最新量子力学作业答案

合集下载

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学作业参考答案(刘觉平)

量子力学作业参考答案(刘觉平)

习题一1. 计算下列情况的Einstein-de Broglie 波长,指出哪种过程要用量子力学处理:(1)能量为0.025eV 的慢中子24n 1.6710g m -=⨯()被铀吸收;(2)能量为5MeV 的α粒子穿过原子246.6410g m α-=⨯();(3)飞行速度为100m /s 质量40g 为的子弹的运动。

解:(1)由242220m c p c E +=注意到:22481851.6710310 1.503109.3810n m c g m s J Mev ---=⨯⨯⨯⋅=⨯=⨯>>0.025ev 所以202k p E m =利用Einstein-de Broglie 关系: hp λ=得: 0.181nm λ=而吸收过程中作用距离(即核半径)约为飞米量级,比0.181nm 小,因此要用量子力学处理。

(2)由242220m c p c E +=注意到:2855.97610 3.7310m c J Mev α-=⨯=⨯>> 6.4fm λ= 得h εν=利用Einstein-de Broglie 关系hp λ=得: 6.4fm λ=这比原子半径小的多,因此不需用量子力学处理。

(3)显然子弹不是相对论的,故可利用p mv =。

代入Einstein-de Broglie 关系hp λ=得:341.6510m λ-=⨯,这比子弹的运动尺度小的多,不需用量子力学处理。

2. 两个光子在一定条件下可以转化为正、负电子对.如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?解:若会发生这种转化,由能量守恒的限制,两个光子的能量必须要大于正负电子对的静能即202 1.022e E m c Mev ==。

光子能量h εν=,得到min 2.42fm λ=。

3. 考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕。

利用检测器能定出电子撞击屏幕的位置。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

量子力学填空题答案精选全文完整版

量子力学填空题答案精选全文完整版

可编辑修改精选全文完整版填空题答案1.量子力学的最早创始人是 普朗克 ,他的主要贡献是于 1900 年提出了 能量量子化 假设,解决了黑体辐射 的问题。

2.按照德布罗意公式λνεh p h ==,,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1 ;能量比E 1:E 2=12:μμ;若粒子速度为v=0.9c ,按相对论公式计算,其德布罗意波长'λ=24202//p c c μλ+。

3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E=kT 23(k 为玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max =K h k 221031-≈⎪⎭⎫ ⎝⎛λμ。

4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) 缩小1倍;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能量E n =3,2,12/2222=n a n μπ,相应的波函数=)(x n ψ()a x ax n a n <<=0sin 2πψ和()a x x n≥≤=,00ψ。

5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E=eV eV 51.136.132-=;L= 2;L z = ,轨道磁矩M z =B M 。

6.两个全同粒子组成的体系,单粒子量子态为)(q k ϕ,当它们是玻色子时波函数为),(21q q s ψ=()()()()[]玻色体系1221221121q q q q k k k k ϕϕϕϕ+;为费米子时),(21q q A ψ()()()()]费米体系12212211q q q q k k k k ϕϕϕϕ-7.非简并定态微扰理论中求能量和波函数近似值的公式是E n =()()+-'+'+∑≠020m nn m mn mnnE EH H E ,)(x n ψ = ()()() +-'+∑≠00020m m nnm mnn E EH ψψ,其中微扰矩阵元'mn H =()()⎰'τψψd H n m 00ˆ;而'nn H 表示的物理意义是 在未受微扰体系中,H '的平均值 。

量子力学作业及参考答案

量子力学作业及参考答案

15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。

量子力学练习题答案

量子力学练习题答案
量子力学练习题参考答案
一、 简答题 1. 简述光电效应中经典物理学无法解释的实验现象。 答:光电效应中经典物理学无法解释的实验现象有: (1)对入射光存在截止频率ν0 ,小于该频率的入射光没有光电子逸出;(2) 逸出的光电子的能量只与入射光的频率ν 有关,入射光的强度无关;(3) 截止频率只与材料有关而与光强无关;(4)入射光的强度只影响逸出的光 电子的数量;(5)无论多弱的光,只要其频率大于截止频率,一照射到金 属表面,就有光电子逸出。 2. 简述 Planck 的光量子假设。 答:Planck 的光量子假设为,对于一定的频率为ν 的辐射,物体吸收或发 射的能量只能以 hν 为单位来进行。 3. 写出 Einstein 光电方程,并阐述 Einstein 对光电效应的量子解释。 答:Einstein 光电方程为 hν = 1 mv2 + W 。
⎤ ⎥ ⎦
16. 简述粒子动量与位置的不确定关系。
答:若要想精确地知道粒子的动量值,就无法得知粒子的具体位置;要想
精确地知道粒子的位置,就无法得知粒子的具体动量值,位置分布的均方
差和动量分布的均方差受到下面关系的制约
Δx ⋅ Δp ≥ = 2
17. 简述量子力学的态叠加原理。
答:量子力学的态叠加原理是指如果ψ1 、ψ 2 、ψ 3 ……均是体系的可能状态,
ψ ( x, t) = eip0x / = ⋅ e−iEt / = = e−i(Et− p0x)/ =
14. 写出动量算符、动能算符以及在直角坐标系中角动量各分量的算符的
表达式。 答:动量算符 lpK = −i=∇
动能算符 Tl = 1 (−i=∇)2
2m
角动量各分量的算符
L x
=
−i=
⎛ ⎜

量子力学试题含答案

量子力学试题含答案

量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。

这种相互转化的现象称为________。

答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。

答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。

答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。

答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。

这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。

实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。

当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。

同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。

b) 请解释量子力学中的不确定性原理及其意义。

答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。

不确定性原理的意义在于限制了我们对微观世界的认知。

它告诉我们,粒子的位置和动量无法同时被精确地确定。

这是由于测量过程中的不可避免的干扰和相互关联性导致的。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题4分,共40分)1. 在量子力学中,一个粒子的状态用波函数表示。

波函数的物理意义是:A. 粒子的位置概率分布B. 粒子的运动速度C. 粒子的自旋状态D. 粒子的能量2. 量子力学的基本假设之一是:A. 粒子的能量是离散的B. 粒子在空间中的轨道是连续的C. 粒子的位置可以同时确定D. 粒子的自旋是固定的3. 哪个原理用于解释原子光谱的发射和吸收现象?A. 波粒二象性原理B. 测不准原理C. 泡利不相容原理D. 量子力学随机性原理4. 薛定谔方程描述了:A. 粒子的位置和动量之间的关系B. 粒子在空间中的运动轨迹C. 粒子的能量和自旋状态D. 粒子波函数随时间的演化5. 量子力学波函数的归一化条件是:A. Ψ(x, t)在全空间上的模长平方的积分等于1B. Ψ(x, t)在全空间上的模长平方的积分等于0C. Ψ(x, t)在无限远处趋于零D. Ψ(x, t)的真实部分等于虚部的共轭6. 两个可观测量的对易关系表示为:[A, B] = AB - BA = 0其中[A, B]表示两个算符的对易子。

这意味着:A. A和B的本征态可以同时存在B. A和B的本征值可以同时测量得到C. A和B的测量结果彼此独立D. A和B的测量结果存在不确定性7. 量子力学中的不确定性原理指出,以下哪一对物理量不能同时精确确定:A. 位置和动量B. 能量和时间C. 自旋在X方向和自旋在Y方向D. 角动量在X方向和角动量在Y方向8. 箱中有一自由粒子,其波函数为:Ψ(x) = A sin(kx)其中A和k为常数,该波函数代表:A. 粒子在箱中处于能量本征态B. 粒子在箱中处于动量本征态C. 粒子在箱中处于位置本征态D. 粒子在箱中处于叠加态9. 双缝干涉实验中,当缝宽减小时,干涉图案的特征是:A. 条纹的间距增大B. 条纹的间距减小C. 条纹的亮度增强D. 条纹的亮度减弱10. 量子隧穿现象解释了:A. 电子在金属中的传导现象B. 光子在光学纤维中的传播现象C. 电子在势垒中的穿透现象D. 光子在介质中的反射现象二、填空题(每题6分,共30分)1. 德布罗意波假设将粒子的运动与________联系起来。

大学物理量子力学习题答案解析

大学物理量子力学习题答案解析

一、简答题(1——8题,每题5分,共40分)1. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。

写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。

解:()⎰Ω=adrr r d P 022,,ϕθψ。

2. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。

解:能量本征值和本征波函数为⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ3. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。

解:有两个条件:0],[,0==∂∂H Q t Q。

4.)(z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么?解:()zL L,2的共同本征函数是球谐函数),(ϕθlmY。

),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=。

5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。

解: ()dxx x x x c n n n ⎰==)()()(,)(*ψψψψ。

6. 一个电子运动的旋量波函数为()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。

解:电子自旋向上(2 =z s )、位置在r 处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。

量子力学考试题库及答案

量子力学考试题库及答案

量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。

下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。

以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。

答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。

答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。

答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。

这一现象在经典物理学中是不可能发生的。

一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。

6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。

答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。

这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。

四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。

答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。

高中量子力学试题及答案

高中量子力学试题及答案

高中量子力学试题及答案1. 量子力学的基本原理是什么?答案:量子力学的基本原理包括波粒二象性、不确定性原理、量子态的叠加原理和量子纠缠等。

2. 描述海森堡不确定性原理。

答案:海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性的关系由公式ΔxΔp ≥ ħ/2表示,其中Δx是位置的不确定性,Δp是动量的不确定性,ħ是约化普朗克常数。

3. 什么是量子态的叠加原理?答案:量子态的叠加原理指的是一个量子系统可以同时处于多个可能状态的叠加,这些状态的线性组合构成了系统的完整描述。

4. 简述波函数的物理意义。

答案:波函数是量子力学中描述粒子状态的数学函数,它包含了关于粒子的所有可能信息,如位置、动量等。

波函数的绝对值的平方给出了粒子在特定位置被发现的概率密度。

5. 什么是量子纠缠?答案:量子纠缠是量子力学中的一种现象,指的是两个或多个量子系统之间存在一种特殊的关联,即使它们相隔很远,一个系统的状态改变会立即影响到另一个系统的状态。

6. 描述薛定谔的猫思想实验。

答案:薛定谔的猫思想实验是一个关于量子叠加状态的经典比喻,实验中,一个猫被放置在一个盒子里,盒子内有一个放射性原子、一个盖革计数器、一个锤子和一个毒气瓶。

如果原子衰变,盖革计数器会触发锤子打碎毒气瓶,猫就会死亡。

在没有观察之前,猫的状态是既死又活的叠加态,只有当盒子被打开观察时,猫的状态才会塌缩为确定的死或活。

7. 什么是量子隧穿效应?答案:量子隧穿效应是指粒子能够穿越一个经典物理中不可能穿越的势垒。

这种现象在量子力学中是可能的,因为粒子的波函数在势垒的另一侧并不完全为零,这意味着存在一定的概率粒子能够出现在势垒的另一侧。

8. 简述量子力学中的波函数坍缩。

答案:波函数坍缩是指在量子力学中,当一个量子系统被测量时,系统的波函数会从一个叠加态突然转变为一个特定的状态,这个过程是随机的,并且与测量过程有关。

9. 什么是泡利不相容原理?答案:泡利不相容原理指出,在同一个量子系统中,两个相同的费米子(如电子)不能处于同一个量子态。

2023高考物理量子力学练习题及答案

2023高考物理量子力学练习题及答案

2023高考物理量子力学练习题及答案一、单项选择题1. 根据量子力学的原理,下列哪个量是离散的?A. 电子的动量B. 电子的位置C. 粒子的质量D. 粒子的速度答案:B2. 在量子力学中,波粒二象性指的是什么?A. 粒子存在着波动性B. 粒子的波动速度与光速相等C. 粒子的波动性与粒子性同时存在D. 粒子的波动性只存在于空间中答案:C3. 下列哪个现象不能用经典物理学解释?A. 光的干涉与衍射现象B. 光电效应C. 康普顿效应D. 高速电子的波动性答案:D4. 以下哪项不是量子力学的基本假设之一?A. 波函数包含了粒子的全部信息B. 波函数的平方描述了粒子在不同位置出现的概率C. 粒子的位置和速度可以同时确定D. 波函数的演化遵循薛定谔方程答案:C5. 根据薛定谔方程,粒子波函数的时间演化是:A. 线性的B. 非线性的C. 随机的D. 不可逆的答案:A二、计算题1. 一束入射光照射到金属表面,发生了光电效应。

入射光的波长为550 nm,逸出功为2 eV,求最大能量的光电子的动能。

答案:入射光的能量E = hc/λ = (6.63 × 10^-34 J·s × 3.00 × 10^8 m/s) / (550 ×10^-9 m) = 1.20 × 10^-19 J最大动能K = E - φ = 1.20 × 10^-19 J - (2 × 1.60 × 10^-19 J) = -0.40 ×10^-19 J2. 一束入射电子的波长为1 nm,通过一个宽度为1 μm的狭缝后,到达屏幕上的交叉区域。

求交叉区域的宽度。

答案:交叉区域的宽度Δx = λL / d,其中L为屏幕到狭缝的距离,d为狭缝的宽度。

根据德布罗意关系,电子的波长λ = h / mv,其中h为普朗克常量,m为电子质量,v为电子速度。

将已知值代入计算,可得Δx ≈ (6.63 × 10^-34 J·s) / (9.1 × 10^-31 kg × 1 × 10^6 m/s) × (1 × 10^-9 m) / (1 × 10^-6 m) ≈ 7.3 × 10^-6 m三、解答题1. 请简要阐述波粒二象性的概念,并说明量子力学中的波函数是如何描述粒子的。

量子力学第三章作业答案

量子力学第三章作业答案

1、指出下列算符哪个是厄米算符,说明其理由。

224 dxd dx d i dx d ,,,x p x ˆˆ, )ˆˆˆˆ(21x p p x x x + 解: 不是, 是, 是 不是 是 (1) ˆx p是厄米算符,又因为,ˆx d p i dx =- ,所以d i dx 也是厄米算符,ddx不是厄米算符。

(2) 2222ˆxd p dx =- 是厄米算符,所以224d dx是厄米算符。

(3) ()†††ˆˆˆˆˆˆˆˆx x x x xpp x p x xp ==≠,所以不是厄米算符。

(4)()()()††††††††11ˆˆˆˆˆˆˆˆ()()2211ˆˆˆˆ2211ˆˆˆˆ221ˆˆˆˆ2x x x x x x x x x x xp p x xp p x xp p x p x x p p x xp ⎛⎫+=+ ⎪⎝⎭=+=+=+所以是厄米算符 2、如果 Fˆ和 G ˆ都是厄米算符,但互不对易,试判断下列算符中哪些是厄米算符?(1)G F ˆˆ; (2)F G ˆˆ;(3)G F ˆˆ+F G ˆˆ; (4)G F ˆˆF G ˆˆ-; (5)i (G F ˆˆ+F G ˆˆ); (6)i (G F ˆˆF G ˆˆ-); (7)G Fˆˆ+; (8)G F ˆˆ-; (9))ˆˆ(G F i +; (10))ˆˆ(G F i -;解:(1)(2)不是。

(3)是,(4)不是,(5)不是,(6)是,(7)是(8)是,(9)不是,(10)不是3、下列函数哪些是算符22dx d 的本征函数,其本征值是什么?①2x , ② x e , ③x s i n, ④x c o s 3, ⑤x x c o s s i n + 解:22dxd 2x =2 不是22dxd xe =x e ,是,本征值为1.22dxd x sin =-x sin ,是,本征值为-1. 22dxd x cos 3=-x cos 3,是,本征值为-1. 22dxd (x x cos sin +)=-(x x cos sin +), 是,本征值为-14、证明:[Ô,[Û,Ê]] + [Û,[Ê, Ô]] + [Ê,[ Ô,Û]] = 0 证明:[Ô,[Û,Ê]] + [Û,[Ê, Ô]] + [Ê,[ Ô,Û]]= [Ô, ÛÊ-ÊÛ]+ [Û, ÊÔ -ÔÊ]+ [Ê, Ô Û -Û Ô]=[Ô, ÛÊ] -[Ô, ÊÛ]+ [Û, ÊÔ]- [Û, ÔÊ]+ [Ê, ÔÛ] -[Ê, ÛÔ]=ÔÛÊ- ÛÊÔ- ÔÊÛ+ÊÛÔ+ ÛÊÔ-ÊÔÛ- ÛÔÊ+ ÔÊÛ+ÊÔÛ- ÔÛÊ-ÊÛÔ+ ÛÔÊ=05、证明:处于1s 、2p 和3d 态的氢原子中的电子,当它处于距原子核的距离分别为00094a a a 、、的球壳处的几率最(0a 为第一玻尔轨道半径)。

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案1. 关于量子态,以下说法正确的是()A. 量子态是可连续变化的B. 量子态是离散的答案:B2. 量子叠加原理是指()A. 多个量子态可以同时存在B. 量子态只能有一个答案:A3. 量子纠缠现象说明了()A. 量子之间存在相互作用B. 量子之间存在非定域性关联答案:B4. 在量子力学中,测量会导致()A. 量子态的改变B. 量子态的保持不变答案:A5. 关于波函数,以下说法正确的是()A. 描述了量子系统的状态B. 是一个实数函数答案:A6. 海森堡不确定性原理涉及到哪两个物理量的不确定性()A. 位置和动量B. 能量和时间答案:A7. 量子力学中的算符表示()A. 物理量B. 对量子态的操作答案:B8. 泡利不相容原理适用于()A. 电子B. 所有费米子答案:B9. 以下哪种现象与量子力学有关()A. 黑体辐射B. 光电效应答案:B10. 在量子力学中,能量的量子化表现为()A. 能量只能取特定的值B. 能量可以连续变化答案:A11. 关于量子隧道效应,以下说法正确的是()A. 粒子可以穿过势垒B. 粒子不能穿过势垒答案:A12. 量子力学中的可观测量对应的是()A. 厄米算符B. 非厄米算符答案:A13. 狄拉克方程描述的是()A. 电子的运动B. 所有粒子的运动答案:B14. 关于量子力学的诠释,以下说法正确的是()A. 只有一种诠释是正确的B. 有多种诠释,且都有实验支持答案:B15. 量子力学中的全同粒子()A. 是完全相同的B. 可以区分答案:A16. 关于量子力学的基本假设,以下说法错误的是()A. 物理量都可以用实数来描述B. 量子态的演化是确定性的答案:AB17. 量子力学中的概率幅表示()A. 概率的大小B. 概率的相位答案:B18. 以下哪种实验验证了量子力学的基本原理()A. 双缝干涉实验B. 迈克尔逊-莫雷实验答案:A19. 量子力学中的守恒量对应的是()A. 不变的物理量B. 随时间变化的物理量答案:A20. 关于量子力学中的对称性,以下说法正确的是()A. 存在多种对称性B. 对称性与物理规律无关答案:A21. 量子力学中的密度算符描述的是()A. 量子系统的概率分布B. 量子系统的能量分布答案:A22. 以下哪种量子系统具有简并性()A. 氢原子B. 自由粒子答案:A23. 量子力学中的散射理论主要研究()A. 粒子的碰撞过程B. 粒子的传播过程答案:A24. 关于量子力学中的表象,以下说法正确的是()A. 有多种表象可以选择B. 表象是唯一确定的答案:A25. 量子力学中的时间演化算符描述的是()A. 量子态随时间的变化B. 物理量随时间的变化答案:A26. 以下哪种量子系统的能级是分立的()A. 谐振子B. 自由电子答案:A27. 量子力学中的角动量算符具有()A. 分立的本征值B. 连续的本征值答案:A28. 关于量子力学中的路径积分表述,以下说法正确的是()A. 是一种量子力学的表述方式B. 与薛定谔方程等价答案:AB29. 量子力学中的对称性破缺会导致()A. 新的物理现象B. 物理规律的改变答案:A30. 以下哪种量子系统的波函数可以用球谐函数来描述()A. 氢原子B. 原子核答案:A。

量子力学——第二章作业参考答案

量子力学——第二章作业参考答案

+
∂ψ * Vψ ∂t
=
2⎛
2m
⎜ ⎝
∂ψ ∂t
∇2ψ *
+
∂ψ * ∂t
∇2ψ
⎞ ⎟


将(5)式代入(2)式得
∂ω ∂t
=
∇i⎡⎢ ⎣
2
2m
⎛ ⎜ ⎝
∂ψ ∂t
∇2ψ
*
+
∂ψ * ∂t
∇2ψ
⎞⎤ ⎟⎥ ⎠⎦

(5)
引入能流密度 s
=

2 ⎛ ∂ψ
2m
⎜ ⎝
∂t
∇2ψ *
+
∂ψ * ∂t
∇2ψ
⎞ ⎟
ψ
+ψ *Vψ
⎞ ⎟,
⎝ 2m

动量算符 Pˆ = −i ∇ 是厄米算符,有
( ) ( ) ∫ ∫ ∫ ∫ d 3rψ *Pˆ 2ψ = d 3rψ *Pˆ Pˆψ = d 3r Pˆψ * Pˆψ = d 3r 2∇ψ *i∇ψ ,从而
得到能量平均值
∫ < E >=
d 3r
⎛ ⎜ ⎝
2
2m
∇ψ
* i∇ψ
ψ ( x,t) =
1 2π
∫∞ ϕ −∞
(
p
')
exp
⎡ ⎢

i
⎛ ⎜ ⎝
p'
x

p '2 2m
t
⎞⎤ ⎟⎥ ⎠⎦
dp '
∫ = 1


δ
−∞
(
p

p
') exp
⎡ ⎢ ⎣

量子力学考试题讲解及答案

量子力学考试题讲解及答案

量子力学考试题讲解及答案一、单项选择题(每题2分,共10分)1. 量子力学中,波函数的平方代表的是:A. 粒子的位置B. 粒子的动量C. 粒子出现的概率密度D. 粒子的能量答案:C2. 根据海森堡不确定性原理,下列说法正确的是:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程是用来描述:A. 经典力学系统B. 热力学系统C. 量子力学系统D. 电磁学系统答案:C4. 量子力学中的波粒二象性是指:A. 粒子有时表现为波动性,有时表现为粒子性B. 粒子总是同时具有波动性和粒子性C. 粒子只具有波动性D. 粒子只具有粒子性答案:B5. 量子力学中,哪个假设是关于测量的?A. 叠加原理B. 波函数坍缩C. 泡利不相容原理D. 量子纠缠答案:B二、填空题(每题2分,共10分)1. 量子力学中的波函数通常用希腊字母________表示。

答案:Ψ2. 量子力学中的德布罗意波长公式为λ = ________。

答案:h/p3. 在量子力学中,一个粒子的总能量可以表示为E = ________ + V。

答案:K.E.4. 费米子遵循的统计规律是________统计。

答案:费米-狄拉克5. 量子力学中的测不准原理是由海森堡提出的,其数学表述为ΔxΔp ≥ ________。

答案:h/4π三、简答题(每题5分,共20分)1. 简述量子力学中的波函数坍缩概念。

答案:波函数坍缩是指在量子力学中,当一个量子系统的状态被测量时,系统的波函数会从多个可能的状态中“选择”一个确定的状态,这个过程称为波函数坍缩。

2. 解释量子力学中的叠加原理。

答案:叠加原理是指在量子力学中,一个量子系统可以同时处于多个状态的叠加,即系统的波函数可以是多个不同状态波函数的线性组合。

3. 描述量子力学中的泡利不相容原理。

答案:泡利不相容原理指出,两个相同的费米子(如电子)不能处于同一个量子态,即它们不能具有相同的一组量子数。

量子力学作业答案精选全文完整版

量子力学作业答案精选全文完整版

可编辑修改精选全文完整版量子力学课后习题答案2.1证明在定态中,概率流密度与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。

2.2 由下列定态波函数计算几率流密度: ikr ikr e re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r m r k r m r k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。

表示向外传播的球面波。

rm r k r m r k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3020220*2*222 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )2(-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

2.3 一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x x U ,,,0 00)( 中运动,求粒子的能级和对应的波函数。

解:t x U 与)(无关,是定态问题。

量子力学作业答案

量子力学作业答案
解:
设自由电子的动能为 E,速度远小于光速,则 。根据德
布罗意波长的定义,有

1.绪论(3/3)
1.3 氦原子的动能是 E = 3kT/2 ( k 为 玻耳兹曼常数),求 T=1 K 时,氦原子 的德布罗意波长。
解:
设动能为 E 的氦原子的速度远小于光
Hale Waihona Puke 速,则。根据德布罗意波长的定
义,有

2.波函数和薛定谔方程(1/4)
3.11 求第3.6题中粒子位置和动量的测不准关系 解:(1) 坐标的期望值
(2) 坐标平方的期望值
(3) 测不准关系
分析:由箱归一化得到未知常数,然后具体分析中令箱长趋 于无限大;对称一维波函数的坐标期望值为零,坐标平 方的期望值不为;零自由粒子的测不准关系为无限大

(2) 平均动量
(3) 平均动能
分析:由箱归一化得到未知常数,然后具体分析中令箱长趋 于无限大;对称一维波函数的平均动量为零,平均动能 不为零

3.量子力学中的力学量(5/6)
3.6 的另一解法,利用
解:(1) 求 y(x) 的复数形式
(2) 求 (3) 求 (4) 求

3.量子力学中的力学量(6/6)

3.量子力学中的力学量(2/6)
3.2 氢原子处在基态
,求
(1) 的期望值 (2) 势能 的期望值
(3) 最可几的半径 (4) 动能的期望值 (5) 动量的概率分布函数
解:(0) 波函数正交归一化 ,令
(1) r 的期望值
(2) 势能 的期望值

3.量子力学中的力学量(3/6)
(3) 最可几的半径
解: (1)定态薛定谔方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ1.4 利用玻尔——索末菲的量子化条件,求:(1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。

已知外磁场H=10T ,玻尔磁子124109--⋅⨯=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。

解 玻尔——索末菲的量子化条件为⎰=nh pdq其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。

(1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有22212kx p E +=μ这样,便有)21(22kx E p -±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。

此外,根据221kx E =可解出 kEx 2±=± 这表示谐振子的正负方向的最大位移。

这样,根据玻尔——索末菲的量子化条件,有⎰⎰-++-=--+-x x x x nh dx kx E dx kx E )21(2)()21(222μμ⇒nh dx kx E dx kx E x x x x =-+-⎰⎰+--+)21(2)21(222μμ⇒hn dx kx E x x 2)21(22=-⎰+-μ为了积分上述方程的左边,作以下变量代换;θsin 2kEx =这样,便有h n k E d E 2sin 2cos 2222=⎪⎪⎭⎫ ⎝⎛⎰-θθμππ⇒⎰-=⋅222cos 2cos 2ππθθθμh nd k E E⇒h nd kE 2cos 2222=⋅⎰=ππθθμ这时,令上式左边的积分为A ,此外再构造一个积分⎰-⋅=222sin 2ππθθμd kE B这样,便有⎰⎰--⋅=-⋅=⋅=+22222cos 2,22ππππθθμμπθμd kE B A kE d kE B A (1)⎰⎰--==2222,cos )2(2cos ππππϕϕϖθθμd kEd kE这里ϕ =2θ,这样,就有0sin ==-⎰-ππϕμd kEB A (2)根据式(1)和(2),便有kE A μπ=这样,便有h n kE 2=μπ⇒ kh n E μπ2=,k nhμ=其中π2hh =最后,对此解作一点讨论。

首先,注意到谐振子的能量被量子化了;其次,这量子化的能量是等间隔分布的。

(2)当电子在均匀磁场中作圆周运动时,有B q Rυυμ=2⇒ qBR p ==μυ 这时,玻尔——索末菲的量子化条件就为⎰=πθ20)(nh R qBRd⇒ nh qBR =⋅π22 ⇒ nh qBR =2又因为动能耐μ22p E =,所以,有μμ22)(2222R B q qBR E ==,22B nBN q nB qBn =⋅==μμ其中,μ2q M B =是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且 B BM E =∆具体到本题,有J J E 232410910910--⨯=⨯⨯=∆根据动能与温度的关系式kT E 23=以及J eV K k 223106.1101--⨯==⋅可知,当温度T=4K 时,J J E 2222106.9106.145.1--⨯=⨯⨯⨯=当温度T=100K 时,J J E 2022104.2106.11005.1--⨯=⨯⨯⨯=显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。

2.2 由下列定态波函数计算几率流密度:ikr ikr e r e r -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。

表示向外传播的球面波。

rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。

其相对位置几率分布函数为 12==ψω表示粒子在空间各处出现的几率相同。

2.3 一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x x U ,,,0 00)( 中运动,求粒子的能级和对应的波函数。

解:t x U 与)(无关,是定态问题。

其定态S —方程)()()()(2222x E x x U x dxd m ψψψ=+- 在各区域的具体形式为Ⅰ: )()()()(2 0111222x E x x U x dx d m x ψψψ=+-< ① Ⅱ: )()(2 0 22222x E x dx d m a x ψψ=-≤≤ ② Ⅲ: )()()()(2 333222x E x x U x dx d m a x ψψψ=+-> ③由于(1)、(3)方程中,由于∞=)(x U ,要等式成立,必须0)(1=x ψ 0)(2=x ψ 即粒子不能运动到势阱以外的地方去。

方程(2)可变为0)(2)(22222=+x mEdx x d ψψ令222mEk =,得 0)()(22222=+x k dxx d ψψ 其解为 kx B kx A x cos sin )(2+=ψ ④ 根据波函数的标准条件确定系数A ,B ,由连续性条件,得 )0()0(12ψψ=⑤)()(32a a ψψ=⑥⑤ 0=⇒B ⑥ 0sin =⇒ka A),3 ,2 ,1( 0sin 0 ==⇒=∴≠n n ka ka A π∴x an A x πψsin )(2= 由归一化条件 1)(2=⎰∞dx x ψ得 1sin 022=⎰axdx an Aπ由mn abaxdx a n x a m δππ⎰=*2sin sinx an a x aA πψsin 2)(22=∴=⇒222mE k =),3,2,1( 22222 ==⇒n n maE n π可见E 是量子化的。

对应于n E 的归一化的定态波函数为⎪⎩⎪⎨⎧><≤≤=-a x a x a x xe an a t x tE in n , ,0 0 ,sin 2),( πψ 2.4. 证明(2.6-14)式中的归一化常数是aA 1='证:⎪⎩⎪⎨⎧≥<+'=a x a x a x a n A n ,0 ),(sin πψ (2.6-14)由归一化,得aA a x a n n a A a A dx a x an A x A dx a x an A dx a x an A dx aa aaaa a a aan 222222222)(sin 2)(cos22)](cos 1[21)(sin 1'=+⋅'-'=+'-'=+-'=+'==-----∞⎰⎰⎰⎰πππππψ∴归一化常数aA 1=' #2.5 求一维谐振子处在激发态时几率最大的位置。

解:222122)(xxe x ααπαψ-⋅=222223222112 24)()(xxe x e x x x ααπαπααψω--⋅=⋅⋅==22]22[2 )(3231x e x x dx x d ααπαω--=令0 )(1=dxx d ω,得 ±∞=±==x x x 10α由)(1x ω的表达式可知,±∞==x x 0,时,0)(1=x ω。

显然不是最大几率的位置。

2222)]251[(4)]22(2)62[(2 )( 44223322223212xx e x x ex x x x dx x d ααααπααααπαω----=---=而 0142 )(321212<-=±=e dx x d x παω 可见μωα±=±=1x 是所求几率最大的位置。

#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。

解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/2320⎰⎰⎰⎰∞-==⎰∞-=/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω 令0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

相关文档
最新文档