蛋白质的空间结构

合集下载

蛋白质的结构知识要点总结

蛋白质的结构知识要点总结


1.蛋白质的二级结构

定义:指蛋白质分子中某一段肽链的局部空间结构,即蛋 白质主链原子的局部空间排布(不涉及侧链原子的位置)。 维持二级结构的化学键:氢键 二级结构的主要类型 ■α-螺旋 ■β-折叠 ■3-转角 ■3-凸起 ■无规则卷曲

(1)α一螺旋 多肽链主链的段(肽段)从 N端到C端形成顺时针方向 的右手螺旋结构。 特征


结枃域指多肽链在超二级结构基础上进一步绕曲折叠 成的近似球状的紧密结构。
3.蛋白质的三级结构

定义:指球状蛋白的多肽链在二级结构、超二级结构和结 构域等结构层次的基础上,组装而成的完整的结构单元。 换一句话说。三级结构指多肽链上包括主链和侧链在内 的所有原子在三维空间内的分布。 化学健:疏水键和氢键、离子键、范德华力等来维持其空 间结构的相对稳定。



1、每隔3.6个AA残基螺 旋上升一圈,螺距0.54nm
2、螺旋体中所有氨基酸 残基R侧链都伸向外侧链中 的全部>C=0和>N-H几乎都 平行于螺旋轴 3、每个氨基酸残基的 >NH与前面第四个氨基酸残 基的>C=0形成氢键,肽链上 所有的肽键都参与氢键的形 成

(2)β-折叠

β-折叠(β结构或β构象)是一种重复性的结构,可以把它想 象为由折叠的条状纸片侧向并排而成,每条纸片可看成是 一肽链。在这里主链沿纸条形成锯齿状.R-基垂直于折平 面,交替分布于平面的上下。
β-凸起的结构

(5)无规卷曲 无规卷曲指没有一定规律的松散肽链结构。但对一 定的球蛋白而言,特定的区域有特定的卷曲方式,因此,将 其归入二级结构。酶的功能部位常常处于这种构象区域 里。所以受到人们的重视。

蛋白质的三维结构

蛋白质的三维结构

蛋白质的三维结构蛋白质是构成生命体的重要组成部分,它们通过不同的结构和功能满足生命体各种复杂的需求。

蛋白质的结构可以分为三个层次:一级结构、二级结构和三级结构。

其中,三级结构是指蛋白质分子链上不同氨基酸残基间的空间排布形态。

蛋白质的三维结构非常复杂,它包含了丰富的信息,如蛋白质的形态、功能、稳定性等。

研究蛋白质的三维结构对于生物学、医学和药学等领域都具有重要的意义。

了解蛋白质的三维结构,可以为药物研发、基因工程以及治疗疾病等方面提供有价值的信息。

那么,蛋白质的三维结构是如何形成的呢?蛋白质的三级结构是由一级和二级结构组装而成的,其中,一级结构是由氨基酸残基按照特定的顺序排列在一起,形成的线性分子链;而二级结构则是由氨基酸残基之间的氢键作用形成的空间结构。

蛋白质的三级结构是由一级和二级结构之间的非共价作用力、共价作用力和其他物理化学过程共同作用形成的。

其中,非共价作用力包括氢键、范德华力、离子键等;共价作用力包括硫氢键、二硫键等。

这些作用力通过折叠和旋转等方式,将蛋白质分子链上的不同氨基酸残基排列在一起,形成特定的结构。

在蛋白质的折叠过程中,通常会形成一系列的中间态,这些中间态对于蛋白质的结构和功能有着重要的作用。

在一些情况下,蛋白质的折叠可能出现异常,导致蛋白质失去原有的结构和功能,进而引起一系列的疾病。

例如,阿尔茨海默病和帕金森病等神经系统疾病,就与蛋白质的异常折叠有关。

如何解析蛋白质的三维结构呢?目前,我们可以利用各种科学方法手段对蛋白质的三维结构进行研究。

其中,常见的方法包括X射线晶体衍射、核磁共振技术、电子显微镜等。

X射线晶体衍射是一种较为常见的方法,它利用X射线的波长和能量特性,对蛋白质晶体进行研究。

通过测量X射线在晶体中的散射情况,可以确定蛋白质的原子间距和空间排布情况。

这种方法极为准确,但需要大量的样品和长时间的数据收集和分析。

核磁共振技术是一种能够测量蛋白质分子空间结构的技术。

通过对不同核自旋状态的探测和研究,可以获得蛋白质的结构和动力学信息。

蛋白质的一二三四结构

蛋白质的一二三四结构

一、蛋白质的一级结构蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。

它是由基因上遗传密码的排列顺序所决定的。

各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。

迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。

蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。

二、蛋白质的空间结构蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。

蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。

例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。

蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。

(一)蛋白质的二级结构蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。

1.肽键平面(或称酰胺平面,amide plane)。

Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X线衍射分析,得出图1-2所示结构,从一个肽键的周围来看,得知:(1)中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。

蛋白质的空间构象

蛋白质的空间构象

蛋白质的空间构象
蛋白质的空间构象是指蛋白质在三维空间中的折叠方式和结构形态。

一般来说,蛋白质的空间构象包括原始结构、二级结构、三级结构和四级结构。

1. 原始结构:指的是蛋白质的氨基酸序列。

蛋白质的原始结构是由一系列氨基酸组成的多肽链,每个氨基酸通过肽键连接。

2. 二级结构:指的是蛋白质中氨基酸多肽链的局部折叠方式。

常见的二级结构包括α-螺旋和β-折叠。

α-螺旋是一种具有螺
旋形状的结构,多肽链会紧密地缠绕在一起。

β-折叠是由平行
或反平行排列的β-片段组成的结构,多肽链以折叠方式相互
连接。

3. 三级结构:指的是蛋白质中氨基酸多肽链在整体上的三维空间折叠方式。

蛋白质的三级结构由二级结构区域的折叠和连接决定,决定了蛋白质的整体形状。

4. 四级结构:指的是蛋白质中多个氨基酸多肽链的相互组装和综合。

一些蛋白质由多个互相连接的氨基酸多肽链组成,这种组合形式称为四级结构。

蛋白质的空间构象决定了其功能和性质。

不同的空间构象决定了蛋白质的结构和功能多样性,成为生物体内各种生化反应和信号传导的关键分子。

蛋白质的三维结构

蛋白质的三维结构

二、稳定蛋白质三维结构的作用力
R基团间的相互作用及稳定蛋白质三维构象的作用力 a.盐键 b.氢键 c.疏水键 d.范得华力 e.二硫键
共价键和次级键键能对比
• 肽键 • 二硫键 • 离子键 • 氢键 • 疏水键 • 范德华力
90kcal/mol
3kcal/mol 1kcal/mol 1kcal/mol 0.1kcal/mol
3.肽链中连续出现带庞大侧链的氨基 酸如Ile,由于空间位阻,也难以形成α 螺旋。
4.在多肽链中只要出现 pro,α -螺旋就被中断,产 生一个弯曲(bend)或结 (kink)。因为脯氨酸的 —亚氨基上 氢原子参与肽 键的形成后,没有多余的氢 原子形成氢键;另外,脯氨 酸的 环内—碳原子参与R 基吡咯环的形成,其C-N键 不能自由旋转,不易形成 -螺旋。
一些侧链基团虽然不参与螺旋,但 他们可影响α -螺旋的稳定性 1.在多肽链中连续的出现带同种电荷的 极性氨基酸,α -螺旋就不稳定。如多聚Lys、 多聚Glu。而当这些残基分散存在时,不影响 α螺旋稳定。 2.Gly的R基太小,Φ角和Ψ角可取较大范 围,在肽中连续存在时,使形成α螺旋所需 的二面角的机率很小,不易形成α螺旋。如 丝心蛋白含50%Gly,所以也是螺旋的破坏者。
一、蛋白质的三维结构
蛋白质的空间结构(构象、高级结构) ——蛋白质分子中所有原子在三维空间的 排列分布和肽链的走向。
一、蛋白质的三维结构
二级结构 超二级结构和结构域
蛋白质的三维结构
三级结构
四级结构
研究蛋白质构象的方法
构型和构象 构型--构型是指在立体异构中,一 组特定的原子或基团在空间上的几何布 局。两种不同构型的转变总是伴随着共 价键的断裂和重新形成。 构象--当单键旋转时可能形成不同 的立体结构。不涉及共价键的断裂。 (一)X射线衍射法 (二)研究溶液中蛋白质构象的光谱学 方法 如:紫外差光谱、荧光和荧光偏震、 圆二色性、核磁共振(NMR)吸收

蛋白质的四层结构

蛋白质的四层结构

蛋白质的四层结构蛋白质是生命体中最基本的分子之一,它在维持生命活动中发挥着至关重要的作用。

蛋白质的功能与其结构密切相关,而蛋白质的结构又可分为四个层次,即一级结构、二级结构、三级结构和四级结构。

本文将从这四个层次依次进行描述。

一级结构是蛋白质最基本的结构层次,它由氨基酸的线性排列所决定。

蛋白质是由20种不同的氨基酸组成的,这些氨基酸通过肽键相连形成多肽链。

一级结构的具体序列决定了蛋白质的性质和功能。

例如,人体内的胰岛素蛋白质就是由51个氨基酸组成的多肽链,它的一级结构决定了它的胰岛素活性。

二级结构是指蛋白质中由氢键相连的局部结构。

其中最常见的二级结构是α-螺旋和β-折叠。

α-螺旋是一种右旋螺旋结构,其特点是氨基酸侧链朝向螺旋外侧,而β-折叠则是由多个β-片段相互连接而成的结构。

这些二级结构不仅赋予了蛋白质一定的稳定性,还对其功能发挥起着重要作用。

三级结构是指蛋白质中各个二级结构之间的空间排列。

蛋白质的三级结构是由各种非共价键相互作用所决定的,例如氢键、离子键、范德华力等。

这些相互作用使得蛋白质能够折叠成特定的形状,并且能够维持其稳定性和功能性。

例如,人体内的酶蛋白质就是通过其特定的三级结构来催化化学反应的。

四级结构是指由多个多肽链相互组装而成的复合物结构。

这些多肽链可以是相同的,也可以是不同的。

多肽链之间通过各种非共价键相互作用来维持其稳定性和功能性。

例如,人体内的抗体蛋白质就是由两个相同的多肽链和两个不同的多肽链组装而成的四级结构。

蛋白质的四层结构在维持生命活动中发挥着重要作用。

不同的结构层次决定了蛋白质的不同性质和功能。

一级结构决定了蛋白质的序列和基本特征,二级结构赋予了蛋白质稳定的空间结构,三级结构使得蛋白质能够折叠成特定的形状,而四级结构则使得蛋白质能够组装成复杂的功能单位。

这四层结构的相互作用使得蛋白质能够发挥其特定的功能,从而维持生命的正常运转。

总结起来,蛋白质的四层结构涵盖了其从基本的氨基酸序列到复杂的多肽链组装的全过程。

蛋白质空间结构

蛋白质空间结构

蛋白质结构与功能的关系――――蛋白质的一级结构一、蛋白质的空间结构决定了其生物学功能。

下面以肌红蛋白和血红蛋白为例,说明蛋白质空间结构和功能关系。

(一)蛋白质的一级结构决定其高级结构如核糖核酸酶含124个氨基酸残基,含4对二硫键,在尿素和还原剂β-巯基乙醇存在下松解为非折叠状态。

但去除尿素和β—巯基乙醇后,该有正确一级结构的肽链,可自动形成4对二硫键,盘曲成天然三级结构构象并恢复生物学功能。

(二)一级结构与功能的关系已有大量的实验结果证明,如果多肽或蛋白质一级结构相似,其折叠后的空间构象以及功能也相似。

几种氨基酸序列明显相似的蛋白质,彼此称为同源蛋白质。

可认为同源蛋白质来自同一祖先,它们的基因编码序列及蛋白质氨基酸组成有较大的保守性,构成蛋白质家族。

在进化过程中祖先蛋白的基因发生突变,蛋白质结构逐渐发生变异,同源蛋白质序列的相似性大小反映蛋白质之间的进化关系的近远。

比较广泛存在各种生物的某种蛋白质,如细胞色素C的一级结构,通过分析不同物种的细胞色素C一级结构间相似程度,可反映出该物种在进化中的位置。

二、蛋白质的空间结构与功能的关系蛋白质的空间结构决定了其生物学功能。

下面以肌红蛋白和血红蛋白为例,说明蛋白质空间结构和功能关系。

(一)肌红蛋白(Mb)和血红蛋白(Hb)的结构的相似性决定了功能的相似性肌红蛋白与血红蛋白都都能与氧结合,因为它们以血红素为辅基,并且在血红素周围以疏水性氨基酸残基为主,形成空穴,为铁原子与氧结合创造了结构环境。

(二)肌红蛋白(Mb)和血红蛋白(Hb)的结构的差异性决定了功能的不同肌红蛋白为单肽链蛋白质,而血红蛋白是由四个亚基组成的寡聚蛋白,这样的空间结构差异决定了它们之间的功能的各自特性。

肌红蛋白的主要功能是储存氧。

其三级结构折叠方式使辅基血红素对环境中O2的浓度改变非常敏感,当环境中的O2分压高时,Mb与O2结合能力极高,起到对O2的储存功能;当环境中的O2分压低时,Mb与O2结合能力大大降低,对外释放O2,为环境提供O2供机体所需。

生化生物化学问答(1)重点知识总结

生化生物化学问答(1)重点知识总结

1.什么是蛋白质的一级结构?为什么说蛋白质的一级结构决定其空间结构?答:蛋白质一级结构指蛋白质多肽链中氨基酸残基的排列顺序。

因为蛋白质分子肽链的排列顺序包含了自动形成复杂的三维结构(即正确的空间构象)所需要的全部信息,所以一级结构决定其高级结构。

2.什么是蛋白质的空间结构?蛋白质的空间结构与其生物功能有何关系?答:蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。

蛋白质的空间结构决定蛋白质的功能。

空间结构与蛋白质各自的功能是相适应的。

3.蛋白质的α- 螺旋结构有何特点?答:(1)多肽链主链绕中心轴旋转,形成棒状螺旋结构,每个螺旋含有3.6个氨基酸残基,螺距为0.54nm,氨基酸之间的轴心距为0.15nm.。

(2)α-螺旋结构的稳定主要靠链内氢键,每个氨基酸的N—H与前面第四个氨基酸的C=O形成氢键。

(3)天然蛋白质的α-螺旋结构大都为右手螺旋。

4.蛋白质的β- 折叠结构有何特点?答:β-折叠结构又称为β-片层结构,它是肽链主链或某一肽段的一种相当伸展的结构,多肽链呈扇面状折叠。

(1)两条或多条几乎完全伸展的多肽链(或肽段)侧向聚集在一起,通过相邻肽链主链上的氨基和羰基之间形成的氢键连接成片层结构并维持结构的稳定。

(2)氨基酸之间的轴心距为0.35nm(反平行式)和0.325nm(平行式)。

(3)β-折叠结构有平行排列和反平行排列两种。

5.举例说明蛋白质的结构与其功能之间的关系。

答:蛋白质的生物学功能从根本上来说取决于它的一级结构。

蛋白质的生物学功能是蛋白质分子的天然构象所具有的属性或所表现的性质。

一级结构相同的蛋白质,其功能也相同,二者之间有统一性和相适应性。

6.什么是蛋白质的变性作用和复性作用?蛋白质变性后哪些性质会发生改变?答:蛋白质变性作用是指在某些因素的影响下,蛋白质分子的空间构象被破坏,并导致其性质和生物活性改变的现象。

蛋白质变性后会发生以下几方面的变化:(1)生物活性丧失;(2)理化性质的改变,包括:溶解度降低,因为疏水侧链基团暴露;结晶能力丧失;分子形状改变,由球状分子变成松散结构,分子不对称性加大;粘度增加;光学性质发生改变,如旋光性、紫外吸收光谱等均有所改变。

蛋白质的结构和功能

蛋白质的结构和功能

蛋白质的结构和功能蛋白质的基本概念蛋白质是生物体中最重要的分子之一,由氨基酸组成。

在生物体内,蛋白质发挥着多种重要的生物功能,是身体内许多生命活动的基础。

蛋白质的结构和功能受多种因素的影响,包括氨基酸序列、结构和环境等。

蛋白质的结构蛋白质的结构通常分为四个层次,包括原生结构、二级结构、三级结构和四级结构。

- 原生结构:原生结构指的是蛋白质完全折叠成稳定的状态,具有生物活性的状态。

- 二级结构:二级结构是蛋白质中氨基酸的局部有序结构,常见的二级结构包括α螺旋和β折叠。

- 三级结构:三级结构是整个蛋白质分子的空间结构,由多个二级结构元素组成。

- 四级结构:四级结构是由两个或多个蛋白质分子组合而成的复合物,具有特定的功能。

蛋白质的功能蛋白质的功能多种多样,包括酶、激素、抗体、载体等。

- 酶:蛋白质作为酶参与许多生物体内的生化反应,加速化学反应的进行。

- 激素:蛋白质可以作为激素在细胞间传递信号,调节生物体内的生理过程。

- 抗体:蛋白质作为抗体参与免疫反应,识别并结合外来抗原,保护机体免受细菌和病毒的侵害。

- 载体:蛋白质可以作为载体分子,运输物质在细胞内和细胞间。

蛋白质的合成和调控蛋白质的合成由DNA转录为mRNA,再由mRNA翻译为蛋白质,整个过程受到多种调控机制的影响。

- 转录调控:转录因子可以在DNA上结合,调控基因的转录活性,影响蛋白质合成的速率。

- 翻译调控:在翻译过程中,mRNA的稳定性、翻译起始子、tRNA的可用性等都可以影响蛋白质的合成过程。

蛋白质的变性与重折叠蛋白质的结构和功能受环境条件的影响,一些极端条件可能导致蛋白质的变性或重折叠。

- 变性:蛋白质的变性指的是其结构在极端条件下失去稳定性和生物活性,包括热变性、酸性变性等。

- 重折叠:在适当的条件下,有些变性的蛋白质可以重新折叠成活性的结构,这被称为重折叠。

结语综上所述,蛋白质作为生物体内最重要的分子之一,在维持生命活动中扮演着不可或缺的角色。

蛋白质的空间结构

蛋白质的空间结构

蛋白质的空间结构
蛋白质的空间结构又称为三维结构,它是由一条或多条蛋白质链,以及其中所包含的氨基酸残基之间的特定键类型和键形成的空间构型。

蛋白质的空间结构也可以描述为一个复杂而封闭的有序结构,由于蛋白质通常呈现出高度有序的构象,因此,它们的空间结构往往有助于它们具有独特的生物学功能。

蛋白质的空间结构是由氨基酸残基之间不同的键形和强度决定的,其中包括氢键、疏水性相互作用、疏水性静电相互作用等。

蛋白质的空间结构是由氨基酸残基的排列顺序决定的,可以有效地控制它们的生物学功能。

生物化学与分子生物学第五、六章 蛋白质的三维结2

生物化学与分子生物学第五、六章 蛋白质的三维结2

是脊椎和无脊椎动物体含量最丰富的蛋白,能使 肌腱、软原骨胶、原蛋牙白、的皮头 和血管等结缔组织具有机械强度。
胶原原纤维中原胶 原分子的排列
一股原胶原 蛋白分子
原胶原(右手螺旋) 中的单链(左手螺旋)
胶原蛋白原纤维结构列
18
胶原原纤维通过原胶原分子内N-末端Lys-Lys之间交联
19
胶原原纤维通过相邻原胶原分子间N-末端和C-末端的Lys 以及吡啶啉交联形成锁链素(交联体)得到进一步稳定和增强
形成因素:与AA组成和排列
顺序直接相关。
多态性:多数为右手(较稳定
),亦有少数左手螺旋存在,e.g. 嗜 热 菌 蛋 白 酶 Asp-Asn-GlyGly(226-229) ; 存 在 尺 寸 不 同 的螺旋。
10
β-折叠
特征:两条或多条伸展 的多肽链(或一条多肽 链的若干肽段)侧向集 聚,通过相邻肽链主链 上的N-H与C=O之间有 规则的氢键,形成锯齿 状片层结构,即β-折 叠片。 类别:平行
6
非键合原子 接触半径
酰胺平面
α-碳原子 侧链
Φ=00,ψ=00
Φ=00,ψ=00 的多肽主链构象
酰胺平面
Φ=1800,ψ=1800
完全伸展的多肽主链构7象
(二)可允许的φ和ψ值: Ramachandran构象图
8
四、蛋白质的二级结构
蛋白质的二级结构(secondary structure)指肽链主 链不同区段通过自身的相互作用,形成氢键,沿某一主轴 盘旋折叠而形成的由氢键维系的局部规则构象,是蛋白质 结构的构象单元,主要有以下类型:
高级结构
3
研究蛋白质构象的方法
X-射线衍射法
核磁共振(NMR)法 圆二色谱(CD) 荧光偏振 拉曼光谱 扫描隧道显微术(STM)

蛋白质结构

蛋白质结构

蛋白质结构编辑蛋白质结构是指蛋白质分子的空间结构。

作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。

所有蛋白质都是由20种不同的L型α氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。

蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。

要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。

为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。

由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。

一定数量的残基对于发挥某一生物化学功能是必要的;40-50个残基通常是一个功能性结构域大小的下限。

蛋白质大小的范围可以从这样一个下限一直到数千个残基。

目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。

更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。

目录1发现历史2结构种类一级结构二级结构超二级结构和结构域三级结构四级结构3作用4组成5肽键6侧链构象7结构域、结构花样与折叠类型8蛋白质折叠9结构分类10结构测定11结构预测1发现历史1959年佩鲁茨和肯德鲁对血红蛋白和肌血蛋白进行结构分析,解决了三维空间结构,获1962年化学奖。

鲍林发现了蛋白质的基本结构。

克里克、沃森在X射线衍射资料的基础上,提出了DNA 三维结构的模型。

获1962年生理或医学奖。

50年代后豪普特曼和卡尔勒建立了应用X射线分析的以直接法测定晶体结构的纯数学理论,在晶体研究中具有划时代的意义,特别在研究大分子生物物质如激素、抗生素、蛋白质及新型药物分子结构方面趣了重要作用。

蛋白质二级结构类型及特征

蛋白质二级结构类型及特征

蛋白质二级结构类型及特征
蛋白质的二级结构是指蛋白质中多肽链局部区域的空间构象,主要由α-螺旋、β-折叠和无规卷曲三种类型组成。

首先,让我们来谈谈α-螺旋结构。

α-螺旋结构是蛋白质中最常见的二级结构类型之一。

在α-螺旋结构中,多肽链以螺旋形式紧密卷曲,螺旋之间由氢键连接。

这种结构稳定,通常由氨基酸的主链形成,侧链朝向螺旋外部。

α-螺旋结构具有一定的刚性和稳定性,这使得它在蛋白质结构中起着重要作用。

其次,我们来看β-折叠结构。

β-折叠结构是由多肽链中相邻的β-氨基酸残基形成的平行或反平行的β-链。

这些β-链通过氢键相互连接,形成一个平面的结构。

β-折叠结构通常比较柔软,同时也具有一定的稳定性。

在蛋白质中,β-折叠结构常常与α-螺旋结构相互作用,共同构成蛋白质的空间结构。

最后,我们来讨论无规卷曲结构。

无规卷曲结构是指蛋白质中没有明显规律的结构,主要由氨基酸的侧链构象决定。

这种结构通常出现在蛋白质的连接区域或者某些特定的功能区域,起着连接不同二级结构域的作用。

总的来说,蛋白质的二级结构类型各具特点,α-螺旋结构具有较高的稳定性和刚性,β-折叠结构具有柔软性和稳定性,而无规卷曲结构则起着连接和调节的作用。

这些不同类型的二级结构相互作用,共同构成了蛋白质的复杂空间结构,决定了蛋白质的功能和性质。

蛋白质的空间结构

蛋白质的空间结构

精选2021版课件
9
如测一个九肽
测得N端氨基酸残基为Thr
又分别测得片段: Ala-Ala-Trp-Gly-Lys
Val-Lys-Ala-Ala-Trp Thr-Asn-Val-Lys
则其氨基酸排列顺序为: Thr-Asn-Val-Lys-Ala-Trp-Gly-lys
精选2021版课件
10
例1:某五肽先经酸水解再经碱水解,得到摩尔数相等的五 种氨基酸(Ala、Cys、Lys、Phe和Ser)混合物,用Edman分 析法进行N端分析,获得PHT-Ser;经胰蛋白酶水解可得到 一种N端为Cys的三肽和另一种N端为Ser的二肽;用胰糜蛋白 酶水解上述三肽,得到Ala和另一个二肽。问该五肽的氨基 酸顺序怎样?
一、蛋白质一级结构与功能的关系
(一)一级结构是空间构象的基础
二 硫 键
牛核糖核酸酶的 一级结构
去除尿素、 β-巯基乙醇
天然状态, 有催化活性
尿素、 β-巯基乙醇
非折叠状态,无活性
(二)一级结构与功能的关系
例:镰刀形红细胞贫血
HbA β 肽 链
N-val · his · leu · thr · pro · glu · glu · · · · ·C(146)
多肽链在超二级结构基础上进一步绕曲折叠成较为紧密较为紧密的近似球状或纤维状或纤维状具有部分生物功能的结构称为结构域称为结构域domaindomain大分子蛋白质的三级结构常可分割成一个大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域折叠得较为紧密或数个球状或纤维状的区域折叠得较为紧密各行使其功能各行使其功能称为结构域称为结构域domaindomain34纤连蛋白分子的结构域丙糖磷酸异构酶二主要的化学键二主要的化学键??非共价键非共价键

蛋白质的构象

蛋白质的构象

蛋白质的构象
蛋白质是生命体中最为重要的分子之一,它们在细胞中扮演着重要的角色,包括催化反应、传递信息、维持细胞结构等。

蛋白质的功能与其构象密切相关,因此了解蛋白质的构象对于理解其功能至关重要。

蛋白质的构象是指其三维空间结构,包括主链的折叠方式、侧链的取向等。

蛋白质的构象是由其氨基酸序列所决定的,不同的氨基酸序列会导致不同的构象。

蛋白质的构象可以分为四个层次:一级结构、二级结构、三级结构和四级结构。

一级结构是指蛋白质的氨基酸序列,它决定了蛋白质的二级、三级和四级结构。

二级结构是指蛋白质中氢键的形成,包括α-螺旋和β-折叠。

α-螺旋是一种右旋螺旋结构,由氢键连接相邻的氨基酸残基,形成一种螺旋状的结构。

β-折叠是一种平面结构,由氢键连接相邻的氨基酸残基,形成一种折叠状的结构。

三级结构是指蛋白质中不同区域的氨基酸残基之间的相互作用,包括氢键、离子键、范德华力等。

这些相互作用使得蛋白质折叠成特定的三维结构。

四级结构是指由多个蛋白质分子组成的复合物,例如酶和抗体等。

蛋白质的构象对于其功能至关重要。

不同的构象会导致不同的功能。

例如,酶的活性与其构象密切相关,只有在特定的构象下才能发挥
其催化作用。

抗体的结构也决定了其与特定抗原的结合方式,从而发挥免疫作用。

蛋白质的构象是其功能的基础,了解蛋白质的构象对于理解其功能至关重要。

未来,随着技术的不断发展,我们将能够更加深入地了解蛋白质的构象,从而更好地理解生命的奥秘。

蛋白质的结构模型

蛋白质的结构模型

蛋白质的结构模型蛋白质是生物体内最基本的分子之一,扮演着多种生物功能的角色。

为了更好地理解蛋白质的结构和功能,科学家们提出了多种蛋白质结构模型。

本文将介绍几种常见的蛋白质结构模型,以及它们在生物学研究中的应用。

1. 一级结构:氨基酸序列蛋白质的一级结构是由氨基酸组成的线性多肽链。

氨基酸是蛋白质的基本组成单位,共有20种不同的氨基酸。

每个氨基酸通过肽键连接在一起,形成多肽链。

蛋白质的一级结构决定了其二级、三级和四级结构的形成和稳定。

2. 二级结构:α-螺旋和β-折叠蛋白质的二级结构是由氢键相互作用引起的局部结构。

α-螺旋是一种螺旋状结构,多个氨基酸通过氢键相互连接,形成稳定的螺旋结构。

β-折叠是由相邻的氨基酸通过氢键相互连接而形成的折叠结构。

这些二级结构的形成对于蛋白质的稳定和功能至关重要。

3. 三级结构:立体构型蛋白质的三级结构是指蛋白质分子在空间中的立体构型。

它是由氨基酸侧链之间的相互作用引起的。

这些相互作用包括疏水相互作用、氢键、离子键和范德华力等。

蛋白质的三级结构决定了其功能和活性。

4. 四级结构:多个多肽链的组合一些蛋白质由多个多肽链组成,它们通过相互作用形成复杂的结构。

这种组合形成了蛋白质的四级结构。

例如,血红蛋白是由四个多肽链组成的,每个多肽链都包含一个铁原子,负责氧气的运输。

这些蛋白质结构模型不仅帮助我们理解蛋白质的结构和功能,还在生物学研究中发挥着重要的作用。

通过研究蛋白质的结构,科学家可以揭示蛋白质的功能和调控机制,进而开发新的药物和治疗方法。

例如,在药物设计中,科学家可以通过研究蛋白质的结构模型来寻找与其相互作用的小分子药物。

他们可以通过计算机模拟和实验验证来预测药物与蛋白质之间的相互作用模式,并设计出具有高亲和力和选择性的药物。

蛋白质结构模型还可以帮助解释蛋白质功能的突变和变异。

通过比较正常蛋白质和突变蛋白质的结构模型,科学家可以揭示突变对蛋白质结构和功能的影响,从而深入理解疾病的发生机制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不同的.构成DNA分子的基本单位是脱氧核苷酸,许许多多脱氧核苷酸通过一定的化学键连接起来形成脱氧核苷酸链,每个DNA分子是由两条脱氧核苷酸链组成.DNA分子结构的特点是:①DNA分子的基本骨架是磷酸和脱氧核糖交替排列的两条主链;②两条主链是平行但反向,盘旋成的规则的双螺旋结构,一般是右手螺旋,排列于DNA分子的外侧;③两条链之间是通过碱基配对连接在一起,碱基与碱基间是通过氢键配对在一起的
蛋白质的结构:(氨基酸-多肽-肽链-蛋白质)
一级结构:构成蛋白质的单元氨基酸通过肽键连接形成的线性序列,为多肽链.
氨基酸在蛋白质分子中的连接方式
1.肽键
蛋白质分子中的氨基酸之间是通过肽键相连的,—个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合,即形成肽键(酰胺键,图2-1-2).
2.肽与多肽链
图2-1-2 肽与肽键
氨基酸通过肽键(-CO-NH-)相连而形成的化合物称为肽(peptide).由两个氨基酸缩合成的肽称为二肽,三个氨基酸缩合成三肽,以此类推.一般由十个以下的氨基酸缩合成的肽统称为寡肽,由十个以上氨基酸形成的肽被称为多肽(polypeptide)或多肽链.
氨基酸在形成肽链后,氨基酸的部分基团已参加肽键的形成,已经不是完整的氨基酸,称为氨基酸残基.肽键连接各氨基酸残基形成肽链的长链骨架,即…Cα-CO-NH-Cα…结构称为多肽主链.各氨基酸侧链基团称为多肽侧链.每个肽分子都有一个游离的α-NH2末端(称氨基末端或N端)和一个游离α-COOH末端(称羧基末端或C端).每条多肽链中氨基酸顺序编号从N端开始.书写某多肽的简式时,—般将N端书写在左侧端.
(二)蛋白质分子的一级结构
1.蛋白质分子的一级结构
多肽链中氨基酸的排列顺序称为蛋白质的一级结构.氨基酸排列顺序是由遗传信息决定的,氨基酸的排列顺序是决定蛋白质空间结构的基础,而蛋白质的空间结构则是实现其生物学功能的基础.1953年,英国生物化学家Fred Sanger报道了胰岛素(insulin)的一级结构,这是世界上第一个被确定一级结构的蛋白质(图2-1-3).同年,Watson与Crick发现DNA的双螺旋结构.生物化学由此迈向了一个更高层次——分子生物学时代.
图2-1-3 人胰岛索的一级结构
(三)蛋白质分子的空间结构
蛋白质分子井非如一级结构那样是完全展开的“线状”,而是处于更高级的水平.天然蛋白质可折叠、盘曲成—定的空间结构(三维结构).蛋白质的空间结构指蛋白质分子内各原子围绕某些共价键的旋转而形成的各种空间排布及相互关系,这种空间结构称为构象.按不同层次,蛋白质的高级结构可分为二,三和四级结构. 1.蛋白质的二级结构
多肽链主链中各原子在各局部的空间排布,即多肽链主链构象称为蛋白质的二级结构.
(1)形成二级结构的基础——肽键平面:20世纪30年代末,Pauling L和Corey R开始对肽进行x线结晶衍射图研究,以探索蛋白质的精细结构.他们测定了分子中各原子间的标准键长和键角,发现肽单元(主链的-CαCN-)呈刚性平面(rigid plane),即肽键平面(图2-1-4).
图2-1-4 肽键平面和Cα“关节”示意图
由于C-N键具有部分双键性质,因此C=O和C—N均不能自由旋转.所以整个肽链的主链原子(-CαCN-CαCN-)中只有N-Cα和Cα-N之间的单键可以旋转,N -Cα之间的旋转角为φ (phi),Cα-C之间的旋转角为ψ(psi).φ和ψ的大小就决定了Cα相邻两个肽键平面之间的相对位置关系,于是肽键平面就成为主链构象的结构基础.如每个氨基酸的ψ和φ已知,整个多肽链的主链构象就确定了.
(2)蛋白质二级结构的基本形式:蛋白质的肽链局部盘曲、折叠的主要有α-螺旋、β-折叠、β-转角和不规则卷曲等几种形式.
1) α-螺旋:肽链的某段局部盘曲成螺旋形结构,称为α-螺旋(图2-1-5).α-螺旋的特征是:①—般为右手螺旋;②每螺旋圈包含3.6个氨基酸残基,每个残基跨距为0.15nm,螺旋上升1圈的距离(螺距)为
3.6×0.15=0.54nm; = 3 \* GB3 ③螺旋圈之间通过肽键上的>C=O和-NH-间形成氢键以保持螺旋结构的稳定;④影响α-螺旋形成的主要因素是氨基酸侧链的大小、形状及所带电荷等性质.
图2-1-5 α-螺旋示意图
2)β-折叠:为—种比较伸展、呈锯齿状的肽链结构.两段以上的β-折叠结构平行排布并以氢键相连所形成的结构称为β-片层或β-折叠层.β-片层可分顺向平行(肽链的走向相同,即N、C端的方向一致)和逆向平行
(两肽段走向相反)结构(图2-1-6).
图2-1-6 β—折叠结构示意图
3) β-转角:此种结构指多肽链中出现的一种180°的转折.β-转角通常由4个氨基酸残基构成,由第1个残基的>C=O与第4个残基的-NH-形成氢键,以维持转折结构的稳定.
4)不规则卷曲:此种结构为多肽链中除以上几种比较规则的构象外,多肽链中其余规则性不强的—些区段的构象.
各种蛋白质依其一级结构特点在其多肽链的不同区段可形成不同的二级结构.如蜘蛛网丝蛋白中有很多α-螺旋及β-折叠层,也有β-转角和不规则卷曲(图2-1-7).
图2-1-7 蜘蛛网丝蛋白
2.蛋白质的三级结构
多肽链中,各个二级结构的空间排布方式及有关侧链基团之间的相互作用关系,称为蛋白质的三级结构.换言之,蛋白质的三级结构系指每一条多肽链内所有原子的空间排布,即多肽链的三级结构=主链构象+侧链构象,三级结构是在二级结构的基础上由侧链相互作用形成的.
多肽链的侧链(也就是氨基酸的侧链)分为亲水性的极性侧链和疏水性的非极性侧链(详见氨基酸分类).水介质中球状蛋白质的折叠总是倾向于把多肽链的疏水性侧链或疏水性基团埋藏在分子的内部.这一现象被称之为疏水作用或疏水效应(图2-1-8).疏水作用的本质是疏水基团或疏水侧链出自避开水的需要而被迫相互靠近,并不是疏水基团之间有什么吸引力的缘故,因此,将疏水作用称之为“疏水键”是不正确的.疏水作用是维系蛋白质三级结构最主要的动力.除疏水作用外,维系蛋白质的三级结构的动力还有氢键、盐键(离子键)、范德华力和二硫键等.
图2-1-8 肌红蛋白三级结构
蛋白质中的肽键称为主键,氢键、盐键、疏水作用、离子键、二硫键等是副键(次级键,图2-1-9),副键因外力作用(如热)容易断裂,导致蛋白质变性失活.
图2-1-9 稳定和维系蛋白质三级结构的键
三级结构对于蛋白质的分子形状及其功能活性部位的形成起重要作用,通过三级结构的形成,可将肽链中某些局部的几个二级结构汇成“口袋”或“洞穴”状,这种结构称为结构域(domain),它们的核心部分多为疏水氨基酸构成,结合蛋白质的辅基常镶嵌在其中,这种结构域多半是蛋白质的活性部位.有的蛋白质分子中只有一个特异的结构域,有的则有多个结构域.最近,在很多蛋白质分子中发现有两段β-折叠之间通过一段α-螺旋相连而形成的球状结构,以及多个α-螺旋形成的螺旋束,或三个二硫键将肽链连接成的三环状结构等结构域与功能活性有密切关系.
3.蛋白质的四级结构
有的蛋白质分子由两条以上具有独立三级结构的肽链通过非共价键相连聚合而成,其中每一条肽链称为一个亚基或亚单位(subunit).各亚基在蛋白质分子内的空间排布及相互接触称为蛋白质的四级结构.具有四级结构的蛋白质,其几个亚基的结构可以相同,也可以不同.如红细胞内的血红蛋白(hemoglobin,Hb,图2-1-10)是由4个亚基聚合而成的,4个亚基两两相同,即含两个α亚基和两个β亚基.在一定条件下,这种蛋白质分子可以解聚成单个亚基,亚基在聚合或解聚时对某些蛋白质具有调节活性的作用.有的蛋白质虽由两条以上肽链构成,但几条肽链之间是通过共价键(如二硫键)连接的,这种结构不属于四级结构,如前面提到过的胰岛素就是1例.
二级结构:多肽链的某些部分氨基酸残基周期性的空间排列.
三级结构:在二级结构基础上进一步折叠成紧密的三维形式.
四级结构:由蛋白质亚基结构形成的多于一条多肽链的蛋白质分子的空间排列.。

相关文档
最新文档