《计算方法》期末考试试题
计算方法期末试题及答案
计算方法期末试题及答案1. 选择题1.1 下面哪种方法不适合求解非线性方程组?A. 牛顿迭代法B. 二分法C. 割线法D. 高斯消元法答案:D1.2 在计算机中,浮点数采用IEEE 754标准表示,64位浮点数的指数部分占用几位?A. 8位B. 11位C. 16位D. 64位答案:B1.3 对于一个矩阵A,转置后再乘以自身得到的是:A. AB. A^2C. A^TD. I答案:B2. 填空题2.1 假设一个函数f(x)有一个根,使用二分法求解,且初始区间为[a,b]。
若在第k次迭代后的区间长度小于等于epsilon,那么迭代次数不超过:log2((b-a)/epsilon) + 1次。
2.2 求解线性方程组Ax=b的高斯消元法的计算复杂度为:O(n^3),其中n表示矩阵A的维度。
2.3 牛顿迭代法是利用函数的局部线性化来求解方程的方法。
3. 解答题3.1 请简要说明二分法的基本原理和步骤。
答案:二分法是一种不断将区间二分的方法,用于求解函数的根。
步骤如下:1) 确定初始区间[a, b],其中f(a)和f(b)异号。
2) 计算区间中点c = (a + b) / 2。
3) 如果f(c)等于0或小于某个给定的误差限,则c为近似的根。
4) 如果f(a)和f(c)异号,则根在[a, c],令b = c;否则根在[c, b],令a = c。
5) 重复步骤2-4,直至找到满足要求的根或区间长度小于误差限。
3.2 简要描述高斯消元法的基本思想和步骤。
答案:高斯消元法是一种求解线性方程组的方法,基本思想是通过行变换将方程组化为上三角形式,然后通过回代求解。
步骤如下:1) 将增广矩阵[A | b]写为增广矩阵[R | d],其中R为系数矩阵,d为常数向量。
2) 从第一行开始,选取一个非零元素作为主元,通过行变换使得主元下方的元素为0。
3) 对剩余的行重复步骤2,直至得到上三角形矩阵。
4) 从最后一行开始,依次回代求解未知量的值。
计算机导论期末考试试题及答案
计算机专业计算机导论期末试题一、单选题(每小题1分,共80分)1.客机、火车订票系统属于 C 。
A.科学计算方面的计算机应用B.数据处理方面的计算机应用C.过程控制方面的计算机应用D.人工智能方面的计算机应用2.按照计算机用途分类,可将计算机分为 D 。
A.通用计算机、个人计算机B.数字计算机、模拟计算机C.数字计算机、混合计算机D.通用计算机、专用计算机3.下列数中最大的数是。
A.(1000101)2B.(107)8C.(73)10D.(4B)164.已知:3×4=10,则5×6= D 。
A.24B.26C.30D.365.假设某计算机的字长为8位,则十进制数(+67)10的反码表示为。
A.01000011B.00111100C.00111101 D6.假设某计算机的字长为8位,则十进制数(-75)10的补码表示为。
A.01001011 BD7.已知:“B”的ASCII码值是66,则码值为1000100的字符为。
A.“C”B.“D”C.“E”D.“F”8.在计算机系统内部,汉字的表示方法是采用。
A.ASCII码B.机内码C.国标码D.区位码9.汉字“办”的区位码是1676,其国标码是。
A.1676HB.4908HC.306CHD.3108H10.一个汉字字形采用点阵时,其字形码要占72B。
A.16×16B.24×24C.32×32D.48×4811.在逻辑运算中有Y=A+B,则表示逻辑变量A和B进行 B 。
A.与运算B.或运算C.非运算D.与非运算12.通常所说的CPU包括 C 。
A.运算器B.控制器C.运算器和控制器D.运算器、控制器和内存13.计算机的内存储器比外存储器 B 。
A.更便宜B.存储速度快C.存储容量大D.虽贵但能存储更多信息14.外部设备是指。
A.输入设备和输出设备B.输入设备、输出设备、主存储器C.输入设备、输出设备和存储器D.输入设备、输出设备、辅助存储器15.计算机工作时,内存储器用来存储 B 。
计算智能期末考试试题
计算智能期末考试试题一、单项选择题(每题2分,共20分)1. 在神经网络中,感知机是一种:- A. 学习算法- B. 神经网络结构- C. 激活函数- D. 优化算法2. 遗传算法是模拟了生物进化中的哪种机制?- A. 基因突变- B. 物种灭绝- C. 物种进化- D. 物种退化3. 以下哪个算法是解决组合优化问题常用的启发式算法? - A. 梯度下降法- B. 牛顿法- C. 粒子群优化算法- D. 牛顿-拉夫森方法4. 模糊逻辑的创始人是:- A. 洛特菲·扎德- B. 阿兰·图灵- C. 约翰·冯·诺伊曼- D. 克劳德·香农5. 以下哪个不是计算智能的领域?- A. 机器学习- B. 专家系统- C. 计算机图形学- D. 模式识别二、简答题(每题10分,共30分)1. 请简述神经网络的基本原理。
2. 描述遗传算法的基本流程。
3. 解释模糊逻辑在决策支持系统中的作用。
三、计算题(每题15分,共30分)1. 假设有一个简单的三层前馈神经网络,输入层有3个神经元,隐藏层有2个神经元,输出层有1个神经元。
如果输入向量为 [0.5, 0.2, 0.7],隐藏层的激活函数为Sigmoid函数,输出层的激活函数为线性函数。
请计算输出层的输出值。
2. 给定一个简单的遗传算法问题,其中初始种群由5个个体组成,每个个体由5个基因组成,每个基因的取值范围为0到1。
假设选择操作使用了轮盘赌选择,交叉操作使用了单点交叉,变异操作使用了随机变异。
请描述如何初始化种群,并说明选择、交叉和变异操作的执行过程。
四、论述题(每题20分,共20分)1. 论述计算智能在现代人工智能领域中的重要性,并举例说明其在实际应用中的作用。
注意事项:- 请在规定时间内完成所有题目。
- 确保答题卡填写清晰,字迹工整。
- 答题时请遵循考试规则,诚信考试。
祝各位考生考试顺利!。
大学计算方法历年期末考试试题大全(含完整版答案)及重点内容集锦
武汉大学计算方法历年期末考试试题大全(含完整版答案)及重点内容集锦武汉大学2008-2009学年第二学期考试试卷《计算方法》(A卷)(36学时用)学院:学号:姓名:得分:一、(10分)已知的三个值(1)求二次拉格朗日插值L2(x);(2)写出余项R2(x)。
二、(10分)给定求积公式求出其代数精度,并问是否是Gauss型公式。
三、(10分)若矩阵,说明对任意实数,方程组都是非病态的(范数用)。
四、(12分)已知方程在[0,0.4]内有唯一根。
迭代格式A:;迭代格式B:试分析这两个迭代格式的收敛性。
五、(12分)设方程组,其中,分别写出Jacob及Gauss-Seidel迭代格式,并证明这两种迭代格式同时收敛或同时发散。
六、(12分)已知的一组值2.21.0 分别用复化梯形公式和复化辛卜生公式计算七、(12分)20XX年5月左右,北美爆发甲型H1N1流感,美国疾病控制和预防中心发布的美国感染者人数见下表。
为使计算简单,分别用x=-1,0,1,2代表20XX年5月2,3,4,5日。
根据上面数据,求一条形如的最小二乘拟合曲线。
八、(12分)用改进欧拉方法(也称预估-校正法)求解方程:(取步长)1]。
九、(10分)对于给定的常数c,为进行开方运算,需要求方程的根。
(1)写出解此方程的牛顿迭代格式;(2)证明对任意初值牛顿迭代序列{xn}单调减且收敛于c.武汉大学2008-2009学年第二学期考试试卷1、解:(1)二次拉格朗日插值为(2)余项为2、解:当时,左边=2,右边=2;当时,左边=0,右边=0;当时,左边=223,右边=3;当时,左边=0,右边=0;当时,左边=25,右边=29,左边右边;于是,其代数精度为3,是高斯型求积公式。
3、解:而,于是,所以题干中结论成立。
4、解:(1)对于迭代格式A:,其迭代函数为,在[0,,所以发散。
(2)对于迭代格式B:x1,其迭代函数为10e,在,所以收敛。
22 0.4]内5、解:(1)Jocobi迭代法:0b/2因为a21/a22a21a12a11a22(2)Gauss-Seidel迭代法:a12/a11a21a12/a11a22a12/a1101/a22a21a12a11a22| 01/a22(k)因为a21a12a11a22a21a12a11a22综上分析可知两种迭代法同时收敛同时发散。
数值计算方法期末试题及答案
一、选择题(每小题4分,共20分)1. 误差根据来源可以分为四类,分别是( A )A. 模型误差、观测误差、方法误差、舍入误差;B. 模型误差、测量误差、方法误差、截断误差;C. 模型误差、实验误差、方法误差、截断误差;D. 模型误差、建模误差、截断误差、舍入误差。
2. 若132)(356++-=x x x x f ,则其六阶差商=]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。
3. 数值求积公式中的Simpson 公式的代数精度为 ( D )A. 0;B. 1;C. 2;D. 3 。
4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B )A. 都发散;B. 都收敛C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散;D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。
5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C )A. 02≤≤-h ;B. 0785.2≤≤-h ;C. 02≤≤-h λ;D. 0785.2≤≤-h λ ;二、填空题(每空3分,共18分)1. 已知⎪⎪⎭⎫⎝⎛--='-=4321,)2,1(A x ,则 =2x 5,=1Ax 16 ,=2A 22115+2. 已知3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。
3. 要使20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。
三、利用下面数据表,1. 用复化梯形公式计算积分dxx f I )(6.28.1⎰=的近似值;解:1.用复化梯形公式计算 取2.048.16.2,4=-==h n 1分分分分7058337.55))6.2()2.08.1(2)8.1((22.04))()(2)((231114=+++=++=∑∑=-=f k f f b f x f a f hT k n k k2. 用复化Simpson 公式计算积分dxx f I )(6.28.1⎰=的近似值。
计算机应用技术期末考试试题答案
《计算机应用技术》期末考试真题姓名:____________ 学号:____________ 成绩:____________〔总分值:100分〕一、单项选择题〔1’×40=40’〕1、传输速率的单位是bps,表示_______。
A、帧/秒B、文件/秒C、位/秒D、米/秒2、以下哪项是决定计算机系统性能最主要的部件_______。
A、CPUB、内存C、外存D、显示器3、调制解调器〔Modem〕的作用是_______。
A、将计算机的数字信号转换成模拟信号,以便发送B、将模拟信号转换成计算机的数字信号,以便接收C、将计算机数字信号与模拟信号相互转换,以便传输D、为了上网与接两不误4、堆栈指针SP 的内容是_______。
A、栈顶单元内容B、栈顶单元地址C、栈底单元内容D、栈底单元地址5、以下不属于CPU功能的是_______。
A、操作操纵B、时间操纵C、数据加工D、数据存储6、在不同速度的设备之间传送数据_______。
A、必须采纳同步操纵方法B、必须采纳异步操纵方法C、可以选用同步方法,也可选用异步方法D、必须采纳应答方法7、挂接在总线上的多个部件_______。
A、只能分时向总线发送数据,并只能分时从总线接收数据B、只能分时向总线发送数据,但可同时从总线接收数据C、可同时向总线发送数据,并同时从总线接收数据D、可同时向总线发送数据,但只能分时从总线接收数据8、以下表达中,哪一项为哪一项正确的_______。
A、软盘和硬盘可永久保存信息,它们是计算机的主存储器B、内存储器可与CPU直接交换信息,与外存储器相比存取速度慢,但价格廉价C、RAM和ROM在断电后都不能保存信息D、内存储器与CPU直接交换信息,与外存储器相比存取速度快,但价格贵9、操作系统是一种_______。
A、有用软件B、系统软件C、应用软件D、编辑软件10、计算机中全部信息的存储都采纳_______。
A、二进制B、八进制C、十进制D、十六进制11、计算机的内存比外存_______。
《计算方法》期末考试试题
《计算方法》期末考试试题一 选 择(每题3分,合计42分)1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。
A 、3 B 、4 C 、5 D 、62. 取73.13≈(三位有效数字),则≤-73.13 。
A 、30.510-⨯B 、20.510-⨯C 、10.510-⨯D 、0.5 3. 下面_ _不是数值计算应注意的问题。
A 、注意简化计算步骤,减少运算次数B 、要避免相近两数相减C 、要防止大数吃掉小数D 、要尽量消灭误差 4. 对任意初始向量)0(x ϖ及常向量g ϖ,迭代过程g x B x k k ϖϖϖ+=+)()1(收敛的充分必要条件是__。
A 、11<B B 、1<∞BC 、1)(<B ρD 、21B <5. 用列主元消去法解线性方程组,消元的第k 步,选列主元)1(-k rka ,使得)1(-k rk a = 。
A 、 )1(1max -≤≤k ikni a B 、 )1(max -≤≤k ikni k a C 、 )1(max -≤≤k kj nj k a D 、 )1(1max -≤≤k kj nj a6. 用选列主元的方法解线性方程组AX =b ,是为了A 、提高计算速度B 、简化计算步骤C 、降低舍入误差D 、方便计算7. 用简单迭代法求方程f (x )=0的实根,把方程f (x )=0转化为x =(x ),则f (x )=0的根是: 。
A 、y =x 与y =(x )的交点B 、 y =x 与y =(x )交点的横坐标C 、y =x 与x 轴的交点的横坐标D 、 y =(x )与x 轴交点的横坐标 8. 已知x 0=2,f (x 0)=46,x 1=4,f (x 1)=88,则一阶差商f [x 0, x 1]为 。
A 、7 B 、20 C 、21 D 、42 9. 已知等距节点的插值型求积公式()()463kkk f x dx A f x =≈∑⎰,那么4kk A==∑_____。
大学计算机期末考试《计算机科学导论》试题及答案
大学计算机学院第1学期期末考试《计算机科学导论》试题(闭卷B卷)(请将答案写在答题纸上,否则无效)一、单项选择题(共30小题,每小题1分,共30分)1、称呼编写诸如汇编器和编译器的人的最恰当的是()。
A.用户B.应用程序员C.系统程序员D.软件工程师2、随着计算机技术的发展,计算机用户与计算机硬件之间的距离()。
A.逐渐加大B.逐渐缩小C.没有明显变化D.依赖于用户的知识3、二进制补码的提出,是为了解决()的表示问题。
A.自然数B.有符号数C.小数D.大数4、ASCII字符集最适合表示()。
A.汉字B.东方文字C.英文D.计算机内部数据5、以下()文件是存储数码照片的首选格式。
A.JPEG B.GIF C.PSD D.WMV6、计算两个数位的和,并考虑进位输入的电路称作()。
A.半加器B.全加器C.加法器D.算术逻辑部件7、计算机CPU的指令寄存器中存放的内容来自()。
A.内存B.程序计数器C.内部寄存器D.输入/输出部件8、使用计算机解决问题时,与Polya问题求解列表中“提出方案”相对应的是()阶段。
A.分析说明B.算法开发C.实现D.维护9、自顶向下的分析与设计过程中,被“抽象”的对象是()。
A.任务B.对象C.问题D.工具10、在面向对象分析与设计过程中,()阶段的任务是草拟出问题中类的第一个列表。
A.集体讨论B.过滤C.场景D.责任算法11、16位计算机Pep/7的直接寻址方式中使用12位的操作数地址,这说明该计算机内存单元个数最多为()。
A.12 B.212=4096 C.16×12=192 D.7×12=8412、C语言是()范型的高级程序设计语言。
A.函数B.命令C.逻辑程序设计D.面向对象13、图形用户界面(GUI)中的应用程序中,最自然的是()结构。
A.选择B.循环C.顺序D.异步处理14、具有先进先出性质的结构称作()。
A.列表B.队列C.栈D.树15、某专业所开设的全部课程,如果按先修后续关系表示,应该是一种()结构。
2019-2020学年第一学期期末考试《计算方法》大作业答案
吉林大学网络教育学院2019-2020学年第一学期期末考试《计算方法》大作业答案学生姓名专业层次年级学号学习中心成绩年月日作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word文档格式),如有雷同、抄袭成绩按不及格处理。
一、解线性方程(每小题8分,共80分)1、用矩阵的LU分解算法求解线性方程组X1+2X2+3X3= 02X1+2X2+8X3= -4-3X1-10X2-2X3= -11答:2、用矩阵的Doolittle分解算法求解线性方程组X1+2X2+3X3= 12X1– X2+9X3= 0-3X1+ 4X2+9X3= 1答:3、用矩阵的Doolittle分解算法求解线性方程组2X1+X2+X3= 46X1+4X2+5X3=154X1+3X2+6X3= 13答:4、用高斯消去法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:5、用无回代过程消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:6、用主元素消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:7、用高斯消去法求解线性方程组1231231232344272266x x x x x x x x x -+=++=-++=答:8、利用Doolittle 分解法解方程组Ax=b ,即解方程组12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 答:9、利用Doolittle 分解法解方程组Ax=b ,即解方程组123421111443306776081011112x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 答:10、用高斯消元法解方程组1237811351341231x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦答案:二、计算(每小题10分,共20分)1、已知节点x1,x2及节点处函数值f(x1),f(x2),构造线性插值多项式p1(x). 答:2、设f(xi)=i(i=0,1,2),构造二次式p2(x),使满足: p2(xi)=f(xi)(i=0,1,2)答:。
算法期末考试练习题!!!
算法期末考试练习题博主内推:⼀、选择题1.算法分析中,记号O表⽰(B),记号Ω标售(A),记号Θ表⽰(D)A 渐进下界B 渐进上界C ⾮紧上界D 紧渐进界E ⾮紧下界2.以下关于渐进记号的性质是正确的有:(A)A f(n) =Θ(g(n)),g(n) =Θ(h(n)) ⇒f(n) =Θ(h(n))B f(n) =O(g(n)),g(n) =O(h(n)) ⇒h(n) =O(f(n))C O(f(n))+O(g(n)) = O(min{f(n),g(n)})D f(n) = O(g(n)) ⇔g(n) = O(f(n))3. 记号O的定义正确的是(A)。
A O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ f(n) ≤ cg(n) };B O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ cg(n) ≤ f(n) };C O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤f(n)<cg(n) };D O(g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cg(n) < f(n) };4. 记号Ω的定义正确的是(B)。
A O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ f(n) ≤ cg(n) };B O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n≥n0有:0≤ cg(n) ≤ f(n) };C (g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤f(n)<cg(n) };D (g(n)) = { f(n) | 对于任何正常数c>0,存在正数和n0 >0使得对所有n≥n0有:0 ≤cg(n) < f(n) };5. T(n)表⽰当输⼊规模为n时的算法效率,以下算法效率最优的是( C )A T(n)= T(n – 1)+1,T(1)=1B T(n)= 2n2C T(n)= T(n/2)+1,T(1)=1D T(n)= 3nlog2n6. 动态规划算法的基本要素为(C)A 最优⼦结构性质与贪⼼选择性质B 重叠⼦问题性质与贪⼼选择性质C 最优⼦结构性质与重叠⼦问题性质D 预排序与递归调⽤7.下列不是动态规划算法基本步骤的是( A )。
华东交通大学2015-2016学年《计算方法》期末复习(1)答案
华东交通大学2015—2016学年第二学期复习(A 卷)试卷编号: ( A )卷计算方法 课程 课程类别:必修 考试日期: 月 日 开卷(范围:计算方法教材前三章) 题号 一 二 三 四 五 六 七 八 … 总分 累分人 签名题分252525252525252525100得分注意事项:1、本试卷共 页,总分 100 分,考试时间 50 分钟。
2、考试结束后,考生不得将试卷和草稿纸带出考场。
考场纪律:1、学生应试时必须携带学生证,以备查对,学生必须按照监考老师指定的座位就坐。
2、除答卷必须用的笔、橡皮及老师指定的考试用具外,不得携带任何书籍、笔记、草稿纸等。
3、答卷时不准互借文具(包括计算器)。
题纸上如有字迹不清等问题,学生应举手请监考教师解决。
4、学生应独立答卷,严禁左顾右盼、交头接耳、抄袭或看别人答卷等各种形式的作弊行为,如有违反,当场取消其考试资格,答卷作废。
5、在规定的时间内答卷,不得拖延。
交卷时间到,学生须在原座位安静地等候监考教师收卷后,方可离开考场。
★二分法一、证明f (x )=210x x --=在区间(1,2)内有唯一根,用二分法求此根要求误差小于0.05。
解:令2(x)1f x x =--,则,(1)1f =-,(2)1f = 而且在(1,2)内=2x-1>0,因此方程在(1,2)内有唯一根。
2(1.5) 1.5 1.510.25f =--=-,所以有根区间为(1.5,2)25(1.75) 1.75 1.751016f =--=>,所以有根区间为(1.5,1.75)21(1.625) 1.625 1.6251064f =--=>,所以有根区间为(1.5,1.625)99931(1)1110161616256f =--=-<,所以有根区间为(9116,1.625) 取*19119(11)1 1.59375216832x =+==此时,它与精确解的距离<1191(11)0.05281632-=<二、证明0sin 1=--x x 在[0,1]内有一个根,使用二分法求误差不大于41021-⨯的根要迭代多少承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
成人教育《计算方法 提纲》期末考试复习题及参考答案
一、单项选择题1、Jacobi迭代法解方程组Ax = b的必要条件是( C ).A.A的各阶顺序主子式不为零 B.ρ(A)<1C. D.|A|≤12、设,均差( B )A.3B. -3C. 5D.03、设,则ρ(A)为( C ).A. 2B. 5C. 7D. 34、三点的高斯求积公式的代数精度为( B ).A. 2B.5C. 3D. 45、幂法的收敛速度与特征值的分布( A )。
A. 有关B. 不一定C. 无关6、求解线性方程组Ax=b的分解法中,A须满足的条件是( B )。
A. 对称阵B. 正定矩阵C. 任意阵D. 各阶顺序主子式均不为零7、舍入误差是( A )产生的误差。
A.只取有限位数B.模型准确值与用数值方法求得的准确值C. 观察与测量D.数学模型准确值与实际值8、3.141580是π的有( B )位有效数字的近似值。
A.6B.5C. 4D. 79、幂法是用来求矩阵( A )特征值及特征向量的迭代法。
A. 按模最大B. 按模最小C. 所有的D. 任意一个10、用1+x近似表示所产生的误差是( C )误差。
A. 模型B. 观测C.截断D. 舍入11、解线性方程组的主元素消去法中选择主元的目的是( A )。
A.控制舍入误差B. 减小方法误差C.防止计算时溢出D. 简化计算12、解线性方程组Ax=b的迭代格式收敛的充要条件是( D )。
A. |M|<1B. ρ(A)<1C. |ρ(M)|<1D. ρ(M)<113、用近似表示所产生的误差是( D )误差。
A. 舍入B. 观测C.模型D. 截断14、-324.7500是舍入得到的近似值,它有( C )位有效数字。
A. 5B. 6C.7D. 815、反幂法是用来求矩阵( B )特征值及相应特征向量的一种向量迭代法。
A. 按模最大B. 按模最小C.全部D. 任意一个16、用表示自由落体运动距离与时间的关系式( g为重力加速度),是在时间t内的实际距离,则是( C )误差。
数值计算期末考试题及答案
数值计算期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个方法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比迭代法D. 追赶法2. 以下哪个不是数值稳定性问题?A. 舍入误差B. 累积误差C. 条件数D. 浮点数溢出3. 插值法中,拉格朗日插值法的特点是:A. 计算复杂度高B. 计算复杂度低C. 需要预先计算多项式系数D. 插值点的增加不会影响已计算的多项式4. 牛顿-拉弗森方法(Newton-Raphson method)用于:A. 求解线性方程组B. 求解非线性方程C. 求解最小二乘问题D. 求解特征值问题5. 以下哪个算法是用于数值积分的?A. 欧拉法B. 龙格-库塔法C. 辛普森法D. 蒙特卡洛法二、简答题(每题10分,共20分)1. 简述高斯消元法的基本原理及其在求解线性方程组中的优势和局限性。
2. 解释什么是数值稳定性,并给出一个数值不稳定的算法示例。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}4x + y - 2z &= 6 \\2x - y + z &= -1 \\-2x + 3y + z &= 3\end{align*}\]使用高斯消元法求解该方程组的解。
2. 给定函数 \( f(x) = x^3 - 3x + 1 \),请使用牛顿法求 \( f(x) \) 在 \( x = 1 \) 附近的根,迭代3次。
四、论述题(每题30分,共30分)1. 论述数值分析中误差的来源,以及如何通过算法设计减少误差的累积。
参考答案一、选择题1. B(牛顿法用于求解非线性方程)2. D(浮点数溢出是数值问题,但不是数值稳定性问题)3. A(拉格朗日插值法计算复杂度高)4. B(牛顿-拉弗森方法用于求解非线性方程)5. C(辛普森法用于数值积分)二、简答题1. 高斯消元法是一种直接解法,它通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
2018-2019学年第二学期期末考试《计算方法》大作业参考答案
吉林大学网络教育学院2018-2019学年第二学期期末考试《计算方法》大作业学生姓名专业层次年级学号学习中心成绩年月日一、构造次数不超过三次的多项式P3(X),使满足:(10分)P3(0)= 1;P3(1)=0;P3′(0)=P3′(1)=0。
二、设f(x i)=i(i=0,1,2),构造二次式p2(x),使满足:(10分) p2(x i)=f(x i)(i=0,1,2)三、设节点x i=i(i=0,1,2,3),f(0)=1,f(1)=0,f(2)=-7,f(3)=26,构造次数不超过3次的多项式p3(x),满足p3(x i)=f(x i),i=0,1,2,3 (10分)四、对于上题的问题,构造Newton插值多项式。
(10分)五、构造三次多项式P 3(X )满足:P 3(0)= P 3(1)=0,P 3′(0)=P 3′(1)=1。
(10分)六、利用Doolittle 分解法解方程组Ax=b 即解方程组 (15分) 12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦解:用公式七、基于迭代原理证明(10分)+++=22 (22)八、构造二次多项式2()x p 满足: (10分)'010222()1;()0;()1p p p x x x ===九、构造一个收敛的迭代法求解方程3210x x --=在[1.3,1.6]内的实根。
合理选择一个初值,迭代一步,求出1x 。
(15分)作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终word文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《计算方法》期末考试试题
一 选 择(每题3分,合计42分)
1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。
A 、3 B 、4 C 、5 D 、6
2. 取7
3.13≈(三位有效数字),则
≤-73.13 。
A 、30.510-⨯
B 、20.510-⨯
C 、10.510-⨯
D 、0.5 3. 下面_ _不是数值计算应注意的问题。
A 、注意简化计算步骤,减少运算次数
B 、要避免相近两数相减
C 、要防止大数吃掉小数
D 、要尽量消灭误差 4. 对任意初始向量)0(x ϖ及常向量g ϖ,迭代过程g x B x k k ϖ
ϖϖ+=+)()
1(收敛的充分必要条件是_
_。
A 、11<
B B 、1<∞
B
C 、1)(<B ρ
D 、21B <
5. 用列主元消去法解线性方程组,消元的第k 步,选列主元)
1(-k rk
a ,使得)
1(-k rk a = 。
A 、 )
1(1max -≤≤k ik
n
i a B 、 )
1(max -≤≤k ik
n
i k a C 、 )1(max -≤≤k kj n
j k a D 、 )
1(1max -≤≤k kj n
j a
6. 用选列主元的方法解线性方程组AX =b ,是为了
A 、提高计算速度
B 、简化计算步骤
C 、降低舍入误差
D 、方便计算 7. 用简单迭代法求方程f (x )=0的实根,把方程f (x )=0转化为x =ϕ(x ),则f (x )=0的根是: 。
A 、y =x 与y =ϕ(x )的交点 B 、 y =x 与y =ϕ(x )交点的横坐标 C 、y =x 与x 轴的交点的横坐标 D 、 y =ϕ(x )与x 轴交点的横坐标 8. 已知x 0=2,f (x 0)=46,x 1=4,f (x 1)=88,则一阶差商f [x 0, x 1]为 。
A 、7 B 、20 C 、21 D 、42 9. 已知等距节点的插值型求积公式
()()46
3
k
k
k f x dx A f x =≈∑⎰,那么4
k
k A
==∑_____。
A 、0
B 、2
C 、3
D 、9
10. 用高斯消去法解线性方程组,消元过程中要求____。
A 、0≠ij a
B 、0)
0(11≠a C 、0)
(≠k kk a D 、0)1(≠-k kk a
11. 如果对不超过m 次的多项式,求积公式
)()(0
k b
a
n
k k x f A dx x f ⎰
∑=≈精确成立,则该求积
公式具有 次代数精度。
A 、至少m
B 、 m
C 、不足m
D 、多于m 12.
计算积分
2
1
1
dx x
⎰
,用梯形公式计算求得的值为 。
A 、0.75 B 、1 C 、1.5 D 、2.5 13. 设函数f (x )在区间[a ,b ]上连续,若满足 ,则方程f (x )=0在区间[a ,b ]内一定有实根。
A 、f (a )+f (b )<0
B 、f (a )+f (b )>0
C 、f (a )f (b )<0
D 、f (a )f (b )>0 14. 由4个互异的数据点所构造的插值多项式的次数至多是____。
A 、 2次 B 、3次 C 、4次 D 、5次 二、计 算(共58分)
1. 将方程3210x x --=写成以下两种不同的等价形式: ①2
1
1x x =+
;②x =试在区间[1.40,1.55]上判断以上两种格式迭代函数的收敛性。
(8分)
2. 设方程f (x )=0在区间[0,1]上有惟一实根,如果用二分法求该方程的近似根,试分析至
少需要二分几次才能使绝对误差限为0.001。
(8分) 3. 用复化梯形公式、复化辛卜生公式分别计算积分1
204
1dx x +⎰的近似值,要求总共选取9
个节点。
(10分)
4. 用高斯消去法解下列方程组:
⎪⎩⎪
⎨⎧1
-=4+2+4=+2+31-=4++2321
321321x x x x x x x x x (8分)
5. 给定线性方程组
⎪⎩⎪
⎨⎧=++=++=++)3(,
2053)2(,18252)1(,1432321
321321x x x x x x x x x
写出雅可比迭代公式与高斯-赛德尔迭代公式。
(8分)
6. 已知函数
试构造三次拉格朗日插值多项式P n (x )(8分)
7.
⎪⎩
⎪
⎨⎧=-=1)0(2y y x y dx
dy 在区间[0, 0.8]上,取h = 0.1,用改进欧拉法求解初值问题。
要求计算过程至少保留小数点后4位数字。
(8分)。