. 对称变换D. 旋转变换二、填空题(本大题共8小题,共24.0分)10.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的______倍11.如图,的边长分别为1,,2,正六边形网格是由24个边长为2的正三角形组成,选择格点为顶点画,使得 ∽ 如果相似比,那么k的值可以是______ .12.如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形请在如图所示的网格中网格的边长为中,用直尺作出这个大正方形.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是______ .14.如图,______ 与______ 相似.15.如图,请在方格图中画出一个与相似且相似比不为1的、E、F必须在方格图的交叉点.人教版数学九年级下27.1《图形的相似》测试(含答案及解析)3 / 1116. 已知 在坐标平面内三顶点的坐标分别为 、、 以B 为位似中心,画出与 相似 与图形同向 ,且相似比是3的三角形,它的三个对应顶点的坐标分别是______ .17. 如图中的等腰梯形 是公园中儿童游乐场的示意图 为满足市民的需求,计划扩建该游乐场 要求新游乐场以MN 为对称轴,且新游乐场与原游乐场相似,相似比为2: 又新游乐场的一条边在直线BC 上,请你在图中画出新游乐场的示意图.三、解答题(本大题共5小题,共40.0分)18. 如图,在坐标系的第一象限建立网格,网格中的每个小正方形边长都为1,格点的顶点坐标分别为 、 、 .若 外接圆的圆心为P ,则点P 的坐标为______ .以点D 为顶点,在网格中画一个格点 ,使 ∽ ,且相似比为1: 画出符合要求的一个三角形即可19.已知,如图,中,,,D为BC边上一点,.求证: ∽ ;在原图上作交AC与点E,请直接写出另一个与相似的三角形,并求出DE的长.20.如图,已知,,请用尺规过点A作一条直线,使其将分成两个相似的三角形保留作图痕迹,不写作法21.已知:如图,在菱形ABCD中,垂足为E,对角线,,求边AB的长;的值.人教版数学九年级下27.1《图形的相似》测试(含答案及解析)5 / 1122. 如图,已知 , ,请用尺规过点A 作一条直线,使其将 分成两个相似的三角形 保留作图痕迹,不写作法答案和解析【答案】1. C2. C3. B4. B5. C6. C7. D8. D9. B10. 511. 2,,412. 解:如图所示:所画正方形即为所求.13. 1:414. ;15. 解:所画图形如下:就是所求的相似三角形.16. 、、17. 解:如图所示:18.19. 证明:,,,,,,,∽ ;解:,∽ ,∽ ,.人教版数学九年级下27.1《图形的相似》测试(含答案及解析)7 / 1120. 解:如图,AD 为所作.21. 解: 连接AC ,AC 与BD 相交于点O ,四边形ABCD 是菱形,, ,中, ,,;,菱形 ,,,,,.22. 解:如图所示:AD 即为所求.【解析】1. 解:A 、各有一顶角或底角是 的两个等腰三角形相似,故错误,不符合题意;B 、有两边之比为2:3的两个三角形不一定相似,故错误,不符合题意;C 、各有一个角是 的两个等腰三角形相似,正确,符合题意;D 、两个直角三角形不一定相似,故错误,不符合题意;故选C .利用相似图形的定义逐一判断后即可确定正确的选项.本题考查了相似图形的知识,能够了解相似图形的定义是解答本题的关键,难度不大. 2. 解: 矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C . 等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确; 各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.根据相似图形的定义,对应边成比例,对应角相等对各选项分析判断后利用排除法求解.本题考查了相似图形的定义,熟记定义是解题的关键,要注意从边与角两个方面考虑解答.3. 解::菱形的两组对角不一定分别对应相等,故所有的菱形不一定都相似;即:选项错误.:放大镜下的图形与原图形只是大小不相等,但形状相同,所以它们一定相似;即:选项错误.:等边三角形的三个内角相等,三条边都相等,故所有的等边三角形都相似;即:选项正确:有一个角为110度的两个等腰三角形一定相似因为它们的顶角均为,两锐角均为,根据“两内角对应相等的两个三角形相似”即可判定故:选项正确.:只有长与宽对应成比例的两个矩形相似,故选项正确故:选B利用相似的定义逐一的对五个选项进行判定.本题考查了相似图形的判定,解题的关键是要掌握相似图形的概念与判定方法.4. 解:A、任意两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、任意两个等边三角形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意;C、两个两个等腰三角形,无法确定形状是否相等,故不符合题意;D、两个矩形,对应角相等,对应边不一定成比例,故不符合题意.故选:B.根据相似图形的定义和图形的性质对每一项进行分析,即可得出一定相似的图形.本题考查相似形的定义,熟悉各种图形的性质和相似图形的定义是解题的关键.5. 解:A、六边形与五边形不可能是相似图形,故本选项错误;B、两图形不是相似图形,故本选项错误;C、,两三角形相似,故本选项正确;D、直角梯形与等腰梯形不是相似图形,故本选项错误.故选C.根据相似图形的定义对各选项分析判断后利用排除法求解.本题考查了相似图形的判定,是基础题,准确识图是解题的关键.6. 解:矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件;锐角三角形、直角三角形的原图与外框相似,因为其三个角均相等,三条边均对应成比例,符合相似的条件;正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件.故选C.根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.7. 解:A、两个矩形的对应角相等,但对应边的比不一定相等,故错误;B、两个等腰梯形不一定相似,故错误;C、对应边成比例且对应角相等的两个四边形是全等形,故错误;D、有一个内角相等的菱形是相似图形,故正确,故选D.根据相似图形的定义,结合选项,用排除法求解.本题考查相似形的定义,熟悉各种图形的性质是解题的关键.人教版数学九年级下27.1《图形的相似》测试(含答案及解析)9 / 11 8. 解:A 、邻边之比相等的两个平行四边形不一定相似,所以A 选项错误;B 、有一个角是 两个等腰三角形不一定相似,所以B 选项错误;C 、两个直角三角形不一定相似,所以C 选项错误;D 、有一个角是 的两个菱形一定相似,所以D 选项正确.故选:D .根据四边形相似要有对应角相等,对应边的比相等可对A 、D 进行判断;根据 的角可能为顶角,也可能为底角可以对B 进行判断;根据三角形判定方法对C 进行判断. 本题考查了命题与定理:判断一件事情的语句,叫做命题 许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果 那么 ”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理. 9. 解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B .根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.10. 解: 一个三角形的各边长扩大为原来的5倍,扩大后的三角形与原三角形相似,相似三角形的周长的比等于相似比,这个三角形的周长扩大为原来的5倍,故答案为:5.由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.11.解:的边长分别为1,,2为直角三角形, , ,根据等边三角形的三线合一,可作三边比为1: :2的三角形,故相似比 ,k 可取2, ,4.故答案为:2, ,4.根据题意可得:在正六边形网格找与 相似的三角形;即找三边的比值为1: :2的直角三角形;分析图形可得:共三种情况得出答案即可.此题主要考查了相似三角形的判定与性质,结合各边长得出符合题意的图形是解题关键. 12. 直接根据阴影部分面积得出正方形边长,进而得出答案.此题主要考查了应用设计与作图,正确得出正方形边长是解题关键.13. 解:因为原图中边长为5cm 的一个等边三角形放大成边长为20cm 的等边三角形, 所以放大前后的两个三角形的面积比为5: :4,故答案为:1:4.根据等边三角形周长的比是三角形边长的比解答即可.本题考查了相似三角形对应边比值相等的性质,关键是根据等边三角形面积的比是三角形边长的比的平方解答.14. 解:利用相似图形对应角相等,对应边成比例,只有,图形全等,符合题意.故答案为:,.根据相似图形的定义直接判断得出即可.本题考查的是相似形的定义,结合图形,即图形的形状相同,但大小不一定相同的变换是相似变换.15. 利用勾股定理计算出三角形的三边长,再让它的各边都乘以2,得到新三角形的三边长,从网格中画出即可.本题主要考查了作图中的相似变换问题,难度不大,注意看清题意是关键.16. 解:把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应顶点的坐标分别是:、、.故答案为:、、.根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,在改变的过程中保持形状不变大小可变即可得出答案.本题考查了相似变换作图的知识,注意图形的相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大或缩小相同的倍数.17. 先作轴对称图形,再把它利用位似变换放大为相似比为2:1的等腰梯形.考查了作图相似变换,作位似变换的图形的依据是相似的性质画位似图形的一般步骤为:确定位似中心,分别连接并延长位似中心和能代表原图的关键点;根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.18. 解:如图,点P即为所求,其坐标为,故答案为:;如图,即为所求三角形.分别作AC、AB的中垂线,两直线的交点即为所求点P;根据相似比为1:2可得,,,据此可得.本题主要考查三角形的外心和相似图形,熟练掌握三角形的外心到三顶点的距离相等及相似三角形的性质是解题的关键.19. 在与中,有,根据已知边的条件,只需证明夹此角的两边对应成比例即可;由知 ∽ ,又,易证 ∽ ,则: ∽ ,然人教版数学九年级下27.1《图形的相似》测试(含答案及解析)后根据相似三角形的对应边成比例得出DE的长.本题主要考查了相似三角形的判定及性质平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;两组对应边的比相等且相应的夹角相等的两个三角形相似;相似三角形的对应边成比例.20. 过点A作于D,利用等角的余角相等可得到,则可判断与相似.本题考查了作图相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到解决本题的关键是利用有一组锐角相等的两直角三角形相似.21. 首先连接AC,AC与BD相交于点O,由四边形ABCD是菱形,可得,,又由,可求得OC的长,然后由勾股定理求得边AB的长;由,利用菱形,即可求得AE的长,在中可求得BE,则可求得的余弦值.本题主要考查菱形的性质、勾股定理以及三角函数等知识此题难度适中,注意掌握辅助线的作法、数形结合思想的应用.22. 直接利用直角三角形的性质过点A作,即可得出答案.此题主要考查了相似变换,正确应用直角三角形的性质是解题关键.11 / 11。

图形的相似难题汇编及答案解析

图形的相似难题汇编及答案解析

图形的相似难题汇编及答案解析一、选择题1.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.2.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则的值为( )A .1B .C .D .【答案】C【解析】【分析】 由平行于BC 的直线DE 把△ABC 分成面积相等的两部分,可知△ADE 与△ABC 相似,且面积比为,则相似比为,的值为.【详解】∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴==,故选:C.【点睛】本题考查了相似三角形的判定,相似三角形的性质,面积比等于相似比的平方的逆用等.3.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.5【答案】B【解析】【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C==,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B .【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.4.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论.【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA ,∴251522BOD OAC S OB S OA ⎛⎫==÷= ⎪⎝⎭△△, ∴5OB OA=, ∴tan ∠BAO=5OB OA =. 故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.5.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 的中点,点P 是直线BC 上一点,将△BDP 沿DP 所在的直线翻折后,点B 落在B 1处,若B 1D ⊥BC ,则点P 与点B 之间的距离为( )A .1B .54C .1或 3D .54或5 【答案】D【解析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得12BD BE DEAB BC AC===,可求BE,DE的长,由勾股定理可求PB的长.【详解】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB=225AC BC+=∵点D是AB的中点,∴BD=12BA=52∵B1D⊥BC,∠C=90°∴B1D∥AC∴12 BD BE DEAB BC AC===∴BE=EC=12BC=2,DE=12AC=32∵折叠∴B1D=BD=52,B1P=BP∴B1E=B1D-DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2-BP)2,∴BP=5 4如图,若点B1在BC右侧,∵B1E=DE+B1D=32+52,在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP-2)2,∴BP=5故选:D.【点睛】本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.6.如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为8,则DOE的面积是()A.2B.32C.1D.94【答案】C【解析】【分析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.【详解】解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,∴EM:AN=BE:AB,∵E为AB中点,∴BE=12 AB,∴EM=12 AN,∵平行四边形ABCD的面积为8,∴2×12×AN×BD=8,∴AN×BD=8∴S△OED=12×OD×EM=12×12BD×12AN=18AN×BD=1.故选:C.【点睛】本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.7.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD85=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴25424CD OD==,∴CD855=,OD45=,∴C(455,855),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.8.在平面直角坐标系中,把△ABC的各顶点的横坐标都除以14,纵坐标都乘13,得到△DEF,把△DEF与△ABC相比,下列说法中正确的是()A.横向扩大为原来的4倍,纵向缩小为原来的1 3B.横向缩小为原来的14,纵向扩大为原来的3倍C.△DEF的面积为△ABC面积的12倍D.△DEF的面积为△ABC面积的1 12【答案】A 【解析】【分析】【详解】解:△DEF与△ABC相比,横向扩大为原来的4倍,纵向缩小为原来的13;△DEF的面积为△ABC面积的169,故选A.9.如图所示,在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,作CD 的中垂线与CD 交于点E ,与BC 交于点F .若CF =x ,tanA =y ,则x 与y 之间满足( )A .2244x y +=B .2244x y -=C .2288x y -=D .2288x y+= 【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CD =12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.【详解】解:如图所示:∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,∴CD =12AB =AD =4, ∴∠A =∠ACD ,∵EF 垂直平分CD , ∴CE =12CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,∴∠ACD =∠FCE ,∴△CEG ∽△FEC , ∴GE CE =CE FE,∴y =2FE , ∴y 2=24FE , ∴24y=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4,∴24y=x 2﹣4, ∴24y+4=x 2, 故选:A .【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.10.如图,点E 为ABC ∆的内心,过点E 作MN BC P 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A .3.5B .4C .5D .5.5【答案】B【解析】【分析】 连接EB 、EC ,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME ,同理可得NC=NE ,接着证明△AMN ∽△ABC ,所以767MN BM -=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN 的方程,然后解方程即可.【详解】连接EB 、EC ,如图,∵点E 为△ABC 的内心,∴EB 平分∠ABC ,EC 平分∠ACB ,∴∠1=∠2,∵MN ∥BC ,∴∠2=∠3,∴∠1=∠3,∴BM=ME ,同理可得NC=NE ,∵MN ∥BC ,∴△AMN ∽△ABC , ∴MN AM BC AB = ,即767MN BM -=,则BM=7-76MN①, 同理可得CN=5-56MN②, ①+②得MN=12-2MN ,∴MN=4.故选:B .【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.11.如图,Rt ABC V 中,90,60ABC C ∠=∠=o o ,边AB 在x 轴上,以O 为位似中心,作111A B C △与ABC V 位似,若()3,6C 的对应点()11,2C ,则1B 的坐标为( )A .()1,0B .3,02⎛⎫ ⎪⎝⎭C .()2,0D .()2,1【答案】A【分析】如图,根据位似图形的性质可得B 1C 1//BC ,点B 在x 轴上,由∠ABC=90°,可得B 1C 1⊥x 轴,根据C 1坐标即可得B 1坐标.【详解】如图,∵111A B C △与ABC V 位似,位似中心为点O ,边AB 在x 轴上,∴B 1C 1//BC ,点B 在x 轴上,∵∠ABC=90°,∴B 1C 1⊥x 轴,∵C 1坐标为(1,2),∴B 1坐标为(1,0)故选:A .【点睛】本题考查位似图形的性质,位似图形的对应边互相平行,对应点的连线相交于一点,这一点叫做位似中心.12.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm ,则较大多边形的周长为 )A .48 cmB .54 cmC .56 cmD .64 cm【答案】A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x , 则有=, 解得:x=48.大多边形的周长为48cm .考点:相似多边形的性质.13.如图,将图形用放大镜放大,应该属于( ).A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B【解析】【分析】 根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B .【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.14.如图,在ABC V 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A .4B .23C .33D .3【答案】D【解析】【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC V V ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】 此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.15.如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N ,设BPQ ∆,DKM ∆,CNH ∆的面积依次为1S 、2S 、3S ,若1320S S +=,则2S 的值为( )A .6B .8C .10D .1【答案】B【解析】【分析】 由已知条件可以得到△BPQ ∽△DKM ∽△CNH ,然后得到△BPQ 与△DKM 的相似比为12,△BPQ 与△CNH 的相似比为13,由相似三角形的性质求出1S ,从而求出2S . 【详解】解:∵矩形AEHC 是由三个全等矩形拼成的,∴AB=BD=CD ,AE ∥BF ∥DG ∥CH ,∴四边形BEFD 、四边形DFGC 是平行四边形,∠BQP=∠DMK=∠CHN ,∴BE ∥DF ∥CG ,∴∠BPQ=∠DKM=∠CNH ,∴△ABQ ∽△ADM ,△ABQ ∽△ACH ,∴12AB BQ AD DM ==,13BQ AB CH AC ==, ∴△BPQ ∽△DKM ∽△CNH , ∵12BQ MD =,13BQ CH =, ∴1214S S =,1319S S =, ∴214S S =,319S S =,∵1320S S +=,∴12S =,∴2148S S ==;故选:B.【点睛】本题考查了相似三角形的判定和性质,矩形的性质以及平行四边形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质,正确得到214S S =,319S S =,从而求出答案.16.下列图形中,一定相似的是( )A .两个正方形B .两个菱形C .两个直角三角形D .两个等腰三角形【答案】A【解析】【分析】根据相似形的对应边成比例,对应角相等,结合正方形,菱形,直角三角形,等腰三角形的性质与特点对各选项分析判断后利用排除法.【详解】A 、两个正方形角都是直角一定相等,四条边都相等一定成比例,所以一定相似,故本选项正确;B 、两个菱形的对应边成比例,角不一定相等,所以不一定相似,故本选项错误;C 、两个直角三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误;D 、两个等腰三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误.故选A .【点睛】本题主要考查了相似图形的定义,比较简单,要从边与角两方面考虑.17.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A.∠AED=∠B B.∠BDE+∠C=180°C.AD•BC=AC•DE D.AD•AB=AE•AC【答案】C【解析】【分析】A、根据有两组角对应相等的两个三角形相似,进行判断即可;B:根据题意可得到∠ADE=∠C,根据有两组角对应相等的两个三角形相似,进行判断即可;C、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A、由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;B、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;C、由AD•BC=AC•DE,得不能判断△ADE∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D、由AD•AB=AE•AC得,∠A=∠A,故能确定△ADE∽△ACB,故选:C.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角);有两组角对应相等的两个三角形相似.18.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=【解析】【分析】由∠A 是公共角,利用有两角对应相等的三角形相似,即可得A 与B 正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D 正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A 是公共角,∴当∠ABD=∠C 或∠ADB=∠ABC 时,△ADB ∽△ABC (有两角对应相等的三角形相似),故A 与B 正确,不符合题意要求;当AB :AD=AC :AB 时,△ADB ∽△ABC (两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB :BD=CB :AC 时,∠A 不是夹角,故不能判定△ADB 与△ABC 相似,故C 错误,符合题意要求,故选C .19.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB Q 和11A OB △的周长之比为1:2111112OA OB AB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++又Q 点B 的坐标为(1,2)-∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯= Q 点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.20.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x【答案】C【解析】【分析】 直接利用相似三角形的判定与性质得出13BCO AOD S S =V V ,进而得出S △AOD =3,即可得出答案. 【详解】 过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,∵∠BOA =90°,∴∠BOC +∠AOD =90°,∵∠AOD +∠OAD =90°,∴∠BOC =∠OAD ,又∵∠BCO =∠ADO =90°,∴△BCO ∽△ODA ,∵BO AO =tan 30°=33, ∴13BCO AOD S S =V V ,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.。

2023年中考数学一轮专题练习 图形的相似(含解析)

2023年中考数学一轮专题练习 图形的相似(含解析)

2023年中考数学一轮专题练习 ——图形的相似3一、单选题(本大题共11小题)1. (云南省2022年)如图,在ABC 中,D 、E 分别为线段BC 、BA 的中点,设ABC的面积为S 1,EBD 的面积为S 2.则21S S =( )A .12 B .14 C .34 D .782. (广西百色市2022年)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1 3. (广西贺州市2022年)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35 4. (广西贺州市2022年)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A .2cmB .3cmC .4cmD .5cm5. (广西梧州市2022年)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OAOA ,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .186. (贵州省毕节市2022年)矩形纸片ABCD 中,E 为BC 的中点,连接AE ,将ABE △沿AE 折叠得到AFE △,连接CF .若4AB =,6BC =,则CF 的长是( )A .3B .175C .72D .1857. (贵州省贵阳市2022年)如图,在ABC 中,D 是边上的点,,,则与的周长比是()AB B ACD ∠=∠:1:2AC AB =ADC ACB △A .B .C . D.8. (海南省2022年)如图,点(0,3)(1,0)A B 、,将线段AB 平移得到线段DC ,若90,2ABCBC AB ∠=︒=,则点D 的坐标是( )A .(7,2)B .(7,5)C .(5,6)D .(6,5)9. (浙江省金华市2022年)如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A .B .C .207D .8310. (黑龙江省哈尔滨市2022年)如图,相交于点E ,,则的长为( )A .32B .4C .D .611. (黑龙江省省龙东地区2022年)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -=;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( ) 1:21:31:4,,AB CD AC BD ∥1,2,3AE EC DE ===BD 92A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤二、填空题(本大题共11小题)12. (浙江省湖州市2022年)如图,已知在△ABC 中,D ,E 分别是AB ,AC 上的点,DE BC ∥,13AD AB =.若DE =2,则BC 的长是 .13. (浙江省温州市2022年)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13m MC CD ==,垂直于地面的木棒EF 与影子FG 的比为2∶3,则点O ,M 之间的距离等于 米.转动时,叶片外端离地面的最大高度等于 米.14. (北京市2022年)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为 .15. (江苏省泰州市2022年)如图上,Δ,90,8,6,ABC C AC BC ∠===中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为 .16. (山东省潍坊市2022年)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为 .17. (陕西省2022年)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即2BE AE AB =⋅.已知AB 为2米,则线段BE 的长为 米.18. (浙江省丽水市2022年)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是 cm .ABCD19. (浙江省杭州市2022年)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ⊥BC ,DE ⊥EF ,DE =2.47m ,则AB = m .20. (黑龙江省省龙东地区2022年)在矩形ABCD 中,9AB =,12AD =,点E 在边CD 上,且4CE =,点P 是直线BC 上的一个动点.若APE 是直角三角形,则BP 的长为 .21. (江苏省宿迁市2022年)如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点所经过的路径长是 .22. (安徽省2022年)如图,四边形ABCD 是正方形,点E 在边AD 上,△BEF 是以E 为直角顶点的等腰直角三角形,EF ,BF 分别交CD 于点M ,N ,过点F 作AD 的垂线交AD 的延长线于点G .连接DF ,请完成下列问题:H(1)FDG ∠= °;(2)若1DE =,DF =MN = .三、解答题(本大题共8小题)23. (湖南省常德市2022年)在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:①GE GD =;②BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论②的证明.24. (湖北省武汉市2022年)问题提出:如图(1),ABC 中,AB AC =,D 是AC 的中点,延长BC 至点E ,使DE DB =,延长ED 交AB 于点F ,探究AF AB的值.(1)先将问题特殊化.如图(2),当60BAC ∠=︒时,直接写出AF AB的值; (2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展:如图(3),在ABC 中,AB AC =,D 是AC 的中点,G 是边BC 上一点,()12CG n BC n=<,延长BC 至点E ,使DE DG =,延长ED 交AB 于点F .直接写出AF AB的值(用含n 的式子表示). 25. (甘肃省金昌市2022年)如图,AB 是O 的直径,AM 和BN 是它的两条切线,过O 上一点E 作直线DC ,分别交AM 、BN 于点D 、C ,且DA =DE .(1)求证:直线CD 是O 的切线;(2)求证:2OA DE CE =⋅26. (湖北省宜昌市2022年)已知菱形ABCD 中,E 是边AB 的中点,F 是边AD 上一点.(1)如图1,连接CE ,CF .CE AB ⊥,CF AD ⊥.①求证:CE CF =;②若2AE =,求CE 的长;(2)如图2,连接CE ,EF .若3AE =,24EF AF ==,求CE 的长.27. (浙江省温州市2022年)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5,3BC BE ==.点P ,Q 分别在线段AB BE ,上(不与端点重合),且满足54AP BQ =.设,BQ x CP y ==.(1)求半圆O 的半径.(2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结,PQ RQ .①当PQR 为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值. 28. (江苏省泰州市2022年)已知:△ABC 中,D 为BC 边上的一点.(1)如图①,过点D 作DE ∥AB 交AC 边于点E ,若AB =5,BD =9,DC =6,求DE 的长;(2)在图②,用无刻度的直尺和圆规在AC 边上做点F ,使∠DFA =∠A ;(保留作图痕迹,不要求写作法)(3)如图③,点F 在AC 边上,连接BF 、DF ,若∠DFA =∠A ,△FBC 的面积等于12CD AB •,以FD 为半径作⊙F ,试判断直线BC 与⊙F 的位置关系,并说明理由. 29. (江苏省苏州市2022年)(1)如图1,在△ABC 中,2ACB B ∠=∠,CD 平分ACB ∠,交AB 于点D ,DE //AC ,交BC 于点E .①若1DE =,32BD =,求BC 的长; ②试探究AB BE AD DE-是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,CBG ∠和BCF ∠是△ABC 的2个外角,2BCF CBG ∠=∠,CD 平分BCF ∠,交AB 的延长线于点D ,DE //AC ,交CB 的延长线于点E .记△ACD 的面积为1S ,△CDE 的面积为2S ,△BDE 的面积为3S .若2132916S S S ⋅=,求cos CBD ∠的值.30. (浙江省湖州市2022年)已知在Rt △ABC 中,∠ACB =90°,a ,b 分别表示∠A ,∠B 的对边,a b >.记△ABC 的面积为S .(1)如图1,分别以AC ,CB 为边向形外作正方形ACDE 和正方形BGF C .记正方形ACDE 的面积为1S ,正方形BGFC 的面积为2S .①若19S =,216S =,求S 的值;②延长EA 交GB 的延长线于点N ,连结FN ,交BC 于点M ,交AB 于点H .若FH ⊥AB (如图2所示),求证:212S S S -=.(2)如图3,分别以AC ,CB 为边向形外作等边三角形ACD 和等边三角形CBE ,记等边三角形ACD 的面积为1S ,等边三角形CBE 的面积为2S .以AB 为边向上作等边三角形ABF (点C 在△ABF 内),连结EF ,CF .若EF ⊥CF ,试探索21S S 与S 之间的等量关系,并说明理由.参考答案1. 【答案】B【分析】先判定EBD ABC ,得到相似比为12,再根据两个相似三角形的面积比等于相似比的平方,据此解题即可.【详解】解:∵D 、E 分别为线段BC 、BA 的中点, ∴12BE BD AB BC ==, 又∵B B ∠=∠, ∴EBD ABC ,相似比为12, ∴22114S BE S AB ⎛⎫== ⎪⎝⎭, 故选:B .2. 【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .3. 【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC , ∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 故选:B .4. 【答案】B【分析】由圆锥的圆锥体底面半径是6cm ,高是6cm ,可得CD =DE ,根据园锥、圆柱体积公式可得液体的体积为63πcm 3,圆锥的体积为72πcm 3,设此时“沙漏”中液体的高度AD =x cm ,则DE =CD =(6-x )cm ,根据题意,列出方程,即可求解.【详解】解:如图,作圆锥的高AC ,在BC 上取点E ,过点E 作DE ⊥AC 于点D ,则AB =6cm ,AC =6cm ,∴△ABC 为等腰直角三角形,∵DE ∥AB ,∴△CDE ∽△CAB ,∴△CDE 为等腰直角三角形,∴CD =DE ,圆柱体内液体的体积为:圆锥的体积为, 设此时“沙漏”中液体的高度AD =x cm ,则DE =CD =(6-x )cm ,∴, ∴,解得:x =3,即此时“沙漏”中液体的高度3cm .故选:B .5. 【答案】D【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形与四边形相似,由两图形相似面积比等于相似比的平方可知:, 又四边形的面积是2,∴四边形的面积为18,故选:D .6. 【答案】D【分析】 连接BF 交AE 于点G ,根据对称的性质,可得AE 垂直平分BF ,BE =FE ,BG =FG =12BF ,根据E 为BC 中点,可证BE =CE =EF ,通过等边对等角可证明∠BFC =90°,利233763cm ππ⨯⨯=2316672cm 3ππ⨯⨯=21(6)(6)72633x x πππ⋅-⋅-=-3(6)27x -=ABCD ''''A B C D ''''22'1139ABCD A B C D S OA S OA ABCD ''''A B C D用勾股定理求出AE,再利用三角函数(或相似)求出BF,则根据FC=算即可.【详解】连接BF,与AE相交于点G,如图,∵将ABE△沿AE折叠得到AFE△∴ABE△与AFE△关于AE对称∴AE垂直平分BF,BE=FE,BG=FG=12 BF∵点E是BC中点∴BE=CE=DF=13 2BC=∴5 AE=∵sinBE BG BAEAE AB ∠==∴341255BE ABBGAE⋅⨯===∴1224 2225 BF BG==⨯=∵BE=CE=DF∴∠EBF=∠EFB,∠EFC=∠ECF∴∠BFC=∠EFB+∠EFC=18090 2︒=︒∴185FC故选 D7. 【答案】B【分析】先证明△ACD∽△ABC,即有,则可得,问题得解.【详解】∵∠B=∠ACD,∠A=∠A,∴△ACD∽△ABC,∴,12AC AD CDAB AC BC===12AC AD CDAB AC BC++=++AC AD CDAB AC BC==∵, ∴, ∴, ∴△ADC 与△ACB 的周长比1:2,故选:B .8. 【答案】D【分析】先过点C 做出轴垂线段CE ,根据相似三角形找出点C 的坐标,再根据平移的性质计算出对应D 点的坐标.【详解】如图过点C 作轴垂线,垂足为点E ,∵∴∵∴在和BCE ∆中,90ABO BCE AOB BEC =⎧⎨==︒⎩∠∠∠∠ , ∴ABO BCE ∆∆∽,∴ , 则 ,22EC OB ==∵点C 是由点B 向右平移6个单位,向上平移2个单位得到,∴点D 同样是由点A 向右平移6个单位,向上平移2个单位得到,∵点A 坐标为(0,3),∴点D 坐标为(6,5),选项D 符合题意,故答案选D9. 【答案】A【分析】12AC AB =12AC AD CD AB AC BC ===12AC AD CD AC AD CD AB AC BC AB AC BC ++====++x x 90ABC ∠=︒90ABO CBE ∠+∠=︒90CBE BCE +=︒∠ABO BCE ABO ∆12AB AO OB BC BE EC ===26BE AO ==令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F'=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH=,最后求出AD AB的值. 【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =, ∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,52x y A G -'=, 由题意,得==90CA G CB F ''︒∠∠,又为公共角,∴,∴, 则,整理,得,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH =, EH =-(舍),∴AB =x ,∴.故选:A .GCA '∠CGA CFB ''△∽△CG AG CF B F'='53232x yx x y x-=+()()30x y x y +-=AD AB ==10. 【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵∴∴ ∵, ∴∵∴ 故选:C .11. 【答案】B【分析】分别对每个选项进行证明后进行判断:①通过证明得到EC =FD ,再证明得到∠EAC =∠FBD ,从而证明∠BPQ =∠AOQ =90°,即;②通过等弦对等角可证明;③通过正切定义得,利用合比性质变形得到,再通过证明AOP AEC ∽得到OP AE CE AO ⋅=,代入前式得OP AE BP AP BP AO BE⋅⋅-=⋅,最后根据三角形面积公式得到AE BP AB BE ⋅=⋅,整体代入即可证得结论正确;④作EG ⊥AC 于点G 可得EG ∥BO ,根据tan EG EG CAE AG AC CG∠==-,设正方形边长为5a ,分别求出EG 、AC 、CG 的长,可求出3tan 7CAE ∠=,结论错误;⑤将四边形OECF 的面积分割成两个三角形面积,利用()DOF COE ASA ≌,可证明S 四边形OECF =S △COE +S △COF = S △DOF +S △COF =S △COD 即可证明结论正确.【详解】①∵四边形ABCD 是正方形,O 是对角线AC 、BD 的交点,∴OC =OD ,OC ⊥OD ,∠ODF =∠OCE =45°∵OE OF ⊥∴∠DOF +∠FOC =∠FOC +∠EOC =90°∴∠DOF =∠EOC在△DOF 与△COE 中//AB CD ABE CDE ∽AE BE EC DE=1,2,3AE EC DE ===32BE =BD BE ED =+92BD =()DOF COE ASA ≌()EAC FBD SAS ≌AE BF ⊥45OPA OBA ∠=∠=︒tan BE BP BAE AB AP ∠==CE BP AP BP BE ⋅-=ODF OCE OC ODDOF EOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DOF COE ASA ≌∴EC =FD∵在△EAC 与△FBD 中45EC FD ECA FDB AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴()EAC FBD SAS ≌∴∠EAC =∠FBD又∵∠BQP =∠AQO∴∠BPQ =∠AOQ =90°∴AE ⊥BF所以①正确;②∵∠AOB =∠APB =90°∴点P 、O 在以AB 为直径的圆上 ∴AO 是该圆的弦∴45OPA OBA ∠=∠=︒所以②正确; ③∵tan BE BP BAE AB AP ∠== ∴AB AP BE BP = ∴AB BE AP BP BE BP --= ∴AP BP CE BP BE-= ∴CE BP AP BP BE⋅-= ∵,45EAC OAP OPA ACE ∠=∠∠=∠=︒ ∴∴ ∴ ∴ ∵1122ABE AE BP AB BE S⋅=⋅= ∴AE BP AB BE ⋅=⋅∴OP AB BE AB AP BP OP AO BE AO⋅⋅-==⋅ 所以③正确;AOP AEC ∽OP AO CE AE =OP AE CE AO⋅=OP AE BP AP BP AO BE ⋅⋅-=⋅④作EG ⊥AC 于点G ,则EG ∥BO , ∴EG CE CG OB BC OC== 设正方形边长为5a ,则BC =5a ,OB =OC, 若:2:3BE CE =,则23BE CE =, ∴233BE CE CE ++= ∴35CE BC =∴35CE EG OB BC =⋅= ∵EG ⊥AC ,∠ACB =45°,∴∠GEC =45°∴CG =EG∴3tan 7EG EG CAE AG AC CG ∠===- 所以④错误;⑤∵()DOF COE ASA ≌,S 四边形OECF =S △COE +S △COF ∴S 四边形OECF = S △DOF +S △COF = S △COD ∵S △COD =∴S 四边形OECF =所以⑤正确;综上,①②③⑤正确,④错误, 故选 B12. 【答案】6【分析】根据相似三角形的性质可得,再根据DE =2,进而得到BC 长. 【详解】 14ABCD S 正方形14ABCD S正方形13DE AD BC AB ==解:根据题意,∵,∴△ADE ∽△ABC ,∴, ∵DE =2, ∴, ∴;故答案为:6.13. 【答案】 10 ;10【分析】过点O 作AC 、BD 的平行线,交CD 于H ,过点O 作水平线OJ 交BD 于点J ,过点B 作BI ⊥OJ ,垂足为I ,延长MO ,使得OK =OB ,求出CH 的长度,根据23EF OM FG MH ==,求出OM 的长度,证明BIO JIB ∽,得出23BI IJ =,49OI IJ =,求出IJ 、BI 、OI 的长度,用勾股定理求出OB 的长,即可算出所求长度.【详解】如图,过点O 作AC 、BD 的平行线,交CD 于H ,过点O 作水平线OJ 交BD 于点J ,过点B 作BI ⊥OJ ,垂足为I ,延长MO ,使得OK =OB ,由题意可知,点O 是AB 的中点,∵OH AC BD ,∴点H 是CD 的中点,∵13m CD =, ∴1 6.5m 2CH HD CD ===, ∴8.5 6.515m MH MC CH =+=+=,又∵由题意可知:23EF OM FG MH ==, ∴2153OM =,解得10m =OM , ∴点O 、M 之间的距离等于10m ,∵BI ⊥OJ ,∴90BIO BIJ ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∴BOI JBI ∠=∠,∴BIO JIB ∽,DE BC ∥13DE AD BC AB ==213BC =6BC =∴23BI OI IJ BI ==, ∴,, ∵, ∴四边形IHDJ 是平行四边形,∴,∵, ∴,,,∵在中,由勾股定理得:,∴,∴,∴,∴叶片外端离地面的最大高度等于,故答案为:10,14. 【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC ==, ∴144AE =, ∴1AE =,故答案为:1.15. 【答案】2或##或2 23BI IJ =49OI IJ =,OJCD OH DJ 6.5m OJ HD ==4 6.5m 9OJ OI IJ IJ IJ =+=+=4.5m IJ =3m BI =2m OI =Rt OBI △222OB OI BI =+OB =OB OK ==(10m MK MO OK =+=(10m 101212【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作,,连接OB ,则OD ⊥AC ,∵,∴∵O 为的内心,∴,∴∴,同理,,∴DE=CD+BE ,∵O 为的内心,∴,∴∴∴②如图,作,由①知,,,∵∴ ∴ ∴1061582AB AE AD AC ⋅⨯=== //DE BC OF BC OG AB ⊥⊥,//DE BC OBF BOE ∠=∠ABC ∆OBF OBE ∠=∠BOE OBE ∠=∠BE OE =CD OD=10AB =ABC ∆OF OD OG CD ===BF BG AD AG ==,6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=2CD =DE AB⊥4BE =6AE =ACB AED CAB EAD ∠=∠∠=∠,ABCADE ∆∆AB AD AC AE=∴151822CD AC AD =-=-=∵92DE == ∴19422DE BE CD =+=+= ∴12CD = 故答案为:2或12.16. 【答案】【分析】根据正方形ABCD 的面积为4,求出,根据位似比求出,周长即可得出;【详解】解:正方形ABCD 的面积为4,,,,所求周长;故答案为:.17. 【答案】##【分析】根据点E 是AB 的黄金分割点,可得,代入数值得出答案. 【详解】∵点E 是AB 的黄金分割点,∴. ∵AB=2米,∴米.).18. 【答案】3【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间2AB =4A B ''=∴2AB =:2:1A B AB ''=∴4A B ''=∴A C ''==1)15AE BE BE AB ==AE BE BE AB ==1BE =)1的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FN DE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.19. 【答案】9.88【分析】根据平行投影得AC ∥DE ,可得∠ACB =∠DFE ,证明Rt △ABC ∽△Rt △DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m . ∴AC ∥DE ,∴∠ACB =∠DFE ,∵AB ⊥BC ,DE ⊥EF ,∴∠ABC =∠DEF =90°,∴Rt △ABC ∽△Rt △DEF ,∴,即, 解得AB =9.88,∴旗杆的高度为9.88m .故答案为:9.88.20. 【答案】313或154或6 【分析】分三种情况讨论:当∠APE =90°时,当∠AEP =90°时,当∠PAE =90°时,过点P 作PF ⊥DA 交DA 延长线于点F ,即可求解.【详解】解:在矩形ABCD 中,9AB CD ==,12AD BC ==,∠BAD =∠B =∠BCD =∠ADC =90°,如图,当∠APE =90°时,∴∠APB +∠CPE =90°,∵∠BAP +∠APB =90°,∴∠BAP =∠CPE ,∵∠B =∠C =90°,∴△ABP ∽△PCE , ∴AB BP PC CE =,即9124BP BP =-, 解得:BP =6;如图,当∠AEP =90°时,AB BC DE EF =8.722.47 2.18AB=∴∠AED +∠PEC =90°,∵∠DAE +∠AED =90°,∴∠DAE =∠PEC ,∵∠C =∠D =90°,∴△ADE ∽△ECP , ∴AD DE CE PC =,即12944PC-=, 解得:53PC =, ∴313BP BC PC =-=; 如图,当∠PAE =90°时,过点P 作PF ⊥DA 交DA 延长线于点F ,根据题意得∠BAF =∠ABP =∠F =90°,∴四边形ABPF 为矩形,∴PF =AB =9,AF =PB ,∵∠PAF +∠DAE =90°,∠PAF +∠APF =90°,∴∠DAE =∠APF ,∵∠F =∠D =90°,∴△APF ∽△EAD , ∴AF PF DE AD =,即99412AF =-, 解得:154=AF ,即154PB =; 综上所述,BP 的长为313或154或6. 故答案为:313或154或621.【分析】根据题意知EF 在运动中始终与MN 交于点Q ,且 点H 在以BQ 为直径的上运动,运动路径长为的长,求出BQ 及的圆角,运用弧长公式进行计算即可得到结果.【详解】解:∵点、分别是边、的中点,连接MN ,则四边形ABNM 是矩形,∴MN =AB =6,AM =BN =AD ==4,根据题意知EF 在运动中始终与MN 交于点Q ,如图,∵四边形ABCD 是矩形,∴AD //BC ,∴ ∴ ∴ 当点E 与点A 重合时,则NF =, ∴BF =BN +NF =4+2=6,∴AB =BF =6∴是等腰直角三角形,∴∵BP ⊥AF ,∴由题意得,点H 在以BQ 为直径的上运动,运动路径长为长,取BQ 中点O ,连接PO ,NO ,∴∠PON =90°,又∴, AQM FQN ∆∆,:1:2,NQ MQ =PN PN PN M N AD BC 12AQMFQN ∆∆,12NF NQ EM MQ ==123NQ MN ==122AM =ABF ∆45,AFB ∠=︒45PBF ∠=︒PN PN 90,BNQ ∠=︒BQ ===∴, ∴故答案为: 22. 【答案】 45 ;2615【分析】 (1)先证△ABE ≌△GEF ,得FG =AE =DG ,可知△DFG 是等腰直角三角形即可知FDG ∠度数.(2)先作FH ⊥CD 于H ,利用平行线分线段成比例求得MH ;再作MP ⊥DF 于P ,证△MPF ∽△NHF ,即可求得NH 的长度,MN =MH +NH 即可得解.【详解】(1)∵四边形ABCD 是正方形,∴∠A =90°,AB =AD ,∴∠ABE +∠AEB =90°,∵FG ⊥AG ,∴∠G =∠A =90°,∵△BEF 是等腰直角三角形,∴BE =FE ,∠BEF =90°,∴∠AEB +∠FEG =90°,∴∠FEG =∠EBA ,在△ABE 和△GEF 中,A G ABE GEF BE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△GEF (AAS ),∴AE =FG ,AB =GE ,在正方形ABCD 中,AB =ADAD GE ∴=∵AD =AE +DE ,EG =DE +DG ,∴AE =DG =FG ,∴∠FDG =∠DFG =45°.故填:45°.(2)如图,作FH ⊥CD 于H ,12ON OP OQ BQ ===PN∴∠FHD =90°∴四边形DGFH 是正方形,∴DH =FH =DG =2,∴AG FH , ∴=DE DM FH MH, ∴DM =23,MH =43, 作MP ⊥DF 于P ,∵∠MDP =∠DMP =45°,∴DP =MP ,∵DP 2+MP 2=DM 2,∴DP =MP=∴PF∵∠MFP +∠MFH =∠MFH +∠NFH =45°,∴∠MFP =∠NFH ,∵∠MPF =∠NHF =90°,∴△MPF ∽△NHF , ∴=MP PF NH HF,即=NH 332, ∴NH =25, ∴MN =MH +NH =43+25=2615. 故填: 2615. 23. 【答案】(1)证明见详解(2)证明见详解【分析】(1)①证明ADG AEG ≌△即可;②连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)①的结论和(1)中证明一样,证明ADG AEG ≌△即可;②的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:①证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =②证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BO BE GC GD CF∴=== ∴BO GD GO FC ⋅=⋅ (2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅ 24. 【答案】(1)[问题提出](1)14;(2)见解析 (2)[问题拓展]24n - 【分析】[问题探究](1)根据等边三角形的性质结合已知条件,求得30ADF ADB ∠=∠=︒,90AFD ∠=︒,根据含30度角的直角三角形的性质,可得111,222AF AD AD AC AB ===,即可求解; (2)取BC 的中点H ,连接DH .证明DBH DEC △≌△,可得BH EC =,根据DH AB ∥,证明EDH EFB △∽△,根据相似三角形的性质可得32FB EB DH EH ==,进而可得14AF AB =;[问题拓展]方法同(2)证明DBH DEC△≌△,得出,GH EC,证明EDH EFB△∽△,得到2+2FB EB nDH EH==,进而可得AFAB=24n-.(1)[问题探究]:(1)如图,ABC中,AB AC=,D是AC的中点,60BAC∠=︒,ABC∴是等边三角形,12AD AB=30ABD DBE∴∠=∠=︒,60A∠=︒,DB DE∴=,30E DBE∴∠=∠=︒,180120DCE ACB∠=︒-∠=︒,18030ADF CDE E DCE∴∠=∠=︒-∠-∠=︒,60A∠=︒,90AFD∴∠=︒,12AF AD∴=,1124ADAFAB AB∴==.(2)证明:取BC的中点H,连接DH.∵D是AC的中点,∴DH AB∥,12DH AB=.∵AB AC=,∴DH DC=,∴DHC DCH ∠=∠.∵BD DE =,∴DBH DEC ∠=∠.∴BDH EDC ∠=∠.∴DBH DEC △≌△.∴BH EC =. ∴32EB EH =. ∵DH AB ∥,∴EDH EFB △∽△. ∴32FB EB DH EH ==. ∴34FB AB =. ∴14AF AB =. (2)[问题拓展]如图,取BC 的中点H ,连接DH .∵D 是AC 的中点,∴DH AB ∥,12DH AB =. ∵AB AC =,∴DH DC =,∴DHC DCH ∠=∠.∵DE DG =,∴DGH DEC ∠=∠.∴GDH EDC ∠=∠.∴DGH DEC ≌.∴GH EC . HE CG ∴=()12CG nBC n=<BC nCG ∴=()1BG n CG ∴=-,()1111222n CE GH BC BG nCG n CG CG ⎛⎫==-=--=- ⎪⎝⎭∴1221+22nCG EB BC CE n n EH EH n C CG G ⎛⎫-+++==== ⎪⎝⎭. ∵DH AB ∥,∴EDH EFB △∽△. ∴2+2FB EB n DH EH ==. ∴24FB n AB +=. ∴42244AF n n AB ---==. ∴AF AB =24n -. 25. 【答案】(1)见解析;(2)见解析【分析】(1)连接OD ,OE ,证明△OAD ≌△OED ,得∠OAD=∠OED=90°,进而得CD 是切线;(2)连接OC ,得AM ∥BN ,得,DEOOEC ∆∆,再证明2.OE DE CE =•,进而得出结论2.OA DE CE =•.【详解】解(1)如图,连接,OE OD 、 DA 是O 的切线,90OAD ︒∠= 在AOD ∆和EOD ∆中, , ,,OA OE DA DE OD OD ===()AOD EOD SSS ∴∆∆≌90,OAD OED ︒∴∠=∠=,OE CD ∴⊥CD ∴是O 的切线.(2)连接,OC AM BN DC 、、是O 的切线,90OAD OBC DEO OEC ︒∴∠=∠=∠=∠=//,AM BN ∴180ADE BCE ︒∴∠+∠=又AM BN DC 、、是O 的切线,CE CB ∴=,OD 平分,ADE OC ∠平分, .BCE ∠()111809022ODE OCE ADE BCE ︒︒∴∠+∠=∠+∠=⨯=又90ODE DOE ︒∠+∠=,OCE DOE ∴∠=∠又90DEO OEC ︒∠=∠=,,DEO OEC ∴∆∆OE DE CE OE∴= 2.OE DE CE ∴=•又,OA OE =2.OA DE CE ∴=•26. 【答案】(1)①见解析;②CE =(2)6EC =【分析】(1)①根据AAS 可证得:BEC DFC ≌△△,即可得出结论; ②连接AC ,可证得ABC是等边三角形,即可求出CE =(2)延长FE 交的延长线于点,根据可证得,可得出,,,则,即可证得,即可得出的长. (1)(1)①∵,,∴,∵四边形是菱形,∴,,∴()BEC DFC AAS ≌,∴CE CF =.②如图,连接AC .∵E 是边AB 的中点,CE AB ⊥,∴BC AC =,又由菱形ABCD ,得BC AB =,∴ABC 是等边三角形,∴60EAC ∠=︒,CB M AAS AEF BEM ≌4ME =2BM =8MC =MB ME =12ME MC =MEB MCE △∽△EC CE AB ⊥CF AD ⊥90BEC DFC ∠=∠=︒ABCD B D ∠=∠BC CD =在Rt AEC 中,2AE =,∴tan 60EC AE =︒=∴CE =(2)如图,延长FE 交CB 的延长线于点M ,由菱形ABCD ,得AD BC ∥,AB BC =,∴AFE M ∠=∠,A EBM ∠=∠,∵E 是边AB 的中点,∴AE BE =,∴()AEF BEM AAS △≌△,∴=ME EF ,MB AF =,∵3AE =,24EF AF ==,∴4ME =,2BM =,3BE =,∴26BC AB AE ===,∴8MC =, ∴2142MB ME ==,4182ME MC ==, ∴MB ME ME MC=,而M ∠为公共角. ∴MEB MCE △∽△, ∴24BE MB EC ME ==, 又∵3BE =,∴6EC =.27. 【答案】(1)(2) (3)①或;② 【分析】 (1)连接OD ,设半径为r ,利用,得,代入计算即可; (2)根据CP =AP 十AC ,用含x 的代数式表示 AP 的长,再由(1)计算求AC 的长即可;(3)①显然,所以分两种情形,当 时,则四边形RPQE 是矩形,当 ∠PQR =90°时,过点P 作PH ⊥BE 于点H , 则四边形PHER 是矩形,分别根据图形可得答案;②连接,由对称可知,利用三角函数表示出和BF 的长度,从而解决问题.(1)解:如图1,连结.设半圆O 的半径为r .∵切半圆O 于点D ,∴.∵,∴,∴,∴, 即, ∴,即半圆O 的半径是. (2) 由(1)得:. 1585544y x =+972111199△∽△COD CBE OD CO BE CB =90PRQ ∠<︒90RPQ ∠=︒,AF QF ',45QF QF F QR EQR ∠∠'=='=︒BF 'OD CD OD CD ⊥BE CD ⊥OD BE ∥△∽△COD CBE OD CO BE CB =535r r -=158r =1581555284CA CB AB =-=-⨯=∵, ∴. ∵,∴. (3)①显然,所以分两种情况. ⅰ)当时,如图2.∵,∴.∵,∴四边形为矩形,∴.∵, ∴, ∴. ⅱ)当时,过点P 作于点H ,如图3,则四边形是矩形,∴.∵,∴.5,4AP BQ x BQ ==54AP x =CP AP AC =+5544y x =+90PRQ ∠<︒90RPQ ∠=︒PR CE ⊥90ERP ∠=︒90E ∠=︒RPQE PR QE =333sin 544PR PC C y x =⋅==+33344x x +=-97x =90PQR ∠=︒PH BE⊥PHER ,PH RE EH PR ==5,3CB BE ==4CE ==∵, ∴3PH RE x EQ ==-=, ∴45EQR ERQ ∠=∠=︒, ∴45PQH QPH ∠=︒=∠, ∴3HQ HP x ==-, 由EH PR =得:33(3)(3)44x x x -+-=+, ∴2111x =. 综上所述,x 的值是97或2111. ②如图4,连结,AF QF ',由对称可知QF QF =',F QR EQR ∠=∠' ∵BE ⊥CE ,PR ⊥CE , ∴PR ∥BE , ∴∠EQR =∠PRQ , ∵BQ x =,5544CP x =+, ∴EQ =3-x , ∵PR ∥BE , ∴CPR CBE △∽△, ∴CP CB CR CE=, 即:x CR +=555444, 解得:CR =x +1, ∴ER =EC -CR =3-x , 即:EQ = ER∴∠EQR =∠ERQ =45°, ∴45F QR EQR ∠=∠='︒ ∴90BQF ∠='︒, 4cos 15CR CP C y x =⋅==+∴4tan 3QF QF BQ B x ==⋅='. ∵AB 是半圆O 的直径,∴90AFB ∠=︒, ∴9cos 4BF AB B =⋅=, ∴4934x x +=, ∴2728x =, ∴319119CF BC BF BC BF BF BF x -==''''=-='-. 28. 【答案】(1)2(2)图见详解(3)直线BC 与⊙F 相切,理由见详解【分析】(1)由题意易得23CD BD =,则有,然后根据相似三角形的性质与判定可进行求解;(2)作DT ∥AC 交AB 于点T ,作∠TDF =∠ATD ,射线DF 交AC 于点F ,则点F 即为所求;(3)作BR ∥CF 交FD 的延长线于点R ,连接CR ,证明四边形ABRF 是等腰梯形,推出AB =FR ,由CF ∥BR ,推出,推出CD ⊥DF ,然后问题可求解.(1)解:∵DE ∥AB ,∴,∴, ∵AB =5,BD =9,DC =6,∴, ∴;(2)解:作DT ∥AC 交AB 于点T ,作∠TDF =∠ATD ,射线DF 交AC 于点F ,则点F 即为所求;如图所示:点F 即为所求,25CD CB =1122CFB CFR SS AB CD FR CD ==⋅=⋅CDE CBA ∽DECD AB CB 6569DE =+2DE =(3)解:直线BC 与⊙F 相切,理由如下:作BR ∥CF 交FD 的延长线于点R ,连接CR ,如图,∵∠DFA =∠A ,∴四边形ABRF 是等腰梯形,∴,∵△FBC 的面积等于, ∴, ∴CD ⊥DF ,∵FD 是⊙F 的半径,∴直线BC 与⊙F 相切.29. 【答案】(1)①94BC =;②AB BE AD DE -是定值,定值为1;(2)3cos 8CBD ∠= 【分析】(1)①证明CED CDB ∽,根据相似三角形的性质求解即可;②由DE AC ∥,可得AB BC AD DE =,由①同理可得CE DE =,计算AB BE AD DE-1=; (2)根据平行线的性质、相似三角形的性质可得12S AC BC S DE BE==,又32S BE S CE =,则1322S S BC S CE ⋅=,可得916BC CE =,设9BC x =,则16CE x =.证明CDB CED ∽△△,可得12CD x =,过点D 作DH BC ⊥于H .分别求得BD BH ,,进而根据余弦的定义即可求解.【详解】(1)①∵CD 平分ACB ∠,AB FR =12CD AB •1122CFB CFR S S AB CD FR CD ==⋅=⋅2∵2ACB B ∠=∠,∴ACD DCB B ∠=∠=∠. ∴32CD BD ==. ∵DE AC ∥,∴ACD EDC ∠=∠.∴EDC DCB B ∠=∠=∠.∴1CE DE ==.∴CED CDB ∽. ∴CE CD =CD CB. ∴94BC =. ②∵DE AC ∥, ∴AB BC AD CE=. 由①可得CE DE =, ∴AB BC AD DE=. ∴1AB BE BC BE CE AD DE DE DE DE-=-==. ∴AB BE AD DE -是定值,定值为1. (2)∵DE AC ∥,BDE BAC ∴∽△△BC AB AC BE BD DE ∴== ∴12S AC BC S DE BE==. ∵32S BE S CE=, ∴1322S S BC S CE⋅=. 又∵2132916S S S ⋅=, ∴916BC CE =. 设9BC x =,则16CE x =.∵CD 平分BCF ∠,2∵2BCF CBG ∠=∠,∴ECD FCD CBD ∠=∠=∠.∴BD CD =.∵DE AC ∥,∴EDC FCD ∠=∠.∴EDC CBD ECD ∠=∠=∠.∴CE DE =.∵DCB ECD ∠=∠,∴CDB CED ∽△△. ∴CD CB CE CD=. ∴22144CD CB CE x =⋅=.∴12CD x =.如图,过点D 作DH BC ⊥于H .∵12BD CD x ==, ∴1922BH BC x ==. ∴932cos 128x BH CBD BD x ∠===. 30. 【答案】(1)①6;②见解析 (2)2114S S S -=,理由见解析 【分析】(1)①将面积用a ,b 的代数式表示出来,计算,即可②利用AN 公共边,发现△FAN ∽△AN B ,利用FA AN AN NB=,得到a ,b 的关系式,化简,变形,即可得结论(2)等边ABF 与等边CBE △共顶点B ,形成手拉手模型,△ABC ≌△FBE ,利用全等的对应边,对应角,得到:AC =FE =b ,∠FEB =∠ACB =90°,从而得到∠FEC =30°,再利用Rt CFE △,cos30FE b CE a ︒===,得到a 与b 的关系,从而得到结论 (1)∵19S =,216S =∴b =3,a =4∵∠ACB =90° ∴11S ab 34622==⨯⨯= ②由题意得:∠FAN =∠ANB =90°,∵FH ⊥AB∴∠AFN =90°-∠FAH =∠NAB∴△FAN ∽△AN B ∴FA AN AN NB = ∴a b a a b+=, 得:22ab b a +=∴122S S S +=.即212S S S -= (2)2114S S S -=,理由如下: ∵△ABF 和△BEC 都是等边三角形∴AB =FB ,∠ABC =60°-∠FBC =∠FBE ,CB =EB∴△ABC ≌△FBE (S A S )∴AC =FE =b∠FEB =∠ACB =90°∴∠FEC =30°∵EF ⊥CF ,CE =BC =a∴cos30b FE a CE ==︒=∴b =∴212S ab ==由题意得:21S ,22S =∴22221S S -== ∴2114S S S -=。

图形的相似经典测试题含答案

图形的相似经典测试题含答案

【详解】
解: BCE BDA, CEB DEA
ADE∽B查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的
圆周角相等.
2.如果两个相似正五边形的边长比为 1:10,则它们的面积比为( )
A.1:2
B.1:5
C.1:100
D.1:10
【答案】C
∴∠DFG=∠A=90°,
在 Rt△ADG 和 Rt△FDG 中,
AD=DF DG=DG

∴Rt△ADG≌Rt△FDG(HL),故①正确;
设正方形 ABCD 的边长为 a,AG=FG=x,BG=a−x,
∵BE=EC,
∴EF=CE=BE= 1 a 2
∴GE= 1 a+x 2
由勾股定理得:EG2=BE2+BG2,
即:( 1 a+x)2=( 1 a)2+(a-x)2 解得:x= 1
2
2
3
∴BG=2AG,
故②正确; ∵BE=EF,
∴△BEF 是等腰三角形,易知△GED 不是等腰三角形,
∴△EBF 与△DEG 不相似,
故③错误; 连接 CF, ∵BE=CE,
∴BE= 1 BC, 2
∴S△BFC=2S△BEF. 故④错误, 综上可知正确的结论的是 2 个. 故选:B.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质.
9.如图,在 Rt△ABC 中,∠ACB=90°,CD⊥AB 于点 D,如果 AC=3,AB=6,那么 AD 的值为 ()
A. 3 2
B. 9 2
C. 3 3 2
【答案】A
【解析】
【分析】
【详解】

专题05 图形的相似重难点题型专训(6大题型)(解析版)

专题05 图形的相似重难点题型专训(6大题型)(解析版)

专题05图形的相似重难点题型专训(6大题型)【题型目录】题型一比例的性质题型二线段的比题型三成比例线段题型四由平行判断成比例的线段题型五由平行截线求相关线段的长或比值题型六黄金分割【知识梳理】知识点一、线段的比与成比例线段线段的比两条线段长度的比叫做两条线段的比.注意:求两条线段的比时必须统一单位).成比例线段四条线段a、b、c、d中,如果dcba,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.知识点二、比例的性质知识点三、黄金分割黄金分割若线段AB上一点C把线段AB分成两条线段AC与BC(AC>BC),如果ACBCABAC,这时称点C是AB的黄金分割点,这个比值称为黄金比,它的值为618.0215.知识点四、相似图形相似图形在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等;相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.知识点五、平行线分线段成比例定理【经典例题一比例的性质】约分即可求解.【经典例题二线段的比】第二次裁剪所得矩形的长为第三次裁剪所得矩形的长为第四次裁剪所得矩形的长为第五次裁剪所得剩下的图形恰好是正方形,AC【答案】34/0.75为线段我们可以这样作图找到已知线段的黄金分割点:如图且12EF OE ,连接OF ;以F 为圆心,EF 交OE 于点P .根据材料回答下列问题:(1)根据作图,写出图中相等的线段:________(2)求OP 的长;(3)求证:点P 是线段OE 的黄金分割点.【答案】(1)EF FH ,OH OP (2)51OP (3)见解析【分析】(1)由题意知,EF FH ,OH (2)由勾股定理得225OF OE EF (3)由51OP ,可得2251OP235625OE PE ,则2OP OE 【详解】(1)解:由题意知,EF FH ,OH 故答案为:EF FH ,OH OP ;(2)解:∵EF OE ,∴90OEF ∵2OE ,【经典例题三成比例线段】是线段【经典例题四由平行判断成比例的线段】九年级四川省成都市七中育才学校校考阶段练习)如图,直线A.103B.152【答案】D【分析】根据平行线分线段成比例定理列出比例式,求出【详解】解:∵a b c∥∥,∴AB DEAC DF,A.BH AGBC ADB.EG AGCD AD【答案】D【分析】根据平行线分线段成比例定理、中点定义及相似三角形对应边成比例逐项判断即可得到答案.【答案】54【分析】根据平行线分线段成比例定理得出比例式,解答即可.【详解】解:∵直线123l l l ∥∥45AD BC DF CE ,5CE【答案】6【分析】根据角平分线的定义和平行线的性质可得后根据平行线分线段成比例定理,可得【详解】解:∵AD平分,∴EAD CAD(1)求证:AG CG ;(2)求证:2CGE BDN (3)若4BD DG ,GP 【答案】(1)见解析(2)见解析(3)3AG a【分析】(1)证明ABG (2)先证明DAF GPD NDC DCP BDN BDC NDC (3)证明PM PC ,得出【经典例题五由平行截线求相关线段的长或比值】A.14B【答案】A【分析】根据a b∥可得BGA.3 20【答案】A【分析】过点F作FG∥由FG BN∥,得BF NG【答案】5:3:2【分析】首先过点M作MK点,根据平行线分线段成比例定理,即可求得【详解】解:过点M作MK∵M是AC的中点,∴MN NK AN AMEC EF AE AC∵E、F为BC的三等分点,,∴BE EF FC【答案】16【分析】过点D 作DG ::BD CD EG CG 的值.∵:1:3AF FD ,BD ∴::AF FD AE EG ∴3EG AE ,EG ∴3EC EG CG(1)如果4AB ,8BC ,(2)如果:2:3DE EF ,AB 【答案】(1)6(2)15【分析】(1)由平行线分线段成比例定理得到(2)由平行线分线段成比例定理得到392BC AB ,即可得到【详解】(1)解:如图,∵123l l l ∥∥,∴AB DE BC EF,∵4AB ,8BC ,EF【经典例题六黄金分割】【点睛】本题考查了黄金分割点的意义,正确理解黄金分割的定义是解题的关键.上找一点51 51【答案】8516【分析】设AC m ,BD n ,根据【答案】1555【分析】根据黄金分割的定义,得2PA BP AB ,构建方程计算求解.【详解】解:根据题意,2PA BP AB ;∴2(10)10BP BP【点睛】本题考查黄金分割的定义,一元二次方程的求解;掌握黄金分割的定义是解题的关键.5.(2023秋·全国·九年级专题练习)综合与实践综合与实践课上,老师让同学们以(1)【操作判断】根据以上操作,直接写出图3中AGGB的值:______;(2)【问题解决】请判断图3中四边形BG MG的形状,并说明理由.(3)【拓展应用】我们知道:将一条线段AB分割成长、短两条线段AP 割点.在以上探究过程中,已知矩形纸片ABCD的宽AB为【重难点训练】A .5B 【答案】D 【分析】本题考查的是平行线分线段成比例定理,根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:∵a b ∥∥A. 454【答案】A【分析】本题考查黄金分割比求线段长,熟记黄金分割比答案,熟记黄金分割比是解决问题的关键.【详解】解:由黄金分割比,根据题意可得AB∵,8cm5AP AB故选:A.3.(2022上·山西运城形蕴藏着丰富的美学价值,我们可以用这样的方法画出黄金矩形;作正方形接EF,以FD为半径画弧,A.1个B.2个BG A .259B .27【答案】A【分析】本题考查了平行线分线段成比例,正方形的性质,掌握平行线分线段成比例是解题的关键.作FH BC ∥交CD 于H ,则DH HC 根据勾股定理得25AE ,所以【详解】解:如图,作FH ∥则45DH DF HC FG ,E ∵为CD 边中点,19HE ED ,FH AD ∵∥,19FE HE AE DE ,224225AE ∵,259FE .故选:A .5.(2023上·浙江·九年级周测)如图,点D ,与BC 的垂线CE 相交于点A .3:2B .5:3【答案】A 【分析】本题主要考查了平行线分线段成比例,4FC BC BF ,再根据DF ∥【详解】∵BE 平分ABC ,∴ABD FBD ,∵DF BC ,90A ,∴90DFB A ,【分析】本题考查的是三角形的重心的概念和性质、坐标与图形性质等知识点,根据三角形的重心的概念8.(2023上·浙江金华,,上,连结AB BC CACF三角形的中位线的判定及性质的综合应用,∵点B 和点F 关于直线DE ∴BD DF BF DE ,,∵AD DF ,∴AD BD DF ,∴,DBF DFB DAF 又DBF DFB DAF ∴ 2180DFB DFA ∴90,DFB DFA 即∴DE AC ∥,∴BD BE AD CE,∵AD BD ,∴BE CE ,∴132BE BC ,在Rt ABF 与Rt CBF △,由勾股定理可得:2222BF AB AF FB CB ,∴2222AB AF CB CF ∵56AB AC BC ,,【答案】3【分析】本题考查了平行四边形的性质,平行线分线段成比例,设行四边形的性质可得AD ∥【详解】解:设FD x ,由2AF FD ,则2AF x ,∵四边形ABCD 是平行四边形,AD BC ∥,AB CD ∥,2233AE AF x EC BC x ,23BE AE EG EC ,∵2BE ,223EG ,3EG ,故答案为:3.10.(2023上·安徽合肥·九年级校考期中)如图,矩形形ABNM 和矩形CDMN .(1)若矩形CDMN 与矩形的长是,如图所示.请你借助这张纸片,设法折出一个设正方形ABCD 的边长为在Rt BCF 中,BF 则2QF BF BQ 设AP PQ x ,则PD 在Rt QPF 和Rt DGF 有222FQ PQ DF 解得512x ,即点P 是AD 的黄金分割点(2)方法如图所示:第一步:对折矩形纸片第二步:再一次折叠纸片,使点14.(2023上·四川内江·九年级统考期中)巴台农神庙的设计代表了古希腊建筑艺术上的最高水平,它的平面图可看作宽与长的比是黄金矩形ABCD 的宽1AB (1)黄金矩形ABCD 的长BC ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连接AE ,求点D 到线段AE 的距离.【答案】(1)512(2)矩形DCEF 为黄金矩形,理由见解析(3)点D 到线段AE 的距离为1024【分析】本题考查了黄金分割,理解题目所给“黄金矩形”的定义是解题的关键.(1)根据512AB BC ,AB ,即可求解;(2)先求出512FD EC AD ,再求出DF EF 的值,即可得出结论;(3)连接AE ,DE ,过D DG AE 于点G ,根据1AB EF ,512AD,得出再根据12AED G S AD EF AE D ,即可求解.∵1AB EF ,AD∴22112AE ,在AED △中,12AED S 即AD EF AE DG ,则51122DG ,解得1024DG ,∴点D 到线段AE 的距离为15.(2022上·山西运城·九年级统考期中)阅读与思考请仔细阅读下列材料,并完成相应的任务.下面是小宇同学运用面积的思想对进行了证明.证明:如图,分别连接EB DC ,.设点E 到AB 的距离为1h ,点D 到AC 的距离为2h ,ADE BDE S S 111212AD h BD h AD BD ,ADE DEC S S …任务:(1)请补全以上证明过程.(2)应用以上结论解答问题:如图,在ABC 中,DG EC ∥,【答案】(1)见解析(2)见解析【分析】本题主要考查平行线分线段成比例定理的证明与应用:(1)根据两条平行线之间的距离处处相等,可得(2)直接利用平行线分线段成比例定理即可证明.【详解】(1)证明:如图,分别连接设点E 到AB 的距离为1h 则111212ADE BDE AD h S AD S DB BD h 221212ADE DEC AE h S AE S EC EC h ,设点B 到直线DE 的距离为∵DE BC ∥,点C 到直线DE 的距离与点∴12BDE DEC S S DE m ∴ADE BDE S S ADE DECS S ,∴ADDB AE EC.(2)证明:∵DG EC ∥∴AD AG DE GC,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C.D.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.544.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.7.计算:﹣2sin45°+(2﹣π)0﹣.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q 从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.图形的相似参考答案与试题解析1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,故选A.【点评】位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.考查位似图形的概念.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【考点】相似三角形的性质.【专题】压轴题.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:∠B=∠1或,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)【考点】相似三角形的判定.【专题】压轴题;开放型.【分析】此题属于开放题,答案不唯一.注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【解答】解:此题答案不唯一,如∠C=∠2或∠B=∠1或.【点评】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似.要注意正确找出两三角形的对应边、对应角,根据判定定理解题.5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】此题的图形比较复杂,需要仔细分析图形.(1)根据平行四边形的性质,可得到角相等.∠BPC=∠BRE,∠BCP=∠E,可得△BCP∽△BER;(2)根据AB∥CD、AC∥DE,可得出△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系.【解答】解:(1)∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠BAP=∠PCQ,∵∠APB=∠CPQ,∴△PCQ∽△PAB;∵△PCQ∽△RDQ,△PCQ∽△PAB,∴△PAB∽△RDQ.(2)∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,∵AC∥DE,∴BC:CE=BP:PR,∴BP=PR,∴PC是△BER的中位线,∴BP=PR,又∵PC∥DR,∴△PCQ∽△RDQ.又∵点R是DE中点,∴DR=RE.,∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP:PQ:QR=3:1:2【点评】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.【考点】实数的运算;零指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题.【分析】根据实数的有关运算法则计算.【解答】解:原式==﹣.【点评】本题考查实数的基本运算,难度适中.7.(2012•遂宁)计算:﹣2sin45°+(2﹣π)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题;压轴题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.【考点】特殊角的三角函数值;绝对值;零指数幂;二次根式的性质与化简.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣3+1﹣=﹣2.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.注意:任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】计算题;压轴题.【分析】由题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.【解答】解:在Rt△BCD中,CD=BC×sin60°=20×=10又DE=AB=1.5,∴CE=CD+DE=CD+AB=10+1.5≈18.8答:此时风筝离地面的高度约是18.8米.【点评】本题考查直角三角形知识在解决实际问题中的应用.10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形Rt△BCD、Rt△ACD,应利用其公共边DC构造方程关系式,进而可解即可求出答案.【解答】解:在Rt△BCD中,tan45°==1,∴CD=BC.在Rt△ACD中,tan30°=,∴.∴.∴3CD=CD+10.∴CD=+5≈13.66(米)∴条幅顶端D点距离地面的高度为13.66+1.44=15.1(米).【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:皮尺,标杆;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.【考点】相似三角形的应用.【专题】方案型;开放型.【分析】树比较高不易直接到达,因而可以利用三角形相似解决,利用树在阳光下出现的影子来解决.【解答】解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.【点评】本题运用相似三角形的知识测量高度及考查学生的实践操作能力,应用所学知识解决问题的能力.本题答案有多种,测量方案也有多种,如(1)皮尺、标杆、平面镜;(2)皮尺、三角尺、标杆.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形,据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:作BD⊥AC于D.在Rt△ADB中,sin∠ABD=.∴AD=AB•sin∠ABD=15×sin21°≈5.38米.(3分)∵cos∠ABD=.∴BD=AB•cos∠ABD=15×cos21°≈14.00米.(5分)在Rt△BDC中,tan∠CBD=.∴CD=BD•tan∠CBD≈14.00×tan38°≈10.94米.(8分)∵cos∠CBD=.∴BC=≈≈17.77米(10分)∴AD+CD+BC≈5.38+10.94+17.77=34.09≈34.1米(11分)答:折断前发射塔的高约为34.1米.(12分)注意:按以下方法进行近似计算视为正确,请相应评分.①若到最后再进行近似计算结果为:AD+CD+BC=34.1;②若解题过程中所有三角函数值均先精确到0.01,则近似计算的结果为:AD+CD+BC≈5.40+10.88+17.66=33.94≈33.9.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【专题】计算题;压轴题.【分析】(1)由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED 全等,根据全等三角形的对应边相等即可得证;(2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB﹣AE可求出EB的长,再由(1)∠AED=90°,得到DE与AB 垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB﹣CD表示出BD=12﹣x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长.【解答】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的∠BAC的平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);(2)∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==.【点评】此题考查了圆周角定理,勾股定理,以及全等三角形的判定与性质,利用了转化的思想,本题的思路为:根据圆周角定理得出直角,利用勾股定理构造方程来求解,从而得到解决问题的目的.灵活运用圆周角定理及勾股定理是解本题的关键.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.【考点】作图﹣位似变换;二次函数图象与几何变换;待定系数法求二次函数解析式;矩形的性质.【专题】压轴题;网格型.【分析】(1)A,E,D三点坐标已知,可用一般式来求解;(2)延长OA到A′,使OA′=3OA,同理可得到其余各点;(3)根据二次项系数是否相同即可判断两个函数是否由平移得到.【解答】解:(1)设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c∵A(1,),E(,2),D(2,)(1分)∴,解之,得∴过A,E,D三点的抛物线的表达式为y=﹣2x2+6x﹣.(4分)(2)如图.(7分)(3)不能,理由如下:(8分)设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′∵A′(3,),E′(,6),D′(6,)∴,解之,得a=﹣2,,∴a≠a′∴经过A′,E′,D′三点的抛物线不能由(1)中的抛物线平移得到.(8分)【点评】一般用待定系数法来求函数解析式;位似变化的方法应熟练掌握;抛物线平移不改变a的值.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?【考点】作图—应用与设计作图.【专题】压轴题;方案型.【分析】(1)由题意可得,供水站建在点M处,根据垂线段最短、两点之间线段最短,可知铺设到甲村某处和乙村某处的管道长度之和的最小值为MB+MD,求值即可;(2)作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,且证明P点与D点重合,即AM'过D点.求出AM'的值即是铺设到点A和点M处的管道长度之和最小的值;(3)作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM',可证得N,D两点重合,即M'N过D点.求GM+GD=M'D的值就是最小值.【解答】解:方案一:由题意可得:∵A在M的正西方向,∴AM∥OE,∠BAM=∠BOE=30°,又∵∠BMA=60°∴MB⊥OB,∴点M到甲村的最短距离为MB,(1分)∵点M到乙村的最短距离为MD,∴将供水站建在点M处时,管道沿MD,MB线路铺设的长度之和最小,即最小值为MB+MD=3+(km);(3分)方案二:如图①,作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,PE∥AM,PE=AM,∵AM=2BM=6,∴PE=3,(4分)在Rt△DME中,∵DE=DM•sin60°=×=3,ME=DM=×,∴PE=DE,∴P点与D点重合,即AM'过D点,(6分)在线段CD上任取一点P',连接P'A,P′M,P'M',则P'M=P′M',∵AP'+P'M'>AM',∴把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小,即最小值为AD+DM=AM'=;(7分)方案三:作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM',∴M'N为点M'到OE的最短距离,即M'N=GM+GN在Rt△M'HM中,∠MM'N=30°,MM'=6,∴MH=3,∴NE=MH=3,∵DE=3,∴N,D两点重合,即M'N过D点,在Rt△M'DM中,DM=,∴M'D=(10分)在线段AB上任取一点G',过G'作G'N'⊥OE于N'点,连接G'M',G'M,显然G'M+G'N'=G'M'+G'N'>M'D,∴把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小,即最小值为GM+GD=M'D=,(11分)综上,∵3+<,∴供水站建在M处,所需铺设的管道长度最短.(12分)【点评】此题主要考查线路最短问题的作图和求值问题,有一定的难度.17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q 从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是25 ;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.【考点】相似三角形的判定与性质;三角形中位线定理;矩形的判定与性质.【专题】压轴题.【分析】(1)由中位线定理即可求出DF的长;(2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;(3)①当点P在EF上(2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;②当点P在FC上(5≤t≤7)时,PB=PF+BF就可以得到;(4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.【解答】解:(1)Rt△ABC中,∠C=90°,AB=50,∵D,F是AC,BC的中点,∴DF为△ABC的中位线,∴DF=AB=25故答案为:25.(2)能.如图1,连接DF,过点F作FH⊥AB于点H,∵D,F是AC,BC的中点,∴DE∥BC,EF∥AC,四边形CDEF为矩形,∴QK过DF的中点O时,即过矩形CDEF的中点,QK把矩形CDEF分为面积相等的两部分此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.故t==.(3)①当点P在EF上(2≤t≤5)时,如图2,QB=4t,DE+EP=7t,由△PQE∽△BCA,得.∴t=4;②当点P在FC上(5≤t≤7)时,如图3,已知QB=4t,从而PB===5t,由PF=7t﹣35,BF=20,得5t=7t﹣35+20.解得t=7;(4)如图4,t=1;如图5,t=7.(注:判断PG∥AB可分为以下几种情形:当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻,如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7当时,点P,G均在FC上,也不存在PG ∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB)【点评】本题主要运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.【考点】相似三角形的判定;平行四边形的性质.【专题】压轴题;开放型.【分析】根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.【解答】解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)【点评】考查了平行线的性质及相似三角形的判定定理.。

相关文档
最新文档