面积中的最值问题
矩形面积最值问题
矩形面积最值问题问题描述矩形是一个拥有相等对边的四边形。
我们定义矩形的面积为其长度与宽度的乘积。
现在我们要寻找一个矩形,使其面积达到最大值。
解决方案要寻找矩形的面积最值,我们可以通过找到合适的长度和宽度来实现。
下面是一种简单的策略来解决这个问题:1. 假设我们选择一个长度为L和宽度为W的矩形。
2. 计算这个矩形的面积S,即 S = L * W。
3. 考虑不同的长度和宽度取值来找到最大的面积。
4. 我们可以从一个合理的范围内选择长度和宽度的取值。
例如,我们可以假设长度和宽度都是大于等于0并且小于等于一个给定的值。
5. 使用一个循环结构来遍历所有可能的取值组合,并计算每个组合的面积。
6. 在循环过程中,保留最大的面积值和对应的长度和宽度。
7. 最后,输出最大面积以及对应的长度和宽度。
这种方法简单直观,并且可以帮助我们找到矩形的面积最值。
注意:本方法假设长度和宽度为实数值且非负。
如需使用其他条件或限制,请提供更详细的要求。
示例代码下面是使用Python编写的示例代码,用于求解矩形面积最值问题:设置最大面积的初始值为0max_area = 0设置最大面积对应的长度和宽度的初始值max_length = 0max_width = 0循环遍历长度和宽度的取值范围for length in range(1, 11):for width in range(1, 11):计算当前矩形的面积area = length * width判断当前面积是否大于最大面积if area > max_area:更新最大面积及对应的长度和宽度max_area = areamax_length = lengthmax_width = width输出结果print("最大面积:", max_area)print("长度:", max_length)print("宽度:", max_width)可以根据实际需求修改代码中的范围和条件,以及输出方式。
数学圆和(面积)的最值问题
数学圆和(面积)的最值问题数学圆的最值问题引言数学中,圆是一个重要的几何概念。
在研究圆的性质和应用时,我们经常会遇到关于圆的最值问题,即在一定的条件下,如何找到圆的面积或其他性质的最大值或最小值。
本文将探讨数学圆的最值问题,并介绍一些解决这类问题的方法和策略。
圆的面积最值问题在圆的最值问题中,我们常常涉及到最大面积和最小面积两种情况。
下面分别讨论这两种情况。
圆的最大面积当我们固定圆的半径时,要找到圆的最大面积,需要确定这个半径的取值范围。
根据数学知识,圆的面积公式为:A = πr²,其中π是一个常数,r代表半径。
当半径r取值为正数时,圆的面积是一个关于r的增函数。
因此,我们可以通过求导数的方法来找到最大面积。
具体步骤如下:1.对面积公式A = πr²求导,得到A' = 2πr。
2.令A' = 0,解方程得到r的临界点。
3.将临界点带入面积公式,找到最大面积。
圆的最小面积当我们固定圆的周长时,要找到圆的最小面积,也需要确定周长的取值范围。
根据数学知识,圆的周长公式为:C = 2πr。
由于周长是一个固定值,我们可以将周长公式改写为:r = C / (2π),然后将该式代入圆的面积公式A = πr²中,得到面积的表达式只包含C一个变量。
通过对这个新的面积表达式进行求导和求临界点,可以找到圆的最小面积。
结论数学圆的最值问题是一个有趣且实用的数学问题。
通过应用求导等数学方法,我们可以找到圆的最大面积和最小面积。
在实际应用中,我们可以将这些方法应用于设计圆形物体的最优尺寸、优化圆形线路的长度等问题中,为实际生活带来便利和效益。
参考文献:数学圆的性质与应用,XXX,XX出版社,20XX年。
数学分析教程,XXX,XX出版社,20XX年。
以上是本文对数学圆的最值问题的讨论和总结,希望对读者有所帮助。
解三角形面积最值问题
解三角形面积最值问题概述三角形是我们学习几何学时最常见的图形之一,其面积的计算是一个基本的几何问题。
而解三角形面积最值问题则是在给定一些限制条件下,求解三角形的最大面积或最小面积。
这涉及到数学中最优化的一个重要问题。
限制条件在解三角形面积最值问题时,我们通常会给出一些限制条件,这些条件可能包括角度的大小、边长的关系等。
下面是一些常见的限制条件:1.固定底边:给定三角形的底边长度为a,求使得面积最大或最小的三角形。
2.固定高:给定三角形的高为h,求使得面积最大或最小的三角形。
3.固定边长:给定三角形的两条边长为a和b,求使得面积最大或最小的三角形。
4.固定比例:给定三角形的边长比例为k,求使得面积最大或最小的三角形。
5.固定对角线:给定三角形的对角线长度为d,求使得面积最大或最小的三角形。
求解方法1. 利用面积公式三角形的面积可以通过以下公式来计算:A=12⋅base⋅ℎeigℎt其中A表示三角形的面积,base表示底边的长度,height表示高的长度。
根据给定的限制条件,我们可以通过求导等方法,将面积公式中的变量表示为常量,从而得到面积和其他变量之间的关系。
然后我们可以通过求解极值问题,找到使得面积最大或最小的变量取值。
2. 利用三角形特性三角形的边长、角度和面积之间有很多重要的关系。
利用这些关系,我们可以得到一些有助于解题的结论。
下面是一些常用的结论:1.等边三角形面积最大:当三角形的三条边相等时,三角形的面积最大。
2.高所对边最大:在给定三角形底边的情况下,使得三角形面积最大的情况是:底边为定长,底边两点的连线为垂线。
3.边长相等,角度越大,面积越大:在给定角度的情况下,如果三角形的两条边长相等,则面积最大的情况是这两条边垂直。
4.给定两边,夹角越大,面积越大:在给定两边的情况下,当这两边夹角最大时,三角形的面积最大。
通过利用这些有助于解题的结论,我们可以缩小解题的范围,降低解题的难度。
求解实例例题1:固定底边假设我们需要在给定底边长度为5的情况下,找到一个三角形,使得其面积最大。
椭圆中面积的最值问题
椭圆中面积的最值问题
椭圆是一种广泛存在于自然界的平面图形,它不仅仅是一个平面图形,而且它具有极大的实用价值。
椭圆是多种物理科学,化学,天文,生物等领域中常见的图形。
椭圆的面积有很多变化,这些变化会产生最大值和最小值,椭圆的最大和最小面积的求解称为椭圆中面积的最值问题。
椭圆的面积可以通过下面的公式来计算:A = πab, 其中a 和b分别是椭圆的两个半轴长。
通过研究发现,椭圆的最大面积是在两个半轴长相等的情况下,即a=b时实现的,最大面积可以表示为:A_max = πa^2 同样,当两个半轴长不等时,椭圆的最小面积是在a和b的乘积最小的情况下实现的,最小面积可以表示为:A_min = πab 因此,当椭圆的两个半轴长a和b不等时,最大面积A_max 就会大于最小面积A_min,而当两个半轴长a和b相等时,最大面积A_max就等于最小面积A_min。
椭圆中面积的最值问题是一个经典的数学问题,是对几何学中椭圆的有关知识的深入研究。
椭圆最大最小面积的求解,不仅仅可以帮助我们理解椭圆的特性,而且还有助于更好地应用椭圆。
椭圆中面积的最值问题,是一个有趣而又有实际意义的数学研究课题,由于椭圆的特性,可以将其应用于多种领域,因
此,对椭圆中面积的最值问题的研究,也有助于更好地应用椭圆。
二次函数的应用(面积最值问题)
二次函数的应用(面积最值问题)[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值X 围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道与在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的X 围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008XXXX)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米.2.(2008庆阳市)XX 市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008XXXX)将一X 边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x xxyOAM (图5) (图7) 6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=37.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B ) A .4.6m B .4.5m C .4m D .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值X 围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的X 围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大. (2)中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ACD P Q解:∵∠APQ=90°,∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年XX 市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.512.(2008XX 内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008XXXX)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值X 围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值X 围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年XX 市)随着绿城XX 近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉与树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得 ==+21y y +==∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08XX 聊城)如图,把一X 长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm ,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm . (2)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm 时, 长方体盒子的侧面积最大为40.5cm 2.(3)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08XX)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.。
数学矩形和(面积)的最值问题
数学矩形和(面积)的最值问题引言矩形是数学中常见的一种形状,而其面积则是矩形的重要属性之一。
在求解矩形面积的过程中,我们可能会遇到一些最值问题,即我们希望找到具有最大或最小面积的矩形。
本文将介绍一些解决数学矩形和面积的最值问题的简单策略。
寻找最大面积矩形要寻找具有最大面积的矩形,我们需要考虑矩形两个关键属性:长度和宽度。
我们将尝试寻找一个合适的长度和宽度组合,使得它们的乘积最大。
一种常见的方法是通过对矩形的属性进行系统化的分析来解决这个问题。
我们可以假设矩形的长度为L,宽度为W,根据题目给定的条件或约束,列出合适的方程。
然后,通过对方程进行求导或使用其他数学方法,找到给定条件下面积的最大值。
一个例子是,在给定总长P的情况下,我们如何找到面积最大的矩形。
我们可以假设矩形的长度为x,宽度为P-x。
根据矩形的面积公式,面积A等于长度L乘以宽度W,即A = x(P-x)。
我们可以通过求导的方法来求解这个方程,找到使得面积A最大的x值。
寻找最小面积矩形类似地,要寻找具有最小面积的矩形,我们需要考虑矩形的长度和宽度。
我们将尝试寻找一个合适的长度和宽度组合,使得它们的乘积最小。
同样,我们可以通过对矩形属性进行系统化的分析来解决这个问题。
我们可以假设矩形的长度为L,宽度为W,根据题目给定的条件或约束,列出合适的方程。
然后,通过对方程进行求导或使用其他数学方法,找到给定条件下面积的最小值。
一个例子是,在给定总长P的情况下,我们如何找到面积最小的矩形。
我们可以假设矩形的长度为x,宽度为P-x。
根据矩形的面积公式,面积A等于长度L乘以宽度W,即A = x(P-x)。
我们可以通过求导的方法来求解这个方程,找到使得面积A最小的x值。
结论数学矩形和面积的最值问题是数学中的重要问题之一。
通过系统化的分析和使用数学工具,我们可以找到具有最大或最小面积的矩形。
在解决这类问题时,我们可以根据题目给定的条件或约束,假设矩形的长度和宽度,并通过对方程进行求导或使用其他数学方法,找到面积的最大或最小值。
“二次函数”面积最值问题的几种解法
“二次函数”面积最值问题的几种解法以微课堂公益课堂,奥数国家级教练与四位特级教师联手执教。
二次函数是初中数学的一个重点、难点,也是中考数学必考的一个知识点。
特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。
而求三角形面积的最值问题,更是常见。
今天介绍二次函数考试题型种,面积最值问题的4种常用解法。
同学们只要熟练运用一两种解法,炉火纯青,在考试答题的时候,能够轻松答题,就好。
原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC的面积最大值,若没有,请说明理由。
考试题型,大多类似于此。
求面积最大值的动点坐标,并求出面积最大值。
一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。
通过公式计算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。
方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。
请看解题步骤。
解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。
这是三角形面积表达方法的一种非常重要的定理。
铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。
因为,铅锤定理,在很多地方都用的到。
这里,也有铅锤定理的简单推导,建议大家认真体会。
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。
设动点P的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的计算公式,得出二次函数,必有最大值。
解法三:切线法。
这其实属于高中内容。
但是,基础好的同学也很容易理解,可以看看,提前了解一下。
解法四:三角函数法。
请大家认真看上面的解题步骤。
总之,从以上的四种解法可以得出一个规律。
过点P做辅助线,然后利用相关性质,找出各元素之间的关系。
设动点P的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点式,求出三角形面积的最大值。
对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题中,求三角形面积最大值问题,就非常简单了。
新定义中的面积最值问题
.新定义中的面积最值问题在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”=S ah .例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,则“水平底”5=a ,“铅垂高”4=h ,“矩面积”20==S ah .(1)已知点)2,1(A ,)1,3(-B ,),0(t P .①若A ,B ,P 三点的“矩面积”为12,求点P 的坐标;②直接写出A ,B ,P 三点的“矩面积”的最小值。
(2)已知点)0,4(E ,)2,0(F ,)4,(m m M ,)16,(nn N ,其中0>m ,0>n . ①若E ,F ,M 三点的“矩面积”为8,求m 的取值范围;②直接写出E ,F ,N 三点的“矩面积”的最小值及对应n 的取值范围.(3)如图1,已知点M (6,0),N (0,8).P (x ,y )是抛物线542++-x x y =上一点,求点M ,N ,P 的 矩面积的最小值,以及此时点P 的横坐标x 的取值范围;图1在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,右图中的矩形1111D C B A ,2222D C B A ,333CD B A 都是点A ,B ,C 的外延矩形,矩形333CD B A 是点A ,B ,C 的最佳外延矩形.(4)如图2,已知点D (1,1).E (m ,n )是函数)0(4>=x xy 的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.(5)若是边长为1的正方形ABCD ,求它的矩面积S 的取值范围.(6)若图形是一个边长分别为3和4的矩形ABCD ,求它的矩面积S 的取值范围.图2。
初中几何中的最值问题
初中几何中的最值问题初中几何中的最值问题是指在几何图形中寻找某个量的最大值或最小值的问题。
这些问题通常涉及到面积、周长、角度等几何量。
一般来说,解决初中几何中的最值问题需要掌握以下基本方法:1. 利用代数方法求解有时候,我们可以将几何图形转换为代数式,然后通过求导或者求平方等方法来求解。
例如,在矩形中,当周长一定时,面积最大;当面积一定时,周长最小。
我们可以设矩形的长为x,宽为y,则周长为2(x+y),面积为xy。
当周长一定时,即2(x+y)=k(k为常数)时,可以将y表示成x的函数:y=k/2-x,则面积S=x(k/2-x)=kx/2-x^2。
对S求导得到S'=k/2-2x=0,则x=k/4。
因此,在周长一定时,矩形的长和宽相等时面积最大。
2. 利用平均值不等式平均值不等式是一个重要的不等式,在初中几何中也经常被使用。
该不等式表明对于任意两个正实数a和b,有(a+b)/2>=sqrt(ab)。
例如,在三角形ABC中,如果要求最小的边长,则可以利用平均值不等式:设三角形边长分别为a、b、c,则有a+b>c,b+c>a,c+a>b。
将这三个不等式相加得到2(a+b+c)>a+b+c,则a+b+c>0。
因此,(a+b+c)/3>=sqrt(abc),即(a+b+c)>=3sqrt(abc)。
因此,当三角形的面积一定时,其边长之和最小。
3. 利用相似性质有时候,在几何图形中,我们可以利用相似性质来求解最值问题。
例如,在等腰三角形ABC中,如果要求最大的高,则可以利用相似三角形的性质:设高线AD与BC交于点E,则有AE/ED=BE/EC=AB/BC=2/1。
因此,AE=2ED,BE=2EC。
又因为AD是等腰三角形的高线,所以BD=DC。
则DE=BD-BE=(1/3)BC。
因此,在等腰三角形ABC中,高线对应底边的比值为2:1时,高线最大。
综上所述,在初中几何中解决最值问题需要掌握代数方法、平均值不等式和相似性质等基本方法,并且需要在实际问题中灵活应用这些方法来求解各种复杂的问题。
10.二次函数的应用题(面积最值问题
二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为米,面积为平方米x S则长为:(米)x x 4342432-=+-则:)434(x x S -=x x 3442+-= 4289417(42+--=x ∵104340≤-<x ∴ 2176<≤x ∵,∴与的二次函数的顶点不在自变量的范围内, 6417<S x x 而当内,随的增大而减小, 2176<≤x S x ∴当时,(平方米) 6=x 6042894176(42max =+--=S 答:可设计成宽米,长10米的矩形花圃,这样的花圃面积最大. 6[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴,即, PHBH BF AF =3412--=y x ∴, 521+-=x y , x x xy S 5212+-==)42(≤≤x 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值随的增大而增大,y x 对于来说,当x=4时,. 42≤≤x 12454212=⨯+⨯-=最大S 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x 当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度(单位:米)与小球运动时间h t (单位:秒)的函数关系式是,那么小球运动中的最大高度 4.9米 .=最大h 2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .mB .6 mC .15 mD .m 42425解:AB =x m ,AD=,长方形的面积为y m 2b ∵AD ∥BC ∴△MAD ∽△MBN ∴,即, MB MA BN AD =5512x b -=)5(512x b -=, 当时,有最大值. )5(512)5(5122x x x x xb y --=-⋅==5.2=x y 4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C )A .7B .6C .5D .4 5.如图,铅球运动员掷铅球的高度(m)与水平距离(m)之间的函数关系式是:y x ,则该运动员此次掷铅球的成绩是( D ) 35321212++-=x x y A .6 mB .12 mC .8 mD .10m 解:令,则:0=y 02082=--x x 0)10)(2(=-+x x(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面m ,则水流落地点B 340离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为,设,将点代入, )340,1(340)1(2+-=x a y )10,0(310-=a 令,得:,所以OB=3 0340)1(3102=+--=x y 4)1(2=-x7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解: )240(x x y -=)20(22x x --=200)10(22+--=x ∵152400≤-<x ∴205.12<≤x ∵二次函数的顶点不在自变量的范围内,x 而当内,随的增大而减小,205.12<≤x y x ∴当时,5.12=x (平方米)5.187200)105.12(22max =+--=y 答:当米时花园的面积最大,最大面积是187.5平方米.5.12=x9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为米,设面积为平方米. 350x -S )50(313502x x x x S --=-⋅=。
面积最值问题 初中数学
面积最值问题初中数学面积最值问题是初中数学中一个常见的应用题类型,主要涉及到几何图形的面积,并要求寻找出图形面积的最大值或最小值。
通过解决这类问题,学生们可以加强对图形面积计算的理解,并培养数学建模和解决实际问题的能力。
一、矩形面积最值问题矩形是最为简单的几何图形之一,其面积公式为“面积=长×宽”。
当矩形的周长一定时,如何确定矩形的面积最大或最小值成为了问题的关键。
在解决这类问题时,我们可以利用变量法。
假设矩形的长为x,宽为y,则有以下两个约束条件:1. 2x + 2y = 周长(常数)2. 长和宽都不能为负数,即x ≥ 0, y ≥ 0根据矩形的面积公式,在限定条件下,可以得到矩形的面积S和变量x、y之间的关系式:S = xy。
由此可得,在常数周长和约束条件下,我们需要求解的就是面积函数S = xy 的最值。
二、三角形面积最值问题三角形是常见的几何图形之一,其面积公式为“面积=底边×高/2”。
在解决三角形面积最值问题时,我们通常需要考虑两种情况。
情况一:确定一个边长,求解此边长对应的最大面积。
假设等腰三角形的底边长为x,两腰边长为y,则有以下两个约束条件:1. 2y + x = 周长(常数)2. 边长不能为负数,即x ≥ 0, y ≥ 0根据三角形的面积公式,在限定条件下,可以得到三角形的面积S和变量x、y之间的关系式:S = xy/2。
由此可得,在常数周长和约束条件下,我们需要求解的就是面积函数S = xy/2 的最值。
情况二:确定一个角度,求解此角度对应的最大面积。
假设三角形的底边长为x,底边两边夹角为θ,则有以下约束条件:1. θ为常数,0°≤θ≤180°2. 底边不能为负数,即x ≥ 0根据三角形的面积公式,在限定条件下,可以得到三角形的面积S和变量x之间的关系式:S = x^2 sin(θ)/2。
由此可得,在限定角度和约束条件下,我们需要求解的就是面积函数S = x^2 sin(θ)/2 的最值。
二次函数面积最值问题的4种解法
微信公众号
从小学数学-------------------------------------------------
解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。 设动点 P 的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的 计算公式,得出二次函数,必有最大值。
微信公众号
从小学数学-------------------------------------------------
原 题 :在( 1)中 的 抛 物 线 上 的 第 二 象 限 是 否 存 在 一 点 P,使 △PBC 的 面 积 最 大 ? 若 存 在 , 求出 P 点的坐标及△PBC 的面积最大值,若没有,请说明理由。 考试题型,大多类似于此。求面积最大值的动点坐标,并求出面积最大值。 一般解题思路和步骤是,设动点 P 的坐标,然后用代数式表达各线段的长。通过公式计 算,得出二次函数顶点式,则坐标和最值,即出。
解法一:补形,割形法。方法要点是,把所求图像的面积适当的割补,转化成有利于面 积表达的常规几何图形。请看解题步骤。
微信众号
从小学数学-------------------------------------------------
解 法 二 : 铅 锤 定 理 , 面 积 =铅 锤 高 度 ×水 平 宽 度 ÷2。 这 是 三 角 形 面 积 表 达 方 法 的 一 种 非 常 重要的定理。 铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。因为, 铅 锤 定 理 ,在 很 多 地 方 都 用 的 到 。这 里 ,也 有 铅 锤 定 理 的 简 单 推 导 ,建 议 大 家 认 真 体 会 。
解法四:三角函数法。请大家认真看上面的解题步骤。 总之,从以上的四种解法可以得出一个规律。过点 P 做辅助线,然后利用相关性质,找 出各元素之间的关系。 设动点 P 的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点 式,求出三角形面积的最大值。 对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题 中,求三角形面积最大值问题,就非常简单了。
解三角形面积最值问题
解三角形面积最值问题一、问题描述解三角形面积最值问题是指在所有满足条件的三角形中,找到面积最大或最小的三角形。
通常情况下,给定三角形的边长或角度,需要求出其面积,并在所有可能的情况中找到最大或最小值。
二、解法分类解决三角形面积最值问题有多种方法,可以根据不同的条件和要求进行分类。
1. 基于边长或高度当已知三角形的边长或高度时,可以通过海伦公式、正弦定理、余弦定理等方法求得其面积,并比较不同情况下的面积大小来确定最大或最小值。
2. 基于夹角当已知三角形夹角时,可以通过正弦函数和余弦函数求得其高度,并进而计算出面积。
此时需要注意夹角所在的位置(锐角、直角、钝角),以及是否为等腰三角形等特殊情况。
3. 基于坐标当已知三个顶点在平面直角坐标系中的坐标时,可以利用向量叉乘公式计算出其面积。
此方法适用于任意形状的三角形,但需要进行向量运算和矩阵求逆等复杂计算。
三、具体实现以下以基于边长或高度的方法为例,介绍解决三角形面积最值问题的具体实现。
1. 求解最大面积(1)已知三角形三边a、b、c,可以通过海伦公式计算出其半周长s=(a+b+c)/2,进而得到面积S=sqrt(s(s-a)(s-b)(s-c))。
为了求得最大面积,需要考虑以下情况:① a+b>c,b+c>a,c+a>b,即任意两边之和大于第三边;② a>0,b>0,c>0,即三边长度均为正数。
在满足以上条件的前提下,可以比较不同情况下的面积大小来确定最大值。
例如,在已知三角形周长P=a+b+c固定的情况下,当两条边相等时(即等腰三角形),其面积最大。
(2)已知三角形两边a、b和夹角C(余弦值cosC),可以通过余弦定理计算出第三边c=sqrt(a^2+b^2-2abcosC),进而得到半周长s=(a+b+c)/2和面积S=sqrt(s(s-a)(s-b)(s-c))。
在满足 a+b>c 和cosC<=1 的前提下,可以比较不同情况下的面积大小来确定最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《面积中的最值问题》教学过程
一、知识点的复习:
1、在y轴上或与y轴平行的线段:-----------------。
2、解析式设点的坐标法:
3、最值问题:对、开、界、描。
(图象法)
二、课前预习讨论:
如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2﹣x+n同时经过A(0,3)、B(4,0).
(1)求m,n的值.
(2)点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.
习得:
三、典型例题:(学生讲解分析,自己完成解题过程,老师点评)
如图,已知抛物线y=ax2+x+c经过A(4,0),B(1,0)两点,
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.
解题策略:
四:变式练习:
如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E 点,求线段PE长度的最大值,并求出△ACE面积的最大值;
2.
解题策略:
已知抛物线y=ax2+bx+c经过A(-1,0)、B(2,0)、C(0,2)三点.
(1)求这条抛物线的解析式;
(2)如图,点P是第一象限内抛物线上的一个动点,若点P使四边形ABPC的面积最大,求点P的坐标.
解题策略:
六、课堂小结:
1.知识点的梳理
2、解题策略的总结:。