华师大版八年级数学下册期末复习题(有答案)
华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形2、若一次函数与反比例函数的图象都经过点,则的值是()A.3B.-3C.5D.-53、已知x1, x2, x3的平均数=2,方差S2=3,则2x1, 2x2, 2x3的平均数和方差分别为()A.2,3B.4,6C.2,12D.4,124、下列运算中,正确的是()A.a 2•a 3=a 6B.(﹣a 2)3=a 6C.﹣3a ﹣2=﹣D.﹣a 2﹣2a 2=﹣3a 25、某鞋厂为提高市场占有率而进行调查时,他最应该关注鞋码的()A.平均数B.中位数C.众数D.方差6、如图,在▱ABCD中,AB=3,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则四边形ABEF的周长为()A.12B.14C.16D.187、如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为()A. B. C. D.8、若反比例函数的图象经过点(3,﹣2),则k的值为()A.﹣9B.3C.﹣6D.99、如图所示,平行四边形ABCD的对角线AC,BD交于点O,已知AD=16,BD=24,AC=12,则△OBC的周长为()A.26B.34C.40D.5210、若解关于x的方程时产生增根,那么常数m的值为()A.4B.3C.-4D.-111、7月23日,中国首颗火星探测器“天问一号”成功发射.2月10日,在经过长达七个月,475 000 000公里的漫长飞行之后,“天问一号”成功进入火星轨道.将475000000科学记数法表示应为()A. B. C. D.12、杨店桃花是全国著名的赏桃花胜地之一.近年来,种植规模不断扩大,新的品种不断出现,如今的杨店的桃树约15000株,这个数可用科学记数法表示为()A.0.15×10 4B.0.15×10 5C.1.5×10 4D.15×10 313、在函数y= 中,x的取值范围是()A.x≥1B.x≤1C.x≠1D.x<014、如图,要使▱ABCD成为菱形,则需添加的一个条件是()A.AC=ADB.BA=BCC.∠ABC=90°D.AC=BD15、若关于的一元一次不等式组的解集是,且关于的分式方程有非负整数解,则符合条件的所有整数的和为()A.0B.1C.2D.3二、填空题(共10题,共计30分)16、若关于x的分式方程有增根,则________.17、如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD的中点,过点C作CP⊥AB 于点P.若CD=3,AB=5,PM最大值是________.18、已知在平面直角坐标系xOy中,过P(1,1)的直线l与x轴、y轴正半轴交于点A,点B,若三角形AOB的面积等于3,直线l的解析式为________19、若,则=________.20、顺次连接A,B,C,D得到平行四边形ABCD,已知AB=4,BC=6,∠B=60°.则此平行四边形面积是________.21、如果点P(a,2)在第二象限,那么点Q(﹣3,a)在________22、如图,在平面直角坐标系中,菱形在第一象限内,边与轴平行,,两点的纵坐标分别为,,反比例函数的图象经过,两点,菱形的面积为,则的值为________.23、如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F 关于过点E的直线对称,如果以CD为直径的圆与EF相切,那么AE=________.24、当x=________时,分式无意义.25、计算一组数据的方差时,小明列了一个算式:,则这组数据的平均数是________.三、解答题(共5题,共计25分)26、解方程:.27、已知:如图,A、C是□DEBF的对角线EF所在直线上的两点,且AE=CF. 求证:四边形ABCD是平行四边形.28、化简求值:,其中x= +1.29、某单位计划组织部分员工到外地旅游,人数估计在10~25人之间.甲、乙两家旅行社的服务质量相同,且价格都是每人200元,但甲旅行社表示可给每位旅客七五折优惠,乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠。
最新华东师大版八年级数学下册期末试题带答案3套
最新华东师大版八年级数学下册期末试题带答案3套新华师版八年级下期末卷(一)总分120分120分钟一.选择题(共24分)1.下列计算中,正确的是()A.a2•a3=a6B.C. (﹣3a2b)2=6a4b2 ,D .a5÷a3+a2=2a22.在式子,,,,,10xy﹣2,中,分式的个数是()A.5B.4C.3D.23.不改变分式的值,如果把其分子和分母中的各项的系数都化为整数,那么所得的正确结果为()A.B.C.D.4.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1 5.甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地km(5题)(6题)(7题)6.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75°B.60°C.45°D.30°7.如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形8.甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s=0.63,s=0.51,s=0.48,s=0.42,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁二.填空题(共18分)9.计算:()﹣1+(﹣2)0+|﹣2|﹣(﹣3)的结果为_________.10.若x2﹣3x+1=0,则的值为_________.11.写出一个你喜欢的实数k的值_________,使得反比例函数y=的图象在每一个象限内,y随x的增大而增大.12.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为_________.(12题)(13题)(14题)13.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于_________ cm2.14.如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_________厘米.三.解答题(共10小题)15.(5分)化简,求值:,其中m=.16.(6分)若关于x的方程有增根,试解关于y的不等式5(y﹣2)≤28+k+2y.17.(6分)已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.18.(7分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.19.(8分)初三(1)班共有40名同学,在一次30秒打字速度测试中他们的成绩统计如表:打字数/个50 51 59 62 64 66 69人数 1 2 8 11 5将这些数据按组距5(个字)分组,绘制成如图的频数分布直方图(不完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次打字成绩的众数是_________个,平均数是_________个.。
2022-2023学年华东师大新版八年级下册数学期末复习试卷(含解析)
2022-2023学年华东师大新版八年级下册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.关于反比例函数y=的图象,下列说法错误的是( )A.经过点(2,3)B.分布在第一、三象限C.关于原点对称D.x的值越大越靠近x轴2.若横坐标为3的点一定在( )A.与y轴平行,且与y轴的距离为3的直线上B.与x轴平行,且与x轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上D.与y轴正半轴相交,且与x轴的距离为3的直线上3.据科学研究表明,新型冠状病毒体直径的大小约为125纳米,1纳米就是0.000000001米.那么125纳米用科学记数法表示为( )A.125×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米4.“科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如表,其中有两个数据被遮盖.视力 4.6以下 4.6 4.7 4.8 4.9 4.9以上人数■■791411下列关于视力的统计量中,与被遮盖的数据均无关的是( )A.中位数,众数B.中位数,方差C.平均数,方差D.平均数,众数5.如图,正方形ABCD的边长为2,点E;F分别为边AD,BC上的点,点G,H分别为AB,CD边上的点,连接GH,若线段GH与EF的夹角为45°,GH=,则EF的长为( )A.B.C.D.6.如图,已知AB=DC,AD=BC,E,F是DB上两点且BF=DE,若∠AEB=100°,∠ADB =30°,则∠BCF的度数为( )A.150°B.40°C.80°D.70°7.直线y=ax+b经过第一、二、四象限,则直线y=bx+a的图象只能是图中的( )A.B.C.D.8.如图,四边形ABCD、CEFG均为正方形,其中正方形CEFG面积为36cm2,若图中阴影部分面积为10cm2,则正方形ABCD面积为( )A.6B.16C.26D.469.如图,点A在双曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,AB∥x轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值( )A.﹣6B.﹣8C.﹣10D.﹣1210.如图,正方形ABCD的边长为2,点P是对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,给出下列五个结论:①PB=AB;②AP=EF且AP⊥EF;③∠PFE=∠BAP;④EF的最小值为;⑤PB2+PD2=2PA2,其中正确的结论是( )A.①②③④B.②③④C.③④⑤D.②③④⑤二.填空题(共6小题,满分24分,每小题4分)11.某公司招聘一名公关人员,对甲进行了笔试和面试,面试和笔试的成绩分别为85分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为 .12.如图所示,在▱ABCD中,∠BAD的平分线AE交BC于E,且AD=a,AB=b,用含a,b的代数式表示EC,则EC= .13.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,求乙队单独施工完成次工程需要几个月?设乙队单独施工需要x个月,则列方程为: .14.已知关于x的分式方程的解是负数,则m的取值范围是 .15.已知直线y1=x+与y2=﹣4x﹣1相交于点P,则满足y1>y2的x的取值范围是 .16.写出一个与y=﹣x图象平行的一次函数: .三.解答题(共9小题,满分86分)17.(8分)解方程:.18.(8分)化简求值:(﹣),其中a满足a2+2a=2021.19.(8分)一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式;(2)若点C(a,8)也在直线AB上,求a的值;(3)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.20.(8分)如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AF=CE.(1)求证:△ADE≌△CBF.(2)若AC平分∠BAD,则四边形BEDF的形状是 .21.(8分)如图,在平面直角坐标系中,直线l1:y=kx+b与直线l2:y=mx+n交于点A (1,2),直线l2与y轴交于点B(0,3),直线l1与x轴交于点C(﹣1,0).(1)求直线l1、l2的函数表达式;(2)连接BC,直接写出△ABC的面积.22.(10分)我校举行八年级汉字听写大赛,每班各派五名同学参加(满分为100分).其中八(1)班和八(2)班五位参赛同学的成绩如图所示:(1)根据条形统计图完成表格平均数中位数众数八(1)班83 90八(2)班 85 (2)已知八(1)班参赛选手成绩的方差为56分2,请计算八(2)班参赛选手成绩的方差,并分析哪一个班级的成绩比较稳定.23.(10分)如图,反比例函数y=(k≠0)与一次函数y=﹣x+b的图象交于点A(1,5)和点B(m,1).(1)求m,b的值.(2)结合图象,直接写出不等式<﹣x+b成立时x的取值范围.(3)若Q为y轴上的一点,使QA+QB最小,求点Q的坐标.24.(12分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示国外品牌国内品牌进价(万元/部)0.440.2售价(万元/部)0.50.25该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(14分)综合与实践【问题背景】矩形纸片ABCD中,AB=6,BC=10,点P在AB边上,点Q在BC边上,将纸片沿PQ 折叠,使顶点B落在点E处.【初步认识】(1)如图1,折痕的端点P与点A重合.①当∠CQE=50°时,∠AQB= °;②若点E恰好在线段QD上,则BQ的长为 ;【深入思考】(2)若点E恰好落在边AD上.①请在图2中用无刻度的直尺和圆规作出折痕PQ(不写作法,保留作图痕迹);②如图3,过点E作EF∥AB交PQ于点F,连接BF.请根据题意,补全图3并证明四边形PBFE是菱形;③在②的条件下,当AE=3时,菱形PBFE的边长为 ,BQ的长为 ;【拓展提升】(3)如图4,若DQ⊥PQ,连接DE,若△DEQ是以DQ为腰的等腰三角形,则BQ的长为 .参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:A、反比例函数y=,当x=2时y=3,故本选项不符合题意;B、反比例函数y=中的6>0,则该函数图象经过第一、三象限,故本选项不符合题意;C、反比例函数y=的图象关于原点对称,故本选项不符合题意;D、反比例函数y=,不是单调函数,当x<0时,x的值越大越远离x轴,故错误,故本选项符合题意.故选:D.2.解:A.与y轴平行,且距离为3的直线上的点的横坐标为3或﹣3,故原说法不对;B.与x轴平行,且距离为3的直线上的点的纵坐标为3或﹣3,故原说法不对;C.与x轴正半轴相交,与y轴平行,且距离为3的直线上,说法正确;D.与y轴正半轴相交,与x轴平行,且距离为3的直线上的点的纵坐标为3,故原说法不对.故选:C.3.解:∵1纳米=1×10﹣9米.∴125纳米=125×10﹣9米=1.25×102×10﹣9米=1.25×10﹣7米.故选:C.4.解:由表格数据可知,成绩为4.6、4.6以下的人数为50﹣(7+9+14+11)=19(人),视力为4.9出现次数最多,因此视力的众数是4.9,视力从小到大排列后处在第25、26位的两个数都是4.7,因此中位数是4.7,因此中位数和众数与被遮盖的数据无关,故选:A.5.解:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH=,∵线段GH与EF的夹角为45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,∴∠ABN=∠CBM,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,过点K作KP⊥BN于P,∵∠KBN=45°,∴△BKP是等腰直角三角形,设EF=BK=x,则BP=KP=BK=x,∵tan N==,∴=,解得x=,所以EF=.解法二:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH,∵线段GH与EF的夹角为45°,∴∠KBM=45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,∴DM=1,在△KBN和△KBM中,,∴△KBN≌△KBM(SAS),∴KM=KN设AK为x,则KM=KN=x+1,KD=2﹣x,连接KM,在Rt△KDM中,DK2+DM2=KM2,∴(2﹣x)2+12=(x+1)2,∴x=,∴AK=,∴BK===,∴EF=BK=,故选:B.6.解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠BCF=∠DAE,∵∠DAE=∠AEB﹣∠ADE=100°﹣30°=70°,∴∠BCF=70°.故选:D.7.解:∵直线y=ax+b经过第一、二、四象限,∴a<0,b>0,∴直线y=bx+a的图象经过第一、三、四象限,故选:D.8.解:∵阴影部分面积=DE×(BC+CG),∴阴影部分面积=×(CE﹣DC)(BC+CG)=(CE2﹣BC2),∵正方形CEFG面积为36cm2,图中阴影部分面积为10cm2,∴10=×(36﹣S正方形ABCD),∴S正方形ABCD=16,故选:B.9.解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A双在曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.10.解:连接PC,延长AP交EF于点H,如图所示:∵点P是对角线BD上一点,∴PB和AB的大小不能确定,故①选项不符合题意;在正方形ABCD中,AD=CD,∠ADP=∠CDP=45°,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∠PAD=∠PCD,∵PE⊥BC,PF⊥CD,∴∠PFC=∠PEC=90°,∵∠C=90°,∴四边形PECF是矩形,∴EF=PC,∴AP=EF,∵∠ADC=∠PFC=90°,∴AD∥PF,∴∠DAP=∠FPH,在矩形PECF中,∠PCD=∠EFC,∴∠FPH=∠EFC,∵∠EFC+∠EFP=90°,∴∠FPH+∠EFP=90°,∴AP⊥EF,故②选项符合题意;在矩形PECF中,∠PFE=∠PCE,∵△ADP≌△CDP,∴∠DAP=∠DCP,∴∠BAP=∠PCB,∴∠BAP=∠PFE,故③选项符合题意;∵AB=AD=2,根据勾股定理得BD=2,当AP⊥BD时,AP最小,此时AP最小值为BD=,∵AP=EF,∴EF的最小值为,故④选项符合题意;根据勾股定理,得PB2=2PE2,PD2=2PF2,∴PB2+PD2=2(PE2+PF2)=2EF2=2PA2,故⑤选项符合题意;综上,正确的选项有②③④⑤,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:甲的平均成绩为=87(分),故答案为:87分.12.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=b,∵BC=AD=a,∴EC=BC﹣BE=a﹣b.故填空答案:a﹣b.13.解:由题意可得,+()×=1,故答案为:+()×=1.14.解:,m﹣3=x+1,∴x=m﹣4.∵关于x的分式方程的解是负数,∴m﹣4<0且m﹣4+1≠0.∴m<4且m≠3.故答案为:m<4且m≠3.15.解:∵y1>y2,∴x+>﹣4x﹣1,解得:x>﹣,故答案为:x>﹣.16.解:由题意得,k=﹣1,则可出一次函数y=﹣x+1,答案不唯一.三.解答题(共9小题,满分86分)17.解:方程两边同乘(x﹣3),得:2x﹣1=x﹣3+1,整理解得:x=﹣1,经检验:x=﹣1是原方程的解.18.解:原式====,∵a2+2a=2021,则原式=.19.解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4),∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点C(a,8)在直线AB上,∴﹣3a﹣1=8,解得a=﹣3;(3)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.20.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AF=CE.∴AF﹣EF=CE﹣EF,∴AE=CF,∴△ADE≌△CBF(SAS);(2)四边形BEDF的形状是菱形,理由如下:∵AC平分∠BAD,∴∠DAC=∠BAC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴BA=BC,∴AD=AB,∵AE=AE,∴△ADE≌△ABE(SAS),∴DE=BE,∵△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形,∵DE=BE,∴平行四边形BEDF是菱形.故答案为:菱形.21.解:(1)根据题意得,,解得,∴直线l1:y=x+1,解得,∴直线l2:y=﹣x+3;(2)设直线l1与y轴的交点为D,则D(0,1),∴BD=3﹣1=2,∴S△ABC=S△ABD+S△BCD=+×1=2.22.解:(1)八(1)班的成绩从大到小排列为70,80,85,90,90,处于第三位的是85,因此中位数为85,八(2)班平均数为(70+85+85+90+95)÷5=85,出现次数最多的数是85,所以表格中依次填写85,85,85.(2)八(2)班的方差:S2=[(95﹣85)2+(70﹣85)2+(90﹣85)2+(85﹣85)2+(85﹣85)2]=70,∵56<70,∴八(1)班成绩比较稳定,答:八(1)班成绩比较稳定.23.解:(1)将点A的坐标代入y=(k≠0)得:5=,解得:k=5,∴反比例函数为y=,将点B的坐标代入y=得1=,解得:m=5,∴点B(5,1),∵一次函数y=﹣x+b的图象过点A(1,5),∴5=﹣1+b,解得b=6;(2)从函数图象看,不等式<﹣x+b成立时x的取值范围是1<x<5或x<0;(3)作A关于y轴的对称点A′,连接A′B,与y轴的交点即为Q点,此时AQ+BQ 的和最小,∵A(1,5),∴A关于y轴的对称点A′的坐标为(﹣1,5),设直线A′B的解析式为y=mx+n,∴,解得,∴直线A′B的解析式为y=﹣x+,令x=0,则y=,∴Q(0,).24.解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.25.(1)解:①∵∠CQE=50°,∴∠BQE=130°,由折叠可知,∠AQB=∠BQE=65°,故答案为:65;②解:由折叠可知,AB=AE,∠ABE=∠AEQ=90°,BQ=QE,∵AB=6,BC=10,∴AE=6,∴DE=8,在Rt△CDQ中,(8+QE)2=62+(10﹣QE)2,∴QE=2,∴BQ=2,故答案为:2;(2)解:①连接BE,作BE的垂直平分线交AB于P,交BC于Q,则PQ为所求;②证明:∵EF∥AB,∴∠BPF=∠EFP,由折叠可知,PB=PE,∠BPF=∠EPF,∴∠EFP=∠EPF,∴PE=EF,∴PB=EF,∴四边形PBFE是平行四边形,∵PE=EF,∴四边形PBFE是菱形;③解:由折叠可知PB=PE,∵AB=6,∴AP=6﹣PE,在Rt△APE中,PE2=(6﹣PE)2+32,∴PE=,∴菱形PBFE的边长为,由折叠可知,EQ=BQ,∵AE=3,∴BG=3,在Rt△EGQ中,BQ2=62+(BQ﹣3)2,∴BQ=,故答案为:,;(3)解:由折叠可知BQ=EQ,设BQ=m,则EQ=m,CQ=10﹣m,①当DQ=EQ时,在Rt△CDQ中,62+(10﹣m)2=m2,∴m=,∴BQ=;②当DE=DQ时,过点D作DF⊥EQ交于F,∴FQ=EQ=m,由折叠可知∠PQB=∠PQE,∵DQ⊥PQ,∴∠PQB+∠CQD=90°=∠PQE+∠FQD,∴∠CQD=∠FQD,∴△CDQ≌△FDQ(AAS),∴CQ=FQ,∴10﹣m=m,∴m=,∴BQ=;综上所述:BQ的长为或,故答案为:或.。
华东师大版八年级下册数学期末练习试题(有答案)
2020-2021学年华东师大新版八年级下册数学期末练习试题一.选择题(共10小题,满分40分,每小题4分)1.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)2.化简的结果是()A.﹣x B.x C.x﹣1D.x+13.如图,▱AB CD的周长为36cm,△ABC的周长为28cm,则对角线AC的长为()A.28cm B.18cm C.10cm D.8cm4.分式方程=的解是()A.x=9B.x=7C.x=5D.x=﹣15.关于菱形,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.四条边相等D.对角线相等6.如图,矩形ABCD的对角线AC、BD交于点O.AC=4,∠AOD=120°,则BC的长为()A.4B.4C.2D.27.已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是()A.m≤﹣B.m≥﹣C.m<﹣D.m>8.如图,在▱ABC D中,E是CD上一点,BE=BC.若∠A:∠ADC=1:2,则∠ABE的度数是()A.70°B.65°C.60°D.55°9.如图,直线y=2x+1和y=kx+3相交于点A(m,),则不等式关于x的不等式kx+3≤2x+1的解集为()A.x≥B.x≥C.x≤D.x≤10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C、D,若点D的横坐标为1,BE=3DE.则k的值为()A.B.3C.D.5二.填空题(共6小题,满分24分,每小题4分)11.当x=时,分式无意义.12.自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为.13.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表,则这四人中发挥最稳定的是.选手甲乙丙丁方差(S2)0.0200.0190.0210.02214.如图是一张矩形纸片,E是AB的中点,把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,AB=2,则CB=.15.如图,已知一条直线经过点A(﹣1,0),B(0,﹣2),将这条直线向右平移与x轴、y轴分别交于点C、D,若AB=AD,则直线CD的函数表达式为.16.如图,平面直角坐标系xOy中,正方形ABCO的顶点A,C分别在x轴和y轴的正半轴上,反比例函数y=(x>0)的图象分别与边BC,AB交于点D和点E,连接OD,EF ∥OD交OA于点F,若OF=2FA,且OD=k,则k的值为.三.解答题(共9小题,满分86分)17.计算:2﹣1+﹣(3﹣)0+||.18.先化简:,再从2,﹣2,3,﹣3中选一个合适的数作为a的值代入求值.19.某校九年级举行了主题为“珍惜海洋资源”的知识竞赛活动,为了了解全年级500名学生此次参加竞赛的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图.组别分数(分)频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<10018(1)求a的值;(2)所抽取的参赛学生成绩的中位数落在哪个组别?(3)估计该校九年级竞赛成绩达到80分及以上的学生有多少人?20.甲、乙两人做某种机械零件.(1)已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求甲、乙每小时各做零件多少个.(2)已知甲计划做零件60个,乙计划做零件100个,甲、乙的速度比为3:4,结果甲比乙提前20分钟完成任务,则甲每小时做零件个,乙每小时做零件个.21.如图,▱AB CD的对角线AC,BD相交于点O,且AB=13,AC=24,BD=10.求证:▱ABC D是菱形.22.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.23.在正方形ABCD中,点P是射线CB上一个动点.连接PA,PD,点M,N分别为BC,AP的中点,连接MN交PD于点Q.(1)如图1,当点P在线段CB的延长线上时,请判断△QPM的形状,并说明理由.(2)如图2,正方形的边长为4,点P'与点P关于直线AB对称,且点P'在线段BC上.连接AP',若点Q恰好在直线AP'上,求P'M的长.24.为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)学校共有几种租车方案?最少租车费用是多少?25.如图1,四边形ABCD是矩形,点P是对角线AC上的一个动点(不与A、C重合),过点P作PE⊥CD于点E,连接PB,已知AD=3,AB=4,设AP=m.(1)当m=1时,求PE的长;(2)连接BE,试问点P在运动的过程中,能否使得△PAB≌△PEB?请说明理由;(3)如图2,过点P作PF⊥PB交CD边于点F,设CF=n,试判断5m+4n的值是否发生变化,若不变,请求出它的值;若变化,请说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.2.解:原式===x,故选:B.3.解:∵▱ABC D的周长是36cm,∴AB+AD=18m,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)﹣(AB+AC)=28﹣18=10(cm).故选:C.4.解:去分母得:2(x﹣2)=x+5,去括号得:2x﹣4=x+5,解得:x=9,经检验x=9是分式方程的解.故选:A.5.解:∵菱形的性质有四边相等,对角线互相垂直平分,∴对角线相等不是菱形的性质,故选:D.6.解:如图,∵矩形ABCD的对角线AC,BD交于点O,AC=4,∴OA=OB=AC=2,又∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=2.∴在直角△ABC中,∠ABC=90°,AB=2,AC=4,∴BC===2故选:C.7.解:函数值y随自变量x的增大而减小,那么1+2m<0,解得m<﹣.故选:C.8.解:∵四边形ABCD是平行四边形,∴∠A+∠ADC=180°,∠A=∠C,∵∠A:∠ADC=1:2,∴∠A=60°,∠ADC=120°,∴∠C=60°,∵BE=BC,∴△BCE是等边三角形,∴∠BEC=60°,∵DC∥AB,∴∠BEC=∠ABE,∴∠ABE=60°,故选:C.9.解:∵直线y=2x+1和y=kx+3相交于点A(m,),∴=2m+1,解得m=,∴A(,),由函数图象可知,当x≥时,直线y=2x+1的图象不在直线y=kx+3的图象的下方,∵当x≥时,kx+3≤2x+1.故选:B.10.解:过点D作DF⊥BC于F,∵AD⊥y轴,四边形ABCD是菱形,∴AD∥BC,DC=BC,∴四边形BEDF是矩形,∴DF=BE,BF=DE=1,∵BE=3DE,∴DF=BE=3,设CD=CB=a,∴CF=a﹣1,∵CD2=DF2+CF2,∴a2=32+(a﹣1)2,∴a=5设点C(5,m),点D(1,m+3)∵反比例函数y=图象过点C,D∴5m=1×(m+3)∴m=,∴点C(5,)∴k=5×=故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:由题意得,2x+5=0,解得,x=﹣,故答案为:﹣.12.解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.13.解:∵这四人中乙的方差最小,∴这四人中发挥最稳定的是乙,故答案为:乙.14.解:如图,DB与CE交于点O,∵把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,∴CE⊥BF,∴∠COD=90°,∵四边形ABCD是矩形,∴∠DCB=∠ABC=90°,AB=DC=2,∴∠DCE+∠CDB=∠DCE+∠ECB=90°,∴∠CDB=∠ECB,∴△DCB∽△CBE,∴,设CB=x,∵E是AB的中点,∴BE=1,∴,∴x=(负值舍去),故答案为:.15.解:设直线AB的解析式为y=kx+b(k≠0),∵点A(﹣1,0)点B(0,﹣2)在直线AB上,∴,解得,∴直线AB的解析式为y=﹣2x﹣2,∵AB=AD,AO⊥BD,∴OD=OB,∴D(0,2),∴直线CD的函数解析式为:y=﹣2x+2,故答案为:y=﹣2x+2.16.解:FA=a,则OF=2a,则正方形ABCO的边长为3a,∴点B的坐标为(3a,3a),则CD==,故点D的坐标为(,3a),设直线OD的表达式为y=mx,则3a=m,解得m=,故直线OD的表达式为y=x,∵EF∥OD且直线EF过点F(2a,0),则直线EF的表达式为y=(x﹣2a),则当x=3a时,y=(x﹣2a)=,故点E的坐标为(3a,),∵点E、D均在函数图象上,∴k=×3a=3a×,解得k=,故答案为.三.解答题(共9小题,满分86分)17.解:2﹣1+﹣(3﹣)0+||=+4﹣1+=3+.18.解:原式=÷(﹣)=•=﹣,∵a﹣2≠0,a﹣3≠0,a+3≠0,∴a≠2,a≠±3,∴当a=﹣2时,原式=﹣=﹣.19.解:(1)本次调查一共随机抽取的学生有18÷36%=50(人),则a=50×16%=8;(2)所抽取的学生成绩按从小到大的顺序排列,第25、26个数据都在C组,则中位数落在C组;(3)500×=320(人),所以该校九年级竞赛成绩达到80分以上(含80分)的学生约有320人.20.解:(1)设乙每小时做x个,则甲每小时做(x+6)个,甲做90个所用的时间为,乙做60个所用的时间为;根据题意列方程为:,解得:x=12,经检验:x=12是原分式方程的解,且符合题意,则x+6=18.答:甲每小时做18个,乙每小时做12个.(2)设甲每小时做3x个零件,则乙每小时做4x个零件,根据题意得,,解得:x=15,经检验:x=15是原分式方程的解,且符合题意,则3×15=45,4×15=60.答:甲每小时做45个,乙每小时做60个,故答案为:45;6021.证明:∵四边形ABCD是平行四边形,∴OA=AC=12,OB=BD=5,∵OA2+OB2=122+52=169,AB2=132=169,∴OA2+OB2=AB2,∴∠AOB=90°,∴AC⊥BD,∴▱A BCD是菱形.22.解:(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),即轿车到达乙地时,货车与甲地的距离是270千米;(2)设线段CD对应的函数表达式是y=kx+b,∵点C(2.5,80),点D(4.5,300),∴,解得,即线段CD对应的函数表达式是y=110x﹣195(2.5≤x≤4.5);(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70,∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得,线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得x1=3.6,x2=4.2,∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米,答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.23.解:(1)△QPM是等腰三角形,理由如下:延长BC至E,使CE=BP,连接AE,∵PB=CE,∴PB+BC=CE+BC,∴CP=BE,∵四边形ABCD是正方形,∴AB=CD,∠ABC=∠DCB=90°,在△DCP和△ABE中,∴△DCP≌△ABE(SAS)∴∠DPC=∠AEB,∵M是BC的中点,∴MB=MC,∴MB+BP=MC+CE,∴MP=ME,∴M是PE的中点,又∵N是AP的中点,∴MN∥AE,∴∠PMN=∠AEB,∴∠PMN=∠DPC,∴QP=QM,∴△QPM是等腰三角形;(2)延长BC至E,使CE=BP,连接AE,∵M是BC的中点,BC=4,∴BM=CM=2,又∵BP=CE,∴BM+BP=CM+CE,即PM=ME,∴M是PE的中点,且点N是AP中点,∵QM∥AE,∴,又∵AD∥BC,∴△PQP′∽△DQA,∴,∴,设BP=BP′=CE=x,P′M=2﹣x,ME=2+x即:解之得:(舍去)则24.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:,答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:,∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.25.解:(1)连接BE,由已知:在Rt△ADC中,AC=,当AP=m=1时,PC=AC﹣AP=5﹣1=4,∵PE⊥CD,∴∠PEC=∠ADC=90°,∵∠ACD=∠PCE,∴△ACD∽△PCE,∴,即,∴PE=;(2)如图1,当△PAB≌△PEB时,∴PA=PE,∵AP=m,则PC=5﹣m,由(1)得:△ACD∽△PCE,∴,∴PE=,由PA=PE,即,解得:m=,∴EC=,∴BE=,∴△PAB与△PEB不全等,∴不能使得△PAB≌△PEB;(3)如图2,延长EP交AB于G,∵BP⊥PF,∴∠BPF=90°,∴∠EPF+∠BPG=90°,∵EG⊥AB,∴∠PGB=90°,∴∠BPG+∠PBG=90°,∴∠PBG=∠EPF,∵∠PEF=∠PGB=90°,∴△BPG∽△PFE,∴,由(1)得:△PCE∽△ACD,PE=,∴,即,∴EC=,∴BG=EC=,∴,∴5m+4n=16.。
华师大版数学八年级下册期末数学试卷及答案.doc
若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
期末数学试卷、选择题1.函数 y = x 的自变量 x 的取值范围是 ( ) x -2 A .x ≥0且 x ≠ 2 B .x ≥ 0 C .x ≠ 2D .x>22. H7N9 禽流感病毒颗粒有多种形状,其中球形直径约为 记数法表示为 ( A . 0.1 ×10-7C . 0.1 ×10-63.已知点 P (x ,3-x )在第二象限,则 x 的取值范围为 A .x <0 B .x <3 C .x > 3 D .0<x < 3 4. 2016 年欧洲杯足球赛中,某国家足球队首发上场的A .180,182 C . 182,182 D . 5.如图,在平行四边形 A . ∠ 1=∠ 2B . C. D . B . ∠ BAD =∠ BCD AB =CDAC ⊥BD 180, 180 3,2 ABCD 中,下列结论中错误的是( 6.已知分式 第 8 题图x -1)( x +2)的值为 0,那么 x 的值是 ( x 2-1A .20B .24C . 28D .40A .- 1B . -2C .1D .1 或- 2) B .1×10-7D .1×10 -60.0000001m. 将 0.0000001 用科学 身高 (cm) 176 178 180 182 186188 192 人数 1 2 3 2 1 1111 名队员身高如下表: 则这 11名队员身高的众数和中位数分别是 (单位: cm )( )49.如图,函数 y =- x 与函数 y =- x 的图象相交于 A ,B 两点,过 A ,B 两点分别作 y 轴的x垂线,垂足分别为点 C , D ,则四边形 ACBD 的面积为 ( )10.如图,正方形 ABCD 中, AB =3,点 E 在边 CD 上,且 CD =3DE.将△ADE 沿 AE 对折至△ AFE ,延长 EF 交边 BC 于点 G ,连接 AG ,CF.下列结论:①点 G 是 BC 中点;② FG =9FC ;③ S △FGC =10.其中正确的是 ( )A .①②B .①③C .②③D .①②③、填空题11.化简:(x 2-9)·x -13= ______k12.若点 (- 2,1)在反比例函数 y =x 的图象上,则该函数的图象位于第 ______ 象限.x 13.一组数据 5,- 2,3,x ,3,- 2,若每个数据都是这组数据的众数,则这组数据的平均数是 ______ .14.如图,在矩形纸片 ABCD 中,AB =12,BC =5,点 E 在AB 上,将 △DAE 沿DE 折叠, 使点 A 落在对角线 BD 上的点 A ′处,则 AE 的长为 ______ .第 14 题图 第 18 题图15.直线 y = 3x + 1 向右平移 2 个单位,再向下平移 3 个单位得到的直线解析式为x - 3 ≥0,16.一组数据 3,4,6,8,x 的中位数是 x ,且 x 是满足不等式组 的整数,则这组 5- x > 0数据的平均数是 _______ .17.为了创建园林城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运 10趟可完成.已知甲、乙两车单独运完此堆垃圾,乙车所运的趟数是甲车的 2 倍, 则甲车单独运完此堆垃圾需要运的趟数为 __________ .18.甲、乙两地相距 50 千米,星期天上午 8:00 小聪同学在父亲陪同下骑山地车从甲地前往乙地 .2 小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地, 他们行驶的路程 y(千第 10 题图米)与小聪行驶的时间 x(小时 )之间的函数关系如图所示,小明父亲出发 ______ 小时,行进中 的两车相距 8 千米.三、解答题19.计算或解方程:1 - 2(1) -22+ 13 -|- 9|-( π-2016)0;x2- 1 x + 1120.先化简: 2x ÷x +1·x - 1 ,然后 x 在-1,0,1,2 四个数中选一个你认为合适的x - 2x + 1 x x数代入求值.21.如图,四边形 ABCD 是平行四边形,点 E , F 是对角线 BD 上的点,∠ 1=∠ 2.求证: (1) BE = DF ; (2) AF ∥ CE .22.如图,在平面直角坐标系中,直线 y =2x +b(b <0)与坐标轴交于 A ,B 两点,与双曲线 y =k x (x >0)交于 D 点,过点 D 作 DC ⊥x 轴,垂足为 C ,连接 OD.已知△ AOB ≌△ ACD .x (1) 如果 b =- 2,求 k 的值;(2) 试探究 k 与 b 的数量关系,并求出直线 OD 的解析式.(2) 2+x + 2-x16 =x 2-4=-1.23.)我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出 5 名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的 5 名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(3)计算两队决赛成绩的方差并判断哪一个代表队选手的成绩较为稳定.24.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家 1 小时50 分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(千米)与小明离家的时间x(小时)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25 分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD 所在直线的函数解析式.25.如图,在Rt△ABC 中,∠ ACB=90°,过点C 的直线MN∥AB,D 为AB 边上一点,过点 D 作DE ⊥BC,交直线MN 于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当 D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3) 若 D 为AB 中点,则当∠ A 为多少度时,四边形BECD 是正方形?请说明你的理由.、选择题1. A 2.B 3.A 4.B 5.D 6.B 7.D 8.A 9.D10.B 解析:∵四边形 ABCD 是正方形,∴ AB =AD =DC =3,∠ B =D =90°.∵CD = 3DE ,∴DE =1,则CE =2.∵△ADE 沿AE 折叠得到 △AFE ,∴DE =EF =1,AD =AF ,∠D =∠ AFE = 90°,∴∠ AFG =90°,AF =AB.在 Rt △ABG 和 Rt △ AFG 中,∴Rt △ABG ≌Rt △AFG (HL ),∴BG =FG ,∠AGB =∠AGF.设 BG = x ,则 CG =BC -BG =3 -x ,GE = GF +EF =BG +DE =x + 1.在 Rt △ECG 中,由勾股定理得CG 2+ CE 2=EG 2.即(3 -x )2+22=(x +1)2,解得 x = 1.5,∴ BG =GF =CG =1.5,①正确,②不正确.∵△ CFG 和 △CEG 中,分别把 FG 和 GE 看作底边,则这两个三角形的高相同.1 39∵ S △GCE = ×1.5 ×2= 1.5 ,∴ S △ CFG = ×1.5=,③正确.故选2 5 10二、填空题1011. x +3 12.二、四 13.2 14. 3 15.y =3x -8 16.5 17.152418.32或 34 解析:由图可知,小聪及父亲的速度为 36÷3=12(千米 /时), 33小明的父亲速度为 36÷(3- 2)= 36(千米 /时).设小明的父亲出发 x 小时两车相距 8 千米,则小聪及父亲出发的时间为 (x +2)小时 根据题意,得 12( x + 2)- 36x = 8 或 36x -12(x +2)=8,24解得 x = 23或 x = 43,24 所以,出发 23或43小时时,行进中的两车相距 8 千米. 3319.解: (1)原式=- 4+ 9-3-1=1.(2)方程的两边同乘 (x -2)(x +2),得- (x +2)2+ 16=4- x 2,解得 x =2. 检验:当 x =2 时, (x -2)(x +2)=0,所以原方程无解.(x +1)( x -1) x x 2- 120.解:原式=( x - 1) 2 ·x + 1·x∵x - 1≠0,x + 1≠0, x ≠0,∴ x ≠1,x ≠-1,x ≠0,∴在- 1,0,1,2 四个数中,使原式有意义的值只有 2, ∴当 x = 2 时,原式= 2+1= 3.参考答案AG =AG ,AB =AF , B.S △CFG =FG =1.5S △CEG =GE =2.53, 解答题x ·(x +1)x( x -1)=x +1. x - 1 x21.证明: (1)∵四边形 ABCD 为平行四边形, ∴AB =CD ,AB ∥CD ,∴∠ ABE =∠ CDF .∵∠ 1=∠ 2,∴∠ AEB =∠ CFD .∠ ABE =∠ CDF ,在△ABE 与△CDF 中, ∠ AEB =∠ CFD ,AB =CD ,∴△ ABE ≌△ CDF , ∴BE =DF.(2)∵△ ABE ≌△ CDF ,∴ AE =CF.∵∠ 1=∠ 2,∴ AE ∥ CF ,∴四边形 AECF 为平行四边形,∴ AF ∥ CE.22.解: (1)当 b =- 2时, y =2x - 2.令y =0,则 2x - 2= 0,解得 x =1; 令 x =0,则 y =- 2,∴ A (1, 0), B (0 ,- 2).∵△AOB ≌△ACD ,∴CD =OB ,AO =AC ,∴点 D 的坐标为 (2,2). k ∵点 D 在双曲线 y =kx (x>0)的图象上,∴ k = 2×2= 4.xb(2)直线 y = 2x +b 与坐标轴交点的坐标为 A-b 2,0,B (0, b ). ∵△AOB ≌△ACD ,∴CD=OB ,AO =AC ,∴点 D 的坐标为 (-b ,-b ).k∵点 D 在双曲线 y =x ( x >0)的图象上,∴ k =(-b )·(-b )=b 2.即 k 与 b 的数量关系为 k = b 2.23.解: (1)从左到右,从上到下,依次为 85, 85,80(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同 的情况下,中位数高的初中部成绩好些.11(3)∵s 2初=5[(75- 85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]= 70,s 2高=5[(70 -85)2 +(100-85)2+(100-85)2+(75-85)2+(80-85)2] =160,∴s 2初 < s 2高,∴初中代表队选手的成绩较为稳定.24.解: (1)20 1÷=20(千米 /时),2-1=1(小时 ), 即小明的骑车速度为 20 千米 /时,在南亚所游玩的时间为 1 小时.(2)从南亚所到湖光岩的路程为 20×2650-6100 =5(千米 ),20+5=25(千米 ),161+2605=49(小9时),则点 C 的坐标为 4,25 .925= k +b , 4 解得110= 6k +b ,k = 60,故 CD 所在直线的解析式为 y = 60x -110. b =- 110.25. (1)证明:∵ DE ⊥BC ,∴∠ DFB =90°. 又∵∠ ACB =90°,∴ AC ∥DE.设直线 CD 的解析式为9 11y =kx +b ,把点 4,25, 6 ,0 代入得∵AD ∥CE,∴四边形ADEC 为平行四边形,∴ CE=AD.(2) 解:当 D 在AB 中点时,四边形BECD 为菱形.理由如下:∵D 为AB 中点,∴ AD =BD.∵CE=AD,∴ CE=BD.∵CE ∥BD,∴四边形BDCE 为平行四边形.∵DE ⊥CB,∴四边形BECD 为菱形.(3) 解:若 D 为AB 中点,当∠ A=45°时,四边形BECD 为正方形.理由如下:由(2) 得四边形BECD 为菱形.∵∠ A=45°,∠ ACB =90°,∴∠ ABC=90°-45°=45°,∴△ ACB为等腰直角三角形.∵D 为AB 中点,∴∠ CDB =90°,∴四边形BECD 为正方形.。
华师大版八年级数学下册期末达标检测试卷(有答案)
八年级数学第二学期期末达标检测试卷[时间:90分钟分值:120分]一、选择题(每小题3分,共30分)1.[2017·滦南县一模]化简(1+1x-2)÷x-1x2-4x+4的结果是( D )A.x+2 B.x-1 C.1x+2D.x-22.[2017·东安县模拟]分式方程2x-3-2x3-x=10的解是( D )A.x=3 B.x=2 C.x=0 D.x=4【解析】去分母得2+2x=10x-30,移项合并得8x=32,解得x=4,经检验x=4是分式方程的解.3.[2018·临沂]新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5 000万元.今年1~5月份,每辆车的销售价格比去年降低1万元,销售数量与去年一整年的相同.销售总额比去年整年的少20%.今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x万元,根据题意,列方程正确的是( A )A.5 000x+1=5 000(1-20%)xB.5 000x+1=5 000(1+20%)xC.5 000x-1=5 000(1-20%)xD.5 000x-1=5 000(1+20%)x4.如图,l 1反映了某公司产品的销售收入和销售数量的关系,l 2反映了产品的销售成本与销售数量的关系,根据图象判断公司盈利时销售量( B )A .小于4件B .大于4件C .等于4件D .大于或等于4件第4题图 第5题图5.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为( A )A .4S 1B .4S 2C .4S 2+S 3D .3S 1+4S 3【解析】设等腰直角三角形的直角边为a ,正方形边长为c ,则S 1=12a 2,S 2=12(a +c )(a -c )=12a2-12c 2,S 3=c 2, ∴S 2=S 1-12S 3,∴S 3=2S 1-2S 2,∴平行四边形的面积为2S 1+2S 2+S 3=2S 1+2S 2+2S 1-2S 2=4S 1.6.[2018·内江期末]如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD 、BC 于E 、F 两点.若AC =23,∠DAO =30°,则FC 的长度为( A )A .1B .2 C. 2 D. 3【解析】∵四边形ABCD 是矩形, ∴OA =OD ,∴∠OAD =∠ODA =30°, ∴∠AOD =120°. ∵EF ⊥BD ,∴∠AOE =30°,∠AEO =120°,∠EDO =30°,∠DEO =60°. ∵四边形ABCD 是矩形,∴∠OBF =∠OCF =30°,∠BFO =60°, ∴∠FOC =60°-30°=30°, ∴OF =CF .又∵Rt△BOF 中,BO =12BD =12AC =3,∴CF =OF =1.7.已知菱形的边长和一条对角线的长均为2 cm ,则菱形的面积为( D ) A .3 cm 2 B .4 cm 2 C. 3 cm 2 D .2 3 cm 2【解析】由已知可得,这条对角线与边长可组成等边三角形,故可求得另一对角线长为2 3 cm. 所以菱形的面积为2×23÷2=23(cm 2).8.将一次函数y =12x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是( B )A .x >4B .x >-4C .x >2D .x >-29.[2018·道外区三模]一组数据从小到大排列为1、2、4、x 、6、9.这组数据的中位数是5,那么这组数据的众数为( D )A.4 B.5C.5.5 D.6【解析】根据题意得,(4+x)÷2=5,解得x=6,则这组数据的众数为6.10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(单位:m)与挖掘时间x(单位:h)之间的关系如图所示,根据图象所提供的信息,下列说法正确的是( D )A.甲队开挖到30 m时,用了2 hB.开挖6 h时甲队比乙队多挖了60 mC.乙队在0≤x≤6的时段,y与x之间的关系式为y=5x+20D.x为4 h时,甲、乙两队所挖的河渠长度相等【解析】A.根据图示知,乙队开挖到30 m时,用了2 h,甲队开挖到30 m时,用的时间大于2 h.故本选项错误;B.由图示知,开挖6 h时甲队比乙队多挖了60-50=10(m),故本选项错误;C.根据图示知,在0≤x≤6的时段,乙队挖河渠的长度y(单位:m)与挖掘时间x(单位:h)之间的函数关系是分段函数:在0~2 h时,y与x之间的关系式为y=15x;在2~6 h时,y与x之间的关系式为y=5x+20.故本选项错误;D.甲队4 h完成的工作量是10×4=40(m),乙队4 h完成的工作量是5×4+20=40(m),所以当x=4 h时,甲、乙两队所挖河渠长度相同.故本选项正确.故选D.二、填空题(每小题4分,共24分)11.[2018·南昌三模]为参加2018年“南昌市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是__2.40、2.43__.【解析】∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.43,2.43,2.43.∴它们的中位数为2.40,众数为2.43.12.[2018·成都期中]已知四边形ABCD是平行四边形,下列结论中错误的有__④__.(填序号)①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC =BD时,它是正方形.【解析】∵四边形ABCD是平行四边形,∴当AB=BC时,它是菱形,故①正确,当AC⊥BD时,它是菱形,故②正确,当∠ABC=90°时,它是矩形,故③正确,当AC=BD时,它是矩形,故④错误.13.如图,已知函数y=2x+b与函数y=kx-3的图象交于点P,则不等式kx-3>2x+b的解集是__x<4__.14.[2018·武侯区模拟]如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上.若CD=6,则AD=.【解析】∵四边形ABCD是矩形,E是CD的中点,∴AB=CD=6,DE=3,由折叠可得,AE=AB=6,又∵∠D=90°,∴Rt△ADE中,AD=AE2-DE2=62-32=3 3.15.[2018·广安模拟]如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O ,点E 在AC 上.若OE =23,则CE 的长为.【解析】∵四边形ABCD 是菱形, ∴AB =AD =6,AC ⊥BD ,OB =OD ,OA =O C. ∵∠BAD =60°, ∴△ABD 是等边三角形, ∴BD =AB =6, ∴OB =12BD =3,∴OC =OA =AB 2-O B 2=33, ∴AC =2OA =6 3.∵点E 在AC 上,OE =23,∴当E 在点O 左边时,CE =OC +23=53; 当点E 在点O 右边时,CE =OC -23= 3. ∴CE =53或 3.16.[2017·随州]在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图所示.下列结论:①甲车出发2 h 时,两车相遇;②乙车出发1.5 h 时,两车相距170 km ;③乙车出发257h 时,两车相遇;④甲车到达C 地时,两车相距40 km .其中正确的是__②③④__(填写所有正确结论的序号).【解析】由图象知,AC =240 km ,BC =200 km ,v 甲=60 km /h ,v 乙=80 km /h ,乙车比甲车晚出发1 h ;①甲车出发2 h 时,两车在两侧距C 地均为120 km ,未相遇;②乙车出发1.5 h 时,行了120 km ,甲车行了2.5 h ,行了150 km ,相距440-120-150=170(km );③乙车出发257h 时,甲、乙两车的行程为357×60+257×80=440(km ),两车相遇;④甲车到达C 地时,t =4,乙车行了240 km ,距离C 地40 km ,即两车相距40 km .故正确的序号是②③④.三、解答题(共66分)17.(8分)计算:(1)4+(π-2)0-|-5|+(23)-2;(2)[2018·益阳]化简:(x -y +y 2x +y)·x +yx. 解:(1)原式=2+1-5+94=14.(2)原式=(x -y +y 2x +y )·x +y x =⎣⎢⎡⎦⎥⎤(x -y )(x +y )x +y +y 2x +y ·x +y x=x 2-y 2+y 2x +y ·x +y x =x 2x +y ·x +yx=x .18.(8分)[2017·农安县模拟]为了减少雾霾,美化环境,小王上班的交通方式由驾车改为骑自行车,小王家距单位的路程是15千米,在相同的路线上,小王驾车的速度是骑自行车速度的4倍,小王每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小王骑自行车的速度.解:设骑自行车的速度为x 千米/时,则驾车的速度为4x 千米/时. 根据题意,得15x -154x =4560.解得x =15.经检验,x =15是原方程的解,且符合题意. 所以,骑自行车的速度为15千米/时.19.(10分)如图,AC 是矩形ABCD 的对角线,过AC 的中点O 作EF ⊥AC ,交BC 于点E ,交AD 于点F ,连结AE 、CF .(1)求证:四边形AECF 是菱形;(2)若AB =3,∠DCF =30°,求四边形AECF 的面积(结果保留根号).解:(1)证明:∵O 是AC 的中点,EF ⊥AC , ∴AF =CF ,AE =CE ,AO =CO . ∵四边形ABCD 是矩形,∴AD ∥BC , ∴∠AFO =∠CEO .在△AOF 和△COE 中,⎩⎨⎧∠AF O =∠CE O ,∠A O F =∠C O E ,A O =C O ,∴△AOF ≌△COE ,∴AF =CE , ∴AF =CF =CE =AE , ∴四边形AECF 是菱形. (2)∵四边形ABCD 是矩形, ∴CD =AB = 3.在Rt△CDF 中,∠DCF =30°,∴CF =2. ∵四边形AECF 是菱形,∴CE =CF =2, ∴四边形AECF 的面积为CE ·AB =2×3=2 3.20.(10分)“岳池米粉”是四川岳池的传统特色小吃之一,距今有三百多年的历史,为了将本地传统小吃推广出去,县领导组织20辆汽车装运A 、B 、C 三种不同品种的米粉42吨到外地销售,按规定每辆车只装同一品种米粉,且必须装满,每种米粉不少于2车.(1)设x 辆车装运A 求y 与x 的函数关系式,并求x 的取值范围;(2)设此次外售活动的利润为w (百元),求w 与x 的函数关系式以及最大利润,并安排相应的车辆分配方案.解:(1)由题意得2.2x +2.1y +2(20-x -y )=42, 化简得y =20-2x .∵⎩⎨⎧x ≥2,20-2x ≥2,∴x 的取值范围是2≤x ≤9. ∵x 是整数,∴x 的取值为2,3,4,5,6,7,8,9. (2)由题意得w =6×2.2x +8×2.1(-2x +20)+5×2(20-x -y )=-10.4x +336,∵k =-10.4<0,且2≤x ≤9, ∴当x =2时,w 有最大值,w 最大=-10.4×2+336=315.2(百元).∴相应的车辆分配方案为:用2辆车装运A 种米粉,用16辆车装运B 种米粉,用2辆车装运C 种米粉.21.(10分)《朗读者》自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好; (3)如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由. 解:(1)九(1)班5位同学的成绩为75、80、85、85、100, ∴其中位数为85分;九(2)班5位同学的成绩为70、100、100、75、80,∴九(2)班的平均数为70+100+100+75+805=85(分),其众数为100分,补全表格如下:(2)九(1)班成绩好些,∵两个班的平均数都相同,而九(1)班的中位数高,∴在平均数相同的情况下,中位数高的九(1)班成绩好些. (3)九(1)班的成绩更稳定,能胜出.∵s 九(1)2=15×[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70(分),s 九(2)2=15×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160(分),∴s 九(1)2<s 九(2)2,∴九(1)班的成绩更稳定,能胜出.22.(10分)某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC 中,∠BAC =90°,AB =AC ,D 为直线BC 上一动点(点D 不与点B 、C 重合),以AD 为边在AD 右侧作正方形ADEF ,连结CF .(1)观察猜想:如图1,当点D 在线段BC 上时, ①BC 与CF 的位置关系为__垂直__;②BC 、CD 、CF 之间的数量关系为__BC =CD +CF __;(将结论直接写在横线上) (2)数学思考:如图2,当点D 在线段CB 的延长线上时,结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸:如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连结GE .若已知AB =22,CD =14BC ,请求出GE 的长.图1 图2 图3解:(1)①正方形ADEF 中,AD =AF . ∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF .在△DAB 与△FAC 中,⎩⎨⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△FAC ,∴∠B =∠ACF , ∴∠ACB +∠ACF =90°,即CF ⊥BC ; 故答案为垂直;②∵△DAB ≌△FAC ,∴BD =CF . ∵BC =BD +CD ,∴BC =CF +CD ; 故答案为BC =CD +CF ;(2)结论①成立,②不成立.②应改为CD =BC +CF . ∵正方形ADEF 中,AD =AF ,∴∠BAC =∠DAF =90°,∴∠BAD =∠CAF .在△DAB 与△FAC 中,⎩⎨⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△FAC , ∴∠ABD =∠ACF ,BD =CF , ∴CD =BC +BD =BC +CF . 又∵△ABC 为等腰直角三角形, ∴∠ACB =∠ABC =45°,∴∠ABD =180°-∠ABC =135°, ∴∠ACF =135°,∴∠FCB =∠ACF -∠ACB =90°,∴BC ⊥CF .(3)如答图,过点A 作AH ⊥BC 于点H ,过点E 作EM ⊥BD 于点M ,EN ⊥CF 于点N .答图∵∠BAC =90°,AB =AC , ∴BC =2AB =4,AH =12BC =2,∴CD =14BC =1,CH =12BC =2,∴DH =3,同(2)可证得BC ⊥CF ,CF =BD =5. ∵四边形ADEF 是正方形, ∴AD =DE ,∠ADE =90°. ∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF , ∴四边形CMEN 是矩形, ∴NE =CM ,EM =CN .∵∠AHD =∠ADE =∠EMD =90°, ∴∠ADH +∠EDM =∠EDM +∠DEM =90°, ∴∠ADH =∠DEM .在△ADH 与△DEM 中,⎩⎨⎧∠ADH =∠DE M ,∠AHD =∠D M E ,AD =DE ,∴△ADH ≌△DEM , ∴EM =DH =3,DM =AH =2,∴CN =EM =3,EN =CM =3. ∵∠ABC =45°,∴∠BGC =45°,∴△BCG 是等腰直角三角形,∴CG =BC =4, ∴GN =1,∴EG =G N 2+E N 2=10.23.(10分)[2018·成都期末]在平面直角坐标系中,过点C (1,3)、D (3,1)分别作x 轴的垂线,垂足分别为A 、B.(1)求直线CD 和直线OD 的解析式.(2)点M 为直线OD 上的一个动点,过M 作x 轴的垂线交直线CD 于点N ,是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由.(3)若△AOC 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中,设平移距离为2t ,△AOC 与△OBD 重叠部分的面积记为S ,试求S 与t 的函数关系式.解:(1)设直线CD 的解析式为y =kx +b ,则有⎩⎨⎧k +b =3,3k +b =1,解得⎩⎨⎧k =-1,b =4,∴直线CD 的解析式为y =-x +4. 设直线OD 的解析式为y =mx , 则有3m =1,解得m =13,∴直线OD 的解析式为y =13x .(2)存在.理由:如答图1中,设M (m ,13m ),则N (m ,-m +4).当AC =MN 时,以A 、C 、M 、N 为顶点的四边形为平行四边形, ∴|-m +4-13m |=3,解得m =34或214,∴满足条件的点M 的横坐标为34或214.答图1答图2(3)如答图2,设平移中的三角形为△A ′O ′C ′,点C ′在线段CD 上. 设O ′C ′与x 轴交于点E ,与直线OD 交于点P ; 设A ′C ′与x 轴交于点F ,与直线OD 交于点Q .因为平移距离为2t ,所以水平方向的平移距离为t (0≤t <2), 则图中AF =t ,F (1+t ,0),Q (1+t ,13+13t ),C ′(1+t ,3-t ).设直线O ′C ′的解析式为y =3x +b , 将C ′(1+t ,3-t )代入得b =-4t , ∴直线O ′C ′的解析式为y =3x -4t . ∴E (43t ,0).联立y =3x -4t 与y =13x ,解得x =32t ,∴P (32t ,12t )..过点P 作PG ⊥x 轴于点G ,则PG =12t .∴S =S △OFQ -S △OEP =12OF ·FQ -12OE ·PG=12(1+t )(13+13t )-12·43t ·12t =-16(t -1)2+13.。
华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知,则直线y=kx﹣k一定经过的象限是()A.第一、三、四象限B.第一、二、四象限C.第一、四象限D.第二、三象限2、下列各组的分式不一定相等的是()A. 与B. 与C. 与D. 与3、给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有()A.1个B.2个C.3个D.4个4、在平面直角坐标系中,点(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限5、一艘游船在同一航线上往返于甲、乙两地,已知游船在静水中的速度为15km/h,水流速度为5km/h.游船先从甲地逆水航行到乙地,在乙地停留一段时间后,又从乙地顺水航行返回到甲地,设游船航行的时间为t(h),离开甲地的距离为s(km),则s与t之间的函数关系用图象表示大致是()A. B. C. D.6、如图,点在反比例函数的图象上,点在轴上,且,直线与双曲线交于点,则(n 为正整数)的坐标是()A. B. C. D.7、下列命题中,真命题是A.两对角线相等的四边形是矩形B.两对角线互相垂直的四边形是菱形 C.两对角线互相垂直平分且相等的四边形是正方形 D.一组对边相等另一组对边平行的四边形是平行四边形8、下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形9、若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.610、若函数y= ,当x>0时,y随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<111、如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是( )A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为C.5min~20min,王阿姨步行速度由慢到快 D.曲线段AB的函数解析式为12、今年余姚市上半年接待国内外游客650多万人次,实现旅游总收入61亿元,其中,61亿用科学记数法表示是()A. B. C. D.13、已知:如图,在平行四边形ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,则ED的长为( )A.4B.3C. D.214、八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A. B. C. D.15、二亿七千零九写作(),省略亿位后面的尾数约是()A.200007009;2亿B.20007009;2亿1千万C.20007009;2亿 D.20000709;2亿1千万二、填空题(共10题,共计30分)16、对于正比例函数y=m, y的值随x的值增大而减小,则m的值为________17、为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的和分别表示去年和今年的水费(元)和用水量()之间的函数关系图象.如果小明家今年和去年都是用水150 ,要比去年多交水费________元.18、我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AH,CF于点P、Q.在正方形EFGH的EH、FG两边上分别取点M,N,且MN 经过点O,若MH=3ME,BD=2MN=4 .则△APD的面积为________.19、如图,三个边长均为2的正方形重叠在一起,O1, O2是其中两个正方形的对角线交点,若把这样的n个小正方形按如图所示方式摆放,则重叠部分的面积为________.20、小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离(米)与小明出发的时间(分)之间的关系,则小明出发________分钟后与爸爸相遇.21、在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为________.22、在直角坐标系中,O是坐标原点,正方形OABC的顶点A恰好落在双曲线(x>0)上,且OA与x轴正方向的夹角为30°.则正方形OABC的面积是________.23、在菱形ABCD中,∠A=60°,AB=4 ,点P在菱形内,若PB=PD=4,则∠PDC的度数为________.24、已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为________.25、反比例函数y1= (a>0,a为常数)和y2= 在第一象限内的图象如图所示,点M在y2= 的图象上,MC⊥x轴于点C,交y1= 的图象于点A;MD⊥y轴于点D,交y1= 的图象于点B,当点M在y2= 的图象上运动时,以下结论:①S△ODB =S△OCA;②四边形OAMB的面积为2﹣a;③当a=1时,点A是MC的中点;④若S四边形OAMB =S△ODB+S△OCA,则四边形OCMD为正方形.其中正确的是________.(把所有正确结论的序号都填在横线上)三、解答题(共5题,共计25分)26、解分式方程: ﹣=1.27、如图,A(1,0),B(4,0),M(5,3).动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线l:y=﹣x+b也随之移动.设移动时间为t秒.(1)当t=1时,求l的解析式;(2)若l与线段BM有公共点,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在y轴上.28、如果实数x满足,求代数式的值29、已知:,,求的值.30、我市某一周各天的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3(1)写出这组数据的中位数与众数;(2)求出这组数据的平均数.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、B6、D7、C8、D9、B10、A11、C12、C13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
华师大版八年级下册数学期末测试卷及含答案(完整版)(精练)
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若分式的值为零,则x的值是()A.3B.-3C.D.02、若分式有意义,则x的取值范围是()A.x≠-1B.x≠1C.x≥-1D.x≥13、如图,在△ABC中,∠ACB=90°,AC=8,BC=7,以斜边AB为边向外作正方形ABDE,连接CE,则CE的长为()A.14B.15C.16D.174、如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是()A.AM⊥FCB.BF⊥CFC.BE=CED.FM=MC5、若一个正比例函数的图象经过A(1,-2),B(2,b-1)两点,则b的值为()A.-3B.0C.3D.46、反比例函数y=-(k为常数,k≠0)的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限7、在同一直角坐标系中反比例函数与一次函数的图象大致是()A. B. C.D.8、若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,B. ,3C.6,3D. ,9、小明在用图象法解二元一次方程组时所画图象如图,那么这个方程组的解是()A.x=2,y=1B.x=1,y=2 C.x=2,y=2 D.x=1,y=110、工程队进行河道清淤时,清理长度y(米)与清理时间x(时)之间关系的图像如图所示,下列说法不正确的是A.该工程队共清理了6小时B.河道总长为50米C.该工程队用2小时清理了30米D.该工程队清理了30米之后加快了速度11、如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述错误的是( )A.众数为30B.中位数为25C.平均数为24D.方差为8312、已知点P在第二象限,且到x轴的距离为3,到y轴的距离为5,则点P的坐标为()A.(-5,3)B.(3,5)C.(-3,-5)D.(5,-3)13、函数的自变量的取值范围是()A. x≥ 2B. x< 2C. x> 2D. x≤ 214、如图,在菱形 ABCD 中,M,N 分别在 AB、CD 上,且 AM=CN,MN 与 AC 交于点O,连接 BO.若∠DAC=28°,则∠OBC 的度数为()A.28°B.52°C.62°D.72°15、数据6,5,7.5,8.6,7,6的众数是()A.5B.6C.7D.8二、填空题(共10题,共计30分)16、已知点M(1-a,2)在第二象限,则a的取值范围是________17、如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是________.18、已知双曲线y=与⊙O在第一象限内交于A,B两点,∠AOB=45°,则扇形OAB的面积是________.19、)如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6 ,则另一直角边BC的长为________.20、当m=________时,函数y=-(m-2)+(m-4)是关于x的一次函数.21、已知点在轴上,则________.22、如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为,则点E的坐标为________.23、数学活动中.张明和王丽向老师说明他们的位置(单位:m).张明:我这里的坐标是(﹣200,300);王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是________m.24、二次函数y=x2的图象如图所示,点A0位于坐标原点,点A1, A2,A 3,…,An在y轴的正半轴上,点B1, B2, B3,…,Bn在二次函数位于第一象限的图象上,点C1, C2, C3,…,Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3,…,四边形An﹣1BnAnCn都是菱形,∠AB1A1=∠A1B2A2=∠A2B3A3=…=∠An﹣1BnAn=60°,则A1点的坐标为________ ,菱形An﹣1BnAnCn的周长为________ .25、某段时间,小明连续7天测得日最高温度如下表所示,那么这7天的最高温度的平均气温是________ ℃.温度(℃)26 27 25天数 1 3 3三、解答题(共5题,共计25分)26、计算:.27、已知:正方形与正方形,点分别在边上,正方形的边长为,正方形的边长为,且。
新华东师大版数学八年级下册期末测试题(附答案)
新华东师大版数学八年级下册期末测试题(附答案)数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
总分150分。
考试时间120分钟。
第Ⅰ卷(选择题,满分48分)注意事项:1.答第Ⅰ卷前,考生务必将自已的姓名、考号、考试科目用铅笔涂写在答题卡上;2.1-16小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上;3.考试结束后,将第Ⅰ卷的机读卡和第Ⅱ卷的答题卡一并收回。
一、选择题(每小题都有A 、B 、C 、D 四个选项,其中只有一个选项是正确的。
每小题3分,共48分) 1. 若分式12x -有意义,则x 的取值范围是A .x ≠1B .x >1C .x <1D .x=1 2.下列约分正确的是A .326x x x = B .b a c b c a =++ C .0=++a b b a D .1-xy y x =-- 3. 若分式方程114-=-+x m x x 有增根,则m 的值是A.1B.-4C. 3D.54.已知在正方形网格中如图1,每个小正方格都是边长为1的正方形,A 、B•两点在小正方格的顶点上,位置如图所示,点C 也在小正方格的顶点上,且以A 、B 、C•为顶点的三角形面积为1个平方单位,则点C 的个数为( ).A .3个B .4个C .5个D .6个5. 在平面直角坐标系中,点(x-2,x)在第二象限,则x 的取值范围是 A.x <2 B. 0<x <2 C. x >0 D. x >26.与直线y=23x+1平行,且经过点(0,2)的一次函数的关系式是A . y=23x+2B . y=23x -1C . y=-23x+1 D . y=32x -27.我市永逸百货某品牌女装销售专柜对一月来的销售情况进行了统计,销售情况如下表所示: 经理决定下月进女装时多进一些红色的,可用来解释这一决定的统计知识是 A .平均数B .中位数C .众数D .方差8.关于反比例函数xy 2=,下列说法不正确的是 A.点(-2 ,-1)在它的图象上 B.它的图象在第一、三象限C.当x >0时,y 随x 的增大而增大D.x <0时,y 随x 的增大而减小9.如图是一位同学设计的他家各项支出的扇形统计图,该图中教育费扇形圆心角的度数是A . 120oB . 126oC . 130oD . 140o10.函数y=2x+1与y=21-x+6的图象的交点坐标是A. (-1,-1)B. (2,5)C. (1,6)D. (-2,5)11. 四边形ABCD的对角线相交于点O,能判定它是正方形的条件是().A.AB=BC=CD=DA B.AO=CO,BO=DO,AC⊥BDC.AC=BD,AC⊥BD且AC、BD互相平分 D.AB=BC,CD=DA12. 已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是().A.12cm B.10cm C.7cm D.5cm13. 如果一个四边形的面积正好等于它的两条对角线乘积的一半,•那么这个四边形一定是().A.菱形 B.矩形 C.正方形 D.对角线互相垂直的四边形14. 下列说法错误的是().A.对角线互相平分的四边形是平行四边形 B.对角线互相垂直的四边形是矩形 C.对角线相等的平行四边形是矩形 D.对角线互相垂直的矩形是正方形15.如图所示,有一张一个角为60°的直角三角形纸片,沿虚线剪开后,不能拼成的四边形是A.邻边不等的矩形B.等腰梯形C.有一组对角是锐角的菱形D.正方形16.在如图的方格纸中有一个四边形ABCD(A、B、C、D四点均为格点),若方格纸中每个小正方形的边长都为1,则关于四边形ABCD的以下说法,错误的是A.四有形ABCD是菱形B.边长AB=BC=CD=DA=13C.四边形ABCD的面积是12D.∠ABC=∠ADC=60o第Ⅱ卷(非选择题,满分102分)注意事项:1.用钢笔或圆珠笔在第Ⅱ卷答题卡上作答,不能答在此试卷上。
华师大版数学八年级下册期末测试题(含答案)
八年级数学下册期末测试题一、选择题(每小题3分,共30分)1.若反比例函数y= kx的图像经过点(1,-2),则k= ()A.-2B.2C.12C.-122.如果把分式a+2ba−2b中的a、b都扩大3倍,那么分式的值一定()A.是原来的3倍B.是原来的5倍C.是原来的13C.不变3.已知直线y=2x+b与坐标围成的三角形的面积是4,则b的值是()A.4B.2C.±4 C. ±24.一次函数y=kx+k(k≠0)和反比例函数y= kx(k≠0)在同一直角坐标系中的图像大致是()A. B. C. D.5. A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A. 3种B. 4种C. 5种D. 6种6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A. 64B. 60C. 52D. 507.平行四边形一边的长是10cm,这个平行四边形的两条对角线长可以是()A. 4cm,6cmB. 6cm,8cmC. 8cm,12cmD. 20cm,30cm8.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转1800得△CFE,则四边形ADCF一定是()A. 矩形B. 菱形C. 正方形D. 梯形第8题图第9题图第10题图9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= kx(x<0)的图像经过顶点B,则k的值为()A. -12B. -27C. -32D. -3610.如图所示,正方形ABCD的边长为4,E为BC上一点,BE=1,P为AC上一动点,则当PB+PE取最小值时,求PB+PE= ()A. 3B. 4C. 5D. 6二、填空题(每小题3分,共15分)11.将直线y=-2x+1向下平移4个单位得到直线l,则直线l的解析式为___________。
(名师推荐)(推荐)华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、分式方程的解是()A.1B.﹣1C.无解D.32、如图,□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为()A.1B.C.D.3、若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.不能确定4、一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1B.4,2C.5,1D.5,25、随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.2.135×10 11B.2.135×10 7C.2.135×10 12D.2.135×10 36、定义:平面内的两条直线l与l相交于点O,对于该平面内任意一点M,M 点到直线l, l的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,“距离坐标”为(2,3)的点的个数是A.1B.2C.3D.47、下列命题中错误的是()A.等腰三角形的两个底角相等B.对角线互相垂直的四边形是菱形C.矩形的对角线相等D.圆的切线垂直于经过切点的半径8、已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A.a<﹣1B.a>C.﹣<a<1D.﹣1<a<9、如图,已知某菱形花坛的周长是,,则花坛对角线的长是( )A. B. C. D.10、平面上有3条直线,则交点可能是()A.1个B.1个或3个C.1个或2个或3个D.0个或1个或2个或3个11、如图,在函数的图象上取三点A、B、C,由这三点分别向x轴、y轴作垂线,设矩形AA1OA2、BB1OB2、、CC1OC2的面积分别为SA、SB、SC,则下列正确的是()A.SA <SB<SCB.SA>SB>SCC.SA=SC=SBD.SA<SC<SB12、计算:()A. B. C.2 D.113、下列各点一定在函数y=3x-1的图象上的是()A.(1,2)B.(2,1)C.(0,1)D.(1,0)14、数据1,2,x,-1,-2的平均数是0,则这组数据的方差是()。
2022-2023学年度华师大版八年级下册数学期末复习卷(含答案)
学校 班级 姓名 考号 考试时间◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆2022-2023学年度八年级数学期末复习卷本试卷共印11个班:初二全年级, 命题人:数学组 时间:2023-06-4一、选择题(30分):1.据《经济日报》报道:目前,世界集成电路生产技术水平最高已达到,主流生产线的技术水平为,中国大陆集成电路生产技术水平最高为.将用科学记数法可表示为( )A .B .C .D .2.在平面直角坐标系中,点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.在平行四边形ABCD 中,若,,则平行四边形ABCD 的周长为( )A .12B .15C .20D .244.在2022年9月“中国共青团成立一百周年”知识竞赛比赛中,某校15名参赛同学的成绩各不相同,按照成绩,取前8名进入决赛.如果小丽知道了自己的比赛成绩,要判断自己能否进入决赛,小丽还需知道这15名同学成绩的( )A .平均数B .众数C .中位数D .方差5.关于矩形的性质,以下说法不正确的是( )A .邻边相互垂直B .对角线相互垂直C .是中心对称图形D .对边相等6.若关于x 的方程无解,则a 的值为( )A .1B .2C .1或2D .0或27.如图,已知点在反比例函数的图像上,过点作轴,垂足为,连接,将沿翻折,点的对应点恰好落在的图像上,则的值为( )A .B .C .D .8.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,对一次充电后行驶的里程数进行了统计,结果如图所示,则在这组数据中,众数和中位数分别是( )A .220,220 B .210,215 C .210,210D .220,2159.如图,菱形的对角线,相交于点,点为边的中点,若菱形的周长为,,则的面积是( )A .B .C .D .10.智能手机已遍及生活中的各个角落,手机拍照功能也越来越强,高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值,也可计算为像距与物距的比值),小明用某透镜进行了模拟成像实验,得到如图所示的像距v随物距u变化的关系图像,下列说法不正确的是()A.当物距为时,像距为B.当像距为时,透镜的放大率为2C.物距越大,像距越小D.当透镜的放大率为1时,物距和像距均为二、填空题(15分):11.甲、乙两名同学参加古诗词大赛,三次比赛成绩的平均分都是90分,如果方差分别为,,则比赛成绩比较稳定的是______________.(填甲或乙)12.已知一次函数的函数值y随x的增大而减小,则实数k的值可以是______(只需写出一个符合条件的实数)13.照相机成像应用了一个重要原理,用公式表示,其中表示照相机镜头的焦距,表示物体到镜头的距离,表示胶片(像)到镜头的距离.已知,,则______.14.如图,在中,,点D在线段上,过点D作于点E,于点F,若四边形为正方形,,,则阴影部分的面积为________.(提示:线段可看作由绕点D顺时针旋转得到)15.如图为6个边长相等的正方形的组合图形,则__.三、解答题(75分):16.先化简,再求值:,其中x217.计算下列各题:(1);(2)解方程:.18.如图,在正方形中,点在边的延长线上,点在边的延长线上,且,连接和相交于点.求证:.19.如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.20.已知,是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与原点O围成的△AOB的面积;(3)请结合图象,请写出反比例函数值大于一次函数值时x的范围.21.2023年是爱国卫生运动开展71周年,2023年4月也是第35个爱国卫生月,为了倡导文明健康绿色环保生活方式,某市决定开展“爱国卫生行动,从我开始行动”主题演讲比赛.该市某中学将参加本校选拔赛的选手的成绩(满分为100分,得分为正整数)分成六组,并绘制了如下不完整的统计图表.请根据以下信息,回答下列问题:(1)参加学校选拔赛的有______人.(2)补全频数分布直方图.(3)小华这次的成绩是87分,他分析后认为他的成绩刚好是参赛选手成绩的中位数.请问小华的想法是否一定正确?简要说明理由.频数分布表.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的倍,用元购进的卫龙辣条比用元购进的普通辣条多包.求卫龙辣条和普通辣条每包的进价分别是多少元?该便利店每月用元购进卫龙辣条、普通辣条,并分别按元/包、元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的倍,请你帮该便利店设计进货方案,使得每月所获,若分式的值为因为,所以关于+=分别为x1=a,x2=b.利用上面建构的模型,解决下列问题:+==的方程+=.求的值.期末模拟卷答案版一、单选题1.据《经济日报》报道:目前,世界集成电路生产技术水平最高已达到,主流生产线的技术水平为,中国大陆集成电路生产技术水平最高为.将用科学记数法可表示为()A.B.C.D.【答案】C2.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B3.在平行四边形ABCD中,若,,则平行四边形ABCD的周长为()A.12B.15C.20D.24【答案】D4.在2022年9月“中国共青团成立一百周年”知识竞赛比赛中,某校15名参赛同学的成绩各不相同,按照成绩,取前8名进入决赛.如果小丽知道了自己的比赛成绩,要判断自己能否进入决赛,小丽还需知道这15名同学成绩的()A.平均数B.众数C.中位数D.方差【答案】C5.关于矩形的性质,以下说法不正确的是( )A.邻边相互垂直B.对角线相互垂直C.是中心对称图形D.对边相等【答案】B6.若关于x的方程无解,则a的值为( )A.1B.2C.1或2D.0或2【答案】C【详解】方程去分母得解得由题意,分以下两种情况:(1)当,即时,整式方程无解,分式方程无解(2)当时,当时,分母为0,分式方程无解,即解得综上,a的值为1或27.如图,已知点在反比例函数的图像上,过点作轴,垂足为,连接,将沿翻折,点的对应点恰好落在的图像上,则的值为()A.B.C.D.【答案】B【详解】解:∵点在反比例函数的图像上,∴,即,∴,在中,,∴,即,,∴,,∵将沿翻折,∴,即,,如图所示,过点作轴于点,∴,在中,,,∴,,∴,,∵点在反比例函数的图像上,∴,∴,8.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,对一次充电后行驶的里程数进行了统计,结果如图所示,则在这组数据中,众数和中位数分别是()A.220,220B.210,215C.210,210D.220,215【答案】B【详解】解:数据210出现了4次,最多,故众数为210,共10辆车,排序后位于第5和第6位的数分别为210,220,故中位数为.故选:B.9.如图,菱形的对角线,相交于点,点为边的中点,若菱形的周长为,,则的面积是()A.B.C.D.【答案】D【详解】解:菱形的周长为,,,为等边三角形,为中点,是的中点,10.智能手机已遍及生活中的各个角落,手机拍照功能也越来越强,高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值,也可计算为像距与物距的比值),小明用某透镜进行了模拟成像实验,得到如图所示的像距v随物距u变化的关系图像,下列说法不正确的是()A.当物距为时,像距为B.当像距为时,透镜的放大率为2C.物距越大,像距越小D.当透镜的放大率为1时,物距和像距均为【答案】B【详解】解:由函数图象可知:当物距为时,像距为,故选项A说法正确;由函数图象可知:当像距为时,物距为,放大率为,故选项B说法错误;由函数图象可知:物距越大,像距越小,故选项C说法正确;由题意可知:当透镜的放大率为1时,物距和像距均为,故选项D说法正确,二、填空题11.甲、乙两名同学参加古诗词大赛,三次比赛成绩的平均分都是90分,如果方差分别为,,则比赛成绩比较稳定的是______________.(填甲或乙)【答案】甲12.已知一次函数的函数值y随x的增大而减小,则实数k的值可以是______(只需写出一个符合条件的实数)【详解】解:∵一次函数y随x的增大而减小,∴,不妨设,故答案为:(答案不唯一).13.照相机成像应用了一个重要原理,用公式表示,其中表示照相机镜头的焦距,表示物体到镜头的距离,表示胶片(像)到镜头的距离.已知,,则______.【详解】解:∴∴,故答案为:.14.如图,在中,,点D在线段上,过点D作于点E,于点F,若四边形为正方形,,,则阴影部分的面积为________.(提示:线段可看作由绕点D顺时针旋转得到)【详解】解:如图,过点D作交延长线于点H,∵四边形为正方形,∴,∴,∴,∵,∴,∴,,∴阴影部分的面积.故答案为:3015.如图为6个边长相等的正方形的组合图形,则__.【详解】解:标注字母,如图所示,在和中,,∴(),∴,∵,∴,又∵,∴.故答案为:.三、解答题16.先化简,再求值:,其中x2【详解】解:=[],当x2时,原式.17.计算下列各题:(1);(2)解方程:.【详解】解:(1)原式==﹣.(2)方程两边同乘(x+3)(x﹣3),得x﹣3+2x+6=12,解得,x=3,当x=3时,(x+3)(x﹣3)=0,所以x=3不是原方程的解,所以原方程无解.18.如图,在正方形中,点在边的延长线上,点在边的延长线上,且,连接和相交于点.求证:.【详解】证明:∵四边形ABCD为正方形,∴AB=BC=CD,∠ABE=∠BCF=90°,又∵CE=DF,∴CE+BC=DF+CD即BE=CF,在△BCF和△ABE中,∴(SAS),∴AE=BF.19.如图,E,F为平行四边形ABCD的对角线BD上的两点,AE⊥BD于点E,CF⊥BD于点F.求证:AE=CF.【详解】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在▱ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.20.已知,是一次函数的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与原点O围成的△AOB的面积;(3)请结合图象,请写出反比例函数值大于一次函数值时x的范围.【详解】(1)∵在上,∴.反比例函数的解析式为∵点在上,∴.∴.经过,,解得,∴一次函数的解析式为.(2)C是直线AB与x轴的交点,当时,.∴点,∴.∴.(3)反比例函数值大于一次函数值x取值范围为问题:(1)参加学校选拔赛的有______人.(2)补全频数分布直方图.(3)小华这次的成绩是87分,他分析后认为他的成绩刚好是参赛选手成绩的中位数.请问小华的想法是否一定正确?简要说明理由.【详解】(1)解:组人数所占的百分比为:,组的人数所占的百分比为:,∴参加学校选拔赛的总人数为:(人);故答案为:;(2)解:,,补全频数分布直方图如图.(3)不一定正确.理由:将50名选手的成绩从低到高排列,第25名与第26名的成绩都在分数段中,但它们的平均数不一定是87分.22.卫龙辣条是现市场上销售的一种品牌休闲食品,在学生中很受欢迎.俭学街某便利店批发一部分该食品进行销售,已知每包卫龙辣条的进价是每包普通辣条进价的倍,用元购进的卫龙辣条比用元购进的普通辣条多包.(1)求卫龙辣条和普通辣条每包的进价分别是多少元?(2)该便利店每月用元购进卫龙辣条、普通辣条,并分别按元/包、元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的倍,请你帮该便利店设计进货方案,使得每月所获总利润最大.【详解】(1)设普通辣条进价为元,则卫龙辣条的进价为元,∴,解得:,经检验,是方程的解,∴普通辣条的进价为元,卫龙辣条的进价为元.(2)设购买卫龙辣条包,则普通辣条:包,∵普通辣条的数量不超过卫龙辣条数量的倍,∴,解得:,设购进的辣条全部出售后获得的总利润为,∴,,,∵,∴随的增大而减小,∴当时,最大,答:购进卫龙辣条包时,每个月的总获利最大..对于两个不等的非零实数,若分式的值为因为,所以关于+=分别为x1=a,x2=b.+=的方程+=.求的值.)应用上面的结论,x1=-2=∵∴∴∴或∴或∵∴∴。
2022-2023学年华师大版数学八年级下册 期末达标测试卷(含答案)
第二学期期末达标测试卷一、选择题(每题3分,共30分)1.一种“绿色”光刻胶的精度可达0.000 000 014 m.数字0.000 000 014用科学记数法可表示为( )A.14×10-7B.1.4×10-8 C.1.4×10-9D.1.4×10-10 2.为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是( )时间/小时78910人数69114A.9小时,8.5小时B.9小时,9小时C.10小时,9小时D.11小时,8.5小时3.下列式子的运算结果为x+1的是( )A.x2-1x·xx+1B.x+1x÷1x-1C.x2+2x+1x+1D.x2x-1-11-x4.如图,在▱ABCD中,若∠A=∠D+40°,则∠B的度数为( ) A.110° B.70° C.55° D.35°(第4题) (第7题)5.下列关于直线y=3x-3的性质说法不正确的是( )A.不经过第二象限B.与y轴交于点(0,-3)C.与x轴交于点(-1,0) D.y随x的增大而增大6.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x 的增大而增大,则k ,b 的取值情况为( )A .k >1,b <0 B .k >1,b >0 C .k >0,b >0D .k >0,b <07.如图,在长方形ABCD 中,AB =6,AD =4,DM =2,动点P 从点A 出发,沿路径A →B →C →M 运动,则△AMP 的面积与点P 经过的路径长x 之间的函数关系用图象表示大致是( )8.如图,点O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =kx (x <0)的图象经过顶点B ,则k 的值为( )A .-12B .-27C .-32D .-36(第8题) (第9题)9.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的函数关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .①②C .①③D .②③10.如图,在正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE沿AE 对折至△AFE 处,延长EF 交BC 于点G ,连结AG ,CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③S △EGC =S △AFE ;④∠AGB +∠AED =145°,其中正确的个数是( )(第10题)A .1B .2C .3D .4二、填空题(每题3分,共15分)11.已知a -2b =2,则2a +4b a 2-4b 2的值为________.12.某公司欲招聘一名部门经理,需要对应聘者进行专业知识、语言能力和综合素质三项测试,并按照3 ∶5 ∶2的比例确定应聘者的平均成绩,已知应聘者甲的三项测试成绩分别为80分、96分、70分,则应聘者甲的平均成绩为________分.13.如图,在矩形ABCD 中,AB =9,AD =12,对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AD 于点E ,则ED 的长为________.(第13题) (第15题)14.在反比例函数y =a 2+1x的图象上有A (-4,y 1),B (-3,y 2),C (2,y 3)三个点,则y 1,y 2,y 3的大小关系为_____________________________________________________________.15.如图在平面直角坐标系中,直线l 1:y =-12x +2与直线l 2:y =k 2x (k 2≠0)交于点P (a ,1),C 为直线l 1上一点,过点C 作直线m ⊥x 轴于E ,直线m 交l 2于点D ,当CD =3ED 时,则点C 的坐标为__________________________________________________________.三、解答题(16~19题每题8分,20~22题每题10分,23题13分,共75分)16.先化简2x x +1-2x +4x 2-1÷x +2x 2-2x +1,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值.17.如图,在▱ABCD中,延长AD到点E,延长CB到点F,使得DE=BF,连结EF,分别交CD,AB于点G,H,连结AG,CH.(第17题)求证:四边形AGCH是平行四边形.18.若关于x的方程2x-2+x+m2-x=2的解为正数,求m的取值范围.19.为了从甲、乙两名学生中选拔一人参加今年六月份的全县中学生数学竞赛,每个月对他们的学习水平进行一次测验,如图是两人赛前5次测验成绩的折线统计图.(1)分别求出甲、乙两名学生5次测验成绩的平均数及方差;(2)如果从稳定性来看,选谁参赛较合适?如果从发展趋势来看,选谁参赛较合适?请结合所学统计知识说明理由.(第19题)20.如图,大、小两个正方形的中心均与平面直角坐标系的原点O 重合,边分别与坐标轴平行,反比例函数y =kx 的图象与大正方形的一边交于点A (1,2),且经过小正方形的顶点B .(第20题)(1)求反比例函数的表达式;(2)求图中阴影部分的面积.21.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元,今年该型号自行车每辆售价预计比去年降低200元,若该型号自行车的销售数量与去年相同,则今年的销售总额将比去年减少10%.(1)A型自行车去年每辆售价为多少元?(2)该车行今年计划新进一批A型自行车和新款B型自行车共60辆,且B型自行车的进货数量不超过A型自行车数量的2倍.已知A型自行车和B型自行车的进货价格分别为1 500元和1 800元,计划B型自行车销售价格为2 400元,应如何进货才能使这批自行车获利最多?22.如图,反比例函数y1=kx的图象过点A(-1,-3),连结AO并延长交反比例函数图象于点B ,C 为反比例函数图象上一点,横坐标为-3,一次函数y 2=ax +b 的图象经过B ,C 两点,与x 轴交于点D ,连结AC ,AD .(第22题)(1)求反比例函数y 1和一次函数y 2的表达式;(2)求△ACD 的面积;(3)当y 1>y 2时,直接写出自变量x 的取值范围.23.问题解决:如图①,在矩形ABCD 中,点E ,F 分别在AB ,BC 边上,DE =AF ,DE ⊥AF 于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH =AE ,判断△AHF 的形状,并说明理由.类比迁移:如图②,在菱形ABCD 中,点E ,F 分别在AB ,BC 边上,DE 与AF 相交于点G ,DE =AF ,∠AED =60°,AE =7,BF =2,求DE 的长.(第23题)答案一、1.B 2.A 3.C 4.B 5.C 6.A 7.D 8.C 9.A10.C 点拨:由题意可知DE =2,CE =4,AB =BC =AD =6.∵△AFE 是由△ADE 沿AE 对折得到的,∴∠AFE =∠ADE =∠ABG =90°,AF =AD =AB ,EF =DE =2,∴∠AFG =90°.在Rt △ABG 和Rt △AFG 中,{AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG ,∴①正确.易知BG =GF ,设BG =GF =x ,在Rt △EGC 中,EG =x +2,CG =6-x ,CE =4.由勾股定理,得(x +2)2=(6-x )2+42,解得x =3,此时BG =CG =3.∴②正确.∵S △EGC =12GC ·CE =12×3×4=6,S △AFE =12AF ·EF =12×6×2=6,∴S △EGC =S △AFE ,∴③正确.在五边形ABGED 中,∠BGE +∠GED =540°-90°-90°-90°=270°,即2∠AGB +2∠AED =270°,∴∠AGB +∠AED =135°,∴④错误,故选C.二、11.2 12.86 13.218 14.y 3>y 1>y 215.(45,85)或(-4,4)点拨:∵直线l 1:y =-12x +2与直线l 2:y =k 2x (k 2≠0)交于点P (a ,1),∴1=-12a +2,解得a =2,∴点P (2,1),∴1=2k 2,解得k 2=12,∴直线l 2的表达式为y =12x ,设点C (t ,-12t +2),点D (t ,12t ),点E (t ,0),∴CD =|-12t +2-12t |=|-t +2|,DE =|12t|,∵CD =3DE ,∴|-t +2|=3×|12t|,∴t =45或-4,∴点C 的坐标为(45,85)或(-4,4).三、16.解:原式=2x x +1-2(x +2)(x +1)(x -1)·(x -1)2x +2=2x x +1-2(x -1)x +1=2x -2x +2x +1=2x +1.∵不等式x ≤2的非负整数解有0,1,2,且当x =1时原式无意义,∴x 可取0或2.∴当x =0时,原式=20+1=2(或当x =2时,原式=22+1=23).17.证明:∵四边形ABCD 是平行四边形,∴∠EAH =∠FCG ,AD ∥BC ,AD =BC ,AH ∥CG ,∴∠E =∠F ,∵AD =BC ,DE =BF ,∴AD +DE =BC +BF ,即AE =CF ,在△AEH 与△CFG 中,{∠E =∠F ,AE =CF ,∠EAH =∠FCG ,∴△AEH ≌△CFG ,∴AH =CG ,∵AH ∥CG ,∴四边形AGCH 是平行四边形.18.解:去分母;得2-x -m =2x -4,解得x =6-m3,∵x -2≠0,∴x ≠2∵分式方程解为正数,∴x >0,∴6-m3>0,且6-m3≠2,解得m <6且m ≠0.19.解:(1)x 甲=15×(65+80+80+85+90)=80(分),x 乙=15×(70+90+85+75+80)=80(分).甲成绩的方差是15×[(65-80)2+(80-80)2+(80-80)2+(85-80)2+(90-80)2]=70,乙成绩的方差是15×[(70-80)2+(90-80)2+(85-80)2+(75-80)2+(80-80)2]=50.(2)观察(1)中计算的结果,可知甲、乙两名学生5次测验成绩的平均数一样,甲成绩的方差大于乙成绩的方差,说明乙这5次的成绩比甲稳定,所以从稳定性来看,选乙参赛较合适;从发展趋势来看,甲后两次成绩呈上升趋势,且比乙好,而乙的成绩有所下降,所以从发展趋势来看,选甲参赛较合适.20.解:(1)∵反比例函数y =kx的图象经过点A (1,2),∴2=k 1,∴k =2,∴反比例函数的表达式为y =2x.(2)∵小正方形的中心与平面直角坐标系的原点O 重合,边分别与坐标轴平行,∴设点B 的坐标为(m ,m ),∵反比例函数y =2x的图象经过点B ,∴m =2m,∴m 2=2,∴小正方形的面积为4m 2=8,∵大正方形的中心与平面直角坐标系的原点O 重合,边分别与坐标轴平行,且A (1,2),∴大正方形在第一象限的顶点坐标为(2,2),∴大正方形的面积为4×22=16,∴图中阴影部分的面积=大正方形的面积-小正方形的面积=16-8=8. 21.解:(1)设A型自行车去年每辆售价为x元,则今年每辆售价为(x-200)元,由题意,得80 000x=80 000×(1-10%)x-200,解得x=2 000.经检验,x=2 000是原方程的解.答:A型自行车去年每辆售价为2 000元.(2)设今年新进A型自行车a辆,获利y元.由题意,得y=(1 800-1 500)a+(2 400-1 800)(60-a)=-300a+36 000.∵B型自行车的进货数量不超过A型自行车数量的2倍,∴60-a≤2a,∴a≥20.∵y=-300a+36 000,-300<0,∴y随a的增大而减小,∴当a=20时,y最大.此时B型自行车进货数量为60-20=40(辆).答:当新进A型自行车20辆,B型自行车40辆时,才能使这批自行车获利最多.22.解:(1)将(-1,-3)代入y1=kx,得-3=-k,解得k=3,∴y1=3 x ,∵A,B在反比例函数图象上,∴点A,B关于原点成中心对称,∴点B的坐标为(1,3),∵点C的横坐标为-3,∴把x=-3代入y1=3x,得y1=-1,∴点C的坐标为(-3,-1),将(1,3),(-3,-1)代入y2=ax+b,得{3=a+b,-1=-3a+b,解得{a=1,b=2,∴y2=x+2.(2)如图,作DE ∥y 轴交AC 于点E ,(第22题)设AC 所在直线表达式为y =mx +n ,将(-1,-3),(-3,-1)代入y =mx +n ,得{-3=-m +n ,-1=-3m +n ,解得{m =-1,n =-4,∴y =-x -4,将y =0代入y 2=x +2,得x +2=0,解得x =-2,∴点D 的坐标为(-2,0),把x =-2代入y =-x -4,得y =-2,∴点E 的坐标为(-2,-2),∴DE =2,∴S △ACD =S △CDE +S △ADE =12×2×|-2-(-3)|+12×2×|-1-(-2)|=2.(3)x <-3或0<x <1.23.(1)证明:∵四边形ABCD 是矩形,∴∠DAE =∠ABF =90°,∴∠BAF +∠DAF =90°,∵DE ⊥AF ,∴∠AGD =90°,∴∠ADE +∠DAF =90°,∴∠ADE =∠BAF ,∵DE =AF ,∴△ADE ≌△BAF ,∴AD =BA ,∴矩形ABCD 是正方形.(2)解:△AHF 是等腰三角形,理由如下:∵△ADE≌△BAF,∴AE=BF,∵BH=AE,∴BF=BH,∵四边形ABCD是正方形,∴∠ABC=90°,∴AB⊥BC,即AB垂直平分FH,∴AH=AF,∴△AHF是等腰三角形.类比迁移:解:延长CB到点H,使得BH=AE,连结AH,∵四边形ABCD是菱形,∴AD∥BC,AB=AD,∴∠ABH=∠BAD.∵BH=AE,∴△DAE≌△ABH,∴DE=AH,∠AHB=∠DEA=60°,∵DE=AF,∴AH=AF,∴△AHF是等边三角形,∴AH=HF=BH+BF=AE+BF=7+2=9,∴DE=AH=9.。
华师大版初中八年级下学期数学期末试题及答案
(
2)在(
1)的条件下,连结 BF ,求 ∠DBF 的度数 .
ABCD 的周长是 22;③AD =CD ;④△ABP 面积的最大值
为 32.
其中正确的有
A1 个
B
2 个
C
3 个
( )
第 8 题图
如 图,矩 形 ABOC 中 点 A 的 坐 标 为 (
15.
4,
5),
E是
象于点 P .
生成绩的 平 均 数,所 以 至 少 有 一 半 女 生 的 成 绩 比 小 英
高.
你认同小红的说法吗? 请说明理由 .
(
19.
9 分)如图,四边形 ABCD 的对角线 AC 、
BD 相交于点 O ,
四边形 OBEC 是矩形,△BOC ≌△DOA .
(
1)求证:四边形 ABCD 是菱形;
(
2)若 BC =13,
2,-1),
经过点 A 、
D 的一次函数y=mx+n 的图象与反比例函数Βιβλιοθήκη 生? 并说明理由 .
当点 P 是 AC 的中点时,求得图中阴影部分 的 面
( )
D
4 个
如图,在菱形 ABCD 中,∠B =60
5.
°,
AB =2,则以 AC 为一边
的正方形 ACEF 的周长为
(考查范围:本册教材全部内容)
满分:
120 分 考试时间:
100 分钟
一、选择题(每小题3 分,共30 分)下列各小题均有四个选项,其
中只有一个是正确的 .
( )
下列分式中,有意义的条件为 x≠2 的是
1.
1
A
华师大版数学八年级下册《期末试卷》(3套版附答案)
3题号一二三总分161718192021222324得分得分 评卷人一、选择题(每小题 3 分,共 18 分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.x + 11. 若分式x -1有意义,则 x 的取值范围是( )A .x =-1B .x =1C .x ≠-1D .x ≠11 2. 分别以下列四组数为一个三角形的三边长:(1) ,3 1 , 1;(2)3,4,5;(3)1, 2, ; 4 5(4)4,5,6.其中一定能构成直角三角形的有 ()A .1 组B .2 组C .3 组D .4 组a +b 3. 在分式ab中,把 a 、b 的值分别变为原来的 2 倍,则分式的值()A .不变B .变为原来的 2 倍1 C. 变为原来的2D. 变为原来的 4 倍4. 如图是小敏同学 6 次数学测验的成绩统计图,则该同学 6次成绩的中位数是 ()A .85 分B .80 分C .75 分D .70 分5. 在函数 y =- k(k 是常数,且 k >0)的图像上有三点(-3,学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……xy1)、(-1,y2)、(2,y3),则y1、y2、y3 的大小关系是( )(第4 题)A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 16. 如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为 10cm ,正方形 A 的边长为 6cm 、B 的边长为 5cm 、C 的边长为 5cm ,则正方形 D 的边长为 ( ) A .3cm得分 评卷人二、填空题(每小题 3 分,共 27 分) x 2 -1 7. 当 x =时,分式x -1的值为 0.D .4cm(第 6 题)8.计算:(2x -3y 4)2·3x 2y -3= .9. 某水晶商店一段时间内销售了各种不同价格的水晶项链 75 条,其价格和销售数量如下表:价格(元) 20 25 30 35 40 50 70 80 100 150 销售数量(条)13967316642下次进货时,你建议该商店应多进价格为 元的水晶项链. 10. 在四边形 ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA的中点,要使四边形 EFGH 为菱形,则四边形 ABCD 的对角线应满足的条件是 .11. 已知 E 、F 分别是正方形 ABCD 两边 AB 、BC 的中点,AF 、CE 交于点 G ,若正方形 ABCD 的面积等于 4,则四边形 AGCD 的面积为 .12.在 Rt △ABC 中,已知∠C =90°,∠A =30°,BC =1,则边(第 11 题)AC 的长为 .13. 已知梯形的上、下底长分别为 6,8,一腰长为 7,则梯形另一腰长 a 的取值范围是 . 14. 如图,菱形 ABCD 的两条对角线长分别为 6 和 8,点 P 是对角线 AC 上的一个动点,点 M 、N 分别是边 AB 、BC 的中点则 PM +PN 的最小值是 .x + a(第 14 题)15. 已知关于 x 的方程x - 2= -1 有解且大于 0,则 a 的取值范围是.C . 15cm B . 14cm三、解答题(本题共9 个小题,满分75 分)得分评卷人16.(7 分)先化简( 的值.1-x -11) ÷x +1x2x2 -2, 然后选择一个你喜欢的x 的值代入求原式得分评卷人17.(7 分)“玉树地震,情牵国人”,某厂计划加工1500 顶帐篷支援灾区人民,在加工了300 顶帐篷后,由于救灾需要,工作效率提高到原来的1.5 倍,结果比原计划提前4 天完成了任务.求原计划每天加工多少顶帐篷?得分评卷人18.(8 分)如图,在□ABCD 中,分别以AD、BC 为边向内作等边△ADE 和等边△BCF,连结BE、DF.求证:四边形BEDF 是平行四边形.得分评卷人19.(8 分)一次数学活动课中,甲、乙两组学生各自对学校的旗杆进行了5 次测量,所得的数据如下表所示:旗杆高度(m) 11.90 11.95 12.00 12.05甲组测得次数1022乙组测得次数0212得分评卷人20.(8 分)为了预防流感,某学校在星期天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(小时)成正比例;药物释放完毕后,y 与x 成反比例,如图所示.根据以上信息解答下列问题:(1)求药物释放完毕后,y 与x 之间的函数关系式并写出自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25 毫克以下时,学生方可进入教室,那么,从星期天下午5:00 开始对某教室释放药物进行消毒,到星期一早上7:00 时学生能否进入教室?m 得分 评卷人21.(9 分)将矩形纸片 ABCD 按如图方式折叠,使点 D 与点 B 重合,点 C 落到 C ′处,折痕为 EF .若 AD =9AB =6,求折痕 EF 的长.得分 评卷人22.(9 分)如图,一次函数 y =kx +b 与反比例函数 y =的图象交于A (-4,n ),B (2,x-4)两点.(1) 求反比例函数和一次函数的解析式;(2) 求直线 AB 与 x 轴的交点 C 的坐标及△AOB 的面积; (3) 根据图象直接写出关于 x 的方程 kx + b -m = 0 的解及x不等式 kx + b - m x< 0 的解集.得分评卷人23.(9 分)如图,在梯形ABCD 中,已知AD∥BC,AB=DC,AD=2,BC=4,延长BC 到E,使CE=AD.(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(2)探究:当梯形ABCD 的高DF 等于多少时,对角线AC 与BD 互相垂直?请回答并说明理由.得分评卷人24.(10 分)如图,在Rt△ABC 中,∠ABC=90°∠ACB=60°.将Rt△ABC 绕点C 顺时针方向旋转后得到△DEC(△DEC≌△ABC),点E在AC 上,再将Rt△ABC 沿着AB 所在直线翻转180°得到△ABF,连接AD.(1)求证:四边形AFCD 是菱形;(2)连接BE并延长交AD于点G,连接CG.请问:四边形ABCG 是什么特殊平行四边形?为什么?x 参考答案一、选择题(每小题 3 分,共 18 分) 1.D 2.B 3.C4.C5.A 6.B二、填空题(每小题 3 分,共 27 分) 12 y 5 7.-18. x49.50 10.AC =BD11. 82(或2 )12. 3 313.5<a <914.5 15.a <2 且 a ≠-2 三、解答题(本题共 9 个小题,满分 75 分) 16.(7 分)解:原式=(1 - x -1 1 x +1 2(x2 -1) ) x……1 分= 2(x +1) -2(x 2 -1) ……5 分x4 =x代入求值略(只要 x 不取 0,1,-1 即可).……7 分 17.(7 分)解:设原计划每天加工 x 顶帐篷.……1 分 1500 - (300 + 1200 ) = 4……3 分 x x 1.5x解这个方程,得 x =100 ……5 分经检验 x =100 是原分式方程的解. ……6 分 答:原计划每天加工 100 顶帐篷.……7 分18.(8 分)证明:∵四边形 ABCD 是平行四边形,∴CD =AB ,AD =CB ,∠DAB =∠BCD ……2 分又∵△ADE 和△BCF 都是等边三角形∴DE =AE =AD ,BF =CF =CB ,∠DAE =∠BCF =60°. ∴DE =BF ,AE =CF . ……4 分 ∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE . ∴△DCF ≌△BAE (SAS ). ……7 分3⋅3 3 3 ∴DF =BE .∴四边形 BEDF 是平行四边形.……8 分19.(8 分)解: x 甲 = 1⨯ (11.90 +12.00 ⨯ 2 +12.05⨯ 2) = 12.00 5x 乙 = 1x (11.95⨯ 2 +12.00 +12.05⨯ 2) = 12.00 5……3 分S 2 = 1×[(11.90-12.00)2+(12.00-12.00)2+(12.00-12.00)2+(12.05- 甲512.00)2+(12.05-12.00)2]=0.003S 2 = 1×[(11.95-12.00)2+(11.95-12.00)2+(12.00-12.00)2+(12.05- 乙512.00)2+(12.05-12.00)2]=0.002 ……7 分 ∵ S 2< S 2,∴乙组测得旗杆高度比较一致.……8 分乙甲20 . 解:(1) 设药物释放完毕后 y 与 x 的函数关系式为y = k(k =/ 0).x由题意,得1.5 =k,∴ k = 3. 2∴药物释放完毕后的函数关系式为 y =. ……3 分x在 y =中,令y =3,得 x =1.x∴Q (1,3).∴在 y =中,自变量x 的取值范围为 x >1(或 x ≥1).……5 分x 3 (2) 解不等式 <0.25,得x >12. ……7 分x21.(9 分)∵从星期天下午 5:00 到星期一早上 7:00 时,共有 12-5+7=14(小时), 而 14>12,所以到星期一早上 7:00 时学生能够进入教室. ……8 分解:依题意,得:BE =DE ,∠A =90°,∠BEF =∠DEF .∵AD ∥BC ,∴∠DEF =∠BFE .42 + 62⎩⎩b ∴∠BFE =∠BEF .∴BF =BE . ……2 分在 Rt △ABE 中,设 AE =x ,则 BE =DE =9-x . 由勾股定理,得 x 2+62=(9-x )2∴ x = 5 2,即 AE = 52. ……4 分∴BE =BF =DE =AD -AE =132……5 分过 E 点作 EG ⊥BF 于 G 点,则得矩形 ABGE .…6 分EG =AB =6,BG =AE =52∴FG =BF -BG = 13 2 -5 2= 4 .……8 分EF == = 52.即折痕 EF 长为 22.(9 分)解:(1)依题意,得……9 分∴ -m= n , m= -4.∴m =-8,n =2. ……2 分 4 2∴反比例函数解析式为 y = - 8x……3 分又∵直线 y =kx +b 过 A (-4,2),B (2,-4)两点,∴⎧- 4k + b = 2, ∴⎧k = -1,⎨2k + b = -4. ⎨= -2.∴一次函数解析式为 y =-x -2……4 分(2)依题意,令-x -2=0,x =-2 即 C (-2,0)……5 分S ∆AOB =S ∆ AOC +S ∆BOC = 12⨯ 2 ⨯ 2 +12⨯ 2 ⨯ 4 = 6……6 分(3) 方程 kx + b -m = 0 的解为 x =2 或 x =-4 ……7 分 x不等式kx + b -m < 0 的解集为 x >2 或-4<x <0……9 分x23.(9 分)解:(1)△CDA ≌△DCE ,△BAD ≌△DCE .……2 分FG 2 + EG 2 52∵AD ∥BC ,∴∠ADC =∠ECD . ∵CE =DA ,DC =CD , ∴△CDA ≌△DCE . ……4 分 (2)当 DF =3 时,AC ⊥BD . ……5 分理由如下:∵AD ∥BC ,AB =CD ,∴AC =BD .∵AD ∥BC ,CE =AD ,∴四边形 ACED 为平行四边形 ∴AC =DE ,∴BD =DE .∵DF ⊥BE ,∴ BF = EF = 1 BE = 2 1 ⨯ (2 + 4) = 3 224.(10 分)∵DF =3,∴DF =BF =EF .∴∠DBF =∠BDF =45°,∠E =∠EDF =45°. ∴∠BDE =90°.∴BD ⊥DE . ∵AC ∥DE ,∴AC ⊥BD .……9 分(1) 证明:△DEC 是由 Rt △ABC 绕 C 点旋转后得到.∴AC =DC ,∠ACD =∠ACB =60°. ∴△ACD 是等边三角形, ∴AD =DC =AC .……2 分又∵Rt △ABF 是由 Rt △ABC 沿 AB 所在直线翻转 180°得到 ∴AC =AF ,∠ABF =∠ABC =90°. ∴∠FBC 是平角,∴ 点 F 、B 、C 三点共线 ∴△AFC 是等边三角形∴AF =FC =AC .……3 分∴AD =DC =FC =AF . ……4 分 ∴四边形 AFCD 是菱形.……5 分(2)四边形 ABCG 是矩形.……6 分证明:由(1)可知:△ACD 是等边三角形,∠DEC =∠ABC =90°.∴DE ⊥AC 于 E .∴AE =EC . ……7 分 ∵四边形 AFCD 是菱形,∴AG ∥BC . ∴∠EAG =∠ECB ,∠AGE =∠EBC . ∴△AEG ≌△CEB ,∴BE =EG . ……8 分 ∴四边形 ABCG 是平行四边形. ……9 分而∠ACB =90°,∴四边形 ABCG 是矩形. ……10 分学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣6D.2.5×10﹣5 2.在下列分式中,最简分式是()A.B.C.D.﹣3.一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的()尺码/cm2222.52323.52424.525销售量/双46620455A.平均数B.中位数C.众数D.方差4.下列命题中,是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形5.若一次函数y=(m﹣1)x﹣m的图象经过第二、三、四象限,则m的取值范围是()A.m<0B.m<1C.0<m<1D.m>1 6.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠DEF的度数是()A.25°B.40°C.45°D.50°7.某工程队正在对一湿地公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.70m2B.50m2C.45m2D.40m28.如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S39.如图,在△ABC中,∠C=90°,AC=6,BC=8,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.1.2B.2.4C.2.5D.4.810.如图,点A、B的坐标分别是为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,则线段AB在平移过程中扫过的图形面积为()A.18B.20C.36D.无法确定二、填空题:(本大题共6个小题,每小题3分,共18分)11.若分式的值为零,则x的值为.12.若数据1、﹣2、3、x的平均数为2,则x=.13.在菱形ABCD中,若∠A=60°,周长是16,则菱形的面积是.14.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=﹣的图象上,且y1<y2<0,则x1和x2的大小关系是.15.如图,▱ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,点E是BC的中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为cm.16.如图,△ABC为等边三角形,且点A、B的坐标分别是(﹣2,0)、B(﹣1,0),将△ABC沿x轴正半轴方向翻滚,翻滚120°为一次変换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)当a=3时,求的值.18.(8分)摩拜公司为了调查在某市投放的共享单车使用情况,对4月份第一个星期中每天摩拜单车使用情况进行统计,结果如图所示.(1)求这一个星期每天单车使用情况的众数、中位数和平均数;(2)用(1)中的结果估计4月份一共有多少万车次?(3)摩拜公司在该市共享单车项目中共投入9600万元,估计本年度共租车3200万车次,若每车次平均收入租车费0.75元,请估计本年度全年租车费收入占总投入的百分比.19.(8分)如图,在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连结BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.20.(9分)某运动鞋专卖店通过市场调研,准备销售A、B两种运动鞋,其中A种运动鞋的进价比B运动鞋的进价高20元,已知鞋店用3200元购进A运动鞋的数量与用2560元购进B运动鞋的数量相同.(1)求两种运动鞋的进价;(2)若A运动鞋的售价为250元/双,B运动鞋的售价是180元/双,鞋店共进货两种运动鞋200双,设A运动鞋进货m双,且90≤m≤105,要使该专卖店获得最大利润,应如何进货?21.(9分)如图,直线y1=kx+2与反比例函数y2=(x<0)相交于点A,且当x<﹣1时,y1>y2,当﹣1<x<0时,y1<y2.(1)求出y1的解析式;(2)若直线y=2x+b与x轴交于点B(3,0),与y1交于点C,求出△AOC的面积.22.(9分)如图,四边形ABCD为矩形,将矩形ABCD沿MN折叠,折痕为MN,点B的对应点B′落在AD边上,已知AB=6,AD=4.(1)若点B′与点D重合,连结DM,BN,求证:四边形BMB′N为菱形;(2)在(1)问条件下求出折痕MN的长.23.(10分)如图,在平面直角坐标系中,四边形ABCD为菱形,且点D(﹣4,0)在x轴上,点B和点C(0,3)在y轴上,反比例函数y=(k≠0)过点A,点E(﹣2,m)、点F分别是反比例函数图象上的点,其中点F在第一象限,连结OE、OF,以线段OE、OF为邻边作平行四边形OEGF.(1)写出反比例函数的解析式;(2)当点A、O、F在同一直线上时,求出点G的坐标;(3)四边形OEGF周长是否有最小值?若存在,求出这个最值,并确定此时点F的坐标,若不存在,请说明理由.24.(11分)如图,四边形ABCD为平行四边形,过点B作BE⊥AB交AD于点E,将线段BE 绕点E顺时针旋转90°到EF的位置,点M(点M不与点B重合)在直线AB上,连结EM.(1)当点M在线段AB的延长线上时,将线段EM绕点E顺时针旋转90°到EN1的位置,连结FN1,在图中画出图形,求证:FN1⊥AB;(2)当点M在线段BA的延长线上时,将线段EM绕点E顺时针旋转90°到EN2的位置,连结FN2,在图中画出图形,点N2在直线FN1上吗?请说明理由;(3)若AB=3,AD=6,DE=1,设BM=x,在(1)、(2)的条件下,试用含x的代数式表示△FMN的面积.参考答案一、选择题1.C.2.B.3.C.4.A.5.C.6.D.7.B.8.D.9.D.10.A.二、填空题11.﹣1.12. 6.13. 8.14. x1<x2.15. 4.16.(2016,0).三、解答题17.解:原式=÷=•(﹣1)=﹣,当a=3时,原式=﹣.18.解:(1)众数为8(万车次),中位数为8(万车次),平均数=(9+8+8+7.5+8+8+9+10)=8.5(万车次);(2)30×8.5=255(万车次).答:估计4月份共租车255万车次;(3)3200×0.75÷9600=25%.答:全年租车费收入占总投入的25%.19.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠E,∴AB=BE,∴BE=CD;(2)解:由BE=AB,∠BEA=60°,∴△ABE为等边三角形,∴AB=AE=4,又∵BF⊥AE,∴AF=EF=2,∴BF==2,∵∠DAE=∠E,AF=EF,∠AFD=∠CFE,∴△ADF≌△ECF,∴平行四边形ABCD的面积=△ABE的面积=×4×2=.20.解:(1)设A种运动鞋的进价为x元,,解得x=100,经检验,x=100是原分式方程的解,∴x﹣20=80,答:A运动鞋的进价价为100元/双,B运动鞋的进价是80元/双;(2)设总利润为w元,则w=(250﹣100)m+(180﹣80)(200﹣m)=50m+20000,∵50>0,w随m的增大而增大,又∵90≤m≤105,∴当m=105时,w取得最大值,200﹣m=95,答:要使该专卖店获得最大利润,此时应购进甲种运动鞋105双,购进乙种运动鞋95双.21.解:(1)∵当x<﹣1时,y1>y2,当﹣1<x<0时,y1<y2,∴点A的横坐标为﹣1,当x=﹣1时,y==3,则A(﹣1,3),把A(﹣1,3)代入y=kx+2得﹣k+2=3,解得k=﹣1,∴y1的解析式为y=﹣x+2;(2)∵y=2x+b与x轴交于点B(3,0),∴6+b=0,解得b=﹣6,∴直线BC的解析式为y=2x﹣6,解方程组得,则点C的坐标为(,),直线y=﹣x+2与y轴的交点坐标为(2,0),=×(1+)×2=.∴S△AOC22.解:(1)由折叠可得,BM=DM,∠BMN=∠DMN,∵CD∥AB,∴∠BMN=∠DNM,∴∠DMN=∠DNM,∴DN=DM,∴BM=MD=DN,又∵DN∥BM,∴四边形BMDN是平行四边形,又∵BM=DM,∴四边形BMB'N为菱形;(2)设BM=x,则DM=x,AM=6﹣x,在Rt△AMB′中,由勾股定理可得,(6﹣x)2+42=x2,求解得x=,则DM==DN,如图,过点M作MQ⊥CD于点Q,则NQ==,在Rt△MNQ中,利用勾股定理可得MN==.23.解:(1)∵点D(﹣4,0)在x轴上,∴A点横坐标为:﹣4,∵点C(0,3)在y轴上,∴DC=5,∵四边形ABCD为菱形,∴AD=5,∴点A的坐标为(﹣4,﹣5),则解析式为:;(2)如图,∵x=﹣2时,y==﹣10,∴点E的坐标为(﹣2,﹣10),∵点A、O、F在同一直线上,∴A,F关于原点对称,∴点F的坐标(4,5),分别过点E、F作EN⊥x轴于点N,FM⊥GM于点M,FM也垂直于x轴,∵四边形OEGF是平行四边形,∴EO∥FG,∴∠NOE=∠3,∵∠2=∠3=∠1,∴∠1=∠NOE,在△ENO和△FMG中,∴△ENO≌△FMG(AAS),设点G的坐标为(m,n),则5﹣n=10,m﹣4=﹣2,故n=﹣5,m=2,则点G的坐标为(2,﹣5);(3)由于OE为定值,则只需求出OF的最小值即可,设点F的坐标为(a,),根据勾股定理得,,显然当.时,OF2最小,即a=2时,OF最小,OF=2,EO=2,因此,当点F的坐标为(2,2)时,四边形OEGF周长最小,最小值为:4+4.24.(1)证明:如图,∵∠BEF=∠M1EN1=90°,∴∠BEM1=∠FEN1,∵DB=DF,EM1=EN1∴△EBM1≌△EFN1,∴∠EFN1=∠EBM1,∵EB⊥AB,∴∠EBM1=90°∴∠EFN1=90°,∴四边形BEFG为矩形,∴∠FGB=90°即FN1⊥AB.(2)如图,同理可证△EBM2≌△EFN2,则∠EFN2=90°,由于∠EFN1+∠EFN2=180°,所以点N2在直线FN1上.(3)由(1)可知四边形BEFG为正方形,∵AD=6,DE=1,∴AE=5,在Rt△ABE中,BE==4,当点M1在线段AB的延长线上时,S1==,此时x>0;当点M2在线段BA的延长线上时,①当3<x<4时,S2=.②当x>4时,S3=.学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……一、选择题(共9小题,每小题3分,满分27分)1.要使分式的值为0,你认为x可取得数是()A.9B.±3C.﹣3D.32.在函数y=中,自变量x的取值范围是()A.x>3B.x≥3C.x>4D.x≥3且x≠4 3.二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1纳米=0.000000001米,则5纳米可以用科学记数法表示为()A.5×109米B.50×10﹣8米C.5×10﹣9米D.5×10﹣8米4.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.20.250.30.40.5家庭数(个)12241那么这组数据的众数和平均数分别是()A.0.4和0.34B.0.4和0.3C.0.25和0.34D.0.25和0.3 5.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C 为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)6.在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()A.80°B.70°C.65°D.60°8.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S▱ABCD为()A.2B.3C.4D.59.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=.其中正确结论的序号是()A.①②③④B.①②④⑤C.②③④⑤D.①③④⑤二、填空题(共6小题,每小题3分,满分18分)10.若解分式方程﹣=0时产生增根,则a=.11.若点M(k+1,k)关于原点O的对称点在第二象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.12.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).13.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.14.如图,正方形ABCD的边长是2,以正方形ABCD的边AB为边,在正方形内作等边三角形ABE,P为对角线AC上的一点,则PD+PE的最小值为.15.两个反比例函数C1:y=和C2:y=在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为.三、简答题(共8小题.满分75分)16.(10分)计算:(1)(3.14﹣π)0+0.254×44﹣()﹣1(3)已知﹣=3,求的值17.(6分)解方程:.18.(9分)如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?19.(10分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C,D分别作BD,AC的平行线,两线相交于点P.(1)求证:四边形CODP是菱形;(2)当矩形ABCD的边AD,DC满足什么关系时,菱形CODP是正方形?请说明理由.20.(10分)我们知道,假分数可以化为整数与真分数的和的形式,例如=1+.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,……这样的分式是假分式;像,,……这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式,例如:==+=1+===x+2+(1)分式是分式(填“真”或“假”);(2)将分式化成整式与真分式的和的形式;(3)如果分式的值为整数,求x的整数值.21.(8分)近几年,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,我们国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班 8.5乙班 8.5 10 1.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度对甲乙两班进行分析.22.(10分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格240023.(12分)如图,直线y=﹣2x+2与x轴、y轴分别相交于点A和B.(1)直接写出坐标:点A,点B;(2)以线段AB为一边在第一象限内作▱ABCD,其顶点D(3,1)在双曲线y=(x >0)上.①求证:四边形ABCD是正方形;②试探索:将正方形ABCD沿x轴向左平移多少个单位长度时,点C恰好落在双曲线y=(x>0)上.参考答案一、选择题1.D.2.D.3.C.4.A.5.C.6.A.7.D.8.D.9.B.二、填空题10.﹣8.11.一12. CB=BF;BE⊥CF;∠EBF=60°;BD=BF等.13.x>﹣2.14. 2.15. 1.三、简答题16.解:(1)原式=1+(0.25×4)4﹣2=1+1﹣2=0;(2)由﹣=3,得到=﹣2,即a﹣b=﹣2ab,则原式====﹣.17.解:两边乘x﹣2得到,1+3(x﹣2)=x﹣1,1+3x﹣6=x﹣1,x=2,∵x=2时,x﹣2=0,∴x=2是分式方程的增根,原方程无解.18.(1)证明:连接BD,交AC于点O.∵ABCD是平行四边形∴OA=OC OB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)(3)四边形BFDE不是平行四边形因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等.19.(1)证明:∵DP∥AC,CP∥BD∴四边形CODP是平行四边形,∵四边形ABCD是矩形,∴BD=AC,OD=BD,OC=AC,∴OD=OC,∴四边形CODP是菱形;(2)解:当矩形ABCD的边AD=DC,菱形CODP是正方形,理由:∵四边形ABCD是矩形,∴AO=CO,又∵AD=DC,∴DO⊥AC,∴∠DOC=90°,∴菱形CODP是正方形.20.解:(1)分子的次数小于分母的次数,所以是真分式;(2)原式==1﹣(3)原式==2(x+1)+由于该分式是整数,x是整数,所以x﹣1=±1∴x=0或x=221.解:(1)甲班的平均数是:(8.5+7.5+8+8.5+10)÷5=8.5(分);∵8.5出现了2次,出现的次数最多,∴甲的众数为:8.5分,S2= [(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2]=0.7甲(分);乙的中位数是:8分;故答案为:8.5,8.5,0.7,8;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样高;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.22.解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵50﹣m≥0,∴m≤50,∴16≤m≤50∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.23.解:(1)∵令x=0,则y=2;令y=0,则x=1,∴A(1,0),B(0,2).故答案为:(1,0),(0,2);(2)①过点D作DE⊥x轴于点E,∵A(1,0),B(0,2),D(3,1),∴AE=OB=2,OA=DE=1,在△AOB与△DEA中,,∴△AOB≌△DEA(SAS),∴AB=AD,设直线AD的解析式为y=kx+b(k≠0),∴,解得,∵(﹣2)×=﹣1,∴AB⊥AD,∴四边形ABCD是正方形;②过点C作CF⊥y轴,∵△AOB≌△DEA,∴同理可得出:△AOB≌△BFC,∴OB=CF=2∵C点纵坐标为:3,代入y=,∴x=1,∴应该将正方形ABCD沿X轴向左平移2﹣1=1个单位长度时,点C的对应点恰好落在(1)中的双曲线上.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。
华师大版八年级下册数学期末测试卷及含答案A4版打印
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF= AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为()A. B. C. D.12、在平面直角坐标系中,点(m2+1,1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限3、今年5月26日﹣5月29日,2019中国国际大数据产业博览会在贵阳举行,贵州省共签约项目125个,金额约1008亿元.1008亿用科学记数法表示为()A.1008×10 8B.1.008×10 9C.1.008×10 10D.1.008×10 114、若y与x的关系式为y=30x-6,当x= 时,y的值为()A.5B.10C.4D.-45、分式可化简为()A. B. C. D.6、数据21、12、18、16、20、21的众数和中位数分别是()A.21和19B.21和17C.20和19D.20和187、如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位 D.向右平移1个单位,再向上平移1个单位8、已知函数,当时,y的取值范围是()A. B. C. D.9、下列叙述错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相平分C.菱形的对角线相等D.矩形的对角线相等10、如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为12,∠C=60°,则四边形ABEF的面积是()A.9B.12C.D.611、如图,若要使▱ABCD成为菱形,则可添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD12、下列分式中,与相等的是()A. B. C. D.13、如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y= 与正方形ABCD有公共点,则k的取值范围为()A.1<k<9B.2≤k≤34C.1≤k≤16D.4≤k<1614、某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据的中位数是()A.9.7B.9.5C.9D.8.815、如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)二、填空题(共10题,共计30分)16、已知一次函数的图象过点与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.17、“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是________.(把你认为正确说法的序号都填上)18、若式子在实数范围内有意义,则的取值范围是________.19、甲、乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6,甲乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是________.(填“甲”“乙”)20、如图,已知动点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AC⊥y 轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴、y轴于点P,Q.当QE∶DP=4∶9时,图中阴影部分的面积等于________.21、已知函数,则________.22、边长为4的正方形ABCD,在BC边上取一动点E,连接AE,作EF⊥AE,交CD边于点F,若CF的长为,则CE的长为 ________ .23、如图,在矩形ABCD中,已知∠DBC=45°,∠DBC的平分线交DC于点E,作EF⊥BD于点F,作FG⊥BC于点G,则=________.24、一次函数y=kx+b(kb<0)图象一定经过第________ 象限.25、化简:=________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中x=﹣1.27、已知函数y=y1﹣y2, y1与x成反比例,y2与x成正比例,且当x=1时,y=10;当x=3时,y=6.求y与x的函数关系式.28、先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值29、已知分式:A= ,B= ,其中x≠±2.学生甲说A与B相等,乙说A与B互为倒数,丙说A与B互为相反数,她们三个人谁的结论正确?为什么?30、计算:﹣|1﹣+(7+π)0.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、C5、A6、A7、D8、C9、C10、C11、C12、B13、C14、C15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
华东师大版八年级数学下册期末考试题及答案【完整版】
华东师大版八年级数学下册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.(-9)2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或73.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3x2-x的取值范围是________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD 的周长为_____________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程 (1)2250x x --= (2)1421x x =-+2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、D5、B6、B7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、12、-153、x 2≥4、10.5、49136、6三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、22x -,12-.3、(1)略(2)1或24、略.5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
华师大版八年级下册数学期末测试卷及含答案(往年考题)
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A. B. C. D.2、已知四边形ABCD是平行四边形,下列结论中错误的是( )A.当∠A=60°时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.当AB=BC,AC=BD时,它是正方形3、若分式的值为0,则a的值是()A.a=2B.a=2或-3C.a=-3D.a=-2或34、我国正式启动第五代移动通信技术商用,目前已开通5G基站达到12.6万个,力争底实现全国所有地级市覆盖5G网络.将数据“12.6万”用科学记数法可表示为()A.12.6×10 4B.12.6×10 5C.1.26×10 4D.1.26×10 55、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22B.24C.48D.446、正方形ABCD中,E、F分别为AB、BC的中点,AF与DE相交于点O,则=()A. B. C. D.7、若x1, x2(x1<x2)是方程(x-a)(x-b)= 1(a<b)的两个根,则实数x1, x2, a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x28、在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k 的取值范围是()A.k>3B.k>0C.k<3D.k<09、如图,已知三角形ABC如图所示放置在平面直角坐标系中,其中C(-4,4).则三角形ABC 的面积是()A.4B.6C.12D.2410、若分式的值为零,则x的值是()A.±1B.1C.﹣1D.011、下列方程中,不是分式方程的是()A. B. C. D.12、某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是()A.4和7B.5和7C.5和8D.4和1713、如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE= ,∠EAF=135°,则下列结论正确的是()A.DE=1B.tan∠AFO=C.AF=D.四边形AFCE的面积为14、某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A. B. C. D.15、下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等二、填空题(共10题,共计30分)16、已知(m,n)是函数y= 与y=x﹣2的一个交点,则代数式m2+n2﹣3mn的值为________.17、如图,正方形ABCD,点E是DC上一点,点F是AD上一点,且AF>DF,EF=EC,FG⊥EF交AB于点G,连接CF、CG,若△CFG的面积为15,BC=6,则AF 的长度是________.18、如图,直线是一次函数()的图象,则________.19、如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的点F处,若DE=5,AB=8,则S△ABF :S△FCE=________.20、写出一个图象位于二、四象限的反比例函数的表达式,y=________.21、分式和的最简公分母是________.22、如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为________.23、如图,A,B是反比例函数y= 图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为6,则k的值为________.24、正方形ABCD中,AB=2,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________.25、菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为________.三、解答题(共5题,共计25分)26、先化简再求值:(+ )÷,其中a=3.27、学校组织学生到距离学校7km的光明科技馆去参观,学生李明因事没能乘上学校的包车,于是准备在校门口乘出租车去光明科技馆,出租车收费标准如下:里程收费3km以下(含3km)8元3km以上的部分 2.2元∕km(1)若出租车行驶的里程为xkm(x>3)请用x的代数式表示车费y元,(2)李明身上仅有16元钱,够不够支付乘出租车到科技馆的车费?请通过计算说明理由.28、在平面直角坐标系xOy中,直线过A(0,—3),B(1,2).求直线的表达式.29、如图,直线AB:y=x+1与直线CD:y=﹣2x+4交于点E.(1)求E点坐标;(2)在x轴上找一点F使得FB+FE最小,求OF的长;(3)若P为直线CD上一点,当△AEP面积为6时,求P的坐标.30、列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400g,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160g,已知每页薄型纸比厚型纸轻0.8g,求A4薄型纸每页的质量.(墨的质量忽略不计)参考答案一、单选题(共15题,共计45分)1、A2、A3、C4、D5、B7、C8、A9、C10、C11、B12、C13、C14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
新华师大版八年级数学下期末考试试题及其参考答案
新华东师大版数学八年级下册期末模拟测试数学试题2本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
总分150分。
考试时间120分钟。
第Ⅰ卷(选择题,满分48分)注意事项:1.答第Ⅰ卷前,考生务必将自已的姓名、考号、考试科目用铅笔涂写在答题卡上;2.1-16小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上;3.考试结束后,将第Ⅰ卷的机读卡和第Ⅱ卷的答题卡一并收回。
一、选择题(本大题16个小题,每小题3分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1、在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限 B.第二象限 C.第三象限D.第四象限2、在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A与点A´的关系是()A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A´3、下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;C.两条对角线互相垂直的矩形是正方形;D.两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的()A.平均数B.中位数C.众数D.方差5、点P(3,2)关于x轴的对称点'P的坐标是()A.(3,-2) B.(-3,2) C.(-3,-2) D.(3,2)6、以三角形的三个顶点及三边中点为顶点的平行四边形共有:()(A )1个 (B )2个 (C )3个 (D )4个 7、如图,已知P 、Q 是ABC ∆的BC 边上的两点,且BP PQ QC AP AQ ====,则BAC ∠的大小为( )A .120B .110C .100D .908、如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为( )A. 6B. 4C. 3D. 29、 如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数2ky x=-的图象上,若点A 的坐标为 (-2,-2),则k 的值为( )A.4 B.-4 C.8 D.—810、如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G 下列结论: ①EC=2DG ;②GDH GHD ∠=∠;③CDGDHGE SS =四边形;④图中有8个等腰三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版八年级下册数学期末复习测试题
一、选择题(12个题,共48分) 1、有理式11249,(),,
,,
23313
x x x y
x y x m x x ++--中,分式有( )个 A、1 B、2 C、3 D、4
2、分式
2
2
x x -+有意义的条件是( ) A、2x ≠ B、2x ≠- C、2x ≠± D、2x >-
3、点(-4,1)关于原点的对称点是( )
A、(-4,1) B、(-4,-1) C、(4,1) D(4,-1) 4、已知点(-1,m )和点(0.5,n )都在直线2
3
y x b =-
+上,则m 、n 的大小关系是( )
A、m n < B、m n > C、m n = D、无法判断 5、点(0,-2)在(B )
A、X轴上 B、Y轴上 C、第三象限 D、第四象限 6、下列判断正确的是( )
A、平行四边形是轴对称图形 B、矩形的对角线垂直平分 C、菱形的对角线相等 D、正方形的对角线互相平分
7、关于x 的分式方程232
x m
x +=-的解是正数,则m 可能是( )
A 、4-
B 、5-
C 、6-
D 、7- 8、顺次连接平行四边形各边中点所得到的四边形是( )
A、平行四边形 B、矩形 B、菱形 D、正方形
9、使关于x 的分式方程
121k x -=-的解为非负数,且使反比例函数3k
y x
-=
图象过第一、三象限时满足条件的所有整数k 的和为( )
A .0
B .1
C .2
D .3
10、平行四边形ABCD中,∠ADC的平分线与AB交于点E,若AE、EB是
方程组32414113
x y x y -=⎧⎪⎨+=⎪⎩的解,则平行四边形ABCD的周长为( )
A、16 B、17 C、17或16 D、5.5
11、甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计。
两组各自加工零件的数量y (件)与时间x (时)的函数图象如图。
以下说法错误的是( )
A 、甲组加工零件数量y 与时间x 的关系式为40y x =甲
B 、乙组加工零件总量280m =
C 、经过1
22小时恰好装满第1箱
D 、经过3
44
小时恰好装满第2箱
12、如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负
半轴上,∠BOC=60°,顶点C 的坐标为),反比例函数k
y x
=的图像与菱形对
角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是( )
A .
B .-
C .
D .-二、填空题(6个题,共24分)
13、已知空气的单位体积质量是0.001239克每立方厘米,用科学记数法表示该数为 ;
14、计算:23-= ,01()3
= ,3223()()a ab --= , 15、已知132a a -
=,则221
a a
+= , 16、用计算机处理数据,为了防止数据输入出错,某研究室安排两位程序操作员各
输入一遍,比较两人的输入是否一致。
两人各输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完。
这两个操作员每分钟各能输入多少个数据?设乙每分钟输入X个数据,根据题意列方程为 ; 17、将直线5y x =--向上平移2个单位,得到直线 ,将直线
3y x =-向左平移2个单位,得到直线 ,将双曲线1
y x
=
向下平移2个单位,得到双曲线 ;
18、矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长的和是86cm ,矩形的对角线是13cm ,那么该矩形的周长为 ,面积为 ; 三、解答题(2个题,16分+4分=20分)
19、(1)计算:1
11()2
--- (2)
2a a b a b ---
(3)221
(1)11
x x x --÷++ (4)22
11()xy x y x y x y +÷-+-
20、解分式方程: 11322x
x x
-+=--
四、解答题(6个题,共58分)
21、(6分)已知等腰三角形的周长是18cm ,底边Y(cm )是腰长X(cm )的函数。
(1)写出这个函数的关系式; (2)求出自变量的取值范围;
(3)当△ABC为等边三角形时,求△ABC的面积。
22、(6分)某服装制造厂要在开学前赶制3000套服装,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多了20%,结果提前4天完成任务。
问原计划每天能完成多少套校服?
23、(6分)(2019枣庄)如图,一次函数y=kx+b 与反比例函数y=(x >0)的图象交于A (m ,6),B (3,n )两点. (1)求一次函数的解析式; (2)根据图象直接写出使kx+b <成立的x 的取值范围; (3)求△AOB 的面积.
24、(8分)如图,平行四边形ABCD中,AE平分∠BAD,BE平分∠ABC,且AE、BE相交于CD上的一点E。
(1)求证:AE⊥BE;
(2)若AD=4cm ,求平行四边形ABCD的周长。
A
25、(8分)如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=4;
求:(1)∠ABC的大小; (2)菱形ABCD的面积。
26、(12分)直线2
23
y x =-分别交X轴、Y轴于A、B两点, O是原点。
(1)求△AOB的面积;
(2)过△AOB的顶点能不能画出直线把△AOB分成面积相等的两部分?若能,可以画出几条?求出这样的直线所对应的函数的表达式。
(3)点P在Y轴上,△PAB是等腰三角形,求点P的坐标。
27、(12分)(2019历下区二模)如图,点A (3,2)和点M (m ,n )都在反比例函
数y=(x >0)的图象上.
(1)求k 的值,并求当m=4时,直线AM 的解析式;
(2)过点M 作MP ⊥x 轴,垂足为P ,过点A 作AB ⊥y 轴,垂足为B ,直线AM 交x 轴于点Q ,试说明四边形ABPQ 是平行四边形;
(3)在(2)的条件下,四边形ABPQ 能否为菱形?若能,请求出m 的值;若不是,请说明理由.
华师大版八年级下册数学期末复习测试题答案
一、选择题
CBDAB DBABC DD 二、填空题
13、31.23910-⨯; 14、9611,1,
9a b ; 15、174;16、264026401202x x
=-; 17、123,36,x
y x y x y x
-=--=--=; 18、34,60; 三、解答题
19、212
,(3),(4)1b x a b x y
--+ 20、X=2,是增根。
四、解答题
21、182,4.59,y x x S =-<<= 22、
300030004(120%)x x
-=+,X=125,经验验,是原方程的根。
23、解:(1)∵点A (m ,6),B (3,n )两点在反比例函数y=(x >0)的图象上,
∴m=1,n=2, 即A (1,6),B (3,2). 又∵点A (m ,6),B (3,n )两点在一次函数y=kx+b 的图象上,
∴
.
解得,
则该一次函数的解析式为:y=﹣2x+3;
(2)根据图象可知使kx+b <成立的x 的取值范围是0<x <1或x >2;
(3)分别过点A 、B 作AE⊥x 轴,BC⊥x 轴,垂足分别是E 、C 点.直线AB 交x 轴于D 点. 令﹣2x+8=0,得x=4,即D (4,0). ∵A(1,6),B (3,2), ∴AE=6,BC=2,
∴S △AOB =S △AOD ﹣S △BOD =×4×6﹣×4×2=8.
24、24;
25、120°,
26、
142
(1)3,(2)1,2,,
3335
(3)(0,2),(0,22)
4
y x y x y x P =-=-=----
27、【解答】解:(1)把A (3,2)代入得:k=6,
∴反比例函数的解析式为:y=;
把m=4代入反比例解析式得:n==1.5, ∴M (4,1.5),
设直线AM 的解析式为:y=kx+b ; 根据题意得:
,
解得:k=﹣0.5,b=3.5,
∴直线AM 的解析式为:y=﹣0.5x+3.5;
(2)根据题意得:P (m ,0),M (m ,),B (0,6), 设直线BP 的解析式为:y=kx+b ,
把点B (0,2),P (m ,0)代入得:,
解得:k=﹣;
设直线AM 的解析式为:y=ax+c ,
把点A (3,2),M (m ,)代入得:
,
解得a=﹣, ∵k=a=﹣,
∴直线BP 与直线AM 的位置关系是BP ∥AM ,
∵AB∥PQ,
∴四边形ABPQ是平行四边形;
(3)在(2)的条件下,四边形ABPQ能为菱形,理由为:若四边形ABPQ为菱形,则有AB=BP=3,
∴m2+22=9,即m2=5,
此时m=,
则在(2)的条件下,四边形ABPQ能为菱形.
不用注册,免费下载!。