新型可降解材料聚乳酸及如何延长其使用寿命
完全生物降解材料聚乳酸的改性及应用
完全生物降解材料聚乳酸的改性及应用1、聚乳酸聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。
PLA这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。
聚乳酸制品废弃后在土壤或水中,30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。
1.1聚乳酸的制备目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)。
两类方法皆以乳酸为原料。
丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。
直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。
1.2聚乳酸的基本性质由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。
常用易得的是PDLLA和PLLA,分别由乳酸或丙交酯的消旋体、左旋体制得。
聚乳酸(PLA)是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。
由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。
同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。
生物降解型塑料-聚乳酸(PLA)
生物降解型塑料-聚乳酸(PLA)清华大学美术学院 贺书俊 学号2012013080摘要: 近年来世界各国都高度重视源于可再生资源的可降解高分子材料的研究开发,聚乳酸因可生物降解、性能优异、应用广泛而深受青睐。
本文主要介绍了聚乳酸的降解机理、作为可降解塑料的应用现状、改进方法以及未来的发展趋势。
1、 聚乳酸简介单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH 与别的分子的-COOH 脱水缩合,-COOH 与别的分子的-OH 脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸。
聚乳酸也称为聚丙交酯,属于聚酯家族。
聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。
聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
[1]2、 聚乳酸降解机理聚乳酸是典型的“绿色塑料”,因其良好的生物相容性、完全可降解性及生物可吸收性,是生物降解材料领域中最受重视的材料之一,下面就聚乳酸的降解机理进行介绍。
聚乳酸是一种合成的脂肪族聚酯,其降解可分为简单水解(酸碱催化)降解和酶催化水解降解。
从物理角度看,有均相和非均相降解。
非均相降解指降解反应发生在聚合物表面,而均相降解则是降解发生在聚合物内部。
从化学角度看,主要有三种方式降解:①主链降解生成低聚体和单体;②侧链水解生成可溶性主链高分子;③交链点裂解生成可溶性线性高分子。
本体侵蚀机理认为聚乳酸降解的主要方式为本体侵蚀,根本原因是聚乳酸分子链上酯键的水解。
聚乳酸类聚合物的端羧基(由聚合引入及降解产生)对其水解起催化作用,随着降解的进行,端羧基量增加,降解速率加快,从而产生自催化现象。
[2]因乳酸来源于可再生资源,经过聚合、改性、加工成制品,当制品废弃时,能完全被人体吸收或被环境生物所降解成二氧化碳和水,从而造福人类并无污染地回归自然,聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。
精细化学品化学论文
华东理工大学20_10_—20_11_学年第_2_学期《精细化学品化学与应用》课程论文 2011.6班级材化083 学号10081867 姓名张慧波开课学院化学院任课教师俞晔成绩__________新型可降解功能高分子材料聚乳酸及其应用华东理工大学材化083 张慧波摘要:本文主要介绍了新型可降解功能高分子材料——聚乳酸的两种合成方法、基本性能、降解机理、以及如何延长其使用寿命,并概述了聚乳酸制品的应用。
关键词:聚乳酸;合成;降解;提高使用寿命;应用。
随着世界人口的急剧增长,人类对全球资源的掠夺性开发,石油等石化资源合成的高分子化合物制品的大量生产、消费、遗弃等所引起的环保问题日趋严重,人们已经意识到环境保护的重要性。
近几十年来,在全球逐渐形成了一股绿色浪潮,许多绿色产品纷纷面世。
为了解决合成树脂和纤维不易被环境分解的问题。
人们开发出各种可生物降解的合成树脂和纤维,聚乳酸(PLA)就是其中一种研究较多和性能较好的可生物降解的高分子材料。
聚乳酸制品废弃后在土壤或水中,会在微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下它们又会成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。
1 聚乳酸的生产方法聚乳酸的合成是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再通过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。
聚乳酸的合成有两种方法,即乳酸直接聚合法和环丙交酯开环间接聚合法。
1.1直接聚合法由乳酸通过缩合直接制备聚乳酸。
这种方法生产工艺简单,是降低PLA成本的重要途径,但缩聚反应进行到一定程度时体系会出现游离乳酸、水.聚酯和丙交酯的平衡态.通过反应动力学控制,永的有效去除,抑制降解可以获得高相对分子质量的聚乳酸。
一般都采用增加真空度,提高温度,使用催化剂以及延长反应时间等方法,通过直接的聚合产生高分子量的聚乳酸是非常困难的。
郑敦胜等以D,L—乳酸为原料,采用优选催化剂、分步除水、连续通氮气、高真空缩合等工艺,直接缩聚合成了聚乳酸。
可降解聚乳酸材料的研究
可降解聚乳酸材料综述摘要:介绍了聚乳酸材料的结构和性质,并综述了生物可降解材料聚乳酸(PLA)材料的共聚、共混、增塑和复合等改性方法。
简要总结其在生物医学领域、纺织领域和包装领域中的应用,并对聚乳酸材料的研究开发前景做了展望。
关键词:聚乳酸材料PLA 生物可降解合成改性应用展望1 引言塑料是目前应用最广泛的材料,塑料制品给人们生活带来便利,改善生活质量的同时,其大量使用产生的塑料废弃物也与日俱增,给人类赖以生存的自然环境造成了不可忽视的负面影响,普通塑料成了白色污染的罪魁祸首。
目前在世界范围内,白色污染都是非常严重的。
我们现在使用的所谓的可降解产品其实并不能算是真正的可完全降解产品。
如何防止白色污染是我们面临的一大难题。
随着人们对环境问题的日益重视,生物可降解塑料逐步受到青睐。
目前开发的生物可降解塑料主要是聚酯类,包括聚羟基丁酸酯(PHB),聚琥珀酸丁酸酯(PBS),聚己内酯(PCL),聚乳酸(PLA)等,这些聚酯的优势主要体现在其生物可降解性和可再生性;而且,天然的或经过改性的聚酯具有和传统塑料相当甚至更优的机械性能和物理化学性能,能够满足人们社会生活的需求,其中聚乳酸以其优良的物理化学性能和潜在的成本优势尤受人们的关注[1]。
2 聚乳酸简介2.1 聚乳酸的结构聚乳酸(polylactic acid),简写为PLA)是一种热塑性的脂肪族聚酯,其结构单元乳酸(Lactic acid简写为LA)是一种天然的、用途广泛的有机酸。
乳酸的分子具有旋光性,因其分子结构中含有手性碳原子,根据手性碳原子方向的不同,有右旋(D型)和左旋(L型)两种(图1.1):D-乳酸是右旋光性,L-乳酸是左旋光性。
图1.1 乳酸的两种立体异构形式因此聚乳酸共包括以下四种:聚(D-乳酸)(PDLA)、聚(L-乳酸)(PLLA)、聚(内消旋-乳酸)(meso-PLA)和聚(D,L-乳酸)(PDLLA)[2]。
2.2 聚乳酸材料的性质在生物降解材料中,聚乳酸是一种重要的可降解材料,具有优良的可生物降解性和生物相容性。
聚乳酸的性能、合成方法及应用
聚乳酸的性能、合成方法及应用一、本文概述聚乳酸(Polylactic Acid,简称PLA)是一种由可再生植物资源(例如玉米)提取淀粉原料制成的生物降解材料,具有良好的生物相容性和生物降解性。
随着全球环保意识的日益增强和可持续发展理念的深入人心,聚乳酸作为一种环保型高分子材料,其研究和应用受到了广泛的关注。
本文将全面介绍聚乳酸的性能特点、合成方法以及在实际应用中的广泛用途,旨在为读者提供关于聚乳酸的深入理解,推动其在各个领域的应用和发展。
本文首先将对聚乳酸的基本性能进行概述,包括其物理性能、化学性能以及生物相容性和降解性等方面的特点。
接着,将详细介绍聚乳酸的合成方法,包括开环聚合和缩聚法等,并分析不同合成方法的优缺点。
在此基础上,文章还将深入探讨聚乳酸在各个领域的应用情况,如包装材料、医疗领域、汽车制造、农业等。
文章还将对聚乳酸的未来发展趋势进行展望,以期为读者提供全面的聚乳酸知识,并为其在实际应用中的创新和发展提供参考。
二、聚乳酸的性能聚乳酸(PLA)作为一种生物降解塑料,具有一系列独特的性能,使其在众多领域中具有广泛的应用前景。
聚乳酸具有良好的生物相容性和生物降解性。
由于其来源于可再生生物质,聚乳酸在自然界中能够被微生物分解为二氧化碳和水,不会对环境造成污染。
这使得聚乳酸在医疗、包装、农业等领域具有广阔的应用空间。
聚乳酸具有较高的机械性能。
通过调整合成方法和工艺条件,可以得到具有优异拉伸强度、模量和断裂伸长率的聚乳酸材料。
这些特性使得聚乳酸在制造包装材料、纤维、薄膜等方面具有显著优势。
聚乳酸还具有良好的加工性能。
它可以在熔融状态下进行热塑性加工,如挤出、注塑、吹塑等,从而制成各种形状和尺寸的制品。
同时,聚乳酸的表面光泽度高,易于印刷和染色,为其在装饰、包装等领域的应用提供了便利。
另外,聚乳酸还具有较好的阻隔性能。
它可以有效地阻止氧气、水分和其他气体的渗透,从而保护包装物品免受外界环境的影响。
生物降解聚乳酸改性及应用
生物降解聚乳酸改性及应用摘要:综述近几年来聚生物降解聚乳酸主要的改性方法以及聚乳酸目前的应用领域。
关键词:聚乳酸改性方法应用Abstract: To review the recent years poly biodegradable polylactic acid main modification methods and application field of polylactic acid at present. Keywords: polylactide modification methods of application一、前言聚乳酸(PLA)是乳酸的一种重要的衍生物,其无毒、无刺激性, 强度高,不污染环境,可塑性好有良好的生物相容性和生物可降解性,在生物体内可逐渐降解为CO2和水,对人体无毒、无积累,被认为是21 世纪最有前途的可生物降解的功能材料。
同时聚乳酸存在的缺点是:①聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性; ②聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa 负荷下为54 ℃) ,抗冲击性差; ③降解周期难以控制; ④价格太贵,。
改性能提高材料力学性能,降低成本,改善降解性能的有效途径[1]。
1、聚乳酸化学合成机理合成聚乳酸的单体主要有乳酸和它的环状二聚体丙交酯,根据光学活性不同可分为下列几种:从旋光性角度将丙交酯分成4 种异构体。
即:L,L-丙交酯,D,D-丙交酯,内消旋D,L-丙交酯和外消旋D,L-丙交酯。
内消旋丙交酯聚合得到的聚合物其降解性能和物理性能与外消旋丙交聚合得到的聚合物的性质有所不同。
丙交酯法给聚乳酸高聚体的研发和应用提供了一种潜在的可能性!即可根据最终产品的性能要求裁剪设计高聚物的分子结构。
从而可赋予产品许多特殊的使用性能,如结晶度、熔点和机械强度等差异[2]。
聚乳酸降解材料的应用领域与降解机理和方法
聚乳酸降解材料的应用领域与降解机理和方法一、聚乳酸的应用聚乳酸(PLA)类材料具有很高的附加值,其研究与开发对国民经济的增长和社会的发展具有极其重要的意义。
可完全生物降解聚乳酸现已广泛应用于医药、纺织、农业和包装等领域。
1、在医疗领域的应用用可降解的生物高分子作药物载体长期植入体内后,可以控制药物的释放速度,并实现药物的靶向释放,提高药效。
PLA是骨组织工程中的优选材料之一,在硬骨组织再生、软骨组织再生、人造皮肤、神经修复等方面均可作为细胞生长载体,并取得了令人满意的结果。
聚乳酸类材料用作外科手术缝合线时,由于其具有良好的生物降解性,能在伤口愈合后自动降解并被吸收而无需二次手术。
随着伤口的愈合,缝合线缓慢降解。
2、在其它领域中的应用PLA在富氧及微生物的作用下会自动分解,并最终生成C02和H20而不污染环境。
PLA作为可完全生物降解塑料,越来越受到人们的重视。
可将PLA制成农用薄膜、纸代用品、纸张塑膜、包装薄膜、食品容器、生活垃圾袋、农药化肥缓释材料、化妆品的添加成分等。
随着 PLA等可生物降解塑料材料的应运而生,在原有聚乙烯等传统不可降解塑料制品中加入适量PLA等生物材料制成的塑料制品,既可部分实现生物降解,原有的力学性能又没有明显的改变。
这一技术突破为解决废旧塑料制品污染找到了一条新途径,也为塑料价值链带来了新机遇。
生物塑料和普通塑料共混使用,在日本已经比较普遍,如丰田汽车公司的塑料零部件中,30%使用了可生物降解塑料,70%为传统塑料这样既提高了塑料部件的可降解程度,成本增加又不是很大,市场接受起来也相对容易一些。
二、聚乳酸降解机理和方法已有研究表明,自然界中目前已知的能够降解聚乳酸的微生物十分有限。
通过对不同土壤环境中能够降解聚酯的微生物情况进行评价,结果显示自然界中降解PHB(聚-β-羟基丁酸酯)、PCL和PTMS(聚四亚甲基琥珀酯)的微生物数量是基本相似的,大约都在0.8%~11%,这能与这些聚酯材料的酯键极易被相关脂肪酶水解有关:而降解PLA的微生物数量则不到0.04%。
聚乳酸热稳定剂
聚乳酸热稳定剂简介聚乳酸是一种生物可降解的高分子材料,具有广泛的应用前景。
然而,聚乳酸在高温条件下容易发生热降解,导致性能下降。
为了克服这一问题,研究人员开发了聚乳酸热稳定剂。
本文将对聚乳酸热稳定剂的概念、分类、作用机制以及应用前景进行详细介绍。
概念聚乳酸热稳定剂是指能够提高聚乳酸在高温条件下热稳定性的化合物。
它们通过吸收或转移热量、抑制自由基反应、阻断链传递等方式来延缓或阻止聚乳酸的热降解过程。
分类根据其作用机理和化学结构,聚乳酸热稳定剂可以分为以下几类:1.红外吸收型:这类稳定剂通过吸收红外辐射来转化为内部能量,并将其散发出去,从而减少了聚乳酸的温升。
常见的红外吸收型稳定剂有碳黑、金属氧化物等。
2.自由基捕捉型:这类稳定剂能够与聚乳酸降解产生的自由基发生反应,从而抑制或延缓聚乳酸的热降解过程。
常见的自由基捕捉型稳定剂有羟基磷酸酯、双酚A等。
3.阻断链传递型:这类稳定剂能够阻断聚乳酸链的传递,从而减少聚乳酸分子中活性端基的生成,延缓热降解过程。
常见的阻断链传递型稳定剂有二苯胺类化合物、硫代羟基化合物等。
作用机制聚乳酸热稳定剂通过不同的作用机制来提高聚乳酸的热稳定性。
1.红外吸收型稳定剂通过吸收红外辐射转化为内部能量,并将其散发出去,从而减少了聚乳酸分子中活性端基的生成和反应速度,延缓了热降解过程。
2.自由基捕捉型稳定剂能够与聚乳酸降解产生的自由基发生反应,从而抑制或延缓聚乳酸的热降解过程。
3.阻断链传递型稳定剂通过与聚乳酸链中的活性端基发生反应,阻断了链的传递过程,减少了聚乳酸分子中活性端基的生成和反应速度,从而延缓了热降解过程。
应用前景聚乳酸热稳定剂在聚乳酸材料的制备和应用中具有重要意义。
它们可以提高聚乳酸材料在高温条件下的热稳定性,延长其使用寿命,并且不会对材料的可降解性能造成明显影响。
因此,聚乳酸热稳定剂在医疗、包装、纤维等领域有着广泛的应用前景。
在医疗领域,使用聚乳酸制备的可降解支架、缝线等器械需要具有良好的耐温性能才能满足临床需求。
新型可降解材料聚乳酸及如何延长其使用寿命
本科毕业论文(设计)题目:新型可降解材料聚乳酸及如何延长其使用寿命系院:学生姓名:学号:专业:年级:完成日期:指导教师:摘要:本文主要介绍了新型可降解材料——聚乳酸的两种合成方法、基本性能、降解机理以及如何延长其使用寿命和前景展望。
关键词:聚乳酸;合成;降解;使用寿命Abstract :This paper describes a novel biodegradable materials-two polylactic acid synthesis, basic performance degradation mechanism and how to prolong its life and outlook.Key words : of polylactic acid;synthesis;degradation;life目录引言 (5)1 聚乳酸的生产方法 (6)1.1 直接缩聚法 (6)1.2 间接聚合法 (6)2 聚乳酸的基本性能 (6)3 聚乳酸的降解 (6)3.1 聚乳酸的降解机理 (6)3.2 影响聚乳酸降解的因素 (7)4 提高其使用寿命的主要方法 (7)4.1 加入抗氧化剂 ..................................... .. (7)4.2 硝酸表面处理 (8)4.3 酸性和干燥的环境 (8)4.4 改变 PLA 的分子结构 (8)5.结语 (9)参考文献: (9)引言聚乳酸(PLA)是以玉米为主要原料,经发酵制得乳酸,再经聚合而制成的高分子材料,具有良好的生物相容性和生物可降解性。
PLA可像聚氯乙烯、聚丙烯、聚苯乙烯等热塑性塑料那样加工成各种产品,如薄膜、包装袋、包装盒、食品容器、一次性快餐盒、饮料用瓶、药物缓释包装剂等。
1 聚乳酸的生产方法聚乳酸的合成有两种方法,即乳酸直接聚合法和环丙交酯开聚合法。
1.1 直接缩聚法直接缩聚法是乳酸的直接脱水缩聚,其聚合工艺短,对聚合单体的要求与普通缩聚单体的要求一致,但所得聚乳酸分子量小,且产品性能差,易分解,实用价值小。
聚乳酸生物降解的研究进展
聚乳酸生物降解的研究进展一、本文概述随着全球环境问题的日益严峻,特别是塑料废弃物对环境的污染问题,生物降解材料的研究与应用越来越受到人们的关注。
聚乳酸(PLA)作为一种重要的生物降解材料,因其良好的生物相容性、可加工性和环保性,在包装、医疗、农业等领域具有广泛的应用前景。
本文旨在综述聚乳酸生物降解的研究进展,包括其生物降解机制、影响因素、改性方法以及应用现状,以期为聚乳酸的进一步研究和应用提供参考。
本文首先介绍了聚乳酸的基本性质,包括其分子结构、合成方法以及主要性能。
接着,重点分析了聚乳酸的生物降解机制,包括酶解、微生物降解和动物体降解等过程,并探讨了影响聚乳酸生物降解的主要因素,如结晶度、分子量、添加剂等。
在此基础上,本文综述了聚乳酸的改性方法,包括共聚、共混、填充和表面改性等,以提高其生物降解性能和机械性能。
本文总结了聚乳酸在包装、医疗、农业等领域的应用现状,并展望了其未来的发展趋势。
通过本文的综述,旨在为聚乳酸生物降解的研究与应用提供有益的参考,同时为推动生物降解材料的发展贡献一份力量。
二、聚乳酸的生物降解机理聚乳酸(PLA)的生物降解主要依赖于微生物的作用,这些微生物包括细菌和真菌,它们能够分泌特定的酶来降解PLA。
生物降解过程通常包括两个主要步骤:首先是微生物对PLA表面的附着和酶的产生,然后是酶对PLA的催化水解。
在降解过程中,微生物首先通过其细胞壁上的特定受体识别并附着在PLA表面。
随后,微生物开始分泌能够降解PLA的酶,这些酶主要包括聚乳酸解聚酶和酯酶。
聚乳酸解聚酶能够直接作用于PLA的酯键,将其水解为乳酸单体;而酯酶则能够水解PLA链末端的乳酸单体。
水解产生的乳酸单体可以被微生物进一步利用,通过三羧酸循环等途径转化为二氧化碳和水,或者用于微生物自身的生长和代谢。
这个过程中,微生物扮演了关键的角色,它们不仅能够降解PLA,还能够将降解产生的乳酸完全矿化为无害的物质。
值得注意的是,PLA的生物降解速率受到多种因素的影响,包括PLA的分子量、结晶度、形态、微生物的种类和活性、环境温度和湿度等。
聚乳酸的改性及应用研究进展
近年来,随着技术的不断发展,聚乳酸在各个领域的应用也在不断拓展。例如, 通过共聚改性等方法,聚乳酸在高性能纤维和医用材料等领域取得了重要进展。 此外,聚乳酸在3D打印技术中也表现出良好的应用前景,为个性化医疗和产品 定制提供了新的可能。
环境保护及其挑战聚乳酸作为一种生物降解材料,具有较好的环境友好性。然 而,在聚乳酸的制备和使用过程中,仍存在一些环境保护问题。首先,聚乳酸 的制备需要大量的有机溶剂,这些溶剂在使用后往往会产生大量废液,对环境 造成一定压力。其次,聚乳酸的降解过程中可能会产生一些有污染性的降解产 物,如何有效控制这些产物对环境的影响是一个重要问题。
1、改进生产工艺,降低聚乳酸的生产成本,提高产量和质量。 2、深入探讨聚乳酸的改性技术,以便更好地满足不同领域的应用需求。
3、在应用研究方面,应聚乳酸在生物医学、纺织、包装和建筑材料等领域的 新应用模式的探索和现有应用问题的优化。
总之,聚乳酸作为一种环保材料,其改性和应用研究具有重要的理论和实践意 义。随着技术的不断进步和应用领域的拓展,我们有理由相信聚酸将在未来 的可持续发展中发挥更加重要的作用。
研究PLA阻燃改性后的生物相容性和降解性能;4)优化加工过程中的阻燃保护 措施。随着聚乳酸阻燃改性研究的深入,有望为拓宽PLA的应用领域提供重要 支持。
聚乳酸(PLA)是一种由可再生资源——乳酸合成的生物降解材料,被广泛应 用于包装、医疗、纤维等领域。由于其良好的生物相容性和可降解性,聚乳酸 在现代社会中具有广泛的应用前景。本次演示将重点探讨聚乳酸的制备方法、 应用领域、环境保护问题以及研究进展。
聚乳酸纤维的应用领域与优势聚乳酸纤维具有许多优点,如环保可降解、良好 的力学性能和化学稳定性等,使得它在许多领域都有广泛的应用。首先,在服 装领域,聚乳酸纤维具有优异的透气性、吸湿性和保暖性,适合制作各种服装, 如运动服、户外服装和内衣等。其次,在建筑领域,聚乳酸纤维可以用于制作 建筑保温材料、装饰材料和土工布等。此外,在农业领域,聚乳酸纤维可用于 制作农用膜、包装材料和生物降解的农用无人机等。
绿色可降解材料——聚乳酸
绿色可降解材料——聚乳酸摘要】聚乳酸作为一种环境友好型合成高分子材料越来越多被应用到各个领域,本文对聚乳酸的基本性质、合成以及应用作简要介绍。
【关键词】聚乳酸;基本性质;合成;应用【中图分类号】R319 【文献标识码】A 【文章编号】2095-1752(2016)27-0341-021.前言随着人口的急剧增长,资源的掠夺性开发,高分子制品的大量生产、消费、遗弃等引起的环保问题日趋严重,为了解决合成树脂和纤维不易被环境分解的问题,人们开发出可生物降解的合成树脂和纤维,聚乳酸(PLA)就是其中研究较多和性能较好的一种高分子材料。
聚乳酸制品废弃在土壤或水中,会在微生物的作用下分解成二氧化碳和水,在太阳光合作用下,又会成为淀粉的起始原料,不会污染环境,因而是一种完全自然循环型的可生物降解材料。
2.PLA的基本性质2.1 物理性能乳酸有两种旋光异构体即左旋(LLA)和右旋(DLA)乳酸,由此有3种基本主体构型:PDLA、PLLA、PDLLA,常用易得的是聚消旋乳酸(PDLLA)和聚左旋乳酸(PLLA)。
PLLA是具有光学活性的聚合物,熔融、溶液状态均可结晶,结晶度60%左右,Tg和Tm分别为58℃、215℃。
PDLLA是无定形非晶态,Tg为58℃,无熔融温度。
PLA的物理性能介于聚酯和聚酰胺之间,PLLA具有较高的抗张强度,而且耐热性和热稳定性较好,易染色。
2.2 生物降解性聚乳酸及其共聚物具有良好的生物相溶性和生物降解性,在人体内可逐渐降解为二氧化碳和水。
聚乳酸及其共聚物降解的早期阶段是化学水解,降解速率与分子结构有关。
PDLLA的甲基处于间同立构或无规立构状态,水解非常快,主要是无定形区域增加了水的吸收。
而PLLA的甲基处于全同立构状态,可以结晶,结晶度取决于许多因素,如分子质量、温度以及热处理时间。
在自然条件下PLLA显示出相当慢的降解速率,通过对PLLA的改造可以控制其降解速度,如加入一些亲水性成分或降低PLLA的结晶度可以加速PLLA的降解。
聚乳酸综述
聚乳酸(PLA)的合成及改性研究摘要介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。
综述了国内外PLA的改性研究及目前有关PLA性能改进的方法.概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。
关键词:聚乳酸合成改性前言聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。
聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。
此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。
近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。
PLA的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。
1、聚乳酸的研究背景在石油基高分子材料广泛应用的今天,生物基高分子材料因其具有来源不依耐石油、生物相容性好、可生物降解等突出特点越来越受到关注。
聚乳酸( PLA) 作为一种可从淀粉分解、发酵制备原料乳酸,再经聚合获得高分子产物的生物基来源、可生物降解高分子材料,具有良好的应用前景。
但因聚乳酸性能上存在不足( 韧性差,降解不可控,亲水性差,功能性单一等),限制了其更为广泛的应用。
因此,研究人员在其结构及性能的基础上进行了大量的改性研究,采用化学合成、物理共混、材料复合等方法,试图在物理机械性能、生物降解性能、表面润湿性能以及多功能化等方面有所改善或加强,从而扩展聚乳酸的应用领域。
聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。
早在20 世纪初,法国人首先用缩聚的方法合成了PLA【1】;在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展。
聚乳酸(PLA)生物可降解材料
良好的透明性和光泽度
PLA具有与传统的石油基塑料相似的 透明性和光泽度,可用于制造需要透 明度的产品。
PLA材料的用途
包装材料
PLA可制成一次性餐具、塑料袋等包装材料, 替代传统的石油基塑料。
3D打印材料
PLA是3D打印领域常用的材料之一,可用于 制造各种定制产品。
医疗领域
PLA可用于制造医疗用品,如手术缝合线、 药物载体等。
水解反应使PLA分子链断裂成较小的分子片段, 氧化反应则使PLA分子链上的碳碳键断裂。
随后,微生物如细菌、真菌等开始利用这些小 分子片段进行生长和繁殖,进一步降解PLA材 料。
影响PLA材料生物降解的因素
环境温度和湿度
较高的温度和湿度有利于PLA材料的生物降 解。
PLA材料的结构和性质
PLA材料的分子量、结晶度、添加剂等都会 影响其生物降解性能。
PLA是一种热塑性聚合物,具有与传 统的石油基塑料相似的加工性能和物 理性质。
PLA材料的特性
可完全生物降解
PLA在自然环境中可被微生物分解为 水和二氧化碳,具有良好的环保特性。
良好的加工性能
PLA具有良好的热塑性,可采用传统 的塑料加工技术进行成型加工,如注 塑、吹塑、挤出等。
良好的机械性能
PLA具有较高的拉伸强度、弯曲模量 和冲击强度,可满足各种应用需求。
PLA的降解速度过快,导致其性能不稳定,容易在正常使 用过程中出现损坏。
01
降解速度过慢
PLA的降解速度过慢,导致其难以在短 时间内完全分解,对环境造成一定的负 担。
02
03
降解条件控制
需要控制PLA的降解条件,以确保其在 适当的条件下进行分解,同时保持良 好的性能和稳定性。
生物可降解高分子材料——聚乳酸
生物可降解高分子材料——聚乳酸摘要:论述了聚乳酸的基本性质、性能、应用及展望,指出了聚乳酸是一种新型绿色环保可生物降解的高分子材料.关键词:绿色高分子;聚乳酸;生物可降解高分子材料人类在21世纪的最大课题之一是保护环境。
橡胶、塑料和合成纤维虽然与人类的生活密切相关,但大多不能自然分解,其废弃物会造成白色污染。
20世纪90年代末刚刚实现工业化的聚乳酸(Poly Lactic Acid,PLA)是其中最有发展前景的一种,它是一种真正的新型绿色高分子材料,也是目前综合性能最出色的环保材料【1】。
1聚乳酸的基本性质聚乳酸(PLA)是以微生物的发酵产物L—乳酸为单体聚合成的一类聚合物,具体性能【2】见表1.由于具有独特的可生物降解性能、生物相容性能和降解后不会遗留任何环保问题等特点,将成为未来应用发展前景广阔的生态环保材料。
聚乳酸的分子量对降解性能有重要的影响.在相同降解时间和降解环境下,分子量高的降解速率比分子量低的慢.这是因为随着聚合物分子量的提高,聚合物分子间的作用力增大、结晶度增高,且分子量低的聚合物末端羧基的数目较多,更容易发生水解.PDLLA的降解速率比PLLA的快.就是由于PLLA为结晶性聚合物,而PDLLA为无定型聚合物.无定型聚合物的结构疏松,水的渗透快,可以由外到里同时水解【3】。
表1聚乳酸的基本性能2聚乳酸的合成方法目前合成聚乳酸(PLA)的方法主要分为直接缩聚法和间接法(即丙交酯开环聚合、扩链反应等)【2】。
2.1直接缩聚乳酸的直接缩聚由于存在着乳酸、水、聚酯及丙交酯的平衡,不易得到高分子量的聚合物。
但是乳酸的来源充足,价格便宜,所以直接法合成聚乳酸比较经济合算。
研究表明,延长聚合时间,适当提高反应温度,采用高真空度可以有效降低体系水分含量,从而提高聚合物分子量,在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物,加人催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸.它主要有溶液缩聚法、熔融缩聚(本体聚合)法、熔融一固相缩聚法和反应挤出聚合法等.2.1.1溶液缩聚法采用一种高沸点的溶剂和乳酸、水进行共沸,高沸点溶剂脱水后再回流到溶液中,将反应中的水带出反应体系,促进反应正向进行,合成聚乳酸.该方法虽然可以合成高分子量的聚乳酸,但是高沸点溶剂的引人使产物的最后纯化比较困难,成本仍然较高.2.1.2熔融缩聚法该方法工艺路线简单,操作简单,要求高真空或者氮气保护.但是产物的分子量不高,主要是因为反应后期体系的粘度较大,小分子水难以除去,因此有待于进一步完善.2000年日本学者合成M。
塑料降解微生物酶促进环境迎来可持续发展
塑料降解微生物酶促进环境迎来可持续发展随着全球塑料污染问题日益凸显,寻找塑料降解的可行方案成为当今社会面临的重要挑战。
其中,塑料降解微生物酶作为一种生物技术的创新解决方案,正引起越来越多的关注。
本文将介绍塑料降解微生物酶的原理与应用,并探讨其如何促进环境的可持续发展。
塑料降解微生物酶是一种能够将塑料分解为较小分子的生物催化剂。
塑料降解过程中,微生物酶能够加速塑料的分解,从而降低塑料在环境中的寿命。
这些酶可以分解包括聚乳酸(PLA)、聚酯(PET)和聚对苯二甲酸乙二醇酯(PEA),等常见塑料种类。
与传统的塑料降解方法相比,微生物酶不需要高温、高压和化学试剂,因此具有更高的环境友好性和资源可持续利用性。
塑料降解微生物酶的应用范围广泛,涉及多个领域。
首先,它可以用于塑料废物的处理和回收。
目前,全球塑料废物数量巨大,而传统的废物处理方法往往只能实现部分回收和焚烧处理。
微生物酶的应用可以将废弃塑料转化为可再利用的原料,如生物燃料、生物塑料和生物肥料等。
其次,塑料降解微生物酶也可以应用于塑料制品的生产过程中。
通过添加微生物酶,可以使塑料制品在特定条件下更容易降解,从而缩短其在环境中的存在时间。
这不仅有助于减少塑料污染,还能为塑料制品的可持续发展提供解决方案。
除了垃圾处理和生产过程中的应用,塑料降解微生物酶还具有其他一些潜在应用。
例如,它可以被用于海洋和淡水生态系统的修复。
塑料垃圾给海洋生物和生态系统造成了严重威胁,而微生物酶可以帮助加速塑料的降解,减少对海洋生态系统的伤害。
此外,微生物酶还可以应用于农业领域,用于处理农田中的塑料覆盖膜和农膜等废弃物,避免对土壤和作物造成的污染。
尽管塑料降解微生物酶在解决塑料污染问题方面有巨大潜力,但其应用仍面临一些挑战。
首先,培养大量高效的微生物酶生产菌株是一个复杂的过程。
虽然已经发现了许多能够分解塑料的微生物酶,但如何扩大其规模仍然是一个技术难题。
其次,美好的理论需要与实际应用相结合。
探究新型绿色包装材料—聚乳酸
探究新型绿色包装材料—聚乳酸摘要:本文主要阐述绿色包装材料聚乳酸的基本特性,同时综述了生物可降解材料聚乳酸的间接合成法、直接合成法等工艺取方法及其研究进展,并总结了聚乳酸类生物材料在纺织、包装、医疗卫生和农业方面等领域的主要应用和研究进展,最后对聚乳酸生物材料未来的研究方向提出展望,并阐述了聚乳酸的发展前景与在各个领域中的应用方向和主导作用。
关键词:聚乳酸、化学特性、提取、材料、应用、发展一.聚乳酸(PLA)的发展简史生物降解塑料的生物降解,是指生物降解塑料在微生物作用下发生降解、同化的过程。
发挥生物降解作用的微生物主要包括真菌、霉菌或藻类。
乳酸可通过对含淀粉的农作物(玉米、小麦、土豆、薯类等)进行发酵而大量生产,其中尤其以玉米淀粉产量和用量最大,所以PLA又被称为“玉米塑料”。
1932年Dupont 公司科学家Wallace Carothers在真空中将乳酸进行聚合产生低分子量聚合物;1987年美国食品公司Cargill投资研发新的PLA聚合工艺;2001年Cargill与Dow合资,开始大规模生产Nature Works品牌的PLA商品二.聚乳酸的简介及特性聚乳酸(Polylactic acid,PLA)是20世纪90年代迅速发展起来的新一代可完全降解高分子材料,它是以微生物发酵产物L-乳酸为单体,用化学合成方法聚合而成的,是热塑性脂肪族树脂的一种。
PLA具有优良的生物相容性和可吸收性,无毒、无刺激性,它在自然界中的微生物、水、酸、碱等作用下能完全分解,最终产物是 CO2 和H2O ,对环境无污染,可作为环保材料代替传统的聚合物材料,受到了世界各国的广泛关注和深入研究。
同时,它在人体内的中间产物乳酸对人体无毒性,经美国食品和药品管理局(FDA) 批准广泛用作药物控释载体、医用手术缝合线及骨折内固定材料等生物医用高分子材料,因此,PLA作为一种新型的可生物降解高分子材料逐步得到研究者的重视,其应用范围已从最初用于手术缝合线、接骨材料、生理卫生用品、药物载体等医用领域向各类包装材料等通用高分子材料领域迅速扩展,展现了诱人的发展活力。
【思考】:当我们谈论降解材料时,我们在说什么?聚乳酸做耐久制品怎么样?
【思考】:当我们谈论降解材料时,我们在说什么?聚乳酸做耐久制品怎么样?TK生物基材料报道,目前,常见的生物降解材料如聚乳酸PLA、聚羟基脂肪酸酯PHA、PBAT等降解材料,一般意义上都被认为是一次性传统塑料的替代品,如PE、PP等。
它们的应用也多限制在一次性餐具、吸管、购物袋等常用消费品上。
在此语境下,可降解塑料与一次性塑料的关系变得相当“暧昧”,凡是提及可降解就会提到一次性消费品。
如聚乳酸PLA等材料就只能制作一次性用品吗?是否存在更多的应用可能?01可降解≠立刻降解,而是可控降解从降解产品的定义来说,降解塑料需要符合特定的降解标准才算合格,但在日常使用中,我们对产品有不同的要求。
比如,希望它在用之前,屯在货仓不轻易发生降解,延长它的货架期。
而在使用完,丢到特定场所以后能够快速发生降解。
那么这个时候如果降解产品降解速率太快,就需要耐久改性,用以满足特定产品的货架期。
堆肥但对于降解产品而言,通过添加结晶剂来延缓降解制品的降解时间,如果加的过多,导致“降解产品”达不到产品所需的降解标准,肯定会影响降解效果,最终失去了它自身的意义。
因此在这个背景下,“量体裁衣”是最为关键的,也就是降解塑料一直渴望追求的“降解可控”。
从降解塑料的应用场景看,降解塑料的降解功能一开始就把它推到了一次性用品领域,一次性塑料袋,一次性餐具都主张使用降解塑料替代,因为很多人看中了聚乳酸等材料的降解周期与一次性塑料的使用周期可以很好的匹配起来。
降解材料的实际应用是一个平衡问题,需要在“耐用,结实”和“降解性能好”之前做出一个平衡。
前者有它的产品检测标准,不达标就是不合格产品,后者是降解检测标准,不合格就不能称为“可降解”。
在最常用的堆肥检测方法GB/T 19277.1 里对整个降解周期的测试时间做出了规定——试验周期不超过6个月。
从这个地方我们可以看出,比如聚乳酸产品想要强调自身是可降解的,符合测试标准,这样产品就一定是一次性产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业论文(设计)题目:新型可降解材料聚乳酸及如何延长其使用寿命系院:学生姓名:学号:专业:年级:完成日期:指导教师:摘要:本文主要介绍了新型可降解材料——聚乳酸的两种合成方法、基本性能、降解机理以及如何延长其使用寿命和前景展望。
关键词:聚乳酸;合成;降解;使用寿命Abstract :This paper describes a novel biodegradable materials-two polylactic acid synthesis, basic performance degradation mechanism and how to prolong its life and outlook.Key words : of polylactic acid;synthesis;degradation;life目录引言 (5)1 聚乳酸的生产方法 (6)1.1 直接缩聚法 (6)1.2 间接聚合法 (6)2 聚乳酸的基本性能 (6)3 聚乳酸的降解 (6)3.1 聚乳酸的降解机理 (6)3.2 影响聚乳酸降解的因素 (7)4 提高其使用寿命的主要方法 (7)4.1 加入抗氧化剂 ..................................... .. (7)4.2 硝酸表面处理 (8)4.3 酸性和干燥的环境 (8)4.4 改变 PLA 的分子结构 (8)5.结语 (9)参考文献: (9)引言聚乳酸(PLA)是以玉米为主要原料,经发酵制得乳酸,再经聚合而制成的高分子材料,具有良好的生物相容性和生物可降解性。
PLA可像聚氯乙烯、聚丙烯、聚苯乙烯等热塑性塑料那样加工成各种产品,如薄膜、包装袋、包装盒、食品容器、一次性快餐盒、饮料用瓶、药物缓释包装剂等。
1 聚乳酸的生产方法聚乳酸的合成有两种方法,即乳酸直接聚合法和环丙交酯开聚合法。
1.1 直接缩聚法直接缩聚法是乳酸的直接脱水缩聚,其聚合工艺短,对聚合单体的要求与普通缩聚单体的要求一致,但所得聚乳酸分子量小,且产品性能差,易分解,实用价值小。
1.2 间接聚合法间接聚合法因为是环状二聚体的开环聚合,不同于一般的缩聚,没有小分子水生成,所以不需要进行抽真空排除小分子,聚合设备简单,此法所得聚乳酸分子量高达数万乃至数百万,机械强度高[1]。
近年来,为便于工业化生产,主要集中在开环聚合的高效催化体系,新型结构和组成的共聚物的合成等方面的研究,以制备更高分子量的聚乳酸。
2 聚乳酸的基本性能聚乳酸是其中一种研究较多和性能较好的可生物降解的高分子材料。
乳酸有非常好的透明性,可在牛物体内分解、吸收,同时其力学性能可和通用塑料媲美。
聚乳酸制品废弃后在土壤或水中,会在微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下它们又会成为淀粉的起始原料,对人体无害,具有良好的生物相容性[2]。
聚乳酸现已成为生物降解医用材料领域中最受重视的材料之一。
目前,聚乳酸已被广泛应用于药物控制释放材料、免拆手术缝合线和注射用微胶囊、埋植剂、骨材料、眼科材料等。
此外,聚乳酸还可用于农业、包装材料、日用杂品等领域。
3 聚乳酸的降解乳酸是一种性能优异的生物降解材料,能被酸、碱、生物酶等降解,降解的最终产物CO2和H2O对环境无污染。
早已公认为是最有前途的医用可降解高分子材料。
3.1 聚乳酸的降解机理PLA作为聚酯类材料,其降解分为简单水解降解和酶催化降解。
简单水解降解是酯化反应的逆反应,起始于水的吸收,小分子的水移至样品的表面,扩散进入酯键或亲水基团的周围。
在介质中酸、碱的作用下,酯键发生自由水解断裂,样品的数均分子量缓慢降低,当分子量降低到一定程度,样品开始溶解,生成可溶的降解产物[3]。
3.2 影响聚乳酸降解的因素聚乳酸所处环境对其降解有很大关系,凡是能引起酯键断裂的因素都可以使聚乳酸发生降解,主要的因素有微生物、酶、聚合结构,此外如氧的存在与否、pH值、温度、湿度等也对其有影响。
(1)微生物微生物降解是聚乳酸在自然界中最普遍存在的降解方式,聚乳酸可以被多种微生物降解。
研究结果表明,镰刀酶念珠菌、青霉菌都可以完全吸收D,L-乳酸,部分还可以吸收可溶的聚乳酸低聚物。
聚乳酸的生物降解过程是间接的,是通过主链上不稳定的键水解而成低聚物。
然后在酶的作用下进一步降解为水和二氧化碳,其中也包含大分子在链端开始的酶的同化作用。
PLA 的酯键水解在整个聚合物内发生,但是如果微生物不能到达聚合物内部,则进一步的降解只能在聚合物的表面发生。
(2)酶聚乳酸由于在主链上含有酯键,可以被酯酶加速降解。
研究表明在根霉属菌酯肪酶、猪胰腺酯肪酶、猪肝脏的羧基酯酶这几种酶中,根霉属菌酯肪酶对聚乳酸的降解能力最强。
降解的程度随着时间的延长而增加。
在无定形区域21天后可完全降解,而在结晶区域却降解得很慢,21天后降解30%左右。
这是由于在结晶区域分子结构排列紧密,酶分子很难进入到聚乳酸分子内部,因此降解速度很慢。
(3)聚合结构对于聚乳酸的降解速度,聚乳酸的聚合结构对其影响很大,包括化学结构、物理结构、表面结构等,由于聚酯类高分子含易水解的化学键,有较快的降解速度。
但当其固态结构不同时,不同聚集态的降解速度为:橡胶态>玻璃态>结晶态。
聚乳酸材料一般是在固体状态下应用的,同态的聚乳酸是部分结晶的高分子,结晶区的分子链堆积得非常紧密,对聚乳酸的降解速率有很大的影响。
另外影响聚乳酸降解的因素还有分子量。
4 提高其使用寿命的主要方法影响聚乳酸高分子降解的因素繁多,但主要可分为材料特性和水解条件两大类。
4.1 加入抗氧化剂无论是简单的有机分子,还是高分子或者生物体内进行的氧化,大多是自由基过程,一旦体系中生成自由基,经过自由基链式反应,氧化便可很快地进行下去。
这些物质被氧化后失去了原有的有益属性。
防止有机物氧化的方法很多,但加入抗氧剂则是有效和方便的方法。
所谓抗氧剂是指那些能防止或阻缓有机材料氧化的化合物,它可以捕获活性游离基生成非活性的游离基,从而使连锁反应终止;或者能够分解氧化过程中产生的氢过氧化物生成稳定的非活性产物,从而中断连锁反应[4]。
4.2 硝酸表面处理在复合材料的降解过程中,界面降解是导致材料性能下降的重要因素,通过碳纤维的硝酸处理并以化学键结合的方式可有效改善复合材料的界面结合状况使其综合性能得到显著提高[5]。
经硝酸处理后的PLA高分子材料初期降解很缓慢,其横向剪切强度在前5d内仅降低了1.7%,而后期则降解速度加快。
考虑到3酯键的键能及其亚稳定性可以认为它是处于基体与增强体之间的具有自愈能力的化学键,而且这种化学键一直处于不断形成和断裂的动态平衡状态中。
这样不仅阻止了水等低分子物的破坏作用,而且由于这些低分子物的存在起到了松弛界面局部应力的作用。
因此,经硝酸处理的PLA高分子材料初期的降解速度极为缓慢但当这种自愈能力的动态平衡被破坏后,界面降解就会以较快的速度进行反映到横向剪切强度曲线上,其后期下降加快。
4.3 酸性和干燥的环境马晓妍[6]等的研究发现聚乳酸在去离子水、0.0lmol/L盐酸溶液、PH=7.4磷酸缓冲液、 0.0lmoL/L氢氧化钠溶液四种降解介质中的降解速率如下递减:碱液> 酸液>去离子水>缓冲液。
在碱液中的降解速率最快。
是因为聚乳酸水解生成的羧酸产物与碱中和,促进了水解反应向正反应方向进行。
聚乳酸在磷酸缓冲液中的降解。
虽然生成羧基使溶液酸性增加,但是由于磷酸缓冲液可以保持溶液pH在一个恒定的范围内。
因此降解较慢。
而在去离子水中,由于聚乳酸水解产生的羧基可以催化和加速醣键的水解。
所以聚乳酸在去离子水中的降解比在磷酸缓冲液中快。
钱以宏[7]等专门对聚乳酸在不同湿度下降解性能进行了研究。
结果显示相对湿度为 88%时的降解速度是相对湿度 20%时的降解速度的3倍以上。
环境湿度越大,温度越高,水解就越快,降解时间便越短。
4.4 改变 PLA 的分子结构分子结构是影响聚乳酸类材料特性的重要因素。
端基的种类对 PLA 的降解也有重要的影响。
S.H.Lee 等合成了不同端基(胺基、氯酰基、羧基和羟基)的聚乳酸并对其降解性进行了研究,发现NH—PLA、Cl—PLA比COOH—PLA、OH—PLA2的降解速度较慢,说明NH—PLA和Cl—PLA有一定的抗水解性能。
可能由于Cl2和 NH的极性比OH-的小,导致较低的降解情况。
25 结语在日益重视环保和能源的2l世纪,由于聚乳酸以淀粉等可再生资源为原料,并可完全生物降解为二氧化碳和水,属于绿色环保材料,符合可持续发展战略,因而日益受到重视。
因其具有优良的应用特性,且极易改性以满足各种需要,应用面日益拓宽,涵盖了医用材料、包装材料、日用塑料制品、纺织面料、农用地膜、地毯、家用装饰品等。
随着对聚乳酸研究的不断深入,相信在不久的将来,人们将克服生产规模小、规格品种不全、价格较贵的问题。
同时能够自主地控制聚乳酸的降解速度,提高其使用寿命,使得聚乳酸高分子材料的前景更加光明。
参考文献:[1] 王哲;倪宏哲;刘喜品生物降解高分子——聚乳酸的合成[期刊论文]-长春工业大学学报 (自然科学版) 2005(03)[2] 邢逑欣,林建强,殷永泉,周向军,周海霞绿色环保材料聚乳酸[J].德州学院学报,200622(6):107-109.[3] 刘磊,吴若峰.聚乳酸类材料的水解特征[J].合成材料老化与应用,2006,35(1):44-48[4] 王刚,王鉴,王立娟等,抗氧剂作用机理及研究进展.合成材料老化与应用,2006 年第 35 卷第 2 期:38-42[5] 杜慧玲齐锦刚庞洪涛等;表面处理对碳纤维增强聚乳酸材料界面性能的影响 [j];材料保护,2003,36(2):16[6] 马晓妍,石淑先,夏字正,等.聚乳酸及其共聚物的制备和降解性能[J].北京化工大学学报。
2004,31(1):5l-5[7] 钱以宏.聚乳酸酯及其降解特征[J].纺织导报,2004,(4):38-40.。