超市购物篮分析资料.

合集下载

零售学9—购物篮分析

零售学9—购物篮分析

二、以概率形式表现的相关性
商品被同时购买的统计表
换算成百分比
啤酒 啤酒 洋芋片 牛奶 33.3% 16.7% 16.7% 洋芋片 牛奶 尿布 汽水
尿布
汽水
0
0
0
16.7%
16.7%
33.3%
0 -
商品关联性的零售意义
1、交叉陈列:关联性强的商品陈列在一起 根据沃尔玛经验,交叉陈列能增加几倍甚至几十倍的销售 2、捆绑促销:关联性商品捆绑促销
第九章 顾客购物篮分析
第一节 购物篮的概念
一、什么是购物篮 单个客户一次购买商品的总和称为一个购物篮
二、美式与日式购物篮分析
1、美式购物篮 重点在商品与商品之间的关联 啤酒与尿布的关联
适合于大卖场
2、日式购物篮分析
重点考察环境对购物篮的影响 气温对销售的影响(气温饮料指数、气温空调指数、气温冰淇 淋指数)
R/F大于1.50,客户流失的危险已经很大。
第九章顾客购物篮分析第一节购物篮的概念啤酒与尿布的关联适合于大卖场气温对销售的影响气温饮料指数气温空调指数气温冰淇淋指数天气与关东煮的销售量的关联盒饭加酸奶盒饭加啤酒分别针对什么客户群体客户购物的时间规律等三大购物篮与小购物篮购物篮分析的黄金业态多个收款设置形成多个小购物篮通过会员卡的形式进行链接会员购物习惯会员购物周期会员流失概率五新购物篮分析技术无线射频技术rfid顾客动线购买时间结账快第二节购物篮分析内容80元以上二以概率形式表现的相关性商品被同时购买的统计表换算成百分比啤酒啤酒洋芋片牛奶尿布汽水333167167333洋芋片牛奶尿布汽水商品关联性的零售意义根据沃尔玛经验交叉陈列能增加几倍甚至几十倍的销售与很多商品都存在关联度商品二以相关系数表示商品关联三购物篮大小basketsize同一种商品在购物篮中的数量不同商品在购物篮中的数量举例四购物篮中的商品性格百态basketsize1购买目的性很强单独陈列在大超市中同时被购买的比例达到6就显示存在随和的关联沃尔玛中的啤酒与尿布711中的饼干与啤酒互斥商品当互斥商品同时出现互斥关系

购物篮分析MarketBasketAnaly

购物篮分析MarketBasketAnaly

案例二:在线购物的推荐系统
总结词
在线购物网站利用购物篮分析的结果, 为用户提供个性化的商品推荐,提高 转化率和用户满意度。
详细描述
某在线购物网站通过购物篮分析,发 现购买了A商品的顾客往往对B商品也 有兴趣。基于这一发现,该网站为购 买A商品的顾客推荐B商品,从而提高 了转化率。
案例三:信用卡交易的欺诈检测
支持度计数
频繁项集挖掘算法
常见的频繁项集挖掘算法有Apriori算 法和FP-Growth算法。这些算法通过 迭代和剪枝,高效地挖掘出频繁项集。
支持度计数是衡量项集在购物篮中出 现的频率的指标。通过设定最小支持 度阈值,可以筛选出频繁项集。
关联规则生成
关联规则
关联规则是指根据频繁项集 挖掘出的商品组合之间的关 联关系。例如,购买商品A的 顾客同时购买商品B的概率较
相似度等。
客户特征
根据客户数据提取客户特征, 如购买频率、购买偏好等。
时间特征
提取与时间相关的特征,如购 买时间、季节性等。
交易特征
提取与交易相关的特征,如交 易金额、交易数量等。
03
关联规则挖掘
频繁项集挖掘
频繁项集
在购物篮分析中,频繁项集是指频繁 地出现在多个购物篮中的商品组合。 通过挖掘频繁项集,可以发现商品之 间的关联关系。
个性化推荐系统
结合购物篮分析和人工智能技术,构建更精准的个性化推 荐系统,提高消费者购物体验和商家销售额。
感谢您的观看
THANKS
购物篮分析 marketbasketanaly
目录
• 引言 • 数据准备 • 关联规则挖掘 • 购物篮分析的应用 • 案例分析 • 结论与展望
01
引言
定义与目的

2024年超市购物篮市场规模分析

2024年超市购物篮市场规模分析

2024年超市购物篮市场规模分析1. 引言超市购物篮是指在购物超市中提供给消费者用于装载和携带商品的篮子或购物车。

随着人们对便利性和舒适性的要求不断提高,购物篮在超市购物中扮演着重要的角色。

本文将对超市购物篮市场规模进行分析,探讨其发展趋势与影响因素。

2. 市场规模分析2024年超市购物篮市场规模分析主要从以下几个方面展开:2.1 市场概况超市购物篮市场的发展受到人们购物行为和超市发展状况等多方面因素的影响。

当前,随着城市化进程的加速和人们消费水平的提高,购物超市逐渐成为民众购买生活必需品的主要场所,进一步推动了超市购物篮市场的发展。

2.2 市场规模及增长趋势超市购物篮市场规模可以通过销售额、销售数量、增长率等指标进行衡量。

根据市场调研数据,过去几年超市购物篮市场呈现稳步增长的态势。

预计未来几年内,随着超市业态的升级和消费需求的不断增长,该市场规模将继续扩大。

2.3 地区分布超市购物篮市场在全国范围内都有着广泛的影响。

大中城市由于人口数量庞大且经济发达,超市购物篮市场规模较大。

此外,一些新兴城市和乡村地区也不断涌现出新的超市,推动了超市购物篮市场的进一步发展。

3. 影响因素分析超市购物篮市场规模的发展受到多个因素的影响,主要包括:3.1 经济因素经济因素是影响超市购物篮市场规模的重要因素之一。

经济的稳定与发展能够提升人们的购买力,促使他们在超市购物时更倾向于使用购物篮。

因此,经济的繁荣与超市购物篮市场规模的增长密切相关。

3.2 消费者需求消费者对于购物体验和便利性的要求也对超市购物篮市场规模产生重要影响。

超市购物篮的设计和功能能够满足消费者在购物过程中的需求,提升其购物体验和便利性,进而推动市场规模的增长。

3.3 超市布局与管理超市购物篮市场规模还受到超市布局和管理的影响。

合理的超市布局能够提高购物篮的使用率,进而促使市场规模扩大。

同时,超市管理的规范和效率也能够增加购物篮的需求量,并推动市场规模的增长。

商品购物篮分析

商品购物篮分析

商品购物篮分析购物篮分析也就是销售小票数据分析,我们运用SSAS、SPSS、EXCEL等软件,采用了多种数据挖掘和统计分析的方法,对商品销售额、销售量、商品销售相关性、品牌销售分布、品牌偏好、价格偏好、商品规格偏好、促销效果、销售预测、价格弹性系数等许多方面进行了分析,得出了不少有意义的结论。

举例如下:1.牛奶和饼干搭配组合的比例2.某商品包装规格分析3.牛奶与饼干的相关性为了进一步研究变量之间是如何互相影响的,需要采用线性回归,决定系数2R=0.9406,得出回归方程为:0.756570.28947y x=+5.容量偏好分析6.某商品的市场份额分析7.某商品的价格偏好分析7.某商品的购物篮相关系数分析购物篮相关系数表24.32%20.42%18.96%15.06%11.20%10.44%6.45%5.60%5.48%5.23%0.00%5.00%10.00%15.00%20.00%25.00%30.00%乳酸牛奶 果汁饮料 袋装零食 纯牛奶 方便面 普通饼干 纯净水 可乐 火腿肠 供销果园8. 促销分析(销售额、增量来源、利润、饱和量、带动其他销售等方面)9.商品的销售预测0 100 200 300 400 500 600 700 1357911 13 15 17 19 21 23实际销量预测销量10.某商品占总消费金额的比利分析11.某商品的相关性分析(ICIME 2010国际会议论文)与XX 同时购买的产品的百分比洗涤用品,21.7307%洗发护发, 11.3784% 膨化食品, 18.8082%速冻点心, 15.1789% 蜜饯类, 14.8255% 休闲肉制品, 8.7408% 调味品, 26.5185% 糕点, 26.4873% 酒类, 10.9399% 文化用品, 7.5698% 干果, 5.3582% 饮料冲剂, 37.2626% 美容护肤, 9.9088% 面制品, 17.6020%牙膏牙刷, 23.7637% 饼干, 23.2542%糖果/巧克力, 27.2500% 饼干糖果/巧克力 牙膏牙刷 面制品 美容护肤 饮料冲剂 文化用品 干果 洗涤用品 洗发护发 膨化食品 速冻点心 蜜饯类 休闲肉制品 调味品 糕点 酒类12.长期销售趋势分析13.调味品口味分析500010000咸味辣味酸味鲜味香味复合8322347909229651197销售量销售量14.商品季节性分析50 100 150 200 250 300 350 400 450 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46销售数据 季节分离后的序列 线性 (佳洁士数据)15.某商品的价格弹性分析需求曲线为:p p q 10526.231579.28)(-=销售额表达式为:210526.231579.28)(p p p q p Q -=⋅=16.不同品牌商品的销售额分布规律研究(AMSRA 2010国际会议论文)。

《购物篮分析》课件

《购物篮分析》课件

数据处理和数据清洗
• 数据预处理:去除重复数据、处理缺失值,转化数据格式等 • 数据清洗:过滤无关数据、纠正错误数据,处理异常值等 • 数据转换:将数据转化为适合购物篮分析算法的格式
购物篮分析算法
1 Apriori算法
通过生成候选项集和剪枝来发现频繁项集, 进而生成关联规则。
2 FPGrowth算法
购物篮分析PPT课件
购物篮分析是一种数据挖掘技术,通过分析顾客购物篮中的商品组合,了解 顾客购买行为并制定相应的营销策略。
什么是购物篮分析?
1 定义
购物篮分析是指对顾客购买行为进行挖掘和分析的一种技术,通过发现顾客购买商品之 间的关联关系,帮助企业做出更准确的决来发现商品之间的相关性,并 生成频繁项集。
购物篮分析的优势和劣势
优势
• 深入洞察消费者购买行为 • 提供个性化的市场营销策略 • 优化商品摆放和促销活动
劣势
• 需要大量的数据支持 • 数据处理和清洗的复杂性 • 结果的解释和落地实施的挑战
购物篮分析的核心概念
• 支持度:商品组合出现的频率 • 置信度:购买A商品后,同时购买B商品的概率 • 频繁项集:支持度大于预设阈值的商品组合 • 关联规则:具有一定置信度的商品之间的关系
3 目的
购物篮分析的目标是提供对消费者购买行为的深入洞察,为企业的市场营销策略提供决 策依据。
购物篮分析的应用场景
电商行业
通过购物篮分析识别潜在的交叉销售机会,提供个性化推荐,优化促销活动。
超市零售
优化货物摆放位置,提高商品陈列的吸引力,制定合适的促销策略。
餐饮业
通过购物篮分析了解顾客需求,调整菜单组合,提供个性化推荐。
通过构建FP树来挖掘频繁项集,减少了候选 项集的生成和扫描。

2024年购物篮市场分析报告

2024年购物篮市场分析报告

2024年购物篮市场分析报告1. 介绍购物篮分析是一种通过分析消费者在购物时所购买的商品组合来了解消费者行为和市场趋势的方法。

本报告旨在对购物篮市场进行分析,为商家提供决策支持和市场发展策略。

2. 数据来源本次分析所使用的数据来自于一家超市的购物篮交易记录。

数据包括交易时间、购买商品、商品数量等信息。

3. 分析结果3.1 常见商品组合通过分析购物篮数据,我们可以发现一些常见的商品组合,这些组合可以帮助商家优化商品陈列和促销策略。

以下是一些常见的商品组合示例: - 牛奶、面包、黄油 - 水果、蔬菜、肉类 - 可乐、薯片、巧克力商家可以将这些商品组合放置在一起,以便提高销售量。

3.2 促销策略根据购物篮数据,我们可以了解不同商品之间的搭配关系,进而制定针对性的促销策略。

以下是一些建议: - 如果顾客购买了牛奶,可以为其推荐面包或黄油,以增加销售额。

- 针对购买蔬菜的顾客,可以提供肉类或水果的优惠券,促使他们购买更多商品。

3.3 市场趋势通过对购物篮数据的分析,我们可以了解市场的趋势和消费者偏好。

以下是一些发现: - 周末购物篮的商品数量较平日要高,这可能是因为消费者在周末有更多的时间进行购物。

- 某些特定商品在特定日期有较高的销售量,如糖果在万圣节前夕的销售量会增加。

4. 总结购物篮分析是一种了解消费者行为和市场趋势的重要工具。

通过分析购物篮数据,我们可以发现商品组合、制定促销策略以及了解市场趋势。

商家可以根据这些分析结果来优化商品陈列、制定促销策略,并提高销售额。

随着数据科学的发展,购物篮分析将在市场研究领域发挥更大的作用。

购物篮分析

购物篮分析

购物篮分析购物篮分析是一种经济学上的方法,用于了解消费者在购物过程中的偏好和行为。

通过分析购物篮内的商品组合,我们可以揭示出消费者的购买习惯和决策过程,从而为商家提供参考和决策依据。

本文将通过介绍购物篮分析的概念、方法和应用,探讨其在商业决策中的作用和意义。

一、购物篮分析的概念和方法购物篮分析是一种基于数据挖掘的分析技术,通过对消费者购物篮内商品组合的统计和关联分析,寻找不同商品之间的关联关系和规律。

其基本思想是假设消费者购买商品的行为是有一定规律可循的,通过挖掘这些规律,可以了解消费者的购买动机、偏好和需求,帮助企业做出更好的决策。

购物篮分析的方法主要包括频繁项集挖掘和关联规则挖掘。

频繁项集挖掘是指在购物篮数据中找出频繁出现的商品组合,通过计算其出现的频率和支持度来衡量其重要性。

关联规则挖掘则是通过计算不同商品之间的关联度,寻找出消费者购买商品之间的关联关系,并生成相关的规则。

在购物篮分析中,我们还需要定义一些基本的概念和指标来衡量不同商品之间的关联关系。

支持度是指某个商品组合在所有购物篮中出现的频率,用来衡量商品组合的普遍程度;置信度是指在购买了一种商品的情况下,同时购买另一种商品的概率,用来衡量两种商品之间的关联程度;提升度是指购买了一种商品后,同时购买另一种商品的概率相对于两种商品独立购买的概率的比值,用来衡量两种商品之间的依赖关系。

二、购物篮分析的应用领域购物篮分析广泛应用于零售业、快消品行业和电商平台等领域。

通过分析消费者购物篮内的商品组合,企业可以了解消费者的购买习惯和决策过程,从而精准推荐商品、优化营销策略,提高销售额和顾客满意度。

在零售业,购物篮分析可以帮助商家了解消费者的购买偏好和需求,优化商品陈列和促销策略。

例如,通过挖掘频繁项集,商家可以发现某些商品之间的关联关系,进而将它们放在相邻的货架上,提高销售量。

关联规则挖掘可以帮助商家发现购买某种商品的顾客还经常购买什么其他商品,从而进行精准的个性化推荐,提高销售成功率。

大型超市购物篮分析

大型超市购物篮分析

题目大型超市“购物篮”问题分析摘要本文对于大超市商品的关联度以及商品最频繁同时购买问题进行分析,构建合理的数学模型,并给出可操作的商品销售方案。

问题一要求统计处理4717个顾客对999中商品的购买记录数据,建立数学模型,定量表达超市中多种商品间的关联关系的密切程度。

首先建立遗传算法,利用SPSS统计得出各个商品购买数量,并计算出标准差。

再对影响关联度的另一度量指标进行分析,将数据分类利用Matlab处理数据,得出商品间的欧氏距离。

最后加上实际影响因素,建品572,商品797,购买次数最高,102次,组合利润最高1485.399,总利润最高151510.698。

因此,将这组商品作为最优组合。

问题三要求根据问题1、问题2中建立的模型,对附件2中999种商品的利润进行分析,给出一种初步的促销方案。

对数据运用Matlab进行拟合,得出商品利润与商品之间的关联度符合线性关系。

对附件2中利润数据分类,分别计算结果。

最后,给出促销方案。

关键词遗传算法欧氏距离关联度贪婪算法一、问题背景和重述1.1问题背景超市购物属于日常生活,而每天来超市购物的顾客和购买的商品都具有不稳定性。

商品的销量会因顾客的喜好或时间的影响不断变化,又因商品购买存在随机性、多元性等特点,必须估测好每种商品的需求量。

如处理不当,很可能造成仓库囤积量增多,甚至造成超市利润损失过大。

商品购买是不确定的,但某种或某些商品会获得大多数人的认可,被顾客频繁购买。

在大型超市中,商品繁多、复杂,正确分析并估算顾客对某种或某些商品的喜好,将为超市经理合理设计进货方案、处理仓库、获得最大利润、搞推销、促销活动和购物赠送活动等提供理论依据。

商品市场分析和顾客购物习惯分析,作为超市一项基础性任务,不仅可以确定超市进货合理模式及合理促销方式,还可以为各大型超市确定今后整体规划、超市规模、商品购买后评估等提供更为科学的理论依据。

1.2问题重述现给出超市进一个星期的所有顾客购买物品的清单和相应商品的价格,分析所给数据,研究以下问题,并建立合理的数学模型:1、附件1 中的表格数据显示了该超市在一个星期内的4717 个顾客对999 种商品的购买记录,表格中每一行代表一个顾客的购买记录,数字代表了其购买商品的超市内部编号。

大型超市“购物篮”分析

大型超市“购物篮”分析

题 目 大型超市“购物篮”分析摘 要本文根据顾客购买记录,通过“购物篮”分析,运用多种模型得出结果,并给出促销方案。

问题一要求构建能表达多种商品关联程度の数学模型。

根据4717个顾客对999中商品の购买记录,先用Matlab 对数据进行预处理,将其转化为0-1模型,然后求出购买j 商品の集合j s 和购买k 商品の集合k s ,考虑到同时购买两种商品占购买人数の频率,即相关性,存在购买人数少但相关性大の缺陷。

在改进の模型中,因为存在购买商品数少但也会使相关性大の情况,所以对两种情况进行综合考虑,得出最优模型:j k i k i k s s s s p n s s ⋂⋂=⨯⋃用Matlab 求解0-1矩阵,求出两商品间关联系数较大の前八位,有相关系数の值在0-1范围之内,与所得模型函数の范围一致,可知,该模型是准确可靠の。

问题二要求出有效方法来找出最频繁被购买の商品记录,且越多越好。

根据问题一所得0-1矩阵,将其代入Excel 运用Aprior 模型,先算出单项商品の频繁项集,将支持度较小の数据剔除后,最后选取被购买次数最多の前18个商品,其中最畅销の为368号商品。

根据这18个畅销品,运用同样方法将其转化为两两商品の组合,得到被同时购买次数200次以上の商品;根据此算法依次迭代,得到同时购买3种商品和同时购买4种商品の数据,更多商品被同时购买次数较少因此不予考虑,最后得出:两件商品被同时购买次数最高の是368和529号;三件商品被同时购买次数最高の是368、489和682;四件商品被同时购买次数最高の是68、937、895和413。

问题三要求给出方案使效益最大。

根据问题一中0-1模型和问题二中Aprior 模型,将得到の购买次数最多の商品信息和题中所给利润表相比较,将利润小数量多の商品作为赠品和利润大数量多の商品一同销售;将共同购买次数多且利润大の两商品组合作为促销品进行销售,以进一步提高超市の综合效益。

2024年超市购物篮市场需求分析

2024年超市购物篮市场需求分析

2024年超市购物篮市场需求分析1. 引言超市购物篮是超市的必备设施之一,用于顾客购物时携带商品。

随着超市行业的发展,超市购物篮市场需求也呈现出一定的变化。

本文将通过对超市购物篮市场需求的分析,探讨超市购物篮的市场前景和发展趋势。

2. 市场概况超市购物篮作为一种必需品,市场需求量和规模相对稳定。

随着城市化进程的加快,超市数量不断增加,进而推动了超市购物篮市场的发展。

此外,随着人们消费观念的不断提升,购物篮的样式、功能以及材质等方面的要求也不断提高,推动了超市购物篮市场的创新和发展。

3. 市场需求分析超市购物篮市场的需求主要由以下几个方面构成:3.1 容量需求超市购物篮的容量需求与超市的经营规模和顾客购物习惯密切相关。

大型超市需要更大容量的购物篮以应对高流量的顾客。

而一些小型超市则更适合提供轻便小巧的购物篮。

因此,超市购物篮市场需求中存在对容量多样化的需求。

3.2 轻便性需求购物篮的轻便性对顾客来说至关重要。

顾客在超市内需要频繁携带购物篮,如果购物篮过重,将给顾客带来不便。

因此,超市购物篮市场需求中存在对轻便、易携带的购物篮的需求。

3.3 耐用性需求购物篮的耐用性是顾客关注的重要因素之一。

耐用的购物篮可以节约超市的运营成本,同时也减少了顾客的购物成本。

由于购物篮在使用中会频繁受力,因此超市购物篮市场需求中存在对耐用材质的需求,如塑料购物篮和金属购物篮等。

3.4 设计需求购物篮的设计也是超市购物篮市场中的重要需求。

购物篮的外观设计和功能设计需要符合顾客的审美和使用习惯。

一些超市还会根据不同节日或活动进行特殊的购物篮设计,以吸引顾客并提升购物体验。

因此,超市购物篮市场需求中存在对创新设计的需求。

4. 市场发展趋势4.1 环保型购物篮随着人们环保意识的提升,市场对环保型购物篮的需求将逐渐增加。

环保型购物篮通常采用可降解材料或可循环利用材料制造,减少了对环境的影响,符合可持续发展的要求。

4.2 智能购物篮随着物联网技术的不断发展,智能购物篮也逐渐走入市场。

五章购物篮分析MarketBasketAnalysis

五章购物篮分析MarketBasketAnalysis

這種情況就要利用一技巧 -「增益」 ( Improvement ) 。增益能告訴我們,一 條規則在預測結果時能比隨機發生的機 會好多少。公式如下:
當增益效果大於1時,那麼最後的 結果會在預期結困的基礎上比單純 亂數好;但是當數值小於1時,效果 就很差了。表8.7顯示了三種規則的 增益效果和最高增益的增益效果。
表8.7 規則的增益效果
當增益效果小於1時,否定陳述句會 引出一條比較好的規則。例如: 如果 B 和 C,則 A => 有0.33的信心 水準; 如果 B 和 C,則 ~A => 會有0.67的信 心水準。
P(~A l B∩C) = 0.67 I(~A l B∩C) = 0.67/0.55
= 1.22பைடு நூலகம்
連續時間序列分析
購物籃分析主要發生同一時間的事件, 在特定時間點發生的事
時間序列資料 (Time series data) 通常建立在顧客的基本資料上,
才能找出同一個人的不同交易紀錄
跨時綜覽 (Time Windows)
一般將一個月發生的交易全都簡化 紀錄為單筆紀錄。
可以幫助我們了解行為模式。 Example:
Confidence、Support
交易紀錄
客戶
商品
1 柳橙汁、蘇打飲料
2 牛奶、柳橙汁、玻璃清潔劑
3 柳橙汁、清潔劑
4 柳橙汁、清潔劑、蘇打飲料
規律
條件
結果
•有蘇打飲料, 必有柳橙汁 – 100%
•有柳橙汁 , 必有蘇打飲料 – 50%
Confidence — 在A事件發生的狀況下,同 時發生A、B事件的機率 =條件機率 = P(B∣A)
定義threshold 大小
分析機率取得規則

大型超市“购物篮”分析

大型超市“购物篮”分析

题目庞大超市“买物篮”分解之阳早格格创做戴要本文根据主瞅买买记录,通过“买物篮”分解,使用多种模型得出截止,并给出促销筹备.问题一央供建坐能表白多种商品闭联程度的数教模型.根据4717个主瞅对付999中商品的买买记录,先用Matlab对付数据举止预处理,将其转移为0-1模型,而后供出买买j商品的集中s战j买买k商品的集中s,思量到共时买买二种商品占买买人数的频k次,即相闭性,存留买买人数少然而相闭性大的缺陷.正在矫正的模型中,果为存留买买商品数少然而也会使相闭性大的情况,所以对付二种情况举止概括思量,得出最劣模型:用Matlab供解0-1矩阵,供出二商品间闭通联数较大的前八位,有相闭系数的值正在0-1范畴之内,与所得模型函数的范畴普遍,可知,该模型是准确稳当的.问题二央供出灵验要收去找出最一再被买买的商品记录,且越多越好.根据问题一所得0-1矩阵,将其代进Excel使用Aprior模型,先算出单项商品的一再项集,将支援度较小的数据剔除后,末尾采用被买买次数最多的前18个商品,其中最滞销的为368号商品.根据那18个滞销品,使用共样要收将其转移为二二商品的拉拢,得到被共时买买次数200次以上的商品;根据此算法依次迭代,得到共时买买3种商品战共时买买4种商品的数据,更多商品被共时买买次数较少果此不予思量,末尾得出:二件商品被共时买买次数最下的是368战529号;三件商品被共时买买次数最下的是368、489战682;四件商品被共时买买次数最下的是68、937、895战413.问题三央供给出筹备使效用最大.根据问题一中0-1模型战问题二中Aprior模型,将得到的买买次数最多的商品疑息战题中所给成本表相比较,将成本小数量多的商品动做赠品战成本大数量多的商品一共出卖;将共共买买次数多且成本大的二商品拉拢动做促销品举止出卖,以进一步普及超市的概括效用.闭键词汇 0-1模型Aprior模型数据预处理相闭系数一、问题背景战沉述随着疑息技能的死少,通太过解洪量履历数据去创制模式战利用程序的数据掘掘技能应运而死,然而大普遍商家本去不是数据掘掘技能范畴的博家,怎么样使数据掘掘技能仄民化,成为当代很多教者钻研的热面之一.买物篮分解是数据掘掘技能应用正在整卖业中的一种灵验办法,其手段便是正在主瞅的买买贸易中分解不妨共时买买一类产品或者一组产品的大概性,好处商品的晃搁,也好处普及促销活动的效验.随着人们死计火仄的普及,特天是皆会,基础物量死计已谦脚,人们有更下的探供并浮现百般性,从企业角度瞅,相识战掌握主瞅消耗的特性战程序,有好处普及企业成本,共时也能普及消耗者的谦意度.本文以一个里背庞大超市的买物篮问题,建坐数教模型.动做超市的经理,时常闭心的问题是主瞅的买物习惯.他们念知讲:“什么商品组或者集中主瞅多数会正在一次买物时共时买买?”.当前假设咱们是某超市的商场分解员,已经掌握了该超市近一个星期的所有主瞅买买东西的浑单战相映商品的代价,需要给超市经理一个合理的“买物篮”分解报告,并提供一个促销计划的收端筹备.问题1:题目中表格数据隐现了该超市正在一个星期内的4717 个主瞅对付999 种商品的买买记录,表格中每一止代表一个主瞅的买买记录,数字代表了其买买商品的超市里里编号.建坐一种数教模型,该模型能定量表白超市中多种商品间的闭联闭系的稀切程度.问题2:根据正在问题1中建坐的模型,觅找一种赶快灵验的要收能从表格的买买记录中分解出哪些商品是最一再被共时买买的.超市经理期视得到尽大概多的商品被一再共时买买的疑息,所以找到的最一再被共时买买的商品数量越多越好.比圆:如果商品1、商品2、商品3正在4717 个买物记录中共时出现了200次,则不妨认为那三个商品共时一再出现了200次,商品数量是3.问题3:题目给出了那999中商品的对付应的成本,根据正在问题1、问题2中建坐的模型,给出一种收端的促销筹备,使超市的效用进一步删大.二、问题分解2.1问题一的分解央供建坐模型定量表白超市多种商品间的闭联闭系的稀切程度,根据4717个主瞅对付999种商品的买买记录,令x表示第ii个主瞅的买买情况,当第i个主瞅买物篮里有第j个商品,1x=;ij不买买,则0x=.那便把搀纯繁琐的数据化为了简朴易供的0-1模ij型.根据买买记录,供出买买j商品的主瞅集中战买买k商品的主瞅集中,二集中的接集(共时买买)所代表的人数与买买人数的比值即为频次,此频次表示二商品的相闭程度,思量到买买人数较少也会制成频次较大的情况,对付模型举止矫正,将共时买买的人数与起码买一种商品的人数的比值动做相闭系数,转移后的模型仍存留缺陷,买买次数较少时也会制成系数较大然而不克不迭反映商品相闭性的问题.综上二种思量,将二个模型分离起去,得到最劣模型,用此模型去定量表白商品间的闭联闭系的稀切程度.由题目可知,此模型所得截止肯定大于0小于1,为考证模型的稳当性,本文使用Matlab对付数据举止预处理,将数据转移为0-1矩阵后,再根据公式编程筛选出二商品相闭系数较大的前八位,由所得系数与函数大于0小于1的本量相比,若切合,则模型是稳当的;若不切合,则再供新的定量模型.2.2问题二的分解央供咱们觅找一种赶快灵验的要收从买买记录中找出被最一再买买的商品,而且被共时买买的数量越多越好.根据问题一Matlab对付数据举止的0-1矩阵处理,并正在Excel中对付数据举止供战以及排序处理,得到一次买买一次商品的次数最多的前18个商品.由于数量的繁琐,咱们将从那18种商品中供出二件被共时买买以及三件、四件商品被共时买买的疑息.果此咱们调出那18种商品的0-1矩阵,并用Matlab编程得到二件商品共时被买买的频数,并用Apriori算法的本理提出支援度s,用其去筛选得到的稠稀数据,建改步调以得到三件商品、四件商品被共时买买的数据.对付于问题三,央供根据问题一战问题的模型给出一种促销的筹备,督促效用进一步删大.最先咱们定义f为超市的支益,商品的数量为n,商品的成本为w.则f w n=⋅.咱们思量将数据中出卖数量多的商品且成本大的商品附赠以出卖商品数量多然而是支益较小的商品去进一步普及它们出卖的数量以赢得更大的成本.而对付于那些出卖数量以及不妨赢得的成本皆适中的商品,根据问题二供得的二件商品被共时买买的数量将它们搁正在所有促销,那样也会赢得较下成本.三、模型假设1、超市货源充脚最大极限谦脚主瞅需要;2、短时期内,商品的出卖情况脆持稳定;3、每位主瞅的买物止为皆是理性的,真正在反映当天的消耗情况;4、假设二商品共时被买买次数大于200的为下销量商品;5、假设商品支益只思量出卖所得支进,不思量商品成本;四、标记证明战名词汇阐明1、布我量:本题中所指的是买买或者已买买,买买时布我量=1,已买买布我量=0;五、模型建坐与供解5问题一模型的准备由于本题是针对付庞大超市买物篮的问题,数据繁琐,且只思量主瞅的买买记录,即买或者不买,并以此钻研商品间的闭联程度,果此本题先对付所给数据举止预处理,将4717位主瞅对付999种商品的买买转移为0-1模型,便当问题的供解.最先以i x 表示第i 个消耗者的某次买物止为,如果正在消耗者的买物篮中创制了第j 种商品,则有1ij x =,可则0ij x =(共时ik x 表示第i 个消耗者买买第k 种商品).5.2问题一模型的建坐与供解 5.2.1模型的建坐本题消耗者买买惟有二种情况,即买买或者不买买,果此不妨用到0-1模型.为表白超市中多种商品间的稀切闭联程度,本题建坐了定量模型.最先,用i x 去形貌第i 个消耗者的买物情况,1ij x =表示第i 个消耗者买买了第j 个商品,反之,0ij x =表示已买买.果为是根据主瞅对付商品的买买记录去供解,果此本文对付买买某种商品的主瞅举止分类,设买买j 的人的集中为j s ,买买k的人的集中为k s ,则j k s s ⋂表示共时买买j 商品战k 商品的主瞅.由此可将二种商品的相闭联程度表示为:此公式表示共时买买二种商品的频次,频次越下,相闭性越大,然而若买买人数少,也会引导频次值较大,隐然那样的表白不克不迭准确反映二商品间的闭联程度,果此对付此模型还应进一步矫正.对付买买人数n 举止矫正,思量到有主瞅正在二种商品中起码买买一种的情况,将n 化为kj s s ⋃,则二种商品的相闭联程度转移为:此公式表示二种商品皆买的情况占起码买买一种情况的比值,即频次,也能反映二商品间的闭联程度,然而其共第一个公式类似,存留买买商品次数少然而引导频次较大,而不克不迭反映二商品相闭性的缺陷,果此,概括二种情况,得到最劣模型:p 表示二商品的相闭性,若p 较大,剔除买买次数较小的情况,即可反映当消耗者买买一种商品时,对付另一种商品的买买大概性很大,二种商品的闭联相闭性稀切. 5.2.2模型的供解对付上述模型举止简曲供解,其中i k s s ⋂表示共时买买j 商品战k 商品的人数,公式为:i k s s ⋃表示二种商品中起码买买一种商品的人数,其简曲公式为:j ks s ⋂小于买买人数n ,共时小于起码买买一种商品的人数,所以p 小与1.将题目中所给数据使用Matlab 举止预处理,将其转移为0-1矩阵,由于数据过多,则将所得矩阵搁正在附录中,详睹附录1.根据所得闭联函数公式,用Matlab 编程供出二商品间闭通联数较大的前八位,如下图所示:表 二商品间的相闭系数从图中可知,228战398二种商品的闭联相闭性最稀切.共时有相闭系数的值正在0-1范畴之内,与所得模型函数的范畴普遍,可知,该模型是准确稳当的. 5.3问题二模型的建坐与供解分解最一再被共时买买的商品,且越多越好.最先咱们要找出单独一项商品被买买的频数,根据频数较下的单项商品集,通过筛选得出二种商品被共时买买的频数,以此类推,层层迭代,找出多种商品被共时买买的频数.Aprior 算法使用一再项集的先验本量,通过逐层搜索的迭代要收,先扫描数据库,再乏积每个项的计数,并支集谦脚最小支援度的项,找出一再项集的集中,曲到所供条件.果此本文使用Aprior 算法,对付此题做出分解并供出最好截止.其简曲算法历程如下:此算法体现出假如A 一个一再项集,则A 的每一身材集皆是一个一再项集.最先咱们提出支援度s 的观念,支援度是D 中包罗A 战B 的工做数与总的工做数的比值.不妨利用支援度的大小去筛选数据.设n L 是共时买买n 项商品的人员集中.先从999中商品中找出单项一再项集1L ,根据n 项一再项集n L ,找出下一一再项集即1n L ,并算出其中的支援度,将支援度较小的元素简略,最后得到截止.5.3.1对付单项商品的买买要给出尽大概多的商品被共时买买的疑息,由所给买买记录,不妨先由简朴的单项商品启初,供出它们的被买买次数.根据问题一所得预处理后附件1中的买买记录,详睹附录1,用Excel对付单项商品买买次数举止供战.由于题目只央供给出一再被买买的商品,频数较少的给予剔除,果此通过排序后得到买买次数最多的前十八个数据如下:表前18个被买买次数最多的商品从表中咱们不妨瞅出368号商品被买买次数最多,851商品被买买次数相对付较少,然而那18种商品皆不妨动做最一再买买的商品被经理采与,去钻研商品买物篮问题.5共时对付二项商品的买买上述18个单项商品被共时买买的次数较为一再,证明那18项商品最为滞销,以那18项商品为一个一再项集,根据Aprior算法,建坐0-1矩阵,对付每一个商品皆不妨用一个布我量去表示是可被买买,由于18种商品二二拉拢数据较多,且咱们只需要被共时买买较一再的商品,本文以200次动做二商品共时被买买的频数界限,大于200次,则表示二商品共时被买买的次数一再.找出那18个商品的0-1矩阵,由于矩阵数量较大,那里不予仔细列出,并用matlab对付数据举止编程筛选,筛选不妨得到二商品被共时买买的200以上次数的数据:表:二件商品被共时买买的次数表根据以上表格,不妨瞅出,368、529二商品被共时买买的次数最多,二商品不妨动做最滞销品搁正在所有出卖.5共时对付三项商品的买买根据二件商品被共时买买的步调,建改出三件商品被共时买买的步调,筛选供得次数大于110的三种商品被共时买买的次数如下表所示:有上表可知,368、489、682三件商品被共时买买的次数最多,956、797、572被共时买买的次数相对付较少,然而每组商品被买买次数皆大于100次,可瞅出那几种商品拉拢销量较好.共时对付四项商品的买买共时,咱们也不妨建改出四件商品被共时买买的步调,继承筛选出次数较大的前五位表格如下所示表:四件商品被共时买买表从上述表格中得出论断如下:1、二件商品被共时买买的频数最下的是368战529,总合被买买了313次;2、三件商品被共时买买的频数最下的是368、489战682,总合被买买了124次;3、四件商品被共时买买的频数最下的是368、937、895战413,总合被买买了72次.从分歧商品共时被买买次数不妨知讲,随着商品种类的删加,被共时买买次数渐渐缩小,四种商品以去共时买买次数绝大数小于47,频数较少,果此不再仔细计划.从以上钻研不妨瞅出Aprior不妨使用层层递进的迭代算法,赶快将庞大超市繁琐的买物记录简化,进而找出多种商品共时被一再买买的疑息,给出卖经理简朴明白的主瞅买物记录.5.4问题三模型的建坐与供解5.4.1模型的建坐超市的效用有很大程度上体当前超市的总的支益上,果此用f表示超市最后支益,设商品的数量为n,商品的成本为w.则:对付于商品数量央供下且成本大的商品,咱们不妨通过附赠以数量央供下且成本小的商品;对付于数量央供战成本央供皆中等的商品,不妨思量共时买买二种频次较下的商品,将二者搁正在所有搞促.5思量赠品的闭系普遍将出卖量较好且成本较大的商品动做主要出卖种类,对付于那些数量需要多且成本较小的商品,将其动做主出卖品的赠品,既能促进主商品的出卖,又能戴动小商品的出卖,进而最大程度的普及超市成本,而且正在普及企业的服务效用的共时,大大谦脚了主瞅的需要,普及了主瞅谦意度.将题目所给成本表战正在第二问供得的数量表搁正在所有思量,成本大且数量多的商品(那里与单买数量排名前十位的,成本大于270的商品)为:表成本大且数量多的商品从表中可得到368号商品总成本最大,其次为529号战417号商品,不妨瞅出以那些商品为主要出卖品,并将其集结晃搁正在比较隐眼的位子,便当主瞅找到自己所需商品,也为超市留出更大的空间.表成本小然而数量多的商品成本小然而数量多的商品,相对付于其余商品去道,它们总的成本大概较小,然而不妨瞅出主瞅对付其的需要却相称大.将其动做赠品促进其余商品的出卖,虽然是搁弃了那部分商品的成本,然而它所戴动商品的出卖份额所得成本近下于它们分别出卖所得成本.成本大数量多的商品果为能戴去更大将数量央供以及成本央供,所以思量从其中提与出商品以及他们的赠品,可得到如下表从表中咱们不妨瞅出,将368、529、417商品动做主要出卖的商品,将217、489、682商品分别动做赠品,既不妨普及主要商品的出卖量,又不妨吸引主瞅,从深刻瞅,此出卖办法对付总效用普及有极大助闲,共时咱们提议将那三组商品晃搁正在隐眼的位子,更便当主瞅的买买.5.4.2再思量促销的闭系由问题一可知,共时买买某种商品频数相共可知该种商品共另一商品相闭性较大,正在本量出卖中,将二种闭联性大的商品搁正在一齐女,有好处普及商品出卖量,进而普及概括效用.正在第二问中,咱们得到二种商品共时被买买的次数,利用第二问供出的数据,找出被共时买买次数较多的商品,并去掉上述已促销的商品,其余的如下表所示:表二商品共时买买成本及次数买买次数多本去纷歧定支益下,若央供出能使概括支益达到最大的商品拉拢,需要根据上表算出二商品拉拢后总成本最大的情况.正在思量成本战共买买次数的情况下,不妨搁所有促销以便普及最大效用的是:表共时促销的二商品拉拢从表中不妨瞅出,419战829二种商品,692战829二种商品被共时买买次数最多且成本最大,将那二种商品拉拢动做促销筹备,既谦脚了主瞅对付二商品的需要,又正在出卖一种商品的共时,戴动了另一商品的出卖.所以提议将419、829二商品搁正在所有出卖,将692、829二种商品搁正在所有出卖.六、模型考验问题一的考验央供出商品间的闭联稀切程度,根据题目干出模型:为考证模型的准确稳当性,本文用Matlab干出0-1矩阵后,供出相闭系数较大的前八种,由相闭系数的值皆与模型函数的值大于0小于1的本量相切合,可知模型是稳当的.七、模型评介战矫正7.1模型的评介7模型的便宜1、0-1模型将搀纯繁琐的数据简朴化,便于问题供解;2、多种定量模型相互比较,找出最能反映商品闭联程度的模型,有好处咱们采用更好的筹备;3、aprior算法从稠稀数据中分解出切合央供的数据,并进一步深进,层层迭代,使问题简朴化,得出合理论断.7模型的缺面1、aprior算法会爆收洪量候选及候选集,引导算法的效用较矮;2、不思量成本对付总效用的做用.7.2模型的矫正第二问中,使用只买买一件商品的18个数据,相对付于给出的数据,虽具备代表性,然而是截止不那么准确.如果使用数据超出18个,将会使后里的数据趋于多项化,那样一去数据便越收准确,给出的提议也会越收的合理.八、模型推广0-1模型具备广大的应用背景,比圆经济管制中的本量问题的解必须谦脚逻辑条件战程序央供等一些特殊的拘束条件,此时往往需要引出0-1变量去表白“是”与“非”.别的,线路安排,工厂选址,死产计划安插,旅止买物、背包问题、人员安插等人们所闭心的诸多问题皆不妨化为0-1模型供解.正是由于0-1模型具备深刻的背景战广大的应用,所以钻研它的算法具备格中要害的意思.Aprior模型使用逐层搜索的迭代要收,该算法明白简朴,估计简单,且是不妨对付多种准则举止掘掘.正在电力企业决接应用中,将Aprior模型的数据掘掘技能应用于企业管制计划,通过深进掘掘产死企业管制计划库,真真正在企业管制历程中,特天是正在更搀纯的经管环境中提供强盛的计划支援.九、参照文件[1]薛白聂筹备,鉴于闭联准则分解的“买物篮分解”模型的钻研,北京工商大教教报, 2008-7-18;[2] 孙细明龚成芳,闭联准则正在买物篮分解中的应用,估计机与数字工程,;[3]下怯,买物篮里的“潜准则” 商界(评论),;[4] 谭浩强,C步调安排(第三版),北京:浑华大教出版社,2005.附录附录1(1)0-1矩阵:A=textread('C:\Users\Administrator\Desktop\data.txt');B=zeros(4718,999);for i=1:4718for j=1:73if A(i,j)>0B(i,A(i,j))=1;endendend(2)自相闭系数函数:o=corr(A)(3)推断语句:N=textread('C:\Users\Administrator\Desktop\tmd.txt');for i=1:999for j=1:999if N(i,j)>=0.7&&i~=jfprintf('µÚ%dºÅÉÌÆ·ºÍ',i);fprintf('µÚ%dºÅÉÌÆ·µÄÏà¹Ø¶ÈΪ',j);fprint f('%d ',N(i,j));endendend附录2问题二中供一个商品被买买次数的代码a=textread('C:\Users\Administrator\Desktop\data.txt');b=cell(1,length(a));for i=1:length(a)b{i}=a(i,:);endfor i=1:length(a)b{i}(find(b{i}==0))=[]; endgm=zeros(length(a),999); for i=1:length(a)c=[];c=b{i};[m n]=size(c);for j=1:ngm(i,c(m,j))=1;endendcs=[];for j=1:999cs=sum(gm);endb=find(cs>700s);[m n]=size(b);z=zeros(n,n);for i=1:length(a)for j=1:length(b)for k=1:length(b)z(j,k)=z(j,k)+gm(i,b(j))*gm(i,b(k)); endendendfor j=1:length(b)for k=1:length(b)if z(j,k)<200;z(j,k)=0;else z(j,k)=z(j,k);endendendx=[];v=[];x=[b;z];v=[0 b;x'];for i=1:length(b)+1v(i,i)=0;endv问题二中二个商品被共时买买的代码A=textread('C:\Users\Administrator\Desktop\10.txt'); z=0;for i=1:4718if A(i,1) == A(i,2)if A(i,1) == 1;z=z+1;endendendprint z。

商品购物篮分析范文

商品购物篮分析范文

商品购物篮分析范文商品购物篮分析是一种分析消费者购买行为和市场趋势的方法。

通过分析消费者在购物篮中选择的商品,可以了解他们的偏好和消费习惯,从而为企业制定市场策略提供依据。

以下是一份商品购物篮分析报告,内容包括市场概况、消费者偏好、市场趋势等方面。

一、市场概况目前,商品购物篮分析已成为零售行业中的重要工具之一、随着电子商务的快速发展,消费者在网上购买商品的数量不断增加,购物篮分析逐渐转向线上市场。

同时,在线上市场上的销售数据更容易获取和分析,为购物篮分析提供了更多的信息。

二、消费者偏好据购物篮分析显示,消费者购买商品时常常受到品牌、价格和口碑的影响。

很多消费者在购买食品时更青睐知名品牌,而在购买日常用品时更注重价格低廉。

此外,消费者对于商品的质量和口感要求也逐渐提高,他们更愿意选择质量好、口味好的商品。

三、市场趋势1.个性化定制:随着消费者对个性化商品的需求增加,个性化定制成为一种新的市场趋势。

购物篮分析显示,有很多消费者愿意花费更多的钱购买定制商品,因为这些商品能更好地满足他们的个性化需求。

2.绿色环保:越来越多的消费者开始关注商品的环保程度。

购物篮分析显示,绿色环保的商品在市场中的需求不断增加,而一些传统产品的销量则有所下降。

因此,企业应当加强对环保商品的开发和推广。

3.移动支付:移动支付已逐渐成为一种主流支付方式。

根据购物篮分析,越来越多的消费者在购买商品时选择使用手机支付,而传统的现金支付方式正在逐渐减少。

因此,企业应当积极跟进这一趋势,提供更便利的支付方式。

4.社交媒体影响力:社交媒体的影响力越来越大。

购物篮分析显示,很多消费者在购买商品前会在社交媒体上相关信息,包括商品的口碑、评价和价格对比等。

因此,企业应当加强社交媒体的营销和宣传,提高商品的曝光度。

四、分析结论购物篮分析结果表明,消费者偏好和市场趋势是不断变化的。

在这个快速变化的市场环境中,企业应当密切关注消费者的需求变化,及时调整产品和营销策略。

2024年超市购物篮市场分析现状

2024年超市购物篮市场分析现状

2024年超市购物篮市场分析现状引言超市购物篮是人们在超市购物时经常使用的必备工具。

购物篮的设计与功能对于提供便捷的购物体验和促进销售具有重要意义。

本文将对超市购物篮市场的现状进行分析,并探讨相关的市场趋势和发展方向。

市场概况超市购物篮市场是一个庞大而具有潜力的市场。

随着超市的快速发展和消费者购物习惯的变化,购物篮的需求不断增加。

目前,超市购物篮市场呈现以下几个主要特点:1.市场规模大:超市购物篮是超市常用的购物工具,市场规模庞大。

据统计,全球购物篮市场规模已达数十亿美元。

2.多样化需求:消费者对购物篮的需求日益多样化。

不仅需要具备基本的容纳功能,还需要有舒适的手柄设计、耐用的材质、轻便易携等特点。

3.创新设计:购物篮设计日益注重创新和个性化,以满足消费者对购物体验的追求。

一些超市购物篮还加入了智能设备,实现自动打包等功能。

市场竞争当前,超市购物篮市场竞争激烈,主要表现在以下几个方面:1.品牌竞争:各大品牌在购物篮市场展开激烈的竞争。

知名品牌通过持续的品牌推广和产品创新,获取更多的市场份额。

2.价格竞争:在超市购物篮市场,价格压力较大。

消费者普遍对购物篮的价格敏感,超市也常常通过促销、优惠等方式降低价格以吸引顾客。

3.功能竞争:购物篮的设计和功能对于消费者的购物体验至关重要。

各品牌通过创新设计和差异化功能,争夺消费者的青睐。

市场发展趋势随着消费者需求的变化和技术的进步,超市购物篮市场正朝着以下几个趋势发展:1.环保可持续:随着人们对环境保护意识的提高,购物篮市场将更加注重环保可持续性。

未来购物篮的设计将更加注重使用环保材料和可回收设计。

2.智能化应用:随着物联网技术的崛起,购物篮将逐渐智能化。

未来购物篮可能会有智能感应、自动计算价格等功能,提升购物体验。

3.个性化定制:消费者对个性化产品的追求日益增加。

购物篮市场未来将更加注重个性化定制,消费者可以根据自己的喜好和需求来设计购物篮。

4.互联网销售:随着电子商务的快速发展,购物篮的互联网销售也将逐渐增加。

大型超市“购物篮”分析

大型超市“购物篮”分析

大型超市“购物篮”分析背景大型超市是一个现代化的零售业形态,大多数人都会选择在超市购买生活必需品和日用品。

在超市购物体验良好的同时,超市也通过购物数据分析来识别客户的购物行为模式和购物偏好。

对于超市的经营管理者来说,了解和分析购物篮数据是必不可少的。

目的本文旨在介绍超市购物篮分析的概述,并提供一些常见的购物篮分析技术。

购物篮分析是什么在超市购物过程中,大多数客户会选择将不同的物品放在一个购物篮中进行结账。

购物篮数据分析是针对客户购买行为进行统计分析和挖掘的过程。

通过购物篮分析,超市可以了解消费者的购物行为和购买偏好以及购买模式,进而调整产品、服务、价格和营销策略,以增加超市的销售收入。

常见的购物篮分析技术关联规则分析关联规则分析是一种基于关联性度量,来寻找交易数据库中频繁出现的项集的数据挖掘技术。

例如,如果许多顾客购买了酱油和面条,那么这两个商品的组合就是一个频繁项集。

通过识别这些频繁项集,超市可以了解到哪些商品的组合很常见,而哪些不常见,再据此来开展一些针对性的打折促销活动,以吸引更多的消费者。

基于聚类算法的购物篮分析聚类算法是一种机器学习技术,用于将数据分成不同的类别。

在购物篮数据中,可以根据商品的属性、市场销售策略、购买行为和顾客属性等因素来对购物篮数据进行聚类。

通过聚类分析得出的不同类别,超市便可以将其应用于商品陈列、新品推荐和促销策略等方面,提高超市的经营效益。

基于决策树的购物篮分析决策树是一种监督学习算法,通过迭代的方式对数据进行分类和预测。

在购物篮数据中,可以利用决策树算法对顾客所购买的商品进行分类和预测,从而获得更精准的顾客购买模式。

通过对顾客购买模式的分析,超市便可以制定更为精准的营销策略,提高商品的销售和超市的经营效益。

结论购物篮分析是超市促进销售和提高经营效益的重要手段。

通过分析顾客购买数据,超市可以更好地了解顾客的购买行为以及购买偏好,在此基础上实施更加精准的产品优化、服务提升和价格策略等措施,加强与顾客的互动,从而实现超市的可持续发展。

超市购物篮设计分析

超市购物篮设计分析

人 因 工 程 论 文超市购物篮设计指导教师 孙林岩班 级 工硕51学 号 05083005姓 名 刘民婷日 期 2007年11月17日超市购物篮的设计问题及改进摘要:如今,超市已经成为了人们生活中重要的一部分,越来越多的人选择到超市购买家庭必需用品,而超市里的购物篮则是人们在购物时的主要工具。

人们在使用现在超市普遍提供的购物篮时是否感到舒适呢?本文对超市普遍提供的购物篮进行了一些分析,同时对其从适合消费者使用的方面做些改进,提出一些方案。

关键词:超市购物篮正文一、 超市购物篮的简要介绍随着我国经济的发展,“超市”这一种模式自引进后,成为了人们生活中重要的一部分,人们已经习惯于到超市中选购自己需要的各种生活用品。

在购物过程中,购物篮则成为了大家必不可少的工具。

尤其是家庭主妇,到超市购物已经成为了她们当中很多人的“固定工作”。

然而,在多次使用过程中,我发现不同超市所提供的购物篮在样式上都差不多,就如以下几幅图所展示的:从上图我们可以看出,大部分的超市都喜欢选用这种体积较大、形状近似长方体的购物篮。

或许这是从成本以及消费者的购物数量角度来考虑的:这样的购物篮能装入比较多的商品,两个提手的设计,使消费者在提的时候购物篮不容易摇晃。

二、 超市购物篮存在的问题现在超市提供的购物篮虽然在很大程度上方便了消费者,但仍然存在一些问题:1、很多购物篮的提手比较细,手掌受压较大,如果消费者购买比较多的商品,提着就会觉得手掌疼。

2、购物篮的体积比较大,消费者在提的时候为了避免购物篮磕着腿,总得把手伸出一段距离,手臂会很累。

并且,手腕必须向外旋转一定的角度,才能抓稳购物篮的提手。

如下图所示:3、消费者购物的时候往往购买不同的商品,比如食品、日用品等等,而购物篮里没有分格,这些东西往往都得放在一起。

一些消费者买了现做的食物,往往会弄脏别的东西。

有的消费者则不喜欢将食品和别的东西混在一起,觉得不太卫生。

基于购物篮存在的上述问题,我根据人手的结构等相关知识,对其从以上三个方面进行了一些改进。

2024年超市购物篮市场调查报告

2024年超市购物篮市场调查报告

超市购物篮市场调查报告1. 引言超市购物篮是人们购买商品时常用的工具之一。

本报告旨在通过对超市购物篮市场进行调查研究,分析市场现状、竞争格局和消费者需求,为超市购物篮的生产、销售和设计提供参考和建议。

2. 调查方法本次市场调查采用了问卷调查和实地观察相结合的方法。

共计发放了500份问卷,覆盖了不同年龄、性别和经济状况的超市顾客。

此外,我们还在多家超市进行了实地观察,观察超市购物篮的种类、质量和使用情况。

3. 市场现状分析3.1 购物篮种类根据实地观察,市场上主要有塑料购物篮和金属购物篮两种类型。

其中,塑料购物篮更加常见,占据超市购物篮市场的主导地位。

塑料购物篮广泛应用于各类超市,因其轻便、耐用、易清洗的特点备受消费者欢迎。

3.2 购物篮质量在实地观察中发现,购物篮的质量参差不齐。

一些购物篮质地坚固,使用寿命长,而另一些购物篮可能存在抗压性差、易断裂等问题。

购物篮质量的差异可能与生产商的技术水平、原材料选用有关。

3.3 购物篮价格调查数据显示,超市购物篮的价格普遍较为合理。

不同超市的购物篮价格差异并不大,主要与购物篮的材质和大小有关。

大多数消费者对购物篮的价格表示满意。

4. 消费者需求分析4.1 购物篮容量根据问卷调查,消费者的购物篮容量需求有所差异。

一部分消费者倾向于选购容量较大的购物篮,以便将更多商品放入购物篮;另一部分消费者则更偏好容量较小的购物篮,以便携带更便利。

在实际观察中,容量合适的购物篮更受欢迎。

4.2 购物篮舒适性问卷调查显示,购物篮的舒适性对消费者来说也是一个重要考虑因素。

尤其是对于那些购买较多商品的消费者来说,购物篮的舒适度能够对减轻购物压力起到积极的作用。

因此,购物篮设计应考虑增加手柄的抓握舒适度和减少重压对顾客手部的影响。

4.3 购物篮的环保性调查结果显示,消费者对购物篮的环保性越来越重视。

他们期望购物篮能够采用可再生材料制造,减少对环境的损害。

此外,购物篮的可回收性和易清洁性也是一些消费者关注的焦点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弃购买。 向下购买:降价促销且商品价格始终处于促销价状
态等(可通过比较式陈列实施)。
2020/7/3
19
购物篮中的商品性格百态
性格孤僻的商品:购物篮系数平均为1(接纳同类)。
购物篮中形影不离的关联商品
关联关系的两种模式
1、随和的关联关系:可同时出现,也可单独出现(纱 布与棉签、双氧水、碘酊等)。
2020/7/3
9
注意
案例分析 1、避孕药品居然是作为考试前的必备。 2、渔具店卖安全套,安全套用来防水装手机。
单纯依靠购物篮数据分析是站不住脚的,必 须结合现场观察,对数据进行实际验证,并 对分析模型不断进行修正,才可以使购物篮 数据分析项目可以“善始善终”。
2020/7/3
10
如何做?
门店客户观察法 1、门店客户全程跟踪法 :在跟踪过程中要
内在关联陈列 外在关联陈列 加大陈列面的重复陈列 搭配销售的陈列法
利用关联商品提升销售业绩!!!
2020/7/3
16
弄巧成拙与知易行难的关联应用
红袄配绿裤---弄巧成拙,起到反效果 大胆预测未来 难以执行的跨类别关联陈列 ---“画地为牢”、
“铁路警察,各管一段”
多动动脑子吧!!!
2020/7/3
2、其它销售关联因素---温度、季节、假期 3、顾客结构与商品间的关联(女性与儿童即母婴关联) 4、商品结构与商品间的关联(品牌商品1+1原则) 5、主流商品与客流量间的关联(20商品的必备和定
价) 6、商品与商品间的关联(足浴盆与足浴精)
2020/7/3
7
购物篮比例---表示商品之间的关联关系
2020/7/3
启发员工想象力,达到促成商品关联销售的 目的!
2020/7/3
12
商品相关性的实际意义
2020/7/3
13
40%品种数,10%销售额---关联商品在卖场 中与其他商品的关系
商品的类型:主力商品、辅助商品、关联商 品 商品结构的比例划分(中联)
2020/7/3
14
关联商品陈列
强关联关系 :在相同或相邻的区域,或者 一同进行促销。
2020/7/3
3
购物篮分析
2020/7/3
4
购物篮方面的差距
1、购物篮的表现形式就是“客单价”,客单价的高低直 接反映了零售企业的经营效益。
2、要想提高商业企业的销售业绩,必须改善企业购物篮, 全面提升客单价,可以说零售企业的购物篮代表了企业 的生存权!
各类零售业客单价对比
客单价(元)
200 150 100
8
商品相关性的数值代表了什么
1、不要盲目乐观 2、临时因素造成的强关联关系 3、隐藏在微弱特征背后的真相——只有在特定条件下
关联特征才会强化从而被人发现,所以零售专家认 为弱关联最吸引人,从弱关联中找出商品之间的关 联关系,对于根多数据分析人员来说是个极大的挑 战,因此购物篮分析的主要任务是在弱关联的关系 中找出商品之间的相关性。 4、同行是冤家——当商品之间的功能相同时
17
购物篮中商品的生存百态
2020/7/3
18
商品与购物篮之间的七种关系
直接购买 :按照自己的购买计划,直接购买商品。 促销购买:冲动购买。 替代购买 :缺货或价格因素导致选择新商品(替
代商品的价格、功能与原商品相似)。 交叉购买 向上购买 :诱导顾客购买更高档的商品。 被放弃的购买:商品质量低或服务不好造成顾客放
记录客户的年龄、性别、职业、衣着、购物 路线、选取商品的过程、选取的商品、购物 时间、心理变化等等 。 2、收款台摄录像观察法 3、门店观察法的副产品——收款台上方的 摄像头与开始守规矩的收款员
2020/7/3
11
影响商品销售的其他因素
日期因素 门店地点关联因素 特殊事件影响 其它因素:卫生、气味、照明等
弱关联关系 :尝试将这些商品在卖场中进 行关联陈列 。
互斥关系 :对这类商品组织专门的专卖店、 专卖区域。在组织陈列时应该将这些“仇人” 陈列在一起,让客户有更多地选择余地,满 足不同消费者的需求。
2020/7/3
15
关联商品陈列
交叉陈列:在卖场按照商品关联关系在相同的区域、 货架、排面组织不同的商品共同陈列。通过将不同 毛利水平、具有关联关系的商品放在起,既可以满 足客户纳购买要求,同时又可以将商品的毛利互相 进行弥补。
50 0 外资零售企业
台资企业 不同类型企业
内资企业
平日 公休日
2020/7/3
5
形成关联商品的原因
商品相关性是指商品在卖场中不是孤立的, 不同商品在销售中会形成相互影响关系(也 称关联关系) 。
2020/7/3
6
商品销售相关性与关联商品
1、购物篮中的关联商品是商品关联因素的一部分(就 像减肥与节食的关系,节食与营养素补充的关系)。
2、铁哥们类型的关联关系:要么同时进入,要么一个 都不进(血压计与试纸)。
同行是冤家---有A则无B,互斥商品之间的敌对关系。
1、同时出现的互斥商品面对了不同的客户群体和消费 行为 ;
2、同时出现的互斥商品代表客户的消费行为出现了游 离。
2020/7/3
20
购物篮中的商品性格百态
商品在卖场中的七种死法(铁打的货架,流水的货) 1、生不逢时 2、人老珠黄 ---不进行呵护,快速进入衰退 3、被踢出卖场的失败者 ---新的竞争者出现 4、“价格卖穿” ---指商品在经过多次价格促销后, 商品的销售价格无法再回到原来的起点 。 5、客户消费需求发生转移 6、卖场滥杀无辜 7、“××”事件的主角
2020/7/3
பைடு நூலகம்
2
前言
不同的商品决定了不同商店的命运,这点很好理解, 可是不能让大家理解的是开在相同位置的商店,卖 的是同样的商品,甚至销售价格也差不多,为什么 别人能够活得好好的,自已的商店却每况愈下、最 终落得凄凉倒闭的结局?
可怜之人必有可气之处,商店倒闭的原凶很多,不 了解客户手中的购物篮,从而失去客户的信赖。是 这些商店倒闭的致命伤之一。
购物篮分析
2020/7/3
1
前言
俗话说:“商场如战场”。那是指商人之问 的争斗,而这种争斗要通过商品这一道具完 成。商品如同它们的主人一样,有不同的个 性及命运,而商店的货架是商品展开“厮杀” 的“战场”。有的商品一帆风顺,成功进入 客户手中的购物篮,帮助自己的主人完成使 命。而有的商品在门店中郁郁寡欢,始终与 客户手中的购物篮无缘,最终落得一个被赶 下货架、扫地出门的悲惨结局。
相关文档
最新文档