《正弦函数、余弦函数的性质》教学设计
正弦函数余弦函数的性质教学设计
正弦函数余弦函数的性质教学设计教学设计题目:正弦函数和余弦函数的性质一、教学目标:1.理解正弦函数和余弦函数的定义和图像特点;2.掌握正弦函数和余弦函数的周期、振幅、相位等性质;3.能够利用正弦函数和余弦函数的性质解决实际问题。
二、教学内容:1.正弦函数和余弦函数的定义和图像特点;2.正弦函数和余弦函数的周期、振幅、相位等性质;3.正弦函数和余弦函数在实际问题中的应用。
三、教学流程:【导入】(5分钟)1.利用实物或幻灯片展示一个周期性的物体(如钟摆、运动员腕表);2.引导学生思考:你能观察出这个物体有哪些规律性的变化吗?3.引导学生回忆中学过的函数,提到是否有一些函数能够描述这种规律性的变化?【探究】(20分钟)1.引导学生尝试利用直尺、铅笔在纸上标出正弦函数和余弦函数的图像;2.让学生观察图像,找出正弦曲线和余弦曲线的相似之处和不同之处;3.分组讨论并总结正弦函数和余弦函数的定义和图像特点。
【归纳】(15分钟)1.教师引导学生对上述内容进行归纳总结,将正弦函数和余弦函数的定义和图像特点整理成导学笔记;2.教师对学生的总结进行点评,给予肯定和指导。
【深化】(15分钟)1.教师拿出钟表,让学生观察时针的运动;2.引导学生思考:时针的运动是否具有周期性?有什么规律性的变化?是否可以用函数来描述?3.通过时针的运动,引入正弦函数和余弦函数的周期概念。
【拓展】(20分钟)1.教师引导学生观察不同振幅、不同相位的正弦函数和余弦函数的图像;2.教师解释振幅和相位的概念,并给出具体的定义;3.引导学生思考振幅和相位对函数图像的影响。
【展示】(15分钟)1.教师运用课件或黑板展示正弦函数和余弦函数的定义和图像特点,以及周期、振幅、相位等性质;2.教师通过示例演示如何求解正弦函数和余弦函数的周期、振幅、相位等具体数值。
【练习】(30分钟)1.学生进行练习题的训练,巩固对于正弦函数和余弦函数性质的掌握;2.教师巡视指导,及时给予反馈和纠正。
1.4.2正弦函数余弦函数的性质1[教学设计]
1.4.2(1)正弦、余弦函数的性质(教学设计)教学目的:知识目标:要求学生能理解周期函数,周期函数的周期和最小正周期的定义; 能力目标:掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周期。
德育目标:让学生自己根据函数图像而导出周期性,领会从特殊推广到一般的数学思想,体会三角函数图像所蕴涵的和谐美,激发学生学数学的兴趣。
教学重点:正、余弦函数的周期性教学难点:正、余弦函数周期性的理解与应用 授课类型:新授课教学模式:启发、诱导发现教学. 教学过程:一、创设情境,导入新课:1.现实生活中的“周而复始”现象:(1)今天是星期二,则过了七天是星期几?过了十四天呢?……(2)现在下午2点30,那么每过24小时候是几点? (3)路口的红绿灯(贯穿法律意识)2.数学中是否存在“周而复始”现象,观察正(余)弦函数的图象总结规律正弦函数()sin f x x =性质如下:(观察图象) 1︒正弦函数的图象是有规律不断重复出现的;–– π 2π 2π- 2π 5π π- 2π- 5π- O x y 1 1-2︒规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3︒这个规律由诱导公式sin(2k π+x)=sinx 可以说明结论:象这样一种函数叫做周期函数。
文字语言:正弦函数值按照一定的规律不断重复地取得;符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。
余弦函数也具有同样的性质,这种性质我们就称之为周期性。
二、师生互动,新课讲解:1.周期函数定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。
《正弦函数余弦函数的性质》教学设计
《正弦函数余弦函数的性质》教学设计教学设计:正弦函数、余弦函数的性质【教学目标】1.知识与能力目标a.了解正弦函数和余弦函数的定义及其性质;b.掌握正弦函数和余弦函数的图像特点;c.理解正弦函数和余弦函数的周期性和对称性;d.熟练利用性质解决与正弦函数和余弦函数相关的问题。
2.过程与方法目标a.通过多种形式的讲解和演示,提高学生对正弦函数和余弦函数的概念的理解;b.引导学生进行小组合作和交流讨论,培养学生的合作学习意识和能力;c.鼓励学生进行思考和探究,培养学生的自主学习和问题解决能力;d.利用图像和实例帮助学生加深对正弦函数和余弦函数的理解。
【教学重点】正弦函数和余弦函数的定义及其性质。
【教学准备】教师:课堂教学设计、教学PPT、黑板、彩色粉笔、实物模型等。
学生:学习笔记、教材。
【教学过程】Step 1 导入与引入(10分钟)1.教师先介绍正弦函数和余弦函数的概念,并通过实际生活中的例子,比如海浪起伏、摆动等,引导学生了解正弦函数和余弦函数的特点和应用。
2.教师再通过黑板写出正弦函数和余弦函数的定义,引导学生思考函数的定义与图像的关系。
Step 2 讲解正弦函数和余弦函数的性质(15分钟)1.教师通过PPT或者黑板,讲解正弦函数和余弦函数的性质,如定义域、值域、周期、对称性等,并通过图像和实例加深学生的理解。
2.教师提问学生:正弦函数和余弦函数的定义域是什么?取值范围是什么?周期是多少?能否找到其他满足这些性质的函数?引导学生思考函数图像的特点。
Step 3 利用性质解决问题(15分钟)1.教师引导学生通过性质解决实际问题,比如:已知一个函数的定义域是[-π/2,π/2],值域是[-1,1],且函数是奇函数,能否确定这个函数是正弦函数?怎样确定?等。
2.教师安排学生小组活动,给出一些问题,要求学生根据性质解答,并交流讨论解题思路和方法。
Step 4 总结与拓展(10分钟)1.教师带领学生总结正弦函数和余弦函数的性质,并强调重点。
正弦函数、余弦函数性质的教学设计
)及 Y=Ac o s ( 十 ) 周期 的求 法及周 期 公式 .
2 教 学重点 、 难 点与 关键
3 . 1 实 例 引入 课 题
实际生 活 中有许 多周 而复始 的现象 , 如 一年有
春 夏秋冬 4 个季节 , 一周有 7 天, 钟表上 的指针周而
定义 : 对 于 函数 f ( x) , 如 果存 在 一 个 非零 常 数 T, 使 得 当 取 定 义 域 内 的每 一 个 值 时 , 都 有 f ( x+ T )一f( x ) , 那 么 函数 f ( x) 就 叫做周 期 函 数, 非 零常数 丁 叫做这个 函数 的周 期 .
复 始地运转 等. 除 以上 现象 , 同学 们 还能 说 出 哪些
周 而复始 的现象?数学 中有没有 这样 的现 象?
设计 意 图 由学生 熟知 的 实际现 象 引入 , 加
深 对 周 期 性 的认 识 .
引导学 生 分析 , 周期 函数 与奇 、 偶 函数 都 是定
义 域 内的总 体概 念 , 对 周期 函数 定义 进行 剖析 , 可 得 以下 三 点 : 1 )周 期 函 数 是 定 义 域 内 的 整 体 概 念, 即 是 定义 域 内的任 意 自变量 ; 2 ) T是 一个 确 定 的非零 常数 , 只要 存在 即可 ; 3 ) 在 函数 定 义域
3 . 2 生 成周 期 函数概 念
引导 学 生 观察 正 弦 函数 的 图象 , 从 正 弦 函数
重点 : 理 解 周 期 函数 概 念 ; 难点 : 正 确 归 纳周 期 函数 定义 , 会 用 定义 求 函数 y—As i n ( + ) 及 Y=Ac o s ( c + ) 的周 期 ; 关键 : 按照 由特 殊 到
正弦函数、余弦函数的图象和性质教案
正弦函数、余弦函数的图象和性质教案第一章:正弦函数的定义与图象1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图象1.2 教学内容正弦函数的定义:正弦函数是直角三角形中,对于一个锐角,其对边与斜边的比值。
正弦函数的图象:正弦函数的图象是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。
1.3 教学活动讲解正弦函数的定义,并通过实际例子进行解释。
使用图形计算器或者绘图软件,让学生自己绘制正弦函数的图象,并观察其特点。
1.4 作业与练习让学生完成一些关于正弦函数的练习题,包括选择题和解答题。
第二章:余弦函数的定义与图象2.1 教学目标了解余弦函数的定义能够绘制余弦函数的图象2.2 教学内容余弦函数的定义:余弦函数是直角三角形中,对于一个锐角,其邻边与斜边的比值。
余弦函数的图象:余弦函数的图象也是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。
2.3 教学活动讲解余弦函数的定义,并通过实际例子进行解释。
使用图形计算器或者绘图软件,让学生自己绘制余弦函数的图象,并观察其特点。
2.4 作业与练习让学生完成一些关于余弦函数的练习题,包括选择题和解答题。
第三章:正弦函数和余弦函数的性质3.1 教学目标了解正弦函数和余弦函数的性质3.2 教学内容正弦函数和余弦函数的周期性:正弦函数和余弦函数都是周期函数,它们的周期都是2π。
正弦函数和余弦函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数。
正弦函数和余弦函数的单调性:正弦函数和余弦函数在一个周期内都是先增后减。
3.3 教学活动讲解正弦函数和余弦函数的性质,并通过实际例子进行解释。
让学生通过观察图象,总结正弦函数和余弦函数的性质。
3.4 作业与练习让学生完成一些关于正弦函数和余弦函数性质的练习题,包括选择题和解答题。
第四章:正弦函数和余弦函数的应用4.1 教学目标能够应用正弦函数和余弦函数解决实际问题4.2 教学内容正弦函数和余弦函数在物理学中的应用:正弦函数和余弦函数可以用来描述简谐运动,如弹簧振子的运动。
正弦函数余弦函数的性质教案
正弦函数余弦函数的性质教案1.正弦函数、余弦函数图像的画法(1)描点法:按照列表、描点、连线的顺序可作出正弦函数、余弦函数图像的方法.(2)几何法:利用单位圆中的正弦线、余弦线来作出正弦函数、余弦函数图像的方法.(3)五点法:观察正弦函数图像可以看出,(0,0),(,1),(π,0),(,-1),(2π,0)这五个点在确定正弦函数图像形状时起着关键的作用.这五个点描出后,正弦函数y=sin某,某∈[0,2π]的图像的形状就基本上确定了.(0,1),(,0),(π,-1),(,0),(2π,1)这五个点描出后,余弦函数y=cos某,某∈[0,2π]的图像的形状就基本上确定了.在精确度要求不太高时,我们常常先描出这五个点,然后用光滑的曲线将它们连结起来,就得到在相应区间内正弦函数、余弦函数的简图,这种方法叫做五点法.2.正、余弦函数的性质y=sin某y=cos某定义域RR值域[-1,1][-1,1]奇偶性奇函数偶函数单调性在每个区间[2kπ-,2kπ+]上递增,在每个区间[2kπ+,2kπ+]上递减(k∈Z)在每个区间[(2k-1)π,2kπ]上递增,在每个区间[2kπ,(2k+1)π]上递减(k∈Z)周期性2π2π有界性当某=2kπ-(k∈Z),y最小=-1,当某=2kπ+(k∈Z)时,y最大=1当某=(2k+1)π(k∈Z)时,y最小=-1,当某=2kπ(k∈Z)时,y最大=1(注:在单调性中,把函数说成在某象限是增函数或是减函数是不正确的).3.周期函数三角函数的周期性,是角的终边位置周期性的变化的反映,这种周期性清晰地表现在三角函数的图像中,对于周期函数,只要掌握它在一个周期的性质(提供研究问题的方案:先解答一个周期上的问题,再按周期性推广) 周期函数定义:设函数y=f(某)的定义域为D,若存在常数T≠0,使得对一切某∈D,且某+T∈D时,都有f(某+T)=f(某)成立,则称y=f(某)为D上的周期函数,非零常数T叫做这个函数的周期.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期。
《正弦函数、余弦函数的性质-周期性》教学设计
《正弦函数、余弦函数的性质-周期性》教学设计教学目标:一、知识与技能:1.理解周期函数的概念及正弦、余弦函数的周期性.2.会求一些简单三角函数的周期。
二、过程与方法:从学生生活实际的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sinx图象的比较,概括抽象出周期函数的概念。
运用数形结合的方法研究正弦函数的周期性,通过类比研究余弦函数的周期性.三、情感、态度与价值观:让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力.教学重点:1。
周期函数的定义。
2.正弦余弦函数的周期性.教学难点:1.周期函数定义.2.运用定义求函数的周期。
教学过程:一、复习回顾,引入新知:1。
如何画出正余弦函数在[0,2 ]上的图象?2.如何画出正余弦函数在R上的图象?3.如何画出余弦函数图象,并思考正弦、余弦函数的图象联系?(关键:形状相同,位置不同)二、讲授新课:1. 创设问题,情景引入:(1)、观察正、余弦曲线,想一想与之前学习的函数相比最显著的特点是什么?学生根据常识会回答:周期性(2)、生活中有哪些周而复始现象?你能说出几个?【设计意图】:激发学习兴趣,让学生感受数学离生活很近。
如:(演示动画)1 昼夜更替、四季轮回、日出日落、宇宙星空运行。
2 今天周四,14天前周几?98天后周几?3 有一首古诗:离离原上草,一岁一枯荣,夜火烧不尽,春风吹又生。
(勾起高一学生对小学一年级学习情景的回忆和感慨,进而陶冶学生情操,激发学习积极性)……2、演示三个动画让学生从三角度观察进而归纳总结周期函数的定义。
这三个动画分别是:(1)演示[0,2π]上的图象不断重复(2)演示R上任意长度为2π的区间上的图象重复(3)演示任意一点加减2π后的函数值重复3、通过这三个动画使学生由直观到抽象,由感性到理性地思考:① 正弦函数值具有“周而复始”的变化规律,这一点可以从正弦线的变化规律中看出,还可以从诱导公式sin(2)sin ()x k x k Z π+=∈中得到反映,即当自变量x 的值增加2π的整数倍时,函数值重复出现.②周期函数的定义:对于函数()f x ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期.(周期函数()f x 的周期不唯一,,kT k Z ∈都是它的周期,所有周期中最小的正数就叫做它的最小正周期)③由刚才的讨论可知正弦函数是周期函数,它的周期性为2(0)k k Z k π∈≠且,最小正周期是2π。
必修四第一章《正弦函数余弦函数的性质》教学设计(王卫)
§1.4.2正弦函数余弦函数的性质评1节.二、教学目标及解析目标:1、通过图象理解正弦函数、余弦函数的周期性、奇偶性、单调性、最值和对称性,体会数形结合方法;2、会求简单正弦函数、余弦函数的周期、单调区间、最值等。
解析:1、目标1在于让学生体会到数形结合、归纳的数学思想,能独立归纳出的正弦函数、余弦函数的性质。
2、目标2在于让学生学会运用性质对简单正弦函数、余弦函数的奇偶性、单调性、最值等的求解。
三、问题诊断分析本节课的教学中,学生可能出现如下几个问题:①函数周期性的定义是什么?②如何求出正弦函数、余弦函数的周期?③不理解正弦函数、余弦函数的单调区间?不能正确写出正弦函数、余弦函数的单调区间?学生出现这几个问题的原因是不理解正弦函数、余弦函数的本质,对函数的周期性、单调性理解不透彻。
学生运用数学知识解决实际问题的能力还不强;在处理问题时学生考虑问题不深入,往往会造成错误的结果。
解决这些问题的关键是结合图像变化趋势加以理解;结合定义,通过例题加以模仿。
在此过程中,需要学生感受归纳的数学思想,找出函数之间的共同点和规律,通过讨论、合作交流、辩论得到正确的知识。
四、教学条件支持本节课的教学中需要用到几何画板和智能黑板,因为使用几何画板有利于展示函数的图像,能够给学生直观的认识。
五、教学过程1、自学问题1:周期函数的概念是什么?问题2:正、余弦函数有怎样的奇偶性和单调性?问题3:正、余弦函数的最值与对称性分别是什么?2、互学导学问题1:周期函数的概念是什么?设计意图:让学生观察函数的图像,了解函数的变化规律,培养学生的归纳能力。
师生活动:学生思考并回答,教师指导。
小问题1:如何作出正弦函数、余弦函数的图象?答:描点法(几何法、五点法),图象变换法。
并要求学生回忆哪五个关键点。
小问题2:研究一个函数的性质从哪几个方面考虑?答:定义域、值域、奇偶性、单调性、周期性、对称性等小问题3:正弦函数和余弦函数的图象分别是什么?二者有何相互联系?给出正弦、余弦函数的图象,让学生观察,并思考下列问题:世界上有许多事物都呈现“周而复始”的变化规律,如年有四季更替,月有阴晴圆缺.这种现象在数学上称为周期性,在函数领域里,周期性是函数的一个重要性质.小问题4:由正弦函数的图象可知, 正弦曲线每相隔2π个单位重复出现,这一规律的理论依据是什么?sin(2)sin ()x k x k Z π+=∈小问题5:为了突出函数的这个特性,我们把函数f(x)=sinx 称为周期函数,2k π为这个函数的周期.一般地,如何定义周期函数?由inx k x s 2sin =+π)(知: 知:最小正周期是π2.小问题8:就周期性而言,对正弦函数有什么结论?对余弦函数呢?由x k x cos )2cos(=+π知: 正、余弦函数是周期函数,2k π(k ∈Z, k ≠0)都是它的周期,最小正周期是2π.例1 求下列函数的周期: (1)y=3cosx,x ∈R ; (2)y=sin2x,x ∈R ;(3)y=2sin(2x -6π),x ∈R .(1) 因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx ≠3cosx,所以π不是周期.(2) 教师引导学生观察2x,可把2x 看成一个新的变量u,那么cosu 的最小正周期是2π,就是说,当u 增加到u+2π时,函数cosu 的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x 增加到x+π且必须增加到x+π时函数值重复出现.因为sin2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin [21(x+4π)-6π]=2sin [(2x -6π)+2π]=2sin(2x -6π).所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π; (2)周期为π; (3)周期为4π.变式1、P36练习第2题.小问题9:周期性是正、余弦函数所具有的一个基本性质,此外,正、余弦函数还具有哪些性质呢?我们将对此作进一步探究.问题2:正、余弦函数有怎样的奇偶性和单调性?设计意图:让学生观察函数的图像,了解函数的变化规律,数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点,培养学生的归纳能力。
正弦函数、余弦函数的图象和性质教案
一、教学目标1. 让学生了解正弦函数和余弦函数的图象特征,掌握它们的基本性质。
2. 培养学生运用数形结合的方法分析函数图象和性质的能力。
3. 引导学生运用所学知识解决实际问题,提高学生的数学应用能力。
二、教学内容1. 正弦函数的图象和性质2. 余弦函数的图象和性质3. 正弦函数和余弦函数的图象和性质的综合应用三、教学重点与难点1. 重点:正弦函数和余弦函数的图象特征,基本性质。
2. 难点:正弦函数和余弦函数的图象和性质的综合应用。
四、教学方法1. 采用多媒体课件辅助教学,直观展示函数图象和性质。
2. 运用数形结合的方法,引导学生分析函数图象和性质。
3. 案例分析法,让学生在实际问题中体验函数图象和性质的应用。
4. 小组讨论法,培养学生的合作能力和口头表达能力。
五、教学过程1. 导入新课:回顾正弦函数和余弦函数的定义,引导学生思考它们的图象和性质。
2. 讲解与演示:利用多媒体课件,展示正弦函数和余弦函数的图象,讲解图象特征和基本性质。
3. 案例分析:选取实际问题,让学生运用所学知识分析问题,解决问题。
4. 小组讨论:分组讨论正弦函数和余弦函数图象和性质的综合应用,分享讨论成果。
5. 总结与评价:总结本节课所学内容,对学生的学习情况进行评价,布置课后作业。
六、教学策略1. 运用对比分析法,让学生区分正弦函数和余弦函数的图象和性质。
2. 利用数学软件或教具,动态展示正弦函数和余弦函数的图象变化,增强学生直观感受。
3. 设计具有梯度的练习题,让学生在实践中巩固所学知识。
4. 创设情境,引导学生发现生活中的正弦函数和余弦函数模型,提高学生的数学素养。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和兴趣。
2. 练习完成情况:检查学生课后作业和实践任务的完成质量,评价学生的学习效果。
3. 小组讨论:评估学生在小组讨论中的表现,包括合作能力、口头表达能力等。
4. 自我评价:鼓励学生进行自我评价,反思学习过程中的优点和不足。
正弦函数余弦函数的图象与性质教案
正弦函数与余弦函数的图象与性质教案教学目标:1. 理解正弦函数和余弦函数的定义。
2. 学会绘制正弦函数和余弦函数的图象。
3. 掌握正弦函数和余弦函数的性质。
教学内容:第一章:正弦函数的定义与图象1.1 正弦函数的定义1.2 正弦函数的图象1.3 绘制正弦函数的图象第二章:余弦函数的定义与图象2.1 余弦函数的定义2.2 余弦函数的图象2.3 绘制余弦函数的图象第三章:正弦函数的性质3.1 周期性3.2 奇偶性3.3 最大值和最小值3.4 相位变换第四章:余弦函数的性质4.1 周期性4.2 奇偶性4.3 最大值和最小值4.4 相位变换第五章:正弦函数和余弦函数的应用5.1 振动现象的应用5.2 波动现象的应用5.3 温度变化的应用教学方法:1. 采用讲解法,引导学生理解正弦函数和余弦函数的定义和性质。
2. 采用图象绘制法,让学生通过绘制图象来加深对函数的理解。
3. 采用实例分析法,通过实际应用来让学生掌握正弦函数和余弦函数的图象与性质。
教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生绘制函数图象的准确性。
3. 学生对正弦函数和余弦函数性质的理解程度。
4. 学生解决实际问题的能力。
教学资源:1. 教学PPT。
2. 函数图象绘制软件。
3. 实际应用案例资料。
教学步骤:第一章:正弦函数的定义与图象1.1 讲解正弦函数的定义,引导学生理解正弦函数的概念。
1.2 利用函数图象绘制软件,演示正弦函数的图象。
1.3 学生动手绘制正弦函数的图象,加深对函数的理解。
第二章:余弦函数的定义与图象2.1 讲解余弦函数的定义,引导学生理解余弦函数的概念。
2.2 利用函数图象绘制软件,演示余弦函数的图象。
2.3 学生动手绘制余弦函数的图象,加深对函数的理解。
第三章:正弦函数的性质3.1 讲解正弦函数的周期性,引导学生理解周期性的概念。
3.2 讲解正弦函数的奇偶性,引导学生理解奇偶性的概念。
3.3 讲解正弦函数的最大值和最小值,引导学生理解最大值和最小值的概念。
正弦函数余弦函数的性质优秀教学设计
正弦函数余弦函数的性质优秀教学设计教学设计:正弦函数、余弦函数的性质教学目标:1.理解正弦函数、余弦函数的定义和性质。
2.掌握正弦函数、余弦函数的图像特征。
3.能够应用正弦函数、余弦函数解决实际问题。
教学内容:1.正弦函数和余弦函数的定义和性质。
2.正弦函数和余弦函数的图像特征。
3.正弦函数和余弦函数的应用。
教学步骤和教学方法:1.导入新知识(10分钟)-利用问题情境引入正弦函数和余弦函数的定义和性质,激发学生的兴趣。
-引导学生思考正弦函数和余弦函数的周期性、振幅和相位等特征。
-帮助学生建立正弦函数和余弦函数与三角形的关系,加深理解。
2.理解正弦函数和余弦函数的性质(30分钟)-通过示例和练习展示正弦函数和余弦函数的定义和性质,引导学生进行观察和思考。
-分组讨论,让学生自主总结正弦函数和余弦函数的周期、振幅和相位等特征。
-总结讨论结果,归纳出正弦函数和余弦函数的性质。
3.掌握正弦函数和余弦函数的图像特征(45分钟)-展示正弦函数和余弦函数的图像,帮助学生观察和分析。
-引导学生通过调整参数,观察正弦函数和余弦函数图像的变化规律,进一步理解特征。
-分组比较不同参数对图像的影响,总结出对图像的变化规律。
4.正弦函数和余弦函数的应用(35分钟)-指导学生如何利用正弦函数和余弦函数解决实际问题,如音乐、天文和工程等领域的应用。
-引导学生选择合适的模型,建立方程,求解实际问题。
-分组讨论不同应用情境下的解决方法和思路,分享成果。
5.小结和总结(10分钟)-对本节课的学习内容进行小结,并强调正弦函数和余弦函数的重要性和应用价值。
-引导学生回顾学习过程,总结所学知识和经验。
-群策群力,搜集问题和困惑,帮助学生解决疑惑,巩固所学内容。
教学资源和评价方式:1.教学资源:投影仪、教材、课件、练习题和实例参考。
2.评价方式:观察学生的参与程度、课堂表现和练习题答案。
同时,课后可以布置作业,检验学生对于正弦函数和余弦函数的理解和应用。
5.4.2正弦函数、余弦函数的性质(第2课时)(教学设计)高一数学 (人教A版2019 必修第一册)
《5.4.2正弦、余弦函数的性质》教学设计第2课时教材内容:本节的内容是正弦函数、余弦函数的性质的研究,在此之前,已经研究过二次函数、幂函数、指数函数等函数的性质。
因此在研究正弦函数、余弦函数时可借助之前研究函数性质的经验。
同时,本节课的学习也为后续学习正切函数的图像和性质奠定了基础。
本节内容在教学安排上有着承前启后的作用。
教学目标:1.掌握y=sin x,y=cos x的最大值与最小值,并会求简单三角函数的值域和最值,培养数学运算的核心素养;2.掌握y=sin x,y=cos x的单调性,并能利用单调性比较大小,提升逻辑推理的核心素养;3.会求函数y=Asin(ωx+φ)及y=Acos(ωx+φ)的单调区间,提升数学运算的核心素养;4.会求函数y=Asin(ωx+φ)及y=Acos(ωx+φ)的对称轴、对称中心,提升数学运算的核心素养。
教学重点与难点:1、通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质;2、应用正、余弦函数的性质来求含有cosx,sinx 的函数的单调性、最值、值域及对称性。
教学过程设计:(一)新知导入1. 创设情境,生成问题过山车是一项富有刺激性的娱乐工具.那种风驰电掣、有惊无险的快感令不少人着迷.过山车的运动包含了许多物理学原理,人们在设计过山车时巧妙地运用了这些原理.如果能亲身体验一下由能量守恒、加速度和力交织在一起产生的效果,那感觉真是妙不可言.一个基本的过山车构造中,包含了爬升、滑落、倒转(儿童过山车没有倒转),几个循环路径.2.探索交流,解决问题探究 (1)函数y =sin x 与y =cos x 也像过山车一样“爬升”,“滑落”,这是y =sin x ,y =cos x 的哪些性质?(2)过山车爬升到最高点,然后滑落到最低点,然后再爬升,对应y =sin x ,y =cos x 的哪些性质?y =sin x ,y =cos x 在什么位置取得最大(小)值? 提示 (1)单调性. (2)最值,波峰,波谷.【设计意图】通过复习三角函数的定义,用联系的观点引入本节新课,建立知识间的联系,提高学生概括推理的能力。
高中《正弦和余弦定理》数学教案4篇
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
正弦函数余弦函数的图象与性质教案
正弦函数与余弦函数的图象与性质教案一、教学目标:1. 理解正弦函数和余弦函数的定义及其在直角坐标系中的图象。
2. 掌握正弦函数和余弦函数的性质,包括周期性、对称性、奇偶性等。
3. 能够运用正弦函数和余弦函数的性质解决实际问题。
二、教学内容:1. 正弦函数和余弦函数的定义及图象。
2. 正弦函数和余弦函数的周期性及其应用。
3. 正弦函数和余弦函数的对称性及其应用。
4. 正弦函数和余弦函数的奇偶性及其应用。
5. 正弦函数和余弦函数的性质在实际问题中的应用。
三、教学重点与难点:1. 重点:正弦函数和余弦函数的图象与性质。
2. 难点:正弦函数和余弦函数性质的应用。
四、教学方法:1. 采用讲授法,讲解正弦函数和余弦函数的定义、图象和性质。
2. 利用多媒体展示正弦函数和余弦函数的图象,增强学生的直观感受。
3. 运用例题解析,引导学生运用正弦函数和余弦函数的性质解决实际问题。
4. 开展小组讨论,促进学生对正弦函数和余弦函数性质的理解和应用。
五、教学过程:1. 引入:通过实例引入正弦函数和余弦函数的图象和性质。
2. 讲解:讲解正弦函数和余弦函数的定义、图象和性质。
3. 演示:利用多媒体展示正弦函数和余弦函数的图象,引导学生观察和分析。
4. 练习:布置练习题,让学生巩固正弦函数和余弦函数的性质。
5. 应用:运用正弦函数和余弦函数的性质解决实际问题。
7. 作业:布置作业,巩固所学内容。
六、教学评估:1. 课堂讲解:评估学生对正弦函数和余弦函数定义、图象和性质的理解程度。
2. 练习题:评估学生运用正弦函数和余弦函数性质解决实际问题的能力。
3. 小组讨论:评估学生在团队合作中提出观点、分析问题和解决问题的能力。
七、教学反馈与调整:1. 根据学生的课堂表现和作业完成情况,了解学生对正弦函数和余弦函数图象与性质的掌握程度。
2. 针对学生的薄弱环节,进行有针对性的辅导和讲解。
3. 调整教学方法和进度,确保学生能够扎实掌握正弦函数和余弦函数的图象与性质。
正弦函数、余弦函数的性质区公开课教案
正弦函数、余弦函数的性质区公开课教案第一章:正弦函数的定义与性质1.1 教学目标了解正弦函数的定义掌握正弦函数的性质能够运用正弦函数解决实际问题1.2 教学内容正弦函数的定义:正弦函数的图像与性质正弦函数的性质:周期性、奇偶性、单调性、对称性1.3 教学活动引入正弦函数的定义,引导学生观察正弦函数的图像引导学生通过图像分析正弦函数的性质举例说明正弦函数在实际问题中的应用第二章:余弦函数的定义与性质2.1 教学目标了解余弦函数的定义掌握余弦函数的性质能够运用余弦函数解决实际问题2.2 教学内容余弦函数的定义:余弦函数的图像与性质余弦函数的性质:周期性、奇偶性、单调性、对称性2.3 教学活动引入余弦函数的定义,引导学生观察余弦函数的图像引导学生通过图像分析余弦函数的性质举例说明余弦函数在实际问题中的应用第三章:正弦函数与余弦函数的周期性3.1 教学目标理解正弦函数与余弦函数的周期性能够运用周期性解决实际问题3.2 教学内容正弦函数与余弦函数的周期性:周期公式、周期图像3.3 教学活动引导学生通过图像观察正弦函数与余弦函数的周期性讲解周期公式的推导与运用举例说明周期性在实际问题中的应用第四章:正弦函数与余弦函数的奇偶性4.1 教学目标理解正弦函数与余弦函数的奇偶性能够运用奇偶性解决实际问题4.2 教学内容正弦函数与余弦函数的奇偶性:奇偶性的定义与性质4.3 教学活动引导学生通过特殊值法观察正弦函数与余弦函数的奇偶性讲解奇偶性的性质与运用举例说明奇偶性在实际问题中的应用第五章:正弦函数与余弦函数的单调性5.1 教学目标理解正弦函数与余弦函数的单调性能够运用单调性解决实际问题5.2 教学内容正弦函数与余弦函数的单调性:单调性的定义与性质5.3 教学活动引导学生通过特殊值法观察正弦函数与余弦函数的单调性讲解单调性的性质与运用举例说明单调性在实际问题中的应用第六章:正弦函数与余弦函数的对称性6.1 教学目标理解正弦函数与余弦函数的对称性能够运用对称性解决实际问题6.2 教学内容正弦函数与余弦函数的对称性:对称性的定义与性质6.3 教学活动引导学生通过特殊值法观察正弦函数与余弦函数的对称性讲解对称性的性质与运用举例说明对称性在实际问题中的应用第七章:正弦函数与余弦函数的实际应用7.1 教学目标掌握正弦函数与余弦函数在实际问题中的应用能够运用正弦函数与余弦函数解决实际问题7.2 教学内容正弦函数与余弦函数在实际问题中的应用:物理、工程、天文等领域7.3 教学活动举例说明正弦函数与余弦函数在物理、工程、天文等领域中的应用引导学生运用正弦函数与余弦函数解决实际问题第八章:正弦函数与余弦函数的综合应用8.1 教学目标掌握正弦函数与余弦函数的综合应用能够灵活运用正弦函数与余弦函数解决复杂问题8.2 教学内容正弦函数与余弦函数的综合应用:数学、物理、工程等领域8.3 教学活动举例说明正弦函数与余弦函数在数学、物理、工程等领域中的综合应用引导学生灵活运用正弦函数与余弦函数解决复杂问题第九章:正弦函数与余弦函数的教学拓展9.1 教学目标了解正弦函数与余弦函数的教学拓展能够运用教学拓展提高学生的学习兴趣与效果9.2 教学内容正弦函数与余弦函数的教学拓展:历史、文化、科技等领域9.3 教学活动介绍正弦函数与余弦函数在历史、文化、科技等领域的应用与拓展引导学生运用教学拓展提高学习兴趣与效果第十章:正弦函数与余弦函数的复习与总结10.1 教学目标巩固正弦函数与余弦函数的知识提高学生的综合应用能力10.2 教学内容正弦函数与余弦函数的复习与总结:知识点梳理、典型题解析、学习方法分享10.3 教学活动引导学生梳理正弦函数与余弦函数的知识点分析典型题目的解题思路与方法分享学习方法与经验,帮助学生提高学习效果重点和难点解析重点环节一:正弦函数与余弦函数的定义与性质需要重点关注正弦函数与余弦函数的定义,以及它们的性质,包括周期性、奇偶性、单调性和对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正弦函数、余弦函数的性质》教学设计
一、教材分析
1.教材的内容和地位
《正弦函数、余弦函数的性质》是人教A版数学必修4的第一章三角函数的内容,是学习了正弦函数、余弦函数的定义和图像之后,进一步学习正弦函数、余弦函数的性质。
该内容共两课时,这里讲的是第一课时,主要是探究正弦、余弦函数的定义域、值域(最值)和周期性,而对奇偶性、对称性和单调性的探究则放在第二节课。
正弦函数、余弦函数的图象和性质是三角函数里的重要内容,也是高考热点考察的内容之一。
本节课的学习过程中,数形结合的思想方法贯穿了本节内容的始终,利用图像研究性质,反过来再根据性质进一步地认识函数的图象,充分体现了数形结合的数学思想方法。
2.教学目标
根据《新课标》的具体要求,结合学生现有的认知水平,确定教学目标如下:
(1)知识与技能:通过观察正弦、余弦函数图像得到正弦函数、余弦函数的性质,并灵活应用性质解题;
(2)过程与方法:培养学生分析、探索、类比和数形结合等数学思想方法在解决问题中的应用能力,培养学生自主探究的能力,深化研究函数性质的思想方法;
(3)情感、态度与价值观:让学生亲身经历数学的研究过程,感受数学的魅力。
3. 教学重点和难点
重点:通过观察正弦、余弦函数的图像研究正弦、余弦函数的性质;
难点:周期函数、最小正周期的意义。
二、学情分析
本课之前,学生已经学习了《必修一》,学习了函数的性质和研究函数的一般方法,学习了正弦函数、余弦函数的概念、图像以及诱导公式,这些都为本节课的学习打好了基础。
函数的定义域、(最值)值域、奇偶性、单调性等性质,学生类比指数函数、对数函数、幂函数的研究方法不难由观察图像得出结论,但对于函数的周期性,学生是第一次接触,对概念的理解可能会有困难。
三、教法学法分析
1.教法分析
本节课以学生为主体,教师引导学生通过观察正弦函数图像,自主探究,总结规律,再类
比正弦函数得到余弦函数的相应结论,并能应用规律分析问题,解决问题。
在教学中以引导启发为主,在学生观察比较的基础上,师生以问答形式共同研究探讨,让学生经历知识再发现、再创造的过程。
2. 学法分析
教师的“教”不仅要让学生“学会知识”,更重要的是要让学生“学会方法”,而正确的学法指导是培养学生这种能力的关键。
本节教学中通过观察函数图象,充分调动学生已有的学习经验,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。
四、教学过程分析
这节课的流程主要分为五个阶段:复习回顾;探究正弦函数的定义域、值域(最值);探究正弦函数的周期性;探究余弦函数的性质;巩固练习。
(一)、复习回顾,引入新知
师:回顾前面学习函数时,是如何研究它的性质?研究它的哪些性质?
生:(预计)先画图,通过观察图象得性质,主要研究函数的定义域、值域、最值、单调性、奇偶性、对称性、定点等
师:本节课我们只研究前三个问题,对其它性质的研究放在下节课。
PPT 展示画正弦函数图像
【设计意图】:通过复习,建立新旧知识间的联系,为通过观察函数图象研究函数性质做好准备,让学生对周期性有个直观的印象,为周期性的出现做好铺垫。
(二)、探究正弦函数的定义域、值域(最值)
师:观察正弦函数的图象,填写下表(学生回答,相互补充,师生一问一答间得出结论) 1(1)sin 1,(2)3sin 2,.
x y x x R y x x R =+∈=-∈例:求下列函数的最大值和最小值,并求出取最大值和最小值时的集合.; 【设计意图】:通过观察函数图像,结合已有知识和方法,学生自己归纳总结正弦函数的性质,培养学生自主探究、研究问题、解决问题的能力。
(三)、探究正弦函数的周期性
师:从正弦函数的作图过程中,我们发现正弦函数值具有“周而复始”的变化规律,这个规律是之前所学函数不具有的,我们用“周期性”来刻画这一规律。
观察正弦函数的图象,发现将
正弦函数图象向左或向右平移2π个单位,图象保持不变,向左或向右平移4π个单位,图象也不变
(给出周期函数、周期的定义)
周期函数定义:一般地,对于函数f(x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数。
非零常数T 叫做这个函数的周期.
师:正弦函数的周期是多少?(2k π(k ∈Z 且k≠0))
师:概念中有哪些关键词?
(辨析概念) 思考:等式sin()sin 244π
+=π
π是否成立?如果成立,能不能说2π
是y=sinx 的周期?
判断下列说法是否正确:
(2)由诱导公式,所以的周期为2π;sin(2)sin 33x x +π=sin 3x
y =(1)时,则一定不是的周期;3x π=2sin()sin ,3
x x π+≠23π
sin y x =(
)(
)(3)若T(T≠0)是f(x) 的周期,则kT(k ∈Z 且k≠0)一定是f(x) 的周期;(
)
【设计意图】:引导学生关注定义中的关键词,从而加深对数学概念的理解.
例2:求下列函数的周期:
(1) y=3sinx(x ∈R); (2)y=sin2x(x ∈R); (2)y=2sin 1()26x π
-; (x ∈R)
变式练习:sin()(0,0)()y A x A x R =ω+ϕ≠ω≠∈ 结论:2sin(),(0,0)y A x A T π
=ω+ϕ≠ω≠=ω的周期是
【设计意图】:进一步加深对周期函数和周期的理解。
(四)、探究余弦函数的性质
PPT 展示正弦函数的性质(表格形式)
师:请画出余弦函数的图像,类比正弦函数的性质,试探究余弦函数的相关性质。
(学生活动:学生合作学习,得到余弦函数性质,完成表格)
(五)、巩固练习:
1.求下列函数的周期
(1)sin 3,;
(2)3cos ,;41(3)sin(2),;(4)),.1024x y x x R y x R y x x R y x x R ππ=∈=∈=-+∈=--∈ 2.已知函数()y f x =的周期是3,且当[0,3]x ∈时,2()1f x x =+.
(1)求(1),(5),(16);f f f (2)求当[3,6]x ∈时得解析式
(六)、总结回顾,提出课后思考
以问题的形式:本节课主要学习了哪些知识?让学生自己概括出所学内容。
正弦函数、余弦函数性质,周期函数、周期、最小正周期概念
【设计意图】:通过小结,深化学生知识理解、完善学生认知结构。
拓展思考:
1.是不是只有三角函数是周期函数呢?你还能找出其他的周期函数吗?
2.周期函数一定存在最小正周期吗?
1,3.()?0,x D x x ⎧=⎨⎩当是有理数,函数是周期函数吗当是无理数.
作业:
P46 习题1.4 A 组3, 10 B 组1, 3。