6.3 STM32F103ZE的时钟深入剖析(32M,40M,72M灵活切换)
STM32F103ZET6的基本定时器
STM32F103ZET6的基本定时器1、定时器的分类 STM32F103ZET6总共有8个定时器,它们是:TIM1~TIM8。
STM32的定时器分为基本定时器、通⽤定时器和⾼等定时器。
TIM6、TIM7是基本定时器。
基本定时器是只能向上计数的16位定时器,基本定时器只能有定时的功能,没有外部IO⼝,所以没有捕获和⽐较通道。
TIM2、TIM3、TIM4、TIM5是通⽤定时器。
通⽤定时器是可以向上计数,也可以向下计数的16位定时器。
通⽤定时器可以定时、输出⽐较、输⼊捕捉,每个通⽤定时器具有4个外部IO⼝。
TIM1、TIM8是⾼等定时器。
⾼等定时器是是可以向上计数,也可以向下计数的16位定时器。
⾼等定时器可以定时、输出⽐较、输⼊捕捉、还可以输出三相电机互补信号,每个⾼等定时器有8个外部IO⼝。
定时器分类图如下:2、基本定时器 基本定时器没有外部IO⼝,所以它只有定时的功能。
基本定时器只能向上计数,也就是说基本定时器只能递增计数。
基本定时器功能框图如下: 从功能图的1中可以看到,基本定时器的时钟TIMxCLK来⾃内部时钟,该内部时钟为经过APB1预分频器分频后提供的。
基本定时器跟APB1总线时钟的关系如下:如果APB1预分频系数为1,则基本定时器的时钟等于APB1总线时钟。
如果APB1预分频系数不为1,则基本定时器的时钟等于APB1总线时钟经过分频后的2倍。
⽐如APB1总线经过2分频后的时钟为36MHZ,那么基本定时器的时钟就是72MHZ3(36*2)。
功能图中的2是⼀个预分频器,来⾃内部的时钟经过预分器分频后的时钟,⽤来驱动基本定时器的计数器计数。
基本定时器的预分频器是⼀个16位的预分频器,预分频器可以对定时器时钟进⾏1~65536之间的任何⼀个数进⾏分频。
计算⽅式如下: 定时器⼯作时钟 = 来⾃APB1的时钟/(预分频系数+1) 功能图中的3是⼀个16位的计数器,该计数器能能向上计数,最⼤计数值位65535。
stm32f103zet6定时器详解及应用
stm32f103zet6定时器详解及应用
1、stm32f103zet6芯片及引脚图
2、stm32f103xx器件功能与配置
3、stm32f103zet6 定时器大容量的STM32F103XX增强型系列产品包含最多2个高级控制定时器、4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。
下表比较了高级控制定时器、普通定时器和基本定时器的功能:
定时器功能比较
1)计数器三种计数模式
向上计数模式:从0开始,计到arr预设值,产生溢出事件,返回重新计时
向下计数模式:从arr预设值开始,计到0,产生溢出事件,返回重新计时
中央对齐模式:从0开始向上计数,计到arr产生溢出事件,然后向下计数,计数到1以后,又产生溢出,然后再从0开始向上计数。
(此种技术方法也可叫向上/向下计数)
2)高级控制定时器(TIM1和TIM8)
两个高级控制定时器(TIM1和TIM8)可以被看成是分配到6个通的三三相PWM发生器,它具有带死区插入的互补PWM输出,还可以被当成完整的通用定时器。
四个独立的通道可以用于:
(1)输入捕获
(2)输出比较
(3)产生PWM(边缘或中心对齐模式)
(4)单脉冲输出
配置为16位标准定时器时,它与TIMX定时器具有相同的功能。
配置为16位PWM发生器时,它具有全调制能力(0~100%)。
在调试模式下,计数器可以被冻结,同时PWM输。
ARMFLY STM32F103ZE-EK 开发板 说明书
S T M32F103Z E-E K开发板用户手册版本:V1.0安富莱电子开发网W W W.A R M F L Y.C O M1.产品规格简介STM32F103ZE-EK开发板以STM32F103ZET6(LQFP144)为核心。
STM32F103ZE 是ST(意法半导体)公司推出的ARM Crotex-M3产品线中功能最强大的一款CPU。
片内集成512kB Flash、64kB RAM、1个USB、1个CAN、 8个定时器、5个USART、3个ADC、2个DAC、3个SPI、2个I2C、2个I2S、1个SDIO、112个GPIO、FSMC总线(支持NOR,NAND,SRAM)。
CPU主频72MHz,广泛适用于各种应用场合。
本开发板具备丰富的硬件资源,配套的试验例程均提供源代码,文档齐备,非常适合于学习和项目评估。
硬件资源■ 8M晶振作为MCU的时钟,32768晶振用于RTC ■ 1M字节SRAM,16M字节NOR Flash,128M字节NADN Flash■ 2M字节串行Flash,256字节串行EEPROM■ 1个SD/MMC卡座■ 1个CAN2.0A/B接口■ 2个RS232串口■ 1个RS485接口■ 1个USB2.0全速DEVICE接口■ 1个USB2.0全速HOST接口■ 1个100M/10M以太网接口■ I2S音频DAC(24bit,96kHz),1个立体声耳机插座,1个扬声器■ 3.0寸TFT真彩触摸LCD(WQVGA,400x240)■ 1个5向摇杆,1个Reset按钮、1个wakeup按钮、1个自定义按钮 ■ 4个自定义LED,1个电源LED,1个音频LED ■ 1个CR1220电池座■ 1个精密可调电阻连接到ADC输入■ 所有的GPIO引到2.54mm间距焊盘■ 1个DAC引出端子,1个PWM引出端子■ 标准2.54mm间距JTAG插座■ 2个BNC输入端子,集成双通道示波器电路,具备AC/DC切换、输入增益切换开关■ 3种供电方式:USB电缆、外接5V电源、JTAG 调试接口(J-LINK仿真器)■ 1个电源开关,上下电时无需拔插电缆■ 3种启动方式:用户Flash、系统存储器、SRAM ■ 用拨码开关取代跳线帽,避免跳线帽丢失■ 板子规格:14cm x 12cm软件资源■ 提供100多个试验例程■ 提供uCOS_II+ucGUI例程和文档■ 即将展开USB虚拟示波器项目源码■ 即将移植ucLinux (硬件资源已满足要求) ■ 更多的软件资源将在发布标配清单■STM32F103ZE-EK开发板1块■ 3.0寸TFT触摸显示模块1块■1根串口线、1根网线、1根USB电缆■资料光盘1张可选的配件:■60M示波器探头1对■USB转串口线1根2.快速入门2.1.注意事项(1)外接电源必须是5.0V 的直流电源,插头有极性,内正外负。
stm32f103中文手册[1]
STM32F103中文手册概述32位ARM® Cortex®-M3内核,最高运行频率72 MHz从16 KB到1 MB的闪存,从6 KB到96 KB的SRAM从36到144个引脚的不同封装,支持LQFP、BGA、TFBGA、UFBGA和V FQFPN等从1.65 V到3.6 V的宽电源电压范围,支持低功耗模式和电池供电从-40°C到+105°C的工作温度范围多达11个通信接口,包括3个USART、2个UART、2个I2C、2个SPI、1个CAN和1个USB 2.0全速多达15个定时器,包括7个16位通用定时器、2个16位基本定时器、2个16位高级定时器、2个32位定时器和2个看门狗定时器多达3个12位模数转换器(ADC),每秒可采样1.2 M次两路12位数模转换器(DAC)多达80个外部中断/事件源多达112个GPIO端口,支持5 V耐压CRC计算单元,用于检测数据传输错误实时时钟(RTC),支持日历功能和闹钟功能嵌入式内存保护单元(MPU),用于增强应用程序安全性嵌入式调试支持,包括串行线调试(SWD)和JTAG接口7层DMA控制器,支持所有外设数据传输可选的双银行闪存模式,支持实时软件更新存储器映射STM32F103系列单片机的存储器映射如下图所示:![存储器映射]代码区:包括闪存和系统存储器。
闪存用于存储用户程序代码和数据。
系统存储器用于存储引导加载程序(bootloader)和设备标识符。
SRAM区:包括SRAM1和SRAM2。
SRAM1用于存储用户程序数据和堆栈。
SRAM2用于存储备份寄存器和备份域。
外设区:包括APB1外设、APB2外设和AHB外设。
APB1外设和APB2外设是通过两个高速总线矩阵连接到内核的低速外设。
AHB外设是通过一个高速总线矩阵连接到内核的高速外设。
外部设备区:包括FSMC区域、NOR/PSRAM区域和NAND/CF区域。
6.3 STM32F107VCT的时钟深入剖析(32M,40M,72M灵活切换)
RCC->CFGR2 |= 4<<4; // 5 分频
6.1.2 STM32的时钟
系统时钟的选择是在启动时进行,复位时内部 8MHZ 的 RC 振荡器被选为默认的 CPU 时钟,随后可以选择外部的、具失效监控的 3-25MHZ 时钟;当检测到外部时钟失效时,它 将被隔离,系统将自动地切换到内部的 RC 振荡器。
在 STM32 中,有五个时钟源,为 HSI、HSE、LSI、LSE、PLL,它们都是时钟所提供 的来源: 1. HSI 是高速内部时钟,RC 振荡器,频率默认为 8MHz,可以从 STM32 时钟树中看到
RCC->CFGR2 |= 6<<8; //8 倍频
RCC->CFGR2 |= 1<<16; //PLL2 作为 PRED2V1 时钟 RCC->CR |= 1<<26; //将 PLL2 使能
while(!(RCC->CR>>27));
RCC->CFGR2 |= 0x00000004; //5 分频 RCC->CFGR |= 1<<16; //PREDIV1 作为 PLL 时钟 RCC->CFGR |= 2<<18; //本例程希望设置成 32MHZ 的工作频率,我们在这里尝试
下表是结合图表明出来的: 标号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
STM32F103ZE手册
EM-STM3210E评估板用户手册V1.0深圳市英蓓特信息技术有限公司Embest info & Tech Co., Ltd.地址:深圳市罗湖区太宁路85号罗湖科技大厦509室(518020) Telephone: 86-755-25532557 25638952 25535753 25505451Fax: 86-755-25616057E-mail: sales@ support.realview@ Website: 第一章概述EM-STM3210E是英蓓特公司新推出的一款基于ST意法半导体STM32系列处理器(Cortex-M3内核)的全功能评估板。
功能接口丰富,是一个用于应用开发很好的平台,也是学习者的首选。
配合本公司的调试工具ULINK2一起使用,更是为大家提供了一个良好的开发环境,从而为自己的应用开发节省了时间,提高的效率。
EM-STM3210E评估板主要性能:◆处理器:STM32F103ZE,主频:72MHz◆2MB NOR FLASH◆128KB SRAM◆128MB NAND FLASH◆8M byte SPI Flash◆RTC( 带后备电池)◆启动跳线设置◆两路可选电源:5VDC供电,USB供电◆一个SD存储卡接口◆TFT- LCD屏接口◆一个温度传感器◆一路DAC音频输出◆20Pin JTAG调试接口◆2个三线RS232串行口◆一个USB Device接口◆一个具有控制四个方向和确定功能的摇杆手柄◆四个功能按键:Reset,Wakeup,Temper和User按键◆四个Led灯◆四位八段数码管输出◆一个CAN总线接口,通过DB9接口引出◆一路AD输入◆四个26Pin用户扩展接口第二章EM-STM3210E硬件介绍EM-STM3210E功能模块图如下图所示:2.1接口一览表SPI FLASH输入旋钮五维摇杆按键电源跳线选择SPEAKER2.2跳线一览表2.3电源EM-STM3210E评估板有两种供电方式,通过JP5选择以下其中一种方式供电。
STM32F103RC系统时钟配置
地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司 STM32F103RC 系统时钟配置1、打开D:\program\KEL_MDT_ARM\STM32_Template\USER 目录,找到STM32-DEMO 文件,双击打开,KEIL-uVision4就开始运行了,得到下图:2、双击“STARTCODE ”下面的“start_stm32f10x_hd.s ”打开STM32F103RC 的启动文件,找“SystemInit ”,得到下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司3、点击当前的行,右击鼠标,将光标移动到“Go To Definition Of SystemInit”,见下图:4、点击“Go To Definition Of SystemInit ”,会跳转到system_stm32f10x.c 文件,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司5、在“system_stm32f10x.c ”文件中,在“void SystemInit (void)”函数体内找到“SetSysClock();”,见下图:6、点击“SetSysClock()”,右击鼠标,将光标移动到“Go To Definition Of SystemClock”,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司 7、点击“Go To Definition Of SystemClock”,会跳转到system_stm32f10x.c 文件,见下图:8、点击“defined SYSCLK_FREQ_72MHz ”,右击鼠标,将光标移到到“Go To Definition Of SYSCLK_FREQ_72MHz ”,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司9、点击“Go To Definition Of SYSCLK_FREQ_72MHz ”,会跳转到下图:10、在上图中,我们可以设置所需要的系统时钟,这里设置系统时钟是SYSCLK_FREQ_72MHz ,见下面粘贴的部分#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL) /* #define SYSCLK_FREQ_HSE HSE_VALUE */#define SYSCLK_FREQ_24MHz 24000000#else/* #define SYSCLK_FREQ_HSE HSE_VALUE *//* #define SYSCLK_FREQ_24MHz 24000000 *//* #define SYSCLK_FREQ_36MHz 36000000 *//* #define SYSCLK_FREQ_48MHz 48000000 *//* #define SYSCLK_FREQ_56MHz 56000000 */#define SYSCLK_FREQ_72MHz 72000000 //这是我们要设置的系统时钟#endif。
STM32F103_数据手册(中文)
参照2008年4月 STM32F103xCDE数据手册 英文第1.0版 (本译文仅供参考,如有翻译错误,请以英文原稿为准)
4/30
STM32F103xC, STM32F103xD, STM32F103xE数据手册
● 代码可以在除PC卡外的片外存储器运行; ● 目标频率为SYSCLK/2,即当系统时钟为72MHz时,外部访问的速度可达36MHz;
数据手册
STM32F103xC STM32F103xD
功能
STM32F103xE
增强型,32位基于ARM核心的带512K字节闪存的微控制器 USB、CAN、11个定时器、3个ADC 、13个RM 32位的Cortex™-M3 CPU − 最高72MHz工作频率, 1.25DMips/MHz(Dhrystone 2.1), 在存储器的0等待周期访问时 − 单周期乘法和硬件除法
STM32F103xC, STM32F103xD, STM32F103xE数据手册
1 介绍
本文给出了STM32F103xC、STM32F103xD和STM32F103xE增强型的订购信息和器件的机械特性。
有关闪存存储器的编程、擦除和保护等信息,请参考《STM32F10xxx闪存编程参考手册》。 有关Cortex-M3的信息,请参考《Cortex-M3技术参考手册》
嵌套的向量式中断控制器(NVIC) STM32F103xC、STM32F103xD和STM32F103xE增强型内置嵌套的向量式中断控制器,能够处
理多达60个可屏蔽中断通道(不包括16个Cortex™-M3的中断线)和16个优先级。 ● 紧耦合的NVIC能够达到低延迟的中断响应处理 ● 中断向量入口地址直接进入内核 ● 紧耦合的NVIC接口 ● 允许中断的早期处理 ● 处理晚到的较高优先级中断 ● 支持中断尾部链接功能 ● 自动保存处理器状态 ● 中断返回时自动恢复,无需额外指令开销 该模块以最小的中断延迟提供灵活的中断管理功能。
STM32时钟详解
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获 取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要 使用某模块时,记得一定要先使能对应的时钟。
需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。
连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门 狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而 只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。
同时这种设定也是有规律可循的设定参数也是有顺序规范的这是应用中应当注意的例如pll的设定需要在使能之前一旦pll使能后参数不可更经过此番设置后由于我的电路板上是8mhz晶振所以系统时钟为72mhz高速总线和低速总线2都为72mhz低速总线1为36mhzadc时钟为12mhzusb时钟经过15分频设置就可以实现48mhz的数据传输
static void RCC_Config(void)
第2页
STM32时钟讲解.txt {
/* 这里是重置了RCC的设置,类似寄存器复位 */ RCC_DeInit();
stm32f103 (标准库)部分例程
stm32f103(标准库)部分例程一、概述stm32f103是一款高性能的32位ARMCortex-M3微控制器,广泛应用于各种嵌入式系统。
本部分例程将介绍如何在STM32标准库中进行一些常见操作,如初始化、中断处理、串口通信等。
二、初始化1.系统时钟设置:通过STM32标准库提供的函数,可以快速设置系统时钟,包括HSI、HSE、PLL等。
2.外设初始化:根据需要,对GPIO、USART、SPI等外设进行初始化。
三、中断处理1.外部中断:通过配置中断优先级和中断向量,实现对外部中断的处理。
2.定时器中断:使用定时器中断,可以实现定时功能,如定时计数、定时延时等。
四、串口通信1.串口初始化:配置串口参数,如波特率、数据位、校验位等。
2.串口发送和接收:通过使用STM32标准库提供的函数,可以实现串口的发送和接收操作。
以下是一个简单的示例程序,用于演示如何使用STM32标准库进行串口通信:```c#include"stm32f10x.h"#include"stm32f10x_gpio.h"#include"stm32f10x_rcc.h"#include"stm32f10x_usart.h"voidUSART1_Init(void){//初始化USART1外设RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);USART_InitTypeDefUSART_InitStruct={0};USART_ART_BaudRate=9600;//设置波特率为9600USART_ART_WordLength=USART_WordLength_8b;//数据位为8位USART_ART_StopBits=USART_StopBits_1;//停止位为1个USART_ART_Parity=USART_Parity_No;//无校验位USART_ART_HardwareFlowControl=USART_HardwareFlowContro l_None;//不使用硬件流控制USART_ART_Mode=USART_Mode_Rx|USART_Mode_Tx;//设置为接收和发送模式USART_Init(USART1,&USART_InitStruct);//初始化USART1外设}voidUSART1_SendData(uint8_tdata){//发送数据到USART1外设USART_SendData(USART1,data);}intmain(void){//初始化GPIO和RCC外设,设置USART1外设时钟等...USART1_Init();while(1){//从USART1接收数据...uint8_treceivedData=USART_ReceiveData(USART1);//接收数据并存储到receivedData变量中...//处理接收到的数据...//发送数据到USART1...USART1_SendData(receivedData);//将处理后的数据发送回USART1外设...}}```以上是一个简单的串口通信示例程序,可以通过STM32标准库提供的函数来实现串口的发送和接收操作。
stm32时钟概念
stm32时钟概念
在STM32微控制器中,时钟是控制系统时序和同步的重要元件。
时钟通过提供时钟信号来驱动计时器、外设和处理器核心等,实现数据传输和操作的同步。
STM32微控制器使用了多种类型的时钟,包括系统时钟、高
速外设时钟、低速外设时钟和RTC(实时时钟)时钟。
以下
是对每种时钟的概念的简要描述:
1. 系统时钟:
系统时钟(SYSCLK)是微控制器所有部分的主时钟源,它
控制处理器核心以及许多外设的运行。
系统时钟的频率可以通过配置寄存器来选择,通常是通过增加倍频器或分频器来实现。
2. 高速外设时钟(HCLK):
高速外设时钟是系统时钟分频得到的一个时钟,它驱动一些
对实时性要求较高的外设,例如DMA(直接内存访问控制器)和GPIO(通用输入/输出端口)等。
3. 低速外设时钟(PCLK):
低速外设时钟也是通过系统时钟分频得到的一个时钟,它驱
动一些低速外设,如USART(通用异步收发传输器)和I2C (串行通信接口)等。
4. RTC时钟:
RTC时钟是由外部低速晶体振荡器提供的时钟,用于实时时钟和日历功能。
它通常用于实现计时、日期和闹钟等功能。
时钟源的选择和设置可以通过微控制器的时钟控制寄存器来完成,这些寄存器提供了配置时钟的选项。
根据具体的应用需求,可以选择不同的时钟源和频率来优化系统性能和功耗。
(stm32f103学习总结)—stm32定时器中断
(stm32f103学习总结)—stm32定时器中断⼀、定时器介绍 STM32F1的定时器⾮常多,由2个基本定时器(TIM6、TIM7)、4个通 ⽤定时器(TIM2-TIM5)和2个⾼级定时器(TIM1、TIM8)组成。
基本定 时器的功能最为简单,类似于51单⽚机内定时器。
通⽤定时器是在基本 定时器的基础上扩展⽽来,增加了输⼊捕获与输出⽐较等功能。
⾼级定 时器⼜是在通⽤定时器基础上扩展⽽来,增加了可编程死区互补输出、 重复计数器、带刹车(断路)功能,这些功能主要针对⼯业电机控制⽅⾯1.1 通⽤定时器简介 STM32F1的通⽤定时器包含⼀个 16 位⾃动重载计数器(CNT),该计 数器由可编程预分频器(PSC)驱动。
STM32F1的通⽤定时器可⽤于多种 ⽤途,包括测量输⼊信号的脉冲宽度(输⼊捕获)或者⽣成输出波形(输出 ⽐较和PWM)等。
使⽤定时器预分频器和 RCC 时钟控制器预分频器,脉 冲长度和波形周期可以在⼏个微秒到⼏个毫秒间调整。
STM32F1 的每个 通⽤定时器都是完全独⽴的,没有互相共享的任何资源。
STM32F1的通⽤定时器TIMx (TIM2-TIM5 )具有如下功能:(1)16 位向上、向下、向上/向下⾃动装载计数器(TIMx_CNT)。
(2)16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数为 1~65535之间的任意数值。
(3)4个独⽴通道(TIMx_CH1-4),这些通道可以⽤来作为: A.输⼊捕获 B.输出⽐较 C. PWM ⽣成(边缘或中间对齐模式) D.单脉冲模式输出(4)可使⽤外部信号(TIMx_ETR)控制定时器,且可实现多个定时器互连(可以⽤1个定时器控制另外⼀个定时器)的同步电路。
(5)发⽣如下事件时产⽣中断/DMA请求: A.更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) B.触发事件(计数器启动、停⽌、初始化或者由内部/外部触发计数) C.输⼊捕获 D.输出⽐较(6)⽀持针对定位的增量(正交)编码器和霍尔传感器电路(7)触发输⼊作为外部时钟或者按周期的电流管理1.2 通⽤定时器结构框图我们把通⽤定时器结构框图分成 5 个⼦模块,按照顺序依次进⾏简单介绍。
stm32f103工作原理
stm32f103工作原理【实用版】目录1.STM32F103 概述2.STM32F103 的工作原理2.1 体系结构2.2 存储器2.3 时钟系统2.4 复位和功耗管理正文【STM32F103 概述】STM32F103 是一款由 STMicroelectronics 公司推出的基于 ARM Cortex-M3 内核的微控制器。
它具有高性能、低功耗、多功能、易扩展等特点,广泛应用于各种嵌入式系统中,如智能家居、自动控制、消费电子等领域。
【STM32F103 的工作原理】2.1 体系结构STM32F103 采用了高性能的 ARM Cortex-M3 内核,最高可达 72MHz 的运行速度,支持单周期指令执行(Single-cycle Flash)和双周期指令执行(Double-cycle Flash)两种模式。
此外,STM32F103 还具备 3 级流水线结构,使得指令执行更加高效。
2.2 存储器STM32F103 内置了丰富的存储器,包括高速缓存(Cache)、指令内存(Instruction Memory)和数据内存(Data Memory)。
其中,高速缓存用于存储最近访问的数据和指令,以减少访问内存的延迟;指令内存用于存储程序指令;数据内存用于存储程序运行过程中产生的数据。
2.3 时钟系统STM32F103 的时钟系统包括一个高速时钟(HCLK)和一个低速时钟(LCLK)。
其中,高速时钟用于驱动 CPU 和 DMA 等高速模块,低速时钟用于驱动定时器、中断控制器等低速模块。
通过 PLL(Phase-Locked Loop)和 RCC(Reset and Clock Control)模块,可以实现对时钟频率的调整和控制。
2.4 复位和功耗管理STM32F103 提供了多种复位方式,包括上电复位(POR)、掉电复位(PDR)和软件复位(SW)等。
此外,通过功耗管理模块,可以实现对 CPU、DMA、定时器等模块的功耗控制,以满足不同应用场景的需求。
STM32F103ZET6时钟
STM32F103ZET6时钟1、STM32F103ZET6时钟说明 STM32F103ZET6的时钟树图如下所⽰: STM32F103ZET6有很多个时钟源,分别有: HSE:⾼速外部时钟信号。
HSI:⾼速内部部时钟信号。
LSI:低速内部时钟信号。
LSE:低速外部时钟信号。
HSI和LSI是芯⽚内置的时钟源,它们的频率⼤⼩是固定的,HSI是8MHZ,LSI是⼤约40KHZ。
时钟树中的序号1是⾼速外部时钟信号HSE: HSE是由有源晶振或⽆源晶振通过OSC_OUT和OSC_IN脚提供的,从图⽚中可以看到,HSE频率从4MHZ到16MHZ不等。
当使⽤有源晶振时,时钟从OSC_IN引脚进⼊,OSC_OUT引脚悬空;当使⽤⽆源晶振时,时钟从OSC_IN和OSC_OUT进⼊,并且要配谐振电容。
HSE最常使⽤的就是8MHZ的⽆源晶振。
时钟树中的序号D是外部低速时钟LSE: LSE是由有源晶振或⽆源晶振通过OSC32_OUT和OSC32_IN脚提供的。
LSE⼀般使⽤的是32.768KHZ的⽆源晶振。
时钟树中的序号2是选择PLL(倍频后的时钟)的时钟源: 从图中可以看出,PLL时钟的来源可以是HSE或HSI/2,通过PLLSRC(CFGR寄存器的bit16)来选择使⽤哪⼀个时钟源。
HSI是8MHZ的内部⾼速时钟信号,HSI会根据温度和环境的情况频率会有漂移,⼀般不作为PLL的时钟来源。
⼀般使⽤HSE作为PLL的时钟源。
时钟树中的序号3是设置PLL的倍频因⼦: 可以对PLL的时钟来源进⾏倍频,然后得到PLLCLK时钟源。
倍频因⼦可以通过时钟配置寄存器CFGR的bit21~bit18:PLLMUL[3:0]来配置,分别可配置成2、3、4、5、6、7、8、9、10、11、12、13、14、15、16倍频。
举个例⼦来说,如果选择HSE作为PLL的时钟源,⽽且HSE=8MHZ,且将PLL的倍频因⼦设置为9倍频,那么PLLCLK=9*8MHZ = 72MZH。
STM32F103ZE学习笔记(TIM2生成4路不同占空比的PWM)
STM32F103ZE学习笔记(TIM2生成4路不同占空比的PWM)落月风情高工2012-12-23 17:49:43 评分只看楼主 1楼实验内容:利用STM32的一个通用定时器(TIM2)产生4路频率相同(1KHz)占空比不同的PWM。
Ch1占空比75%,Ch2占空比50%,Ch3占空比25%,Ch4占空比10%。
四路输出分别对应PA端口的PA0,PA1,PA2,PA3。
实验目的:掌握通用定时器的基本应用。
(PWM的频率和占空比的计算)STM32的定时器是个强大的模块,定时器使用的频率也是很高的,定时器可以做一些基本的定时,还可以做PWM输出或者输入捕获功能。
补充一个前期时钟源问题:名为TIMx的定时器有8个,其中TIM1和TIM8挂在APB2总线上,而TIM2-TIM7则挂在APB1总线上。
其中TIM1&TIM8称为高级控制定时器. APB2可以工作在72MHz下,而APB1最大是36MHz。
定时器的时钟不是直接来自APB1或APB2,而是来自于输入为APB1或APB2的一个倍频器。
(这个问题纳闷了好久才找到的,主要是没有在意时钟树,唉!)下面以定时器2~7的时钟说明这个倍频器的作用:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1的频率两倍。
假定AHB=36MHz,因为APB1允许的最大频率为36MHz,所以APB1的预分频系数可以取任意数值;当预分频系数=1时,APB1=36MHz,TIM2~7的时钟频率=36MHz(倍频器不起作用);当预分频系数=2时,APB1=18MHz,在倍频器的作用下,TIM2~7的时钟频率=3 6MHz。
有人会问,既然需要TIM2~7的时钟频率=36MHz,为什么不直接取APB1的预分频系数=1?答案是:APB1不但要为TIM2~7提供时钟,而且还要为其它外设提供时钟;设置这个倍频器可以在保证其它外设使用较低时钟频率时,TIM2~7仍能得到较高的时钟频率。
stm32f103工作原理
STM32F103工作原理解析引言STM32F103是一款由意法半导体(STMicroelectronics)推出的32位ARM Cortex-M3内核的微控制器。
它是一款功能强大且广泛应用的微控制器,常用于工业自动化、电机控制、嵌入式系统等领域。
本文将详细解释STM32F103的工作原理,包括芯片架构、时钟系统、外设模块和程序执行过程等方面。
芯片架构STM32F103采用了哈佛结构的体系结构,具有较高的运行效率和较低的功耗。
它的主要组成部分包括核心处理器、存储器、外设模块和时钟系统。
核心处理器STM32F103采用了ARM Cortex-M3内核,这是一款32位的RISC处理器。
它具有高性能、低功耗和高代码密度的特点。
Cortex-M3内核包含了ARM Thumb-2指令集,支持从1到4字节的指令,并且具有较好的代码压缩能力。
存储器STM32F103具有多种类型的存储器,包括闪存、SRAM和备份寄存器。
闪存用于存储程序代码和常量数据,具有较大的容量和较快的访问速度。
SRAM用于存储变量和堆栈数据,具有较快的读写速度。
备份寄存器用于存储关键数据,例如时钟设置和唯一设备ID等。
外设模块STM32F103内置了丰富的外设模块,包括通用输入输出口(GPIO)、串行通信接口(USART)、定时器、模拟数字转换器(ADC)等。
这些外设模块可以通过寄存器配置和控制来实现各种功能,例如数据输入输出、通信、计时和信号转换等。
时钟系统时钟系统是STM32F103的重要组成部分,它提供了系统时钟和外设时钟。
STM32F103具有多个时钟源,包括内部RC振荡器、外部晶体振荡器和外部时钟输入。
时钟系统还包括PLL锁相环,可以通过倍频和分频来生成不同频率的系统时钟。
时钟系统时钟系统是STM32F103的核心部分,它为整个芯片提供了时序控制和同步功能。
时钟系统包括系统时钟和外设时钟两部分。
系统时钟系统时钟是STM32F103内部各模块运行所需的时钟信号。
stm32f103中文手册[10]
stm32f103中文手册一、概述stm32f103c8/cb:64KB或128KB闪存,20KBSRAM,48引脚或64引脚LQFP封装。
stm32f103r8/rb:64KB或128KB闪存,20KBSRAM,64引脚LQFP封装。
stm32f103v8/vb:64KB或128KB闪存,20KBSRAM,100引脚LQFP封装。
stm32f103rc/rd/re:256KB或384KB或512KB闪存,48KB或64KB SRAM,64引脚或100引脚或144引脚LQFP封装。
stm32f103vc/vd/ve:256KB或384KB或512KB闪存,48KB或64KB SRAM,100引脚或144引脚LQFP封装。
stm32f103zc/zd/ze:256KB或384KB或512KB闪存,48KB或64KB SRAM,144引脚LQFP封装。
stm32f103的主要特性如下:基于ARM Cortex-M3内核,主频可达72MHz。
内置嵌套向量中断控制器(NVIC),支持多达60个中断源和4个优先级。
内置多种存储器资源,包括闪存、SRAM、备份寄存器和选项字节。
内置多种外设资源,包括GPIO、ADC、DAC、定时器、PWM、I2C、S PI、USART、CAN、USB等。
支持多种时钟源和时钟控制模式,包括内部RC振荡器、外部晶振、PLL等。
支持多种低功耗模式和唤醒机制,包括待机模式、停止模式、睡眠模式等。
支持多种调试和编程接口,包括JTAG/SWD、串口引导加载等。
支持多种电源管理功能,包括电压监测、温度传感器、复位控制等。
二、系统架构stm32f103的系统架构如图1所示¹。
其主要组成部分包括:ARM Cortex-M3内核:负责执行指令和处理数据。
NVIC:负责管理中断请求和中断服务程序。
存储器总线:负责连接内核和存储器资源。
AHB总线:负责连接内核和高速外设资源。
APB1总线:负责连接内核和低速外设资源1。
6.4 STM32F103ZET独立按键功能深入剖析(神舟王103)
6.4 独立按键 (2)6.1.1 按键的分类 (2)6.1.2 按键属性 (2)6.1.3 STM32的位带操作 (3)6.1.4 例程01 STM32芯片按键点灯(无防抖) (8)6.1.5 例程02 STM32芯片按键点灯-增加了防抖的代码 (13)6.4 独立按键6.1.1按键的分类目前,按键有多种形式。
有机械接触式,电容式,轻触式等。
1.按制作工艺分:硬板按键:带弹簧的按键焊接在印刷电路板上软板键盘:以导电橡胶作为接触材料放在以聚脂薄膜作为基底的印刷电路上所形成的按键。
2.按工艺原理分:可以将键盘分为编码键盘和非编码键盘,编码键盘的键盘电路内包含有硬件编码器,当按下某—个键后,键盘电路能直接提供与该键相对应的编码信息,例如ASCII码。
非编码键盘的键盘电路中只有较简单的硬件,采用软件来识别按下键的位置,并提供与按下键相对应的中间代码送主机,然后由软件将中间代码转换成相应的字符编码,例如ASCII码;非编码键盘主要靠软件编程来识别的,在单片机组成的各种系统中,用的较多的是非编码键盘。
非编码键盘又分为独立键盘和行列式(又称矩阵式)键盘。
6.1.2按键属性键盘实际上就是一组按键,在单片机外围电路中,通常用到的按键都是机械弹性开关,当开关闭合时,线路导通,开关断开时,线路断开,下图是几种单片机系统常见的按键:弹性小按键被按下时闭合,松手后自动断开;自锁式按键按下时闭合且会自动锁住,只有再次按下时才弹起断开。
单片机的外围输入控制用小弹性按键较好,单片机检测按键的原理是:单片机的I/O口既可作为输出也可作为输入使用,当检测按键时用的是它的输入功能,我们把按键的一端接地,另一端与单片机的某个I/O口相连,开始时先给该I/O口赋一高电平,然后让单片机不断地检测该I/O口是否变为低电平,当按键闭合时,即相当于该I/O口通过按键与地相连,变成低电平,程序一旦检测到I/O口变为低电平则说明按键被按下,然后执行相应的指令。
stm32f103工作原理
stm32f103工作原理摘要:1.简介2.STM32F103 核心特性3.工作原理3.1 处理器内核3.2 存储器3.3 时钟和复位3.4 输入输出端口3.5 中断系统3.6 定时器3.7 通信接口4.应用领域5.结论正文:STM32F103 是意法半导体(ST)公司推出的一款基于ARM Cortex-M3 内核的微控制器(MCU)。
它具有高性能、低功耗、丰富的外设接口等特点,广泛应用于各种嵌入式系统中。
1.简介STM32F103 是基于ARM Cortex-M3 内核的32 位Flash 微控制器,适用于各种嵌入式应用。
它具有多种封装类型,工作电压范围广泛,可满足不同应用场景的需求。
2.STM32F103 核心特性STM32F103 的核心特性包括:- 基于ARM Cortex-M3 内核,最高工作频率可达72MHz- 64KB 至200KB 的Flash 存储器- 最高可达16KB 的SRAM- 12 位ADC,2 个通道- 2 个USART、2 个SPI、1 个I2C 通信接口- 最多可达112 个GPIO 端口3.工作原理3.1 处理器内核STM32F103 采用ARM Cortex-M3 内核,具有高性能、低功耗的特点。
它支持单周期指令,可以提高代码执行效率。
同时,Cortex-M3 内核还具有丰富的指令集,便于开发人员实现各种功能。
3.2 存储器STM32F103 具有较大的Flash 存储器和SRAM,为系统提供了充足的存储空间。
Flash 存储器用于存储程序代码,SRAM 用于存储运行时的数据。
3.3 时钟和复位STM32F103 内嵌了多种时钟源,如HSE、LSE、HSI、LSI 等,为系统提供了多样化的时钟选择。
同时,它还支持手动复位和自动复位功能,确保系统运行稳定可靠。
3.4 输入输出端口STM32F103 提供了丰富的GPIO 端口,最多可达112 个。
GPIO 端口可以配置为输入、输出、复用等多种功能,方便开发人员根据实际需求进行设计。
STM32F103时钟部分归纳
学习一款单片机,首先要了解的是它的时钟部分,在网上找到一些stm32F103时钟部分的资料,归纳总结一下。
时钟模块框图如下:仔细看上面这个框图,就可以对F103的时钟有一个清晰的认识了。
三种不同的时钟源可用作系统时钟(SYSCLOCK):HSI振荡器时钟(由芯片内部RC振荡器提供)HSE振荡器时钟(由芯片外部晶体振荡器提供)PLL时钟(通过倍频HIS或HSE振荡器倍频得到)另外还有两个时钟源:LSI内部40kHz低速RC振荡器时钟,用于驱动独立看门狗或选择驱动RTCLSE外部32.768kHz低速外部输入时钟,用于驱动RTC1.当HSI被用于作为PLL时钟的输入时,系统时钟能得到的最大频率是64MHz。
2.用户可通过多个预分频器分别配置AHB、高速APB(APB2)和低速APB(APB1)域的频率。
AHB和APB2域的最大频率是72MHz。
APB1域的最大允许频率是36MHz。
SDIO接口的时钟频率固定为HCLK/2。
3. RCC通过AHB时钟(HCLK)8分频后作为Cortex系统定时器(SysTick)的外部时钟。
通过对SysTick控制与状态寄存器的设置,可选择上述时钟或Cortex(HCLK)时钟作为SysTick时钟。
ADC时钟由高速APB2时钟经2、4、6或8分频后获得。
定时器时钟频率由APB1(PCLK1)时钟获得,分配由硬件按以下2种情况自动设置:a. 如果相应的APB预分频系数是1,定时器的时钟频率与所在APB总线频率一致。
b. 否则,定时器的时钟频率被设为与其相连的APB总线频率的2倍。
4. FCLK是Cortex-M3的自由运行时钟。
详情见ARM的Cortex-M3技术参考手册。
关于HSE、HIS、PLL、LSE、LSI时钟特性及校准直接参考STM32相关Datasheet。
系统时钟配置过程:配置过程主要对RCC_CR、RCC_CFGR、RCC_CIR这三个寄存器,进行读写访问,配置系统时钟完成后,进行对要使用的相应外设时钟进行使能和配置,不用的外设建议关闭相应的外设时钟(降低功耗)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
ADC预分频寄存器
18
ADC外设
19
PLL2分频数寄存器
20
PLL2倍频寄存器
21
PLL 时钟源选择寄存器
22
独立看门狗设备
23
RTC 设备
在认识这颗时钟树之前,首先要明确“主干”和最终的“分支”。假设使用外部 8MHz
晶振作为 STM32 的时钟输入源(这也是最常见的一种做法),则这个 8MHz 便是“主干”,
1) 由 3 所知晶振输入为 8MHz,由○5——○21 知 PLL 的时钟源为经过分频后的外部 晶振时钟,并且此分频数为 1 分频,因此首先得出 PLL 的时钟源为:8MHz / 1 = 8MHz。
2) 由 8、9 知 PLL 倍频 9,且将 PLL 倍频后的时钟输出选择为系统时钟,则得出系统 时钟为 8MHz * 9 = 72MHz。
6.2 时钟
6.1.1 什么是时钟
从 CPU 的时钟说起。 计算机是一个十分复杂的电子设备。它由各种集成电路和电子器件组成,每一块集成电 路中都集成了数以万计的晶体管和其他电子元件。这样一个十分庞大的系统,要使它能够正 常地工作,就必须有一个指挥,对各部分的工作进行协调。各个元件的动作就是在这个指挥 下按不同的先后顺序完成自己的操作的,这个先后顺序我们称为时序。时序是计算机中一个 非常重要的概念,如果时序出现错误,就会使系统发生故障,甚至造成死机。那么是谁来产 生和控制这个操作时序呢?这就是“时钟”。“时钟”可以认为是计算机的“心脏”,如同人 一样,只有心脏在跳动,生命才能够继续。不要把计算机的“时钟”等同于普通的时钟,它 实际上是由晶体振荡器产生的连续脉冲波,这些脉冲波的幅度和频率是不变的,这种时钟信 号我们称为外部时钟。它们被送入 CPU 中,再形成 CPU 时钟。不同的 CPU,其外部时钟 和 CPU 时钟的关系是不同的,下表列出了几种不同 CPU 外部时钟和 CPU 时钟的关系。 CPU 时钟周期通常为节拍脉冲或T周期,它是处理操作的最基本的单位。 在微程序控制器中,时序信号比较简单,一般采用节拍电位——节拍脉冲二级体制。就 是说它只要一个节拍电位,在节拍电位又包含若干个节拍脉冲(时钟周期)。节拍电位表示 一个CPU周期的时间,而节拍脉冲把一个CPU周期划分为几个叫较小的时间间隔。根据 需要这些时间间隔可以相等,也可以不等。 指令周期是取出并执行一条指令的时间。 指令周期常常有若干个CPU周期,CPU周期也称为机器周期,由于CPU访问一次 内存所花费的时间较长,因此通常用内存中读取一个指令字的最短时间来规定CPU周期。 这就是说,这就是说一条指令取出阶段(通常为取指)需要一个CPU周期时间。而一个C PU周期时间又包含若干个时钟周期(通常为节拍脉冲或T周期,它是处理操作的最基本的 单位)。这些时钟周期的总和则规定了一个CPU周期的时间宽度。
4. LSE 是低速外部时钟,接频率为 32.768kHz 的石英晶体,也可以被用来驱动 RTC,时钟 树的截图如下:
5. PLL 为锁相环倍频输出,其时钟输入源可选择为 HSI/2、HSE 或者 HSE/2。倍频可选择 为 2~16 倍,但是其输出频率最大不得超过 72MHz,时钟树的截图如下:
6.1.3 STM32的时钟深入分析
对于 13,时钟到达 AHB 总线;
在上一章节中所介绍的 GPIO 外设属于 APB2 设备,即 GPIO 的时钟来源于 APB2 总线,
同样在上图中也可以寻获 GPIO 外设的时钟轨迹:
3——5——7——21——8——9——11——15——16
对于 3,首先是外部的 3-25MHz(前文已假设为 8MHz)输入;
6.1.4 例程01 STM32芯片32MHZ频率下跑点灯程序
1. 示例简介 让点灯程序在时钟主频 32MHz 下面运行,LED 灯的正极接的是 3.3V 电源,所以我们编 程让 LED 负极拉低即 GPIO 引脚端口 F 的管脚 6 拉低,即 PF6 拉低,那么 LED 灯就会 变亮,相关电路图如下图所示:
3
外部高速振荡器(HSE,3-25MHz)
4
内部高速振荡器(HSI,8MHz)
5
PLL输入选择位
6
RTC时钟选择位
7
PLL1分频数寄存器
8
PLL1倍频寄存器
9
系统时钟选择位
10
USB分频寄存器
11
AHB分频寄存器
12
APB1分频寄存器
13
AHB总线
14
APB1外设总线
15
APB2分频寄存器
16
APB2外设总线
众所周知,微控制器(处理器)的运行必须要依赖周期性的时钟脉冲来驱动——往往由 一个外部晶体振荡器提供时钟输入为始,最终转换为多个外部设备的周期性运作为末,这种 时钟“能量”扩散流动的路径,犹如大树的养分通过主干流向各个分支,因此常称之为“时 钟树”。在一些传统的低端 8 位单片机诸如 51,AVR,PIC 等单片机,其也具备自身的一个 时钟树系统,但其中的绝大部分是不受用户控制的,亦即在单片机上电后,时钟树就固定在 某种不可更改的状态(假设单片机处于正常工作的状态)。比如 51 单片机使用典型的 12MHz 晶振作为时钟源,则外设如 IO 口、定时器、串口等设备的驱动时钟速率便已经是固定的, 用户无法将此时钟速率更改,除非更换晶振。
2. 调试说明: 下载代码,并且按下【复位】键,在神舟 III 号板上找到 DS1,可以看到该 DS1 灯一亮
一灭。
3. 关键代码: /************ *******/ int main(void) //main 是程序入口 { /**** 程序总共 2 部分之第 1 部分 时钟频率的配置 {开始 *******/
3) 时钟到达 AHB 预分频器,由 11 知时钟经过 AHB 预分频器之后的速率仍为 72MHz。 4) 时钟到达 APB2 预分频器,由 15 经过 APB2 预分频器后速率仍为 72MHz。 5) 时钟到达 APB2 总线外设 上面是原理的剖析,如果再不明白的,可以接下来看例程代码,理论联系实践是最好的老师。
/** 以下是关于 RCC 时钟 详细请见《STM32F10XXX 参考手册》6.3 节 RCC 寄存器描述**/ unsigned char sws = 0; RCC->CR |= 0X00010000; //使能外部高速时钟 HSEON //将 RCC_CR 寄存器的值右移 17 位,等待 HSERDY 就绪,即外部时钟就绪 while(!(RCC->CR>>17));
对于 7,设置外部晶振的分频数(假设 1 分频);
对于 21,选择 PLL 倍频的时钟源(假设选择经过分频后的外部晶振时钟);
对于 8,设置 PLL 倍频数(假设 9 倍频);
对于 9,选择系统时钟源(假设选择经过 PLL 倍频所输出的时钟);
对于 11,设置 AHB 总线分频数(假设 1 分频);
对于 5, 通过 PLL 选择位预先选择后续 PLL 分支的输入时钟(假设选择外部晶振);
对于 7,设置外部晶振的分频数(假设 1 分频);
对于 21,选择 PLL 倍频的时钟源(假设选择经过分频后的外部晶振时钟);
对于 8,设置 PLL 倍频数(假设 9 倍频); 对于 9,选择系统时钟源(假设选择经过 PLL 倍频所输出的时钟); 对于 11,设置 AHB 总线分频数(假设 1 分频); 对于 15,设置 APB2 总线分频数(假设 1 分频) 对于 16,时钟到达 APB2 总线; 现在来计算一下 GPIO 设备的最大驱动时钟速率(各个条件已在上述要点中假设):
而 STM32 微控制器的时钟树则是可配置的,其时钟输入源与最终达到外设处的时钟速
率不再有固定的关系,下面来详细解析 STM32 微控制器的时钟树。下图是 STM32 微控制 器的时钟树:
下表是结合图表明出来的: 标号
释义
1
内部低速振荡器(LSI,40Khz)
2
外部低速振荡器(LSE,32.768Khz)
6.1.2 STM32的时钟
系统时钟的选择是在启动时进行,复位时内部 8MHZ 的 RC 振荡器被选为默认的 CPU 时钟,随后可以选择外部的、具失效监控的 4-16MHZ 时钟;当检测到外部时钟失效时,它 将被隔离,系统将自动地切换到内部的 RC 振荡器。
在 STM32 中,有五个时钟源,为 HSI、HSE、LSI、LSE、PLL,它们都是时钟所提供 的来源: 1. HSI 是高速内部时钟,RC 振荡器,频率默认为 8MHz,可以从 STM32 时钟树中看到
6.2 时钟...............................................................................................................................2 6.1.1 什么是时钟.......................................................................................................2 6.1.2 STM32 的时钟..................................................................................................2 6.1.3 STM32 的时钟深入分析..................................................................................3 6.1.4 例程 01 STM32 芯片 32MHZ频率下跑点灯程序 ..........................................6 6.1.5 例程 02 STM32 芯片 40MHZ频率下跑点灯程序 ........................................12 6.1.6 例程 03 STM32 芯片 72MHZ频率下跑点灯程序 ........................................13