信号与系统概念复习题参考答案

合集下载

信号与系统复习试题(含答案)

信号与系统复习试题(含答案)
D。激励与H(s)的极点
76.某二阶LTI系统的频率响应H (j)
A.y2y3y
B。y3y2yf2
D。y3y2yf
H(s)的共轭极点在虚轴上,则它的
2,-1,H ()1,则系统函数H(s)为(
C。(s1)(s2)
(t)的傅氏变换是(
B。j(
D。j(2
A.系统在(t)作用下的全响应
C.系统单位阶跃响应的导数
6。对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积
分器数目最少是__3个_____个。
7。一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S平面
的___左半平面_______。
8.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为
其中x(0)是初始状态,
f(t)为激励,y(t)为全响应,试回答该系统是否是线性的?[答案:非线性]
2.y'(t)sinty(t)f(t)试判断该微分方程表示的系统是线性的还是非线性的,
是时变的还是非时变的?[答案:线性时变的]
3.已知有限频带信号f(t)的最高频率为100Hz,若对f(2t)*f(3t)进行时域取样,
B。f(t)f(t8)
12
C.f(t)f(t8)
D。f(t3)f(t1)
69.已知一连续系统在输入f(t)的作用下的零状态响应为yzs(t)f(4t),则该系统为()
70.已知f(t)是周期为T的函数,f(t)-f (t
T)的傅里叶级数中,只可能有(
71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为(e
h(t)=(1et)(t),则其系统函数
15.已知一信号f(t)的频谱F(j)的带宽为,则f(2t)的频谱的带宽为

信号与系统期末考试复习题及答案(共8套)

信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

信号与系统复习题(含答案)

信号与系统复习题(含答案)

试题一一.选择题(共 10 题, 20 分)j ( 2 ) n41、x[n]ej ( ) ne33,该序列是。

A.非周期序列B.周期 N 3C.周期 N 3 / 8D. 周期N 242、一连续时间系统 y(t)= x(sint) ,该系统是。

A. 因果时不变B.因果时变C.非因果时不变D.非因果时变3、一连续时间 LTI 系统的单位冲激响应 h(t) e 4tu(t2),该系统是 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定 4、若周期信号 x[n] 是实信号和奇信号,则其傅立叶级数系数 a k是 。

A. 实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇, | 2 , 则 x(t)5 、 一 信 号 x(t) 的 傅 立 叶 变 换 X ( j ) 1 | ,| 20 |为。

A. sin 2tB. sin 2tC. sin 4tD. sin 4t2tt4tt6 、 一 周 期 信 号 x(t)(t5n) , 其 傅 立 叶 变 换 X ( j)n为。

A. 2(2 k)B.5 ( 2 k552 k)k5C. 10(10 k)D.1(k)k10k107、一实信号 x[n] 的傅立叶变换为 X (e j) ,则 x[n] 奇部的傅立叶变 换为 。

A.j Re{ X (e j )}B. Re{ X (e j)}C. j Im{ X (e j )}D.Im{ X (e j )}8、一信号 x(t) 的最高频率为 500Hz ,则利用冲激串采样得到的采样信号 x(nT) 能唯一表示出原信号的最大采样周期为 。

A. 500B. 1000C. 0.05D. 0.0019、一信号 x(t) 的有理拉普拉斯共有两个极点 s=- 3 和 s=- 5,若 g(t ) e 4t x(t) , 其 傅 立 叶 变 换 G ( j ) 收 敛 , 则 x(t) 是 。

A. 左边B. 右边C. 双边D. 不确定10、一系统函数H (s) e s, 1,该系统是 。

信号与系统题库答案(完整版)

信号与系统题库答案(完整版)

1 −2( s +1) 1 −2 s e (2) e s +1 s +1 e2 2cos 2 + s sin 2 − s (3) (4) ie s +1 s2 + 4 1 ⎛ 1 1⎞ ⎛ 1 2⎞ (5) 2 [1 − (1 + s )e − s ]e − s (6) ⎜ 2 + ⎟ e − s − ⎜ 2 + ⎟ e −2 s s s⎠ s⎠ ⎝s ⎝s (1)
[3]解 A 点: FA (ω ) =
1 [G1 (ω + ω0 ) + G1 (ω − ω0 )] 2 j B 点: FB (ω ) = [G1 (ω + ω0 ) − G2 (ω − ω0 )] 2 1 C 点: FC (ω ) = [ FA (ω ) + FB (ω )] ⋅ π [δ (ω + ω0 ) + δ (ω − ω0 )] 2π 1 1 1 j j = [ G1 (ω + 2ω0 ) + G1 (ω ) + G2 (ω + 2ω0 ) − G2 (ω )] 2 2 2 2 2 1 1 1 j j + [ G1 (ω ) + G1 (ω − 2ω0 ) + G2 (ω ) − G2 (ω − 2ω0 )] 2 2 2 2 2
1 1 1 j j = [ G1 (ω + 2ω0 ) + G1 (ω ) + G2 (ω + 2ω0 ) − G2 (ω )] 2 2 2 2 2 1 1 1 j j + [ G1 (ω ) + G1 (ω − 2ω0 ) + G2 (ω ) − G2 (ω − 2ω0 )] 2 2 2 2 2

信号与系统习题答案(教学参考)

信号与系统习题答案(教学参考)

《信号与系统》复习题1. 已知f(t)如图所示,求f(-3t-2)。

2. 已知f(t),为求f(t0-at),应按下列哪种运算求得正确结果?(t0和a 都为正值)3.已知f(5-2t)的波形如图,试画出f(t)的波形。

解题思路:f(5-2t)−−−−−→−=倍展宽乘22/1a f(5-2×2t)= f(5-t) −−→−反转f(5+t)−−→−5右移f(5+t-5)= f(t)4.计算下列函数值。

(1)dt t t u t t )2(00--⎰+∞∞-)(δ (2)dt t t u t t )2(0--⎰+∞∞-)(δ(3)dt t t e t ⎰+∞∞--++)(2)(δ 5.已知离散系统框图,写出差分方程。

解:2个延迟单元为二阶系统,设左边延迟单元输入为x(k) 左○∑:x(k)=f(k)-a 0*x(k-2)- a 1*x(k-1)→ x(k)+ a 1*x(k-1)+ a 0*x(k-2)=f(k) (1)右○∑: y(k)= b 2*x(k)- b 0*x(k-2) (2) 为消去x(k),将y(k)按(1)式移位。

a 1*y(k-1)= b 2* a 1*x(k-1)+ b 0* a 1*x(k-3) (3) a 0*y(k-2)= b 2* a 0*x(k-2)-b 0* a 0*x(k-4) (4) (2)、(3)、(4)三式相加:y(k)+ a 1*y(k-1)+ a 0*y(k-2)=b 2*[x(k)+ a 1*x(k-1)+a 0*x(k-2)]- b 0*[x(k-2)+a 1*x(k-3)+a 0*x(k-4)] ∴ y(k)+ a 1*y(k-1)+ a 0*y(k-2)= b 2*f(k)- b 0*f(k-2)═>差分方程6.绘出下列系统的仿真框图。

)()()()()(100122t e dt d b t e b t r a t r dt d a t r dtd +=++ 7.判断下列系统是否为线性系统。

信号与系统复习试题(含答案)

信号与系统复习试题(含答案)

电气《信号与系统》复习(fùxí)参考练习题一、单项选择题:14、已知连续(liánxù)时间信号则信号(xìnhào)所占有(zhànyǒu)的频带宽度为()A.400rad/s B。

200 rad/s C。

100 rad/s D。

50 rad/s 15、已知信号(xìnhào)如下图(a)所示,其反转(fǎn zhuǎn)右移的信号(xìnhào)f1(t) 是( d )16、已知信号(xìnhào)如下图所示,其表达式是()A、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始(yuánshǐ)信号,f1(t)为变换信号,则f1(t)的表达式是()A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号(xìnhào)为f(t),系统的零状态响应是( c )19。

信号(x ình ào)与冲激函数之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δA 、因果(yīnguǒ)不稳定系统B 、非因果(yīnguǒ)稳定系统C 、因果稳定(wěndìng)系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是()A、常数B、实数C、复数D、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是()A、阶跃信号(xìnhào)B、正弦(zhèngxián)信号C、冲激(chōnɡ jī)信号 D、斜升信号(xìnhào)23. 积分(jīfēn)的结果为( )A B)(tf C. D.24. 卷积的结果为( )A. B. C. )(tf D.25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A、 B、 C、 D、127.信号〔ε(t)-ε(t-2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S平面D.不存在28.已知连续系统二阶微分方程的零输入响应的形式为,则其2个特征根为( )A。

信号与系统复习题含答案完整版

信号与系统复习题含答案完整版

信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。

信号与系统复习题及答案

信号与系统复习题及答案

1.系统的激励是,响应为,若满足,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?)2.求积分的值为 5 。

3.当信号是脉冲信号时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4.若信号的最高频率是2kHz ,则的乃奎斯特抽样频率为 8kHz 。

5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6.系统阶跃响应的上升时间和系统的 截止频率 成反比。

7.若信号的,求该信号的。

8.为使LTI 连续系统是稳定的,其系统函数的极点必须在S 平面的 左半平面 。

9.已知信号的频谱函数是,则其时间信号为。

10.若信号的,则其初始值 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足 ( √ )2.满足绝对可积条件的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × )得分)t (e )t (r dt)t (de )t (r =dt )t ()t (212-+⎰∞∞-δf(t)f(t)t)f(23s F(s)=(s+4)(s+2)=)j (F ωj 3(j +4)(j +2)ωωω)s (H ))00(()j (F ωωδωωδω--+=f(t)01sin()t j ωπf(t)211)s (s )s (F +-==+)(f 0)()(t t -=δδ∞<⎰∞∞-dt t f )(3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分,6题15分,共60分)1.信号,信号,试求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统复习题1、描述某系统的微分方程为y ”(t) + 5y ’(t) + 6y(t) = f (t)y(0_)=2,y ’(0_)= -1y(0_)= 1,y ’(0_)=0求系统的零输入响应。

求系统的冲击相应求系统的单位阶跃响应。

解:2、系统方程 y (k)+ 4y (k – 1) + 4y (k – 2) = f (k)已知初始条件y (0)=0,y (1)= – 1;激励kk f 2)(=,k ≥0。

求方程的解。

解:特征方程为 λ2 + 4λ+ 4=0可解得特征根λ1=λ2= – 2,其齐次解y h(k )=(C 1k +C 2) (– 2)k特解为 y p(k )=P (2)k , k ≥0代入差分方程得 P (2)k +4P (2)k –1+4P (2)k –2= f (k ) = 2k ,解得 P =1/4所以得特解: y p(k )=2k –2 , k ≥0故全解为 y (k )= y h+y p = (C 1k +C 2) (– 2)k + 2k –2 , k ≥0代入初始条件解得 C 1=1 , C 2= – 1/43、系统方程为 y (k) + 3y (k –1) + 2y (k –2) = f (k)已知激励k k f 2)(=, k ≥0,初始状态y (–1)=0, y (–2)=1/2, 求系统的零输入响应、零状态响应和全响应。

解::(1)y zi(k )满足方程y zi(k ) + 3y zi(k –1)+ 2y zi(k –2)= 0y zi(–1)= y (–1)= 0, y zi(–2) = y (–2) = 1/2首先递推求出初始值y zi(0), y zi(1),y zi(k )= – 3y zi(k –1) –2y zi(k –2)y zi(0)= –3y zi(–1) –2y zi(–2)= –1y zi(1)= –3y zi(0) –2y zi(–1)=3特征根为λ1= –1 ,λ2= – 2解为 y zi(k )=C zi1(– 1)k + C zi2(–2)k将初始值代入 并解得 C zi1=1 , C zi2= – 2y zi(k )=(– 1)k – 2(– 2)k , k ≥0(2)零状态响应y zs(k ) 满足:y zs(k ) + 3y zs(k –1) + 2y zs(k –2) = f (k )y zs(–1)= y zs(–2) = 0递推求初始值 y zs(0), y zs(1),y zs(k ) = – 3y zs(k –1) – 2y zs(k –2) + 2k , k ≥0y zs(0) = – 3y zs(–1) – 2y zs(–2) + 1 = 1y zs(1) = – 3y zs(0) – 2y zs(–1) + 2 = – 1分别求出齐次解和特解,得y zs(k ) = C zs1(–1)k + C zs2(–2)k + y p(k )= C zs1(– 1)k + C zs2(– 2)k + (1/3)2k代入初始值求得C zs1= – 1/3 , C zs2=1y zs(k )= – (– 1)k /3+ (– 2)k + (1/3)2k ,k ≥04、系统的方程:()()()()()12213 -+=-+-+k f k f k y k y k y()()()()()0102==-=y y k k f k ε求系统的零输入响应。

解:5、已知单位阶跃函数的傅里叶变换:ωωπδεj t 1)()(+=←→求下面矩形脉冲 (门函数)的傅里叶变换,并画出其频谱图。

)2Sa()2sin(2)(j ωττωωτω==F解:6、求函数)()(t e t f t εα=,α >0的傅里叶变换,并画出其频谱图。

7、已知矩形脉冲()t g τ的傅里叶变换如为()⎪⎭⎫⎝⎛⋅=2j ωττωτSa G ,其中τ为脉冲宽度。

求信号()()()t t g t f 0cos ωτ=的傅里叶变换。

8、已知系统的微分方程为y ´(t) + 2y (t) = f (t),求系统的频率响应函数)(ωj H 。

求)()(t e t f t ε-=时零状态响应y (t)。

解 :由H (j w )的定义则有:则解的 9、如图电路,R =1Ω,C =1F ,以)(t u c 为输出,求冲击相应h (t)。

解:取Uc(t)为输出,则网络函数为H (s )=Uo(s)/Ui (s )=1/sc/R+1/sc=1/RC*1/S+1/RC S= —1/RC()[()]()j H j F h t h e d ωτωττ∞--∞==⎰)()(2)(3)()(2ωωωωωωj F j Y j Y j j Y j f f f =++)()()(ωωωj F j Y j H f =2)(3)(12++=ωωj j R e []s α>-则电路的冲击响应为:U (s )=1/sc/R+1/sc=1/RC*1/S+1/RC若取Ic(t)为输出时,则网络函数为:H(s)=Ic(s)/Ui(s)=1/R+1/SC=1/R*S/S+1/RC电路的零输入响应:Us=Uc (0-)/S*R/R+1/SC=Uc(0—)/S+1/RC10、求下面信号的单边拉氏变换)cos(t ω;)sin(t ω;)()sin(t t e t εωα-;)()cos(t t e t εωα-⎩⎨⎧≤≤=;其它;如果001)(τt t f 解:同理:11、描述某LTI 系统的微分方程为y "(t ) + 5y '(t ) + 6y (t ) = 2f '(t)+ 6 f (t)求系统函数H (s )已知初始状态y(0-) = 1,y'(0-)= -1,求零输入响应求)()(t e t f t εα-=时系统的零状态响应解: 方程取拉氏变换:)0()0()(,2----y sy s Y s)]0()([5--+y s sY )(6s Y +()0220e cos ()t s t t s ααωεαω-+↔++Re[]s α>-00220sin()()t t s ωωεω↔+()00220e sin()()t t t s αωωεαω-↔++)(21sin jwt jwt e e jwt --=22]11[21][sin )(w s w jw s jw s j wt LT s F +=+--==)(21cos jwt jwt e e wt -+=22]11[21][cos )(w s s jw s jw s wt LT s F +=++-==][21)(21sin )()(t jw a t jw a jwt jwt at at e e j e e j e wt e +-------=-=22)(])(1)(1[21]sin [)(w a s w jw a s jw a s j wt e LT s F at ++=++--+==-0220cos()()s t t s ωεω↔+)(6)(2s F s sF +=整理得: 12F请画出系统在s 域的框图。

求系统函数H(s)。

求系统的冲击响应。

∑解:解 画出s 域框图,设最右边积分器输出为X(s)s2X(s) = F(s) – 3sX(s) – 2X(s) Y(s) = 4X(s) + s2X(s)微分方程为 y"(t) + 3y'(t) + 2y(t) = f "(t)+ 4f (t)方程取拉氏变换:整理得:Y (s )=其中111+=s H ,211+=s H ,)()(3t t h ε=,)()(24t e t h t ε-= 求复合系统的冲击相应h(t)。

)(65)3(265)0(5)0(')0()(22s F s s s s s y y sy s Y ++++++++=---)(231)(2s F s s s X ++=)(23422s F s s s +++=116、已知某系统的差分方程为y(k) – y(k – 1) – 2y(k – 2)= f (k)+2f (k – 2)已知y( –1)=2,y(– 2)= – 1/2,f (k)= ε(k)。

求系统的yzi(k)、yzs(k)、y(k)。

解:方程取单边z 变换 :Y (z)-[z-1Y (z)+y(-1)]-2[z-2Y (z)+y(-2)+y(-1)z-1]=F (z)+2z-2F (z)得到:17、已知一个连续系统的信号流图如下写出系统输入输出对应的微分方程。

求系统函数写出系统的状态方程解:由图知其微分方程为:y "(t) + 3 y '(t) + 2y(t) = 2 f '(t) +8 f (t)由微分方程可得到:设状态变量x 1(t)、 x 2(t),由后一个积分器,有:由前一个积分器,有:则系统输出端,有 y(t) =8 x 1+2 x 212224)(212121)2(2)1()21()(2222212211---++--+=--++---+-+=------z z z z z z z z z z F z z z z z y y z z Y )(])1()2(2[)(122)1)(2(4)(2k k y z z z z z z z z z Y k k zi zi ε--=→+-+-=+-+=)(]23)1(212[)(12312122)(1k k y z z z z z z z Y k k zs zs ε--+=→--++-=+23)4(2)(2+++=s s s s H 21x x = f x x x+--=21232。

相关文档
最新文档