信息论第二章答案

合集下载

信息论编码与基础课后题(第二章)

信息论编码与基础课后题(第二章)

第二章习题解答2-1、试问四进制、八进制脉冲所含信息量是二进制脉冲的多少倍? 解:四进制脉冲可以表示4个不同的消息,例如:{0, 1, 2, 3} 八进制脉冲可以表示8个不同的消息,例如:{0, 1, 2, 3, 4, 5, 6, 7} 二进制脉冲可以表示2个不同的消息,例如:{0, 1} 假设每个消息的发出都是等概率的,则:四进制脉冲的平均信息量symbol bit n X H / 24log log )(1=== 八进制脉冲的平均信息量symbol bit n X H / 38log log )(2=== 二进制脉冲的平均信息量symbol bit n X H / 12log log )(0===所以:四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的2倍和3倍。

2、 设某班学生在一次考试中获优(A )、良(B )、中(C )、及格(D )和不及格(E )的人数相等。

当教师通知某甲:“你没有不及格”,甲获得了多少比特信息?为确定自己的成绩,甲还需要多少信息? 解:根据题意,“没有不及格”或“pass”的概率为54511pass =-=P 因此当教师通知某甲“没有不及格”后,甲获得信息在已知“pass”后,成绩为“优”(A ),“良”(B ),“中”(C )和“及格”(D ) 的概率相同:41score )pass |()pass |()pass |()pass |(=====D P C P B P A P P 为确定自己的成绩,甲还需信息bits 241loglog score score =-=-=P I 3、中国国家标准局所规定的二级汉字共6763个。

设每字使用的频度相等,求一个汉字所含的信息量。

设每个汉字用一个1616⨯的二元点阵显示,试计算显示方阵所能表示的最大信息。

显示方阵的利用率是多少?解:由于每个汉字的使用频度相同,它们有相同的出现概率,即67631=P 因此每个汉字所含的信息量为bits 7.1267631loglog =-=-=P I 字每个显示方阵能显示256161622=⨯种不同的状态,等概分布时信息墒最大,所以一个显示方阵所能显示的最大信息量是bits 322.054loglog passpass =-=-=P Ibits 25621loglog 256=-=-=P I 阵显示方阵的利用率或显示效率为0497.02567.12===阵字I I η 4、两个信源1S 和2S 均有两种输出:1 ,0=X 和1 ,0=Y ,概率分别为2/110==X X P P ,4/10=Y P ,4/31=Y P 。

信息论与编码理论第二章习题答案(王育民)

信息论与编码理论第二章习题答案(王育民)

信息论与编码理论第二章习题答案(王育民)LtD局部答案,仅供参考。

2.1信息速率是指平均每秒传输的信息量点和划出现的信息量分别为3log ,23log ,一秒钟点和划出现的次数平均为415314.0322.01=⨯+⨯一秒钟点和划分别出现的次数平均为45.410那么根据两者出现的次数,可以计算一秒钟其信息量平均为253log 4153log 4523log 410-=+2.3 解:(a)骰子A 和B ,掷出7点有以下6种可能: A=1,B=6; A=2,B=5; A=3,B=4; A=4,B=3; A=5,B=2; A=6,B=1概率为6/36=1/6,所以信息量 -log(1/6)=1+log3≈2.58 bit(b) 骰子A 和B ,掷出12点只有1种可能: A=6,B=6概率为1/36,所以信息量 -log(1/36)=2+log9≈5.17 bit 2.5解:出现各点数的概率和信息量:1点:1/21,log21≈4.39 bit ; 2点:2/21,log21-1≈3.39 bit ; 3点:1/7,log7≈2.81bit ; 4点:4/21,log21-2≈2.39bit ; 5点:5/21,log 〔21/5〕≈2.07bit ; 6点:2/7,log(7/2)≈1.81bit 平均信息量:(1/21)×4.39+(2/21)×3.39+(1/7)×2.81+(4/21)×2.39+(5/21)×2.07+(2/7)×1.81≈2.4bit 2.7解:X=1:考生被录取; X=0:考生未被录取; Y=1:考生来自本市;Y=0:考生来自外地; Z=1: 考生学过英语;Z=0:考生未学过英语 P(X=1)=1/4, P(X=0)=3/4; P(Y=1/ X=1)=1/2; P(Y=1/ X=0)=1/10;P(Z=1/ Y=1)=1, P(Z=1 / X=0, Y=0)=0.4, P(Z=1/ X=1, Y=0)=0.4, P(Z=1/Y=0)=0.4 (a) P(X=0,Y=1)=P(Y=1/X=0)P(X=0)=0.075, P(X=1,Y=1)= P(Y=1/X=1)P(X=1)=0.125 P(Y=1)= P(X=0,Y=1)+ P(X=1,Y=1)=0.2 P(X=0/Y=1)=P(X=0,Y=1)/P(Y=1)=0.375, P(X=1/Y=1)=P(X=1,Y=1)/P(Y=1)=0.625I (X ;Y=1)=∑∑=====xx)P()1Y /(P log )1Y /(P )1Y (I )1Y /(P x x x x;x=1)P(X )1Y /1X (P log)1Y /1X (P 0)P(X )1Y /0X (P log )1Y /0X (P =====+===== =0.375log(0.375/0.75)+0.625log(0.625/0.25)=(5/8)log5-1≈0.45bit(b) 由于P(Z=1/ Y=1)=1, 所以 P 〔Y=1,Z=1/X=1〕= P 〔Y=1/X=1〕=0.5P 〔Y=1,Z=1/X=0〕= P 〔Y=1/X=0〕=0.1 那么P 〔Z=1/X=1〕= P 〔Z=1,Y=1/X=1〕+ P 〔Z=1,Y=0/X=1〕=0.5+ P 〔Z=1/Y=0,X=1〕P 〔Y=0/X=1〕=0.5+0.5*0.4=0.7P(Z=1/X=0)= P 〔Z=1,Y=1/X=0〕+ P 〔Z=1,Y=0/X=0〕=0.1+P(Z=1/Y=0,X=0)P(Y=0/X=0)=0.1+0.9*0.4=0.46 P 〔Z=1,X=1〕= P 〔Z=1/X=1〕*P(X=1)=0.7*0.25=0.175P 〔Z=1,X=0〕= P 〔Z=1/X=0〕*P(X=0)= 0.46*0.75=0.345P(Z=1) = P(Z=1,X=1)+ P(Z=1,X=0) = 0.52 P(X=0/Z=1)=0.345/0.52=69/104 P(X=1/Z=1)=35/104I (X ;Z=1)=∑∑=====xx)P()1Z /(P log )1Z /(P )1Z (I )1Z /(P x x x x;x =1)P(X )1Z /1X (P log)1Z /1X (P 0)P(X )1Z /0X (P log )1Z /0X (P =====+======(69/104)log(23/26)+( 35/104)log(35/26) ≈0.027bit(c)H〔X〕=0.25*log(1/0.25)+0.75*log(1/0.75)=2-(3/4)log3= 0.811bitH(Y/X)=-P(X=1,Y=1)logP(Y=1/X=1)-P(X=1,Y=0)logP(Y=0/X=1)-P(X=0,Y=1)logP(Y=1/X=0)-P(X=0,Y=0)logP(Y=0/X=0)=-0.125*log0.5-0.125*log0.5-0.075*log0.1-0.675*l og0.9=1/4+(3/40)log10-(27/40)log(9/10)≈0.603bitH(XY)=H(X)+H(Y/X)=9/4+(3/4)log10-(21/10)log 3=1.414bitP(X=0,Y=0,Z=0)= P(Z=0 / X=0, Y=0)* P( X=0, Y=0)=(1-0.4)*(0.75-0.075)=0.405P(X=0,Y=0,Z=1)= P(Z=1 / X=0, Y=0)* P( X=0, Y=0)=0.4*0.675=0.27P(X=1,Y=0,Z=1)= P(Z=1/ X=1,Y=0)* P(X=1,Y=0)=0.4*(0.25-0.125)=0.05P(X=1,Y=0,Z=0)= P(Z=0/ X=1,Y=0)* P(X=1,Y=0)=0.6*0.125=0.075P(X=1,Y=1,Z=1)=P(X=1,Z=1)-P(X=1,Y=0,Z=1)=0.175-0.05=0.125P(X=1,Y=1,Z=0)=0P(X=0,Y=1,Z=0)=0P(X=0,Y=1,Z=1)= P(X=0,Z=1)- P(X=0,Y=0,Z=1)= 0.345-0.27=0.075H(XYZ)=-0.405*log0.405-0.27*log0.27-0.05*log0 .05-0.075*log0.075-0.125*log0.125-0.075*log0.07 5=(113/100)+(31/20)log10-(129/50)log3=0.528+0.51+0.216+0.28+0.375+0.28=2.189 bitH(Z/XY)=H(XYZ)-H(XY)=-28/25+(4/5)log10-12/25log3 =0.775bit2.9 解:A,B,C分别表示三个筛子掷的点数。

信息论-第二章信源熵-习题答案

信息论-第二章信源熵-习题答案

2.4 设离散无记忆信源⎭⎬⎫⎩⎨⎧=====⎥⎦⎤⎢⎣⎡8/14/1324/18/310)(4321x x x x X P X ,其发出的信息为(202120130213001203210110321010021032011223210),求 (1) 此消息的自信息量是多少?(2) 此消息中平均每符号携带的信息量是多少?解:(1) 此消息总共有14个0、13个1、12个2、6个3,因此此消息发出的概率是:62514814183⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=p此消息的信息量是:bit p I811.87log =-=(2) 此消息中平均每符号携带的信息量是:bitn I 951.145/811.87/==41()()log () 2.010i i i H X p x p x ==-=∑2.6 设信源⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡17.016.017.018.019.02.0)(654321x x x x x x X P X ,求这个信源的熵,并解释为什么H(X) > log6不满足信源熵的极值性。

解:585.26log )(/ 657.2 )17.0log 17.016.0log 16.017.0log 17.018.0log 18.019.0log 19.02.0log 2.0( )(log )()(26=>=+++++-=-=∑X H symbol bit x p x p X H ii i 不满足极值性的原因是107.1)(6>=∑iix p 。

2.7 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解:(1)用随机事件i x 表示“3和5同时出现”,则bitx p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2) 用随机事件i x 表示“两个1同时出现”,则bitx p x I x p i i i 170.5361log )(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 6263646566共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2.10 对某城市进行交通忙闲的调查,并把天气分成晴雨两种状态,气温分成冷暖两个状态,调查结果得联合出现的相对频度如下:忙晴雨冷 12暖 8暖 16冷 27闲晴雨冷 8暖 15暖 12冷 5若把这些频度看作概率测度,求: (1) 忙闲的无条件熵;(2) 天气状态和气温状态已知时忙闲的条件熵;(3) 从天气状态和气温状态获得的关于忙闲的信息。

信息论与编码第二章答案

信息论与编码第二章答案

第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。

2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。

2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。

答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。

从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。

2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。

答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。

信息论基础知到章节答案智慧树2023年广东工业大学

信息论基础知到章节答案智慧树2023年广东工业大学

信息论基础知到章节测试答案智慧树2023年最新广东工业大学第一章测试1.信息论由哪位科学家创立()。

参考答案:香农2.点对点通信模型包含以下哪些部分()。

参考答案:译码器;信源;信宿3.信息就是消息。

()参考答案:错4.连续信源分为,___,___。

参考答案:null5.研究信息论的目的是:提高信息传输的___,___,___、___,达到信息传输的最优化。

参考答案:null第二章测试1.某一单符号离散信源的数学模型为,则其信息熵为()。

参考答案:1比特/符号2.单符号信源具有以下哪些特点()。

参考答案:无记忆;平稳3.熵函数具有以下哪些基本性质()。

参考答案:对称性;连续性;确定性4.信源要含有一定的信息,必须具有随机性。

()参考答案:对5.信息熵表示信源X每发一个符号所提供的平均信息量。

()参考答案:对第三章测试1.以下等式或不等式关系成立的是()。

参考答案:2.单符号离散无记忆的N次扩展信道,有以下哪两种特点()。

参考答案:无预感性;无记忆性3.后向信道矩阵中任·一行之和为1。

()参考答案:对4.信道容量指信道的最大信息传输率。

()参考答案:对5.互信息量等于___与___比值的对数。

参考答案:null1.某信源输出信号的平均功率和均值均被限定,则其输出信号幅值的概率密度函数是以下哪种分布时,信源达到最大差熵值()。

参考答案:高斯分布2.某信源的峰值功率受限,则概率密度满足以下哪个个条件时,差熵达到最大值()。

参考答案:均匀分布3.连续信道的平均互信息不具有以下哪些性质()。

参考答案:连续性4.差熵具有以下哪两个性质()。

参考答案:条件差熵值小于无条件差熵;差熵可为负值5.一维高斯分布连续信源是瞬时功率受限的一类连续平稳信源。

()参考答案:错1.分组码分为()。

参考答案:非奇异码;奇异码2.在输入符号先验等概时,采用以下哪些准则的译码方法可以使平均译码错误概率最小()。

参考答案:最大后验概率准则;最大似然准则3.平均码长可作为衡量信源编码效率的标准。

(信息论)第二、三章习题参考答案

(信息论)第二、三章习题参考答案

第二章习题参考答案2-1解:同时掷两个正常的骰子,这两个事件是相互独立的,所以两骰子面朝上点数的状态共有6×6=36种,其中任一状态的分布都是等概的,出现的概率为1/36。

(1)设“3和5同时出现”为事件A ,则A 的发生有两种情况:甲3乙5,甲5乙3。

因此事件A 发生的概率为p(A)=(1/36)*2=1/18 故事件A 的自信息量为I(A)=-log 2p(A)=log 218=4.17 bit(2)设“两个1同时出现”为事件B ,则B 的发生只有一种情况:甲1乙1。

因此事件B 发生的概率为p(B)=1/36 故事件B 的自信息量为I(B)=-log 2p(B)=log 236=5.17 bit (3) 两个点数的排列如下:因为各种组合无序,所以共有21种组合: 其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布:sym bolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)“两个点数中至少有一个是1”的组合数共有11种。

bitx p x I x p i i i 710.13611log )(log )(3611116161)(=-=-==⨯⨯=2-2解:(1)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121)(21x x x p X i 比特 12log *21*2)(log )()(2212==-=∑=i i i x p x p X H(2)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡100110099)(21x x x p X i 比特 08.0100log *100199100log *10099)(log )()(22212=+=-=∑=i i i x p x p X H (3)四种球的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡41414141)(4321x x x x x p X i ,42211()()log ()4**log 4 2 4i i i H X p x p x ==-==∑比特2-5解:骰子一共有六面,某一骰子扔得某一点数面朝上的概率是相等的,均为1/6。

信息论答案(傅祖芸)

信息论答案(傅祖芸)

第二章课后习题【2.1】设有12 枚同值硬币,其中有一枚为假币。

只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。

现用比较天平左右两边轻重的方法来测量。

为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为P 1 ;12“假币的重量比真的轻,或重”该事件发生的概率为P 1 ;2为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I log12 log 2 log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为P 1 ,因此天3平每一次消除的不确定性为I log 3 比特因此,必须称的次数为I1 log 242.9 次I 2 log 3因此,至少需称3 次。

【延伸】如何测量?分3 堆,每堆4 枚,经过3 次测量能否测出哪一枚为假币。

【2.2】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“两骰子面朝上点数是3 和4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为2”有一种可能,即两骰子的点数各为1,由于二者是独立的,因此该种情况发生的概率为P 1 1 1 ,该事件的信息量为:6 6 36I log 36 5.17 比特“两骰子总点数之和为 8”共有如下可能:2 和 6、3 和 5、4 和 4、5 和 3、6 和 2,概率为 P 1 1 5 5,因此该事件的信息量为:6 6 36I log 362.85 比特5“两骰子面朝上点数是 3 和 4”的可能性有两种:3 和 4、4 和 3,概率为 P 1 1 2 1,因此该事件的信息量为:6 6 18I log18 4.17 比特【2.3】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有 多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多 少信息量(假设已知星期一至星期日的顺序)? 解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P 1,因此此时从答案中获得的信息量为7I log 7 2.807 比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为 1,此时获得的信息量为 0 比特。

《信息论、编码与密码学》课后习题答案

《信息论、编码与密码学》课后习题答案
(2)全零字总是一个码字,
(3)两个码字之间的最小距离等于任何非零码字的最小重量,即
设 ,即 , , , ,
首先证明条件(1):
, , , , , ,
很明显,条件(1)是满足的。条件(2)也是显然成立的。
最后证明条件(3):
不难看出最小距离 ,并且最小重量 ,即
综上,三个条件都满足,那么 就是一个线性码,它的最小距离是2。
0.01
1111
该信源的熵为:
每个组的平均比特数为:
故该码的效率为:
(3)依题意,把符合每三个分成一组,再重新应用霍夫曼编码算法,得:
编码表格如下:
符号对
概率
自信息
码字
0.1250
2.7090
100
0.1000
3.3223
0000
0.1000
3.3223
0001
0.1000
3.3223
110
0.0800
12)这是一个线性码?
解:(1) =
=
=
=
=
=
=
=
此矩阵生成的码为:{00000,01010,10011,11001,10100,11110,00111,01101}
(2)
又在二元情况下,
奇偶校验矩阵可写为:
(4该码的标准阵列
(5)奇偶校验矩阵H的第1、3列的和为零向量,
因此,这个码的最小距离为:d*=2。
3.6443
011
0.0800
3.6443
0100
0.0800
3.6443
0101
0.0640
3.9662
0011
0.0250
5.3223

信息论与编码第二版第2章习题答案

信息论与编码第二版第2章习题答案
(4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:
2 3 4 5 6 7 8 9 10 11 12 X 1 1 1 1 5 1 5 1 1 1 1 = P ( X ) 36 18 12 9 36 6 36 9 12 18 36 H ( X ) = −∑ p ( xi ) log p ( xi )
画出状态图,并计算各状态的稳态概率。 解: p (0 | 00) = p (00 | 00) = 0.8
p (0 | 01) = p (10 | 01) = 0.5 p (0 |10) = p (00 |10) = 0.5 p (1| 01) = p (11| 01) = 0.5 p (1|10) = p (01|10) = 0.5
15 25 35 45 55 65
16 26 36 46 56 66
1 1 1 × = 6 6 36
1 1 1 × = 6 6 18
1 1 1 1 H ( X ) = −∑ p ( xi ) log p ( xi ) = − 6 × log + 15 × log = 4.337 bit / symbol 36 18 18 36 i
2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为: p (0 | 00) =0.8, p (0 |11) =0.2,
p (1| 00) =0.2, p (1|11) =0.8, p (0 | 01) =0.5, p (0 |10) =0.5, p (1| 01) =0.5, p (1|10) =0.5。
87.81 = 1.95 bit/符号 45
2-14 (1)
P(ij)=
P(i/j)=
(2) 方法 1:

信息论第二章答案汇总

信息论第二章答案汇总

2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解: (1)bit x p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2-42.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少? 解:1)因圆点之和为3的概率1()(1,2)(2,1)18p x p p =+=该消息自信息量()log ()log18 4.170I x p x bit =-== 2)因圆点之和为7的概率1()(1,6)(6,1)(2,5)(5,2)(3,4)(4,3)6p x p p p p p p =+++++=该消息自信息量()log ()log6 2.585I x p x bit =-==2.7 设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()log log 1.415()3I x bit p x === 同理可以求得233()2,()2,()3I x bit I x bit I x bit ===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++= 平均每个符号携带的信息量为87.811.9545=bit/符号 2-9 “-” 用三个脉冲 “●”用一个脉冲(1) I(●)=Log 4()2= I(-)=Log 43⎛ ⎝⎫⎪⎭0.415=(2) H= 14Log 4()34Log 43⎛⎝⎫⎪⎭+0.811=2-10(2) P(黑/黑)= P(白/黑)=H(Y/黑)=(3) P(黑/白)= P(白/白)=H(Y/白)=(4) P(黑)= P(白)=H(Y)=2.11 有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,…,38的数字标示,其中有两份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上的指针指向某一数字和颜色。

信息论与编码理论第二章习题答案(王育民)

信息论与编码理论第二章习题答案(王育民)

部分答案,仅供参考。

信息速率是指平均每秒传输的信息量 点和划出现的信息量分别为3log ,23log ,一秒钟点和划出现的次数平均为415314.0322.01=⨯+⨯一秒钟点和划分别出现的次数平均为45.410那么根据两者出现的次数,可以计算一秒钟其信息量平均为253log 4153log 4523log 410-=+2.3 解:(a)骰子A 和B ,掷出7点有以下6种可能:A=1,B=6; A=2,B=5; A=3,B=4; A=4,B=3; A=5,B=2; A=6,B=1 概率为6/36=1/6,所以信息量-log(1/6)=1+log3≈2.58 bit(b) 骰子A 和B ,掷出12点只有1种可能: A=6,B=6概率为1/36,所以信息量-log(1/36)=2+log9≈5.17 bit2.5解:出现各点数的概率和信息量:1点:1/21,log21≈4.39 bit ; 2点:2/21,log21-1≈3.39 bit ; 3点:1/7,log7≈2.81bit ; 4点:4/21,log21-2≈2.39bit ; 5点:5/21,log 〔21/5〕≈2.07bit ; 6点:2/7,log(7/2)≈ 平均信息量:(1/21)×4.39+(2/21)×3.39+(1/7)×2.81+(4/21)×2.39+(5/21)×2.07+(2/7)×≈2.7解:X=1:考生被录取; X=0:考生未被录取; Y=1:考生来自本市;Y=0:考生来自外地; Z=1: 考生学过英语;Z=0:考生未学过英语P(X=1)=1/4, P(X=0)=3/4; P(Y=1/ X=1)=1/2; P(Y=1/ X=0)=1/10; P(Z=1/ Y=1)=1, P(Z=1 / X=0, Y=0)=0.4, P(Z=1/ X=1, Y=0 (a)I (X ;Y=1)=∑∑=====xx)P()1Y /(P log)1Y /(P )1Y (I )1Y /(P x x x x;x=1)P(X )1Y /1X (P log)1Y /1X (P 0)P(X )1Y /0X (P log)1Y /0X (P =====+======0.375log(0.375/0.75)+0.625log(0.625/0.25)=(5/8)log5-1≈ (b) 由于P(Z=1/ Y=1)=1, 所以P(Z=1) = P(Z=1,X=1)+ P(Z=1,X=0P(X=1/Z=1)=35/104I (X ;Z=1)=∑∑=====xx )P()1Z /(P log)1Z /(P )1Z (I )1Z /(P x x x x;x=1)P(X )1Z /1X (P log )1Z /1X (P 0)P(X )1Z /0X (P log )1Z /0X (P =====+======(69/104)log(23/26)+( 35/104)log(35/26) ≈H(Y/X)=-P(X=1,Y=1)logP(Y=1/X=1) -P(X=1,Y=0)logP(Y=0/X=1)-P(X=0,Y=1)logP(Y=1/X=0) -P(X=0,Y=0)logP(Y=0/X=0)=1/4+(3/40)log10-(27/40)log(9/10)≈P(X=0,Y=0,Z=0)= P(Z=0 / X=0, Y=0)* P( X=0, Y=0 P(X=0,Y=0,Z=1)= P(Z=1 / X=0, Y=0)* P( X=0, Y=0P(X=1,Y=1,Z=0)=0 P(X=0,Y=1,Z=0)=0H(XYZ)=-0.405*log0.405-0.27*log0.27-0.05*log0.05-0.075*log0.075-0.125*log0.125-0.075*log 0.075=(113/100)+(31/20)log10-(129/50)log3 =0.528+0.51+0.216+0.28+0.375+0.28=2.189 bit2.9 解:A ,B ,C 分别表示三个筛子掷的点数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求: (1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

解: (1)bit x p x I x p i i i 170.4181log )(log )(18161616161)(=-=-==⨯+⨯=(2)bit x p x I x p i i i 170.5361log)(log )(3616161)(=-=-==⨯=(3)两个点数的排列如下: 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66共有21种组合:其中11,22,33,44,55,66的概率是3616161=⨯ 其他15个组合的概率是18161612=⨯⨯symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4)参考上面的两个点数的排列,可以得出两个点数求和的概率分布如下:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2-42.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少? 解:1)因圆点之和为3的概率1()(1,2)(2,1)18p x p p =+=该消息自信息量()log ()log18 4.170I x p x bit =-== 2)因圆点之和为7的概率1()(1,6)(6,1)(2,5)(5,2)(3,4)(4,3)6p x p p p p p p =+++++=该消息自信息量()log ()log6 2.585I x p x bit =-==2.7 设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()log log 1.415()3I x bit p x === 同理可以求得233()2,()2,()3I x bit I x bit I x bit ===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++= 平均每个符号携带的信息量为87.811.9545=bit/符号 2-9 “-” 用三个脉冲 “●”用一个脉冲(1) I(●)=Log 4()2= I(-)=Log 43⎛ ⎝⎫⎪⎭0.415=(2) H= 14Log 4()34Log 43⎛⎝⎫⎪⎭+0.811=2-10(2) P(黑/黑)= P(白/黑)=H(Y/黑)=(3) P(黑/白)= P(白/白)=H(Y/白)=(4) P(黑)= P(白)=H(Y)=2.11 有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,…,38的数字标示,其中有两份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上的指针指向某一数字和颜色。

(1)如果仅对颜色感兴趣,则计算平均不确定度(2)如果仅对颜色和数字感兴趣,则计算平均不确定度 (3)如果颜色已知时,则计算条件熵解:令X 表示指针指向某一数字,则X={1,2, (38)Y 表示指针指向某一种颜色,则Y={l 绿色,红色,黑色} Y 是X 的函数,由题意可知()()i j i p x y p x =(1)3112381838()()loglog 2log 1.24()3823818j j j H Y p y p y ===+⨯=∑bit/符号 (2)2(,)()log 38 5.25H X Y H X ===bit/符号(3)(|)(,)()()() 5.25 1.24 4.01H X Y H X Y H Y H X H Y =-=-=-=bit/符号 2.12 两个实验X 和Y ,X={x 1 x 2 x 3},Y={y 1 y 2 y 3},l 联合概率(),i j ij r x y r =为1112132122233132337/241/2401/241/41/2401/247/24r r r r r r rr r ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(1) 如果有人告诉你X 和Y 的实验结果,你得到的平均信息量是多少?(2) 如果有人告诉你Y 的实验结果,你得到的平均信息量是多少?(3) 在已知Y 实验结果的情况下,告诉你X 的实验结果,你得到的平均信息量是多少? 解:联合概率(,)i j p x y 为22221(,)(,)log (,)724112log 4log 24log 4247244i j i j ijH X Y p x y p x y ==⨯+⨯+∑ =2.3bit/符号X 概率分布 21()3log 3 1.583H Y =⨯=bit/符号(|)(,)() 2.3 1.58H X Y H X Y H Y =-=- Y 概率分布是 =0.72bit/符号 Y y1 y2 y3 P8/248/248/242.13 有两个二元随机变量X 和Y ,它们的联合概率为Y Xx 1=0 x 2=1 y 1=0 1/8 3/8 y 2=13/81/8并定义另一随机变量Z = XY (一般乘积),试计算: (1) H(X), H(Y), H(Z), H(XZ), H(YZ)和H(XYZ);(2) H(X/Y), H(Y/X), H(X/Z), H(Z/X), H(Y/Z), H(Z/Y), H(X/YZ), H(Y/XZ)和H(Z/XY); (3) I(X;Y), I(X;Z), I(Y;Z), I(X;Y/Z), I(Y;Z/X)和I(X;Z/Y)。

解: (1)symbolbit y p y p Y H y x p y x p y p y x p y x p y p symbol bit x p x p X H y x p y x p x p y x p y x p x p jj j ii i / 1)(log )()(218183)()()(218381)()()(/ 1)(log )()(218183)()()(218381)()()(22212121112212221111=-==+=+==+=+==-==+=+==+=+=∑∑Z = XY 的概率分布如下:Y X y1y 2 y 3 x 1 7/24 1/24 0 x 2 1/24 1/4 1/24 x 3 01/247/24X x 1 x 2 x 3 P8/248/248/24symbolbit z p Z H z z Z P Z kk / 544.081log 8187log 87)()(818710)(221=⎪⎭⎫ ⎝⎛+-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧===⎥⎦⎤⎢⎣⎡∑symbolbit z x p z x p XZ H z p z x p z x p z x p z p z x p z p z x p z x p z x p z p x p z x p z x p z x p z x p x p i kk i k i / 406.181log 8183log 8321log 21)(log )()(81)()()()()(835.087)()()()()()(5.0)()(0)()()()(2222221211112121111112121111=⎪⎭⎫ ⎝⎛++-=-===+==-=-=+====+=∑∑symbolbit z y p z y p YZ H z p z y p z y p z y p z p z y p z p z y p z y p z y p z p y p z y p z y p z y p z y p y p j kk j k j / 406.181log 8183log 8321log 21)(log )()(81)()()()()(835.087)()()()()()(5.0)()(0)()()()(2222221211112121111112121111=⎪⎭⎫ ⎝⎛++-=-===+==-=-=+====+=∑∑symbolbit z y x p z y x p XYZ H y x p z y x p y x p z y x p z y x p z y x p y x p z y x p y x p z y x p z y x p z y x p z x p z y x p z x p z y x p z y x p y x p z y x p y x p z y x p z y x p z y x p z y x p z y x p ijkk j i k j i / 811.181log 8183log 8383log 8381log 81)(log )()(81)()()()()(0)(83)()()()()(838121)()()()()()(8/1)()()()()(0)(0)(0)(22222222222122122121121221211211111121111111211111111211111212221211=⎪⎭⎫ ⎝⎛+++-=-====+====+=-=-==+===+===∑∑∑(2)symbolbit XY H XYZ H XY Z H symbol bit XZ H XYZ H XZ Y H symbol bit YZ H XYZ H YZ X H symbolbit Y H YZ H Y Z H symbol bit Z H YZ H Z Y H symbol bit X H XZ H X Z H symbol bit Z H XZ H Z X H symbol bit X H XY H X Y H symbol bit Y H XY H Y X H symbolbit y x p y x p XY H i jj i j i / 0811.1811.1)()()/(/ 405.0406.1811.1)()()/(/ 405.0406.1811.1)()()/(/ 406.01406.1)()()/(/ 862.0544.0406.1)()()/(/ 406.01406.1)()()/(/ 862.0544.0406.1)()()/(/ 811.01811.1)()()/(/ 811.01811.1)()()/(/ 811.181log 8183log 8383log 8381log 81)(log )()(2=-=-==-=-==-=-==-=-==-=-==-=-==-=-==-=-==-=-==⎪⎭⎫ ⎝⎛+++-==-=∑∑(3)symbolbit YZ X H Y X H Y Z X I symbol bit XZ Y H X Y H X Z Y I symbol bit YZ X H Z X H Z Y X I symbol bit Z Y H Y H Z Y I symbol bit Z X H X H Z X I symbol bit Y X H X H Y X I / 406.0405.0811.0)/()/()/;(/ 457.0405.0862.0)/()/()/;(/ 457.0405.0862.0)/()/()/;(/ 138.0862.01)/()();(/ 138.0862.01)/()();(/ 189.0811.01)/()();(=-=-==-=-==-=-==-=-==-=-==-=-= 2-14 (1)P(ij)= P(i/j)=(2) 方法1: =方法2:2-15P(j/i)=192.20 给定语音信号样值X的概率密度为1()2xp x eλλ-=,x-∞<<+∞,求H c(X),并证明它小于同样方差的正态变量的连续熵。

相关文档
最新文档