《大学物理》第二章答案
大学物理答案

第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变(B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A). 2 -3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( )(A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( )(A) 58 mg (B) 12 mg (C) mg (D) 2mg分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a ′为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中aA 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2) 为使下滑的时间最短,可令0d d =αt ,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o 49=α 此时 ()s 99.0cos sin cos 2=-=αμααg l t 2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?分析预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a 上升时,有FT -(m1 +m2 )g =(m1+m2 )a (1)F N2 - m2 g =m2 a (2)解上述方程,得FT=(m1+m2 )(g +a) (3)F N2=m2 (g +a) (4)(1) 当整个装置以加速度a=10 m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94 ×103 N乙对甲的作用力为F′N2=-F N2=-m2 (g +a)=-1.98 ×103 N(2) 当整个装置以加速度a=1 m·s-2上升时,得绳张力的值为FT=3.24 ×103 N此时,乙对甲的作用力则为F′N2 =-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 如图(a)所示,已知两物体A、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s-2运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有m A g -F T =m A a (1)F ′T1 -F f =m B a ′ (2)F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N a m m mg F 2724f .=+-=讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1 以地面为参考系,在摩擦力F f =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程F f =μmg =ma 1F ′f =-F f =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有- v ′2=2as由上述各式可得木块相对于平板所移动的距离为 ()m m g μm s +'''=22v 解2 以木块和平板为系统,它们之间一对摩擦力作的总功为W =F f (s +l ) -F fl =μmgs式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ 由上述各式可得 ()m m g μm s +'''=22v 2 -10 如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力F N 的分力来提供的,由于支持力F N 始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2) 且有 ()Rh R θ-=cos (3) 由上述各式可解得钢球距碗底的高度为2ωg R h -= 可见,h 随ω的变化而变化. 2 -11 火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m 的火车,以速率v 沿半径为R 的圆弧轨道转弯,已知路面倾角为θ,试求:(1) 在此条件下,火车速率v 0 为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2) 如果火车的速率v ≠v 0 ,则车轮对铁轨的侧压力为多少?分析 如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量F N sin θ 提供(式中θ 角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v 0行驶.当火车行驶速率v ≠v 0 时,则会产生两种情况:如图所示,如v >v 0 时,外轨将会对车轮产生斜向内的侧压力F 1 ,以补偿原向心力的不足,如v <v 0时,则内轨对车轮产生斜向外的侧压力F 2 ,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解 (1) 以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有Rm θF N 2sin v = (1) 0cos =-mg θF N (2)解(1)(2)两式可得火车转弯时规定速率为θgR tan 0=v(2) 当v >v 0 时,根据分析有Rm θF θF N 21cos sin v =+ (3) 0sin cos 1=--mg θF θF N (4)解(3)(4)两式,可得外轨侧压力为⎪⎪⎭⎫ ⎝⎛-=θg θR F sin cos m 21v当v <v 0 时,根据分析有RθF θF N 22m cos sin v =- (5) 0sin cos 2=-+mg θF θF N (6)解(5)(6)两式,可得内轨侧压力为⎪⎪⎭⎫ ⎝⎛-=θR θg m F cos sin 22v 2 -12 一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m ,圆筒半径为R ,演员骑摩托车在直壁上以速率v 作匀速圆周螺旋运动,每绕一周上升距离为h ,如图所示.求壁对演员和摩托车的作用力.分析 杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v 1 和v 2 两个分量,显然v 1是竖直向上作匀速直线运动的分速度,而v 2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力F N 的水平分量F N2 提供,而竖直分量F N1 则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解 设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有01=-mg F N (1)Rm F N 22v = (2) ()222π2π2cos h R Rθ+==v v v (3)2221N N N F F F += (4)以式(3)代入式(2),得222222222222π4π4π4π4h R Rm h R R R m F N +=+=v v (5) 将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22222222221π4π4⎪⎪⎭⎫ ⎝⎛++=+=h R R g m F FF N N N v与壁的夹角φ为()g h R R F F N N 2222212π4π4arctan arctan +==v 讨论 表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2 -13 一质点沿x 轴运动,其受力如图所示,设t =0 时,v 0=5m·s-1,x 0=2 m,质点质量m =1kg,试求该质点7s末的速度和位置坐标.分析 首先应由题图求得两个时间段的F (t )函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解 由题图得()⎩⎨⎧<<-<<=7s t 5s ,5355s t 0 ,2t t t F 由牛顿定律可得两时间段质点的加速度分别为5s t 0 ,2<<=t a7s t 5s ,535<<-=t a对0 <t <5s 时间段,由ta d d v =得 ⎰⎰=t t a 0d d 0v v v 积分后得 25t +=v 再由tx d d =v 得 ⎰⎰=t t x 0d d 0v x x 积分后得33152t t x ++= 将t =5s 代入,得v 5=30 m·s-1 和x 5 =68.7 m对5s<t <7s 时间段,用同样方法有⎰⎰=t t a s 52d d 0v v v得 t t t 5.825.2352--=v 再由 ⎰⎰=txx t x s55d d v得x =17.5t 2 -0.83t 3 -82.5t +147.87将t =7s代入分别得v 7=40 m·s-1和 x 7 =142 m2 -14 一质量为10 kg 的质点在力F 的作用下沿x 轴作直线运动,已知F =120t +40,式中F 的单位为N,t 的单位的s.在t =0 时,质点位于x =5.0 m 处,其速度v 0=6.0 m·s-1 .求质点在任意时刻的速度和位置.分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a =d v /d t ,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t );由速度的定义v =d x /d t ,用积分的方法可求出质点的位置.解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tmt d d 40120v=+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m·s-1,运用分离变量法对上式积分,得()⎰⎰+=tt t 0d 0.40.12d 0v v vv =6.0+4.0t+6.0t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=txx t t t x 020d 0.60.40.6dx =5.0+6.0t+2.0t 2 +2.0t 32 -15 轻型飞机连同驾驶员总质量为1.0 ×103kg .飞机以55.0 m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0 ×102N·s-1,空气对飞机升力不计,求:(1) 10s后飞机的速率;(2) 飞机着陆后10s内滑行的距离.分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有t αt mma F -===d d v⎰⎰-=t t m t α0d d 0v v v 得 202t mα-=v v因此,飞机着陆10s后的速率为v =30 m·s-1又⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v 故飞机着陆后10s内所滑行的距离m 4676300=-=-=t mαt x x s v 2 -16 质量为m 的跳水运动员,从10.0 m 高台上由静止跳下落入水中.高台距水面距离为h .把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为b v 2,其中b 为一常量.若以水面上一点为坐标原点O ,竖直向下为Oy 轴,求:(1) 运动员在水中的速率v 与y 的函数关系;(2) 如b /m =0.40m -1,跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0 的1 /10? (假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P 、浮力F 和水的阻力F f的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为gh 20=v运动员入水后,由牛顿定律得P -F f -F =ma由题意P =F 、F f=b v 2,而a =d v /d t =v (d v /d y ),代 入上式后得-b v 2= m v (d v /d y )考虑到初始条件y 0 =0 时, gh 20=v ,对上式积分,有⎰⎰=⎪⎭⎫⎝⎛-v v v v 0d d 0ty b mm by m by e gh e //02--==v v(2) 将已知条件b/m =0.4 m -1,v =0.1v 0 代入上式,则得m 76.5ln 0=-=v v b m y *2 -17 直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m =136 kg,长l =3.66 m .求当它的转速n =320 r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析 螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解 设叶片根部为原点O ,沿叶片背离原点O 的方向为正向,距原点O 为r 处的长为d r 一小段叶片,其两侧对它的拉力分别为F T(r)与F T(r +d r ).叶片转动时,该小段叶片作圆周运动,由牛顿定律有()()r r ωlm r r F r F F T T T d d d 2=+-= 由于r =l 时外侧F T =0,所以有()r r lωm F lrtr F T T d d 2⎰⎰= ()()()22222222r l lmn πr l l ωm r F T --=--=上式中取r =0,即得叶片根部的张力F T0 =-2.79 ×105 N负号表示张力方向与坐标方向相反.2 -18 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r 的光滑圆轨道ADCB 下滑.试求小球到达点C 时的角速度和对圆轨道的作用力.分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度a t,与其相对应的外力F t是重力的切向分量mg sin α,而与法向加速度a n 相对应的外力是支持力F N 和重力的法向分量mg cos α.由此,可分别列出切向和法向的动力学方程F t=m d v /d t 和F n =ma n .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得tmαmg F t d d sin v=-= (1) Rm m αmg F F N n 2cos v =-= (2)由t αr t s d d d d ==v ,得vαr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有()⎰⎰-=αααrg o90d sin d vv v v得 αrg cos 2=v则小球在点C 的角速度为r αg rω/cos 2==v由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v由此可得小球对圆轨道的作用力为αmg F F N Ncos 3-=-=' 负号表示F ′N 与e n 反向.2 -19 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v 0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v 0减少到12 v 0时,物体所经历的时间及经过的路程.分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力F N 和环与物体之间的摩擦力F f ,而摩擦力大小与正压力F N ′成正比,且F N 与F N ′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有R m ma F n N 2v ==tma F t d d f v -=-= 由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得tR μd d 2v v -= 取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v02d d μR t ttμR R 00v v v +=(2) 当物体的速率从v 0 减少到1/2v 0时,由上式可得所需的时间为v μR t ='物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 000d d v v v2ln μRs =2 -20 质量为45.0 kg 的物体,由地面以初速60.0 m·s-1竖直向上发射,物体受到空气的阻力为F r =kv,且k =0.03 N/( m·s-1).(1) 求物体发射到最大高度所需的时间.(2) 最大高度为多少?分析 物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v 的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解 (1) 物体在空中受重力mg 和空气阻力F r =k v 作用而减速.由牛顿定律得tmk mg d d vv =-- (1) 根据始末条件对上式积分,有⎰⎰+-=vv vvvd d 0k mg m t ts 11.61ln 0≈⎪⎪⎭⎫⎝⎛+=mg k k m t v (2) 利用yvt d d d d v v =的关系代入式(1),可得 ym k mg d d vvv =-- 分离变量后积分⎰⎰+-=0d d v vvv k mg m y y故 m 1831ln 00≈⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫⎝⎛+-=v v mg k k mg k m y 讨论 如不考虑空气阻力,则物体向上作匀减速运动.由公式g t 0v =和gy 220v=分别算得t ≈6.12s和y≈184 m,均比实际值略大一些.2 -21 一物体自地球表面以速率v 0 竖直上抛.假定空气对物体阻力的值为F r =km v 2,其中m 为物体的质量,k 为常量.试求:(1) 该物体能上升的高度;(2)物体返回地面时速度的值.(设重力加速度为常量.)分析 由于空气对物体的阻力始终与物体运动的方向相反,因此,物体在上抛过程中所受重力P 和阻力F r 的方向相同;而下落过程中,所受重力P 和阻力F r 的方向则相反.又因阻力是变力,在解动力学方程时,需用积分的方法.解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有ym t mkm mg d d d d 2v v v v ==-- 依据初始条件对上式积分,有⎰⎰+-=02d d v v vv k g y y⎪⎪⎭⎫⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20max ln 21v (2) 物体下落过程中,有yv mkm mg d d 2v v =+- 对上式积分,有⎰⎰--=02d d v vvv k g y y则 2/1201-⎪⎪⎭⎫⎝⎛+=g k v v v2 -22 质量为m 的摩托车,在恒定的牵引力F 的作用下工作,它所受的阻力与其速率的平方成正比,它能达到的最大速率是v m .试计算从静止加速到v m /2所需的时间以及所走过的路程.分析 该题依然是运用动力学方程求解变力作用下的速度和位置的问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k .由于阻力F r =k v 2,且F r 又与恒力F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大.因此,根据速度最大值可求出阻力系数来.但在求摩托车所走路程时,需对变量作变换.解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2 (2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF mt v v v v 2101220d 1d则 3ln 2Fm t mv = 又因式(3)中xm t md d d d vv v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF mx v v v v 2101220d 1d则 Fm F m x mm 22144.034ln 2v v ≈= *2 -23 飞机降落时,以v 0 的水平速度着落后自由滑行,滑行期间飞机受到的空气阻力F 1=-k 1 v 2 ,升力F 2=k 2 v 2 ,其中v 为飞机的滑行速度,两个系数之比k 1/ k 2 称为飞机的升阻比.实验表明,物体在流体中运动时,所受阻力与速度的关系与多种因素有关,如速度大小、流体性质、物体形状等.在速度较小或流体密度较小时有F ∝v ,而在速度较大或流体密度较大的有F ∝v 2,需要精确计算时则应由实验测定.本题中由于飞机速率较大,故取F ∝v 2作为计算依据.设飞机与跑道间的滑动摩擦因数为μ,试求飞机从触地到静止所滑行的距离.以上计算实际上已成为飞机跑道长度设计的依据之一.分析 如图所示,飞机触地后滑行期间受到5 个力作用,其中F 1为空气阻力, F 2 为空气升力, F 3 为跑道作用于飞机的摩擦力,很显然飞机是在合外力为变力的情况下作减速运动,列出牛顿第二定律方程后,用运动学第二类问题的相关规律解题.由于作用于飞机的合外力为速度v 的函数,所求的又是飞机滑行距离x ,因此比较简便方法是直接对牛顿第二定律方程中的积分变量d t 进行代换,将d t 用vxd 代替,得到一个有关v 和x 的微分方程,分离变量后再作积分.解 取飞机滑行方向为x 的正方向,着陆点为坐标原点,如图所示,根据牛顿第二定律有tmk F N d d 21vv =- (1) 022=-+mg k F N v (2)将式(2)代入式(1),并整理得()xm t mk μk mg μd d d d 221v v v v ==--- 分离变量并积分,有()⎰⎰⨯-=-+0221d d 0x k μk mg μvm vv v v 得飞机滑行距离()()⎥⎦⎤⎢⎣⎡-+-=mg μk μk mg μk μk mx 22121ln 2v (3)考虑飞机着陆瞬间有F N =0 和v =v 0 ,应有k 2v 02=mg,将其代入(3)式,可得飞机滑行距离x 的另一表达式()⎪⎪⎭⎫ ⎝⎛-=212122k ln 2k μk μk g k x v 讨论 如飞机着陆速度v 0=144 km·h -1,μ=0.1,升阻比521=k k ,可算得飞机的滑行距离x =560 m,设计飞机跑道长度时应参照上述计算结果.2 -24 在卡车车厢底板上放一木箱,该木箱距车箱前沿挡板的距离L =2.0 m,已知刹车时卡车的加速度a =7.0 m·s-2,设刹车一开始木箱就开始滑动.求该木箱撞上挡板时相对卡车的速率为多大?设木箱与底板间滑动摩擦因数μ=0.50.。
大学物理第二章习题答案

大学物理第二章习题答案大学物理第二章习题答案大学物理是大多数理工科学生必修的一门课程,其中第二章是关于向量和运动学的内容。
本文将为大家提供一些大学物理第二章习题的答案,希望能够帮助大家更好地理解和掌握这一章节的知识。
1. 问题:一个物体以5 m/s的速度从斜坡上滑下来,斜坡的倾角为30°。
求物体滑下斜坡所需的时间。
解答:首先,我们需要将斜坡的倾角转换为弧度。
倾角为30°,转换为弧度的公式为弧度 = 角度× π / 180。
所以,30°转换为弧度为30 × π / 180 = π / 6。
然后,我们可以利用运动学中的公式来求解。
物体在斜坡上滑动,可以将其分解为水平和竖直方向上的运动。
在水平方向上,物体的速度不变,为5 m/s。
在竖直方向上,物体受到重力的作用,加速度为g = 9.8 m/s²。
根据运动学的公式,竖直方向上的位移可以表示为h = (1/2) × g × t²,其中 h 为位移,g 为加速度,t 为时间。
由于物体滑下斜坡的竖直位移为 0,所以我们可以得到以下方程:0 = (1/2) × g × t²解方程得到 t = 0 或t = 2 × 0 / g = 0。
因此,物体滑下斜坡所需的时间为0秒。
2. 问题:一个物体从斜坡上滑下来,滑下斜坡后继续在水平地面上滑行。
已知物体从斜坡上滑下所需的时间为2秒,滑下斜坡后在水平地面上滑行的距离为6米。
求物体在斜坡上的滑动距离。
解答:首先,我们可以利用已知条件求解物体在水平地面上的速度。
根据物体在斜坡上滑行的时间和水平距离,我们可以得到以下方程:6 = 2 × v解方程得到 v = 6 / 2 = 3 m/s。
然后,我们可以利用运动学中的公式来求解物体在斜坡上的滑动距离。
物体在斜坡上滑行的时间为2秒,速度为3 m/s。
大学物理第二章质点动力学习题答案

习题二2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。
[解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律tv mma f d d == 即tv mkv d d ==- 所以t mk v v d d -=对等式两边积分⎰⎰-=tvv t m k v v 0d d 0得t mkv v -=0ln因此t mke v v -=0(2)由牛顿第二定律xv mv t x x v m t v m ma f d d d d d d d d ==== 即xvmv kv d d =- 所以v x mkd d =-对上式两边积分⎰⎰=-000d d v sv x mk 得到0v s m k-=-即kmv s 0=2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得即tvm ma kv F mg d d ==--整理得mtkv F mg v d d =--对上式两边积分⎰⎰=--t vmt kv F mg v00d dy得mktF mg kv F mg -=---ln即⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
大学物理课后习题答案第二章

(2)小球上升到最大高度所花的时间T.
[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程
,
分离变量得 ,
积分得 .
当t= 0时,v=v0,所以 ,
因此 ,
小球速率随时间的变化关系为
.
(2)当小球运动到最高点时v= 0,所需要的时间为
第二章运动定律与力学中的守恒定律
(一) 牛顿运动定律
2.1一个重量为P的质点,在光滑的固定斜面(倾角为α)上以初速度 运动, 的方向与斜面底边的水平约AB平行,如图所示,求这质点的运动轨道.
[解答]质点在斜上运动的加速度为a = gsinα,方向与初速度方向垂直.其运动方程为
x = v0t, .
将t = x/v0,代入后一方程得质点的轨道方程为
(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;
(4)用与斜面平行的加速度 把小车沿斜面往上推(设b1=b);
(5)以同样大小的加速度 (b2=b),将小车从斜面上推下来.
[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力 的作用,摆线偏角为零,线中张力为T = mg.
(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于
这也是桌子受板的压力的大小,但方向相反.
板在桌子上滑动,所受摩擦力的大小为:fM= μkNM= 7.35(N).
这也是桌子受到的摩擦力的大小,方向也相反.
(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为
f =μsmg=ma`,
可得a` =μsg.
板的运动方程为
F – f – μk(m + M)g=Ma`,
大学物理第二章练习答案Word版

第二章 运动的守恒量和守恒定律练 习 一一. 选择题1. 关于质心,有以下几种说法,你认为正确的应该是( C )(A) 质心与重心总是重合的; (B) 任何物体的质心都在该物体内部;(C) 物体一定有质心,但不一定有重心; (D) 质心是质量集中之处,质心处一定有质量分布。
2. 任何一个质点系,其质心的运动只决定于( D )(A)该质点系所受到的内力和外力; (B) 该质点系所受到的外力;(C) 该质点系所受到的内力及初始条件; (D) 该质点系所受到的外力及初始条件。
3.从一个质量均匀分布的半径为R 的圆盘中挖出一个半径为2R 的小圆盘,两圆盘中心的距离恰好也为2R 。
如以两圆盘中心的连线为x 轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x 坐标应为( B )(A)R 4; (B) R 6; (C) R 8; (D R 12。
4. 质量为10 kg 的物体,开始的速度为2m/s ,由于受到外力作用,经一段时间后速度变为6 m/s ,而且方向转过90度,则该物体在此段时间内受到的冲量大小为 ( B )(A)s N ⋅820; (B) s N ⋅1020; (C) s N ⋅620; (D) s N ⋅520。
二、 填空题1. 有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示,则卫星的动量大小为RGM m 3。
2.三艘质量相等的小船在水平湖面上鱼贯而行,速度均等于0v ,如果从中间小船上同时以相对于地球的速度v 将两个质量均为m 的物体分别抛到前后两船上,设速度v 和0v 的方向在同一直线上,问中间小船在抛出物体前后的速度大小有什么变化:大小不变。
3. 如图1所示,两块并排的木块A 和B ,质量分别为m 1和m 2,静止地放在光滑的水平面上,一子弹水平地穿过两木块。
设子弹穿过两木块所用的时间分别为t 1和t 2,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为 1A B F t m m ⋅∆+,木块B 的速度大小为12F t A B BF t m m m ⋅∆⋅∆++。
大学普通物理学-二-牛顿运动定律

第二章牛顿运动定律一、选择题1.关于惯性有下面四种说法,正确的为()。
A.物体静止或作匀速运动时才具有惯性B.物体受力作变速运动时才具有惯性C.物体受力作变速运动时才没有惯性D.惯性是物体的一种固有属性,在任何情况下物体均有惯性1.【答案】D。
解析:本题考查对惯性的正确理解。
物体的惯性是物体的自然固有属性,与物理的运动状态和地理位置没有关系,只要有质量的物体都有惯性,质量是一个物体惯性大小的量度,所以本题答案为D。
2.下列四种说法中,正确的为()。
A.物体在恒力作用下,不可能作曲线运动B.物体在变力作用下,不可能作曲线运动C.物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动D.物体在不垂直于速度方向的力作用下,不可能作圆周运动2.【答案】C。
解析:本题考查的是物体运动与受力的关系物体的运动受初始条件和受力共同影响,物体受恒力作用但仍然可以作曲线运动,比如平抛运动.对于圆周运动需要有向心力,向心力是改变物体速度方向,当一个物体只受向心力作用时则作匀速圆周运动,所以C选项是正确的。
3.一质点从t=0时刻开始,在力F1=3i+2j(SI单位)和F2=-2i-t j(SI单位)的共同作用下在Oxy平面上运动,则在t=2s时,质点的加速度方向沿()。
A.x轴正向B.x轴负向C.y轴正向D.y轴负向3.【答案】A。
解析:合力F=F1+F2=i+(2-t)j,在t=2s时,力F=i,沿x轴正方向,加速度也沿同一方向。
4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为()。
A.0B.P/4C.PD.P/24.【答案】A。
解析:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。
5.质量分别为m1、和m2的两滑块A和B通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的滑动摩擦因数均为μ,系统在水平拉力F作用下匀速运动,如图2-1所示。
如突然撤销拉力,则撤销后瞬间,二者的加速度a A和a B,分别为()。
大学物理_第2章_质点动力学_习题答案

第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-o20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G r 和轨道对它的支持力T r.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=r r r由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,习题2-2图Ao B rCT902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr v g rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰o r得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
大学物理教程第2章习题答案

⼤学物理教程第2章习题答案思考题2.1 从运动学的⾓度看,什么是简谐振动?从动⼒学的⾓度看,什么是简谐振动?答:从运动学的⾓度看,弹簧振⼦相对平衡位置的位移随时间按余弦函数的规律变化,所作的运动就是简谐振动。
从动⼒学的⾓度看,如果物体受到的⼒的⼤⼩总是与物体对其平衡位置的位移成正⽐,⽽⽅向相反,那么该物体的运动就是简谐振动。
2.2 弹簧振⼦的振幅增⼤到2倍时,其振动周期、振动能量、最⼤速度和最⼤加速度等物理量将如何变化?答:弹簧振⼦的运动⽅程为0cos()x A t ω?=+,速度为0sin()v A t ωω?=-+,加速度的为)cos(02?ωω+-=t A a ,振动周期2T =221kA E =。
所以,弹簧振⼦的振幅A 增⼤到2倍时,其振动周期不变,振动能量为原来的4倍,最⼤速度为原来的2倍,最⼤加速度为原来的2倍。
2.3 下列运动是否为简谐振动?(1)⼩球在地⾯上作完全弹性的上下跳动;(2)⼩球在半径很⼤的光滑凹球⾯底部作⼩幅度的摆动;(3)曲柄连杆机构使活塞作往复运动;(4)⼩磁针在地磁的南北⽅向附近摆动。
答:(2)、(4)为简谐振动,(1)、(3)、不是简谐振动。
2.4 三只相同的弹簧(质量忽略不计)都⼀端固定,另⼀端连接质量为m 的物体,它们放置情况不同,其中⼀个平放,⼀个斜放,另⼀个竖直放。
如果它们振动起来,则三者是否均为简谐振动,它们振动的周期是否相同?答:三者均为简谐振动,它们振动的周期也相同。
2.5 当谐振⼦作简谐振动的振幅增⼤为原来的2倍时,谐振⼦的什么量也增⼤为原来的2倍?答:最⼤速度和最⼤加速度。
2.6 ⼀弹簧振⼦作简谐振动,其振动的总能量为E 1。
如果我们将弹簧振⼦的振动振幅增加为原来的2倍,⽽将重物的质量增加为原来的4倍,则新的振⼦系统的总能量是否发⽣变化?答:弹簧振⼦212E kA = ,所以新的振⼦系统的总能量增加为原来的4倍。
2.7 ⼀质点作简谐振动,振动频率为n,则该质点动能的变化频率是多少?答:该质点动能的变化频率是2n。
大学物理第二章练习答案

第二章 运动的守恒量和守恒定律练 习 一一. 选择题1. 关于质心,有以下几种说法,你认为正确的应该是( C )(A) 质心与重心总是重合的; (B) 任何物体的质心都在该物体内部; (C) 物体一定有质心,但不一定有重心; (D) 质心是质量集中之处,质心处一定有质量分布。
2. 任何一个质点系,其质心的运动只决定于( D )(A)该质点系所受到的内力和外力; (B) 该质点系所受到的外力;(C) 该质点系所受到的内力及初始条件; (D) 该质点系所受到的外力及初始条件。
3.从一个质量均匀分布的半径为R 的圆盘中挖出一个半径为2R 的小圆盘,两圆盘中心的距离恰好也为2R 。
如以两圆盘中心的连线为x 轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x 坐标应为( B ) (A)R 4; (B) R 6; (C) R 8; (D R12。
4. 质量为10 kg 的物体,开始的速度为2m/s ,由于受到外力作用,经一段时间后速度变为6 m/s ,而且方向转过90度,则该物体在此段时间内受到的冲量大小为 ( B ) (A)s N ⋅820; (B) s N ⋅1020; (C) s N ⋅620; (D) s N ⋅520。
二、 填空题1. 有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示,则卫星的动量大小为RGM m3。
2.三艘质量相等的小船在水平湖面上鱼贯而行,速度均等于0v ,如果从中间小船上同时以相对于地球的速度v 将两个质量均为m 的物体分别抛到前后两船上,设速度v 和0v 的方向在同一直线上,问中间小船在抛出物体前后的速度大小有什么变化:大小不变。
3. 如图1所示,两块并排的木块A 和B ,质量分别为m 1和m 2,静止地放在光滑的水平面上,一子弹水平地穿过两木块。
设子弹穿过两木块所用的时间分别为t 1和t 2,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为 1A BF t m m ⋅∆+,木块B 的速度大小为12F t A BBF t m m m ⋅∆⋅∆++。
《大学物理》第二章答案.docx

习题二1 一个质量为P 的质点,在光滑的固定斜面(倾角为 :■)上以初速度V o 运动,V o 的方向与 斜面底边的水平线 AB Tr ⅛∣∣l ⅛lbi-<j ;, ∕∙R ⅛'..∣⅛.⅛ Tl 注史粒道. mg ,斜面支持力 N.建立坐标:取v 0方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.2A 题2-2图BX 方向:F χ = 0X = v °tY 方向:F y = mg Sin : = ma y t = 0时y = 0v y = 0由①、②式消去t ,得y = 1 g sin : t 2y^gSin : X 2 2V 02质量为16 kg 的质点在Xoy 平面内运动,受一恒力作用,力的分量为-1N,当 t = 0 时,x=y=0, V X = -2 m ∙ S , V y = 0 .求 当t = 2 S 盯质点勺(1)位矢;(2)述度. 解:a x =6 3m s 2 m 168 fy— 7-2a y =m m 16S(1)235V X = V χ°a χdt =-2 _ 2 二m S0 842—7 7 .4Vy =Vy0 + J La y dt2 ——m S16 8于是质点在 2s 时的速度解:物体置于斜面上受到重力f χ = 6 N, f y = -7-5- 7 - V i j4 81 3- 1-7 - =(-2 24)^-( ) 4J 2 8 2 16 13 7i J m 48(4)当t= m 时,其速度为kk m _ -m kV= v 0e即速度减至V 0的1.e4一质量为m 的质点以与地的仰角=30°的初速V 0从地面抛出,若忽略空气阻力,求质点Λ ms~r =(v o t 1a χt 2)i - 2 2 丄2 -a y t J3质点在流体中作直线运动,受与速度成正比的阻力 k4 )tm;度为V o ,证明(1) t 时刻的速度为V = V o e kv ( k 为常数)作用,t =0时质点的速由0到t 的时间内经过的距离为(3)停止运动前经过的距离为v °(m ) ; (4)证明当t =^ m k 时速 k答:(1) ••• 分离变量,得-kv dvm _ dt dv - -kdt V m dv t -kdV - 0 mVIn In e V 0V= v 0e.k ∙tm(3)质点停止运动时速度为零, 故有t JktVdt = j v 0e 肓 dt即 t →∞, X=0 V0e^m^4dtmv 0Jktmv 0斗 二 v °e=V OeV 0kt m落地时相对抛射时的动量的增量.解:依题意作出示意图如题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下而抛物线具有对y轴对称性,故末速度与X轴夹角亦为30o,则动量的增量为二p = mv - mv05作用在质量为10 kg的物体上的力为F = (10 ∙ 2t)i N,式中t的单位是S, (1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量. (2)为了使这力的冲量为200 N ∙s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度-6j m∙ s-1的物体,回答这两个问题.解:(1)若物体原来静止,则- t 4 IP=OFdt=O (10 2t)idt =56 kg m S i ,沿X 轴正向,L v1 = —p1 = 5.6 m S J imI1= p1= 56 kg m S i若物体原来具有「6 m S J初速,则- -- - t F - tp0 = -mv0, p =m(-v0dt) = -mv0亠∣Fdt于是0 m '0_ _ _ t ■■:P2 = P - P0 = .0 Fdt = P ,同理,Z2= w1,12=I1这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.⑵ 同上理,两种情况中的作用时间相同,即由矢量图知,动量增量大小为mv0,方向竖直向下.t 2I=o(10 2t)dt =10t t2亦即t210t - 200 = 0解得t =10 s, (V=20 s舍去)6—颗子弹由枪口射出时速率为V o m S J,当子弹在枪筒内被加速时,它所受的合力为F =(a -bt)N( a, b为常数),其中t以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解:(1)由题意,子弹到枪口时,有F =(a—∙bt)=0,得t= —b(2)子弹所受的冲量t 1 2I =』(a - bt)dt = at -三bt2—将t 代入,得b22b(3)由动量定理可求得子弹的质量I a2mV o 2bv o证毕.7设F合=7i -6jN . (1)当一质点从原点运动到= -3i 4j 16km时,求F所作的功.(2)如果质点到r处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,F合为恒力,A合=Fr =(7i -6j) (-3i 4j 16k)--21 -24 - -45 JA 45⑵P 75w∆t 0.6⑶由动能定理,E^=^- -45 J18如题2-18图所示,一物体质量为2kg,以初速度V0= 3m∙s从斜面A点处下滑,它与斜面的摩擦力为8N,到达B点后压缩弹簧20cm后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度. 解:取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。
大学物理第2章课后答案

第二章 质点动力学四、习题选解2-1 光滑的水平桌面上放有三个相互接触的物体,它们的质量分别为.4,2,1321kg m kg m kg m ===(1)如图a 所示,如果用一个大小等于N 98的水平力作用于1m 的左方,求此时2m 和3m 的左边所受的力各等于多少?(2)如图b 所示,如果用同样大小的力作用于3m 的右方。
求此时2m 和3m 的左边所受的力各等于多少?(3)如图c 所示,施力情况如(1), 但3m 的右方紧靠墙壁(不能动)。
求此时2m 和3m 左边所受的力各等 于多少?解:(1)三个物体受到一个水平力的作用,产生的加速度为a()a m m m F 321++=232114-⋅=++=sm m m m F a用隔离法分别画出32,m m 在水平方向的受力图(a ),题2-1(a )图由a m F =a m f f23212=- a m f323= 2332f f =N f 5623=N f 8412=(2)由()a m m m F321++=232114-⋅=++=sm m m m F a用隔离法画出321m m m 、、在水平方向的受力图(b )由a m F= 得⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-3223122112121232323f f ff a m f a m f f a m f F解得: N f 1412= N f 4223=题2-1(b )图(3)由于321m m m 、、都不运动,加速度0=a ,三个物体彼此的作用力都相等,都等于FN f f 982312== 2-2 如图所示,一轻质弹簧连接着1m 和2m 两个物体,1m 由细线拉着在外力作用下以加速a 竖直上升。
问作用在细线上的张力是多大?在加速上升的过程中,若将线剪断,该瞬时1m 、2m 的加速度各是多大?解:(1)分别画出1m 、2m 受力的隔离体如图(a ),题2-2(a )图取向上为正方向,由牛顿第二定律⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f T 2211故 ()()a g m m g m g m a m a m T ++=+++=212121 (2)将线剪断,画出21m m 、的隔离体图,如图(b )题2-2(b )图 取竖直向上为正方向,由牛顿第二定律得⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f 222111 得⎪⎩⎪⎨⎧+--==-=)(/)'(121222a g m m g a a m g m f a 1a 的方向向下,2a的方向向上。
大学物理课后习题答案 第二章

大学物理教程课后习题答案 第二章 2.1 两根轻弹簧与物体连接方式如题图 2.1,物体质量为m ,弹簧劲度系数为1k 和2k ,水平面光滑.证明系统可作简谐振动,并求振动的固有频率. 题图2.1 解 以物体m 的平衡位置为原点,建立坐标轴Ox 水平向右.设m 位于x 时,两弹簧分别伸长1x 和2x ,则12x x x =+.因两弹簧弹性力相等,所以物体m 所受合力1122F k x k x ==.设由两弹簧组合而成的“组合弹簧”的劲度系数为k ,于是12121212()()k k F F F kx k x x k kF k k k k +==+=+= 由此求得“组合弹簧”的劲度系数1212k k k k k =+为常量,可见物体m 所受合力为线性回复力,所以系统作简谐振动,振动的固有频率12121122()k k k m m k k νππ==+ 2.2 两根轻弹簧与物体连接方式如题图2.2,物体质量为m ,弹簧劲度系数为1k 和2k ,水平面光滑,物体静止时两弹簧均处于自由伸张状态.证明系统可作简谐振动,并求振动的圆频率和周期. 题图2.2 解 以物体m 的平衡位置为原点,建立坐标轴Ox 水平向右.m 位于x 时,弹簧1被拉长,弹簧2被压缩,m 所受合力1212()F kx k x k x k k x ==+=+由此求得“组合弹簧”的劲度系数12k k k =+为常量,可见物体m 所受合力为线性回复力,所以系统作简谐振动,振动的圆频率和周期分别为120k k m ω+= , 122m T k k π=+ 2.3 弹簧振子的质点质量为42.510kg -⨯,运动学方程为0.06cos(5)(m)x t π=+.求:(1)振幅和周期;(2)质点的初始位置;(3)质点位于初始位置时所受合力;(4)质点在s t π=时的位置、速度和加速度.解 (1)由运动学方程可见,振幅006m A .=,05ω=,周期0204(s)126(s)T ..ππω===(2)由运动学方程可见,0t =时,质点的初始位置0006cos 006(m)x ..π==-.(3)对运动学方程求时间导数可得d 0.3sin(5)d x x v t tπ==-+ d 1.5cos(5)d x x v a t t π==-+ 0t =时0 1.5cos 1.5x a π=-=,根据牛顿第二定律可知质点位于初始位置时所受合力440025101537510(N)x F ma ...--==⨯⨯=⨯(4)把t π=代入运动学方程和(3)中求得的x v 、x a 表达式,即可求得质点在t π=时的位置、速度和加速度分别为006cos(5+)006(m)x ..ππ==03sin(5)0(m )x v .ππ=-+=215cos(5) 1.5(m )x a .ππ=-+=-2.4 一质点作简谐振动,振幅为0.02m ,速度幅为0.03m s ,取速度为最大值时为0t =.求:(1)周期;(2)加速度幅;(3)运动学方程. 解 设运动学方程为00cos()002cos()x A t .t ωϕωϕ=+=+,则00002sin()x v .t ωωϕ=-+200002cos()x a .t ωωϕ=-+(1)由m 0002003v ..ω==,可知000315002...ω==,所以周期为 022419(s)15T ..ππω=== (2) 222m 0002002150045(m s )a ....ω==⨯=(3)由已知条件0t =时00x =、0m x v v =,可知0002cos .ϕ=、m m sin v v ϕ=-,即cos =0ϕ ,sin =1ϕ- 由以上二式求出2πϕ=-,所以运动学方程为002cos(15)2x ..t π=-2.5 一水平放置的弹簧振子,质点质量为0.1kg ,振幅为0.01m ,质点运动的最大加速度为20.04m s .求:(1)系统的机械能;(2)质点通过平衡位置时的动能;(3)以0.01m x =时为0t =,动能与势能相等的时刻.解 根据001m A .=和22m 0004m s a A .ω==,可以求出00040012..ω==. 由0k m ω=,可知2001404k m ..ω==⨯=.(1)系统的机械能2251104001210(J)22E kA ..-==⨯⨯=⨯ (2)通过平衡位置时0x =,势能p 0E =,所以动能5k 210(J)E E -==⨯.(3)由已知条件0t =时0001m x .=、00x v =,可知cos 1ϕ= , sin 0ϕ=由以上二式求出0ϕ=.于是2252k 01sin ()210sin 22E kA t t ωϕ-=+=⨯ 2252p 01cos ()210cos 22E kA t t ωϕ-=+=⨯ 动能与势能相等的时刻,k p E E =,即22sin 2cos 2t t =可求出2(21)244t kk πππ=+=+ , 0123k ,,,...= 所以(21)8t k π=+,0123k ,,,...=2.6 题图2.6所示为振幅与频率相同的两个简谐振动的x t -图.求:(1)两个简谐振动的运动学方程;(2)哪个简谐振动的相位超前?超前多少? 题图2.6解 由x t -图可见01m A .=、4s T =,可知0205.Tπωπ==. 对振动(1),1101cos (05)x ..t πϕ=+,当0t =时101005201cos x ..ϕ== , 101005sin 0x v .πϕ=-<可知14πϕ=.运动学方程为 101cos(05)4x ..t ππ=+ 振动(2),2201cos (05)x ..t πϕ=+,当0t =时 202005201cos x ..ϕ== , 202005sin 0x v .πϕ=->可知24πϕ=-.运动学方程为101cos(05)4x ..t ππ=- 两个简谐振动的的相位差 122πϕϕϕ∆=-=说明振动(1)比振动(2)超前2π. 2.7 有两个同方向同频率的简谐振动,它们的运动学方程分别为130.05cos(10)4x t π=+和210.05cos(10)4x t π=+(国际制单位).求:(1)合振动的振幅和初相位;(2)若另有一振动30.08cos(10)x t ϕ=+,ϕ为何值13x x +的振幅最大?ϕ为何值13x x +的振幅最小?(利用旋转矢量图解题)解 (1)分别作与0t =时刻的1x 和2x 对应的旋转矢量1A 和2A ,如题解图2.7.由旋转矢量图可见合矢量12A A +的长度为0.052,与Ox 轴夹角为90ο.于是可知合振动的振幅0.052m A =,初相位12ϕπ=合. 题解图2.7(2)1x 和3x 同相,即34ϕπ=时,13x x +的振幅最大;1x 和3x 反相,即14ϕπ=-时,13x x +的振幅最小.2.8 有两个同方向同频率的简谐振动,其合振动的振幅为0.02m ,合振动与第一个分振动的相位差为30ο,第一个分振动的振幅为0.013m .求:(1)第二个分振动的振幅;(2)两个分振动的相位差.(利用旋转矢量图解题)解 根据已知条件作旋转矢量图,如题解图2.8.(1)由图可见,第二个分振动的振幅20.01m A =.(2)由图可见,两个分振动的相位差2190ϕϕο-=. 题解图2.82.9 现在力学的学习暂时告一段落,请读者总结一下有何收获和体会?(牛顿质点力学的理论结构、数学和物理的关系、学习了哪些方法……)*2.10 某阻尼振动(弱阻尼状态)的振幅经一“周期”后变为原来的13,求振动的“周期”为振动系统固有周期的几倍.解 弱阻尼振动()e cos t x A 't βωϕ-=+,由题意()e 1e 3e et T 't T'T'A A ββββ--+-=== lne ln3T'T 'ββ==所以22ln 3'T 'ππβω==根据'ω=0ω== 于是0022T ''T 'ωπωπωω===1015.= *2.11 质量为3310kg m -=⨯的质点,挂在劲度系数21.210N m k -=⨯的弹簧下端,沿Ox 轴运动.质点除线性回复力外,还受策动力0cos 2t(N)x F F =和阻力rx x F v γ=-作用.求当阻力系数γ增为原来的3倍时,质点稳态振幅减为原来的几分之几?解 根据已知条件,22312104310k .m ω--⨯===⨯,2ω=.故弱阻尼受迫振动的稳态振幅004f A β== 由于00F f m =和2mγβ=,所以 002F A γ=当3'γγ=,00001263F F A A γγ'===',因此当阻力系数γ增为原来的3倍时,质点稳态振幅减为原来的三分之一.*2.12 为什么说牛顿力学是“确定性”的?混沌的基本特征是什么?。
大学物理第二章练习答案

第二章 运动的守恒量和守恒定律练 习 一一. 选择题1。
关于质心,有以下几种说法,你认为正确的应该是( C )(A ) 质心与重心总是重合的; (B ) 任何物体的质心都在该物体内部; (C ) 物体一定有质心,但不一定有重心; (D ) 质心是质量集中之处,质心处一定有质量分布。
2。
任何一个质点系,其质心的运动只决定于( D )(A )该质点系所受到的内力和外力; (B ) 该质点系所受到的外力;(C ) 该质点系所受到的内力及初始条件; (D ) 该质点系所受到的外力及初始条件。
3。
从一个质量均匀分布的半径为R 的圆盘中挖出一个半径为2R 的小圆盘,两圆盘中心的距离恰好也为2R 。
如以两圆盘中心的连线为x 轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x 坐标应为( B ) (A )R 4; (B) R 6; (C ) R 8; (D R12。
4. 质量为10 kg 的物体,开始的速度为2m/s ,由于受到外力作用,经一段时间后速度变为6 m/s,而且方向转过90度,则该物体在此段时间内受到的冲量大小为 ( B )(A )s N ⋅820; (B) s N ⋅1020; (C ) s N ⋅620; (D) s N ⋅520。
二、 填空题1. 有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示,则卫星的动量大小为RGM m3。
2.三艘质量相等的小船在水平湖面上鱼贯而行,速度均等于0v ,如果从中间小船上同时以相对于地球的速度v 将两个质量均为m 的物体分别抛到前后两船上,设速度v 和0v 的方向在同一直线上,问中间小船在抛出物体前后的速度大小有什么变化:大小不变。
3. 如图1所示,两块并排的木块A 和B ,质量分别为m 1和m 2,静止地放在光滑的水平面上,一子弹水平地穿过两木块。
设子弹穿过两木块所用的时间分别为∆t 1和∆t 2,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为 1A BF t m m ⋅∆+,木块B 的速度大小为12F t A BBF t m m m ⋅∆⋅∆++.三、计算题1. 一质量为m 、半径为R 的薄半圆盘,设质量均匀分布,试求薄半圆盘的质心位置。
大学物理学(课后答案解析)第2章

第2章牛顿运动定律习题一选择题2-1 关于惯性有下面四种表述,正确的为[ ](A)物体静止或作匀速运动时才具有惯性(B)物体受力作变速运动才具有惯性(C)物体受力作变速运动时才没有惯性(D)物体在任何情况下均有惯性解析:惯性是物体具有的固有特性,因此物体在任何情况下均有惯性,答案选D。
2-2 下列表述中正确的是[ ](A)质点运动的方向和它所受的合外力方向相同(B)质点的速度为零,它所受的合外力一定为零(C)质点作匀速率圆周运动,它所受的合外力必定与运动方向垂直(D)摩擦力总是阻碍物体间的相对运动,它的方向总是与物体的运动方向相向解析:根据牛顿第二定律,质点所受的合外力等于动量随时间的变化率,因此A、B错误。
质点作匀速率圆周运动,合外力指向圆心,运动方向沿切线方向,二者垂直,因此选项C正确。
摩擦力总是阻碍物体间的相对运动或相对运动趋势,它的方向沿着物体运动或运动趋势的切线方向,但并不是总与物体的运动方向相向,因此选项D错误。
2-3 一质点在力5(52)()F m t SI =-的作用下,0t =时从静止开始作直线运动,式中,m 为质点质量,t 为时间。
则当5t s =,质点的速率为[ ](A )25m s (B )50m s - (C )0 (D )50m s 解析:根据牛顿第二定律dv F ma mdt ==可得,5(52)dv Ft dt m==-,所以5(52)dv t dt =-,两边积分可得2255v t t =-,即得50v =。
答案选C 。
2-4 如图2-4(A )所示,A B m m μ>时,算出B m 向右的加速度为a ,今去掉Am 而代之以拉力A T m g =,如图2-4(B)所示,算出B m 的加速度a ',则[ ](A )a a '> (B )a a '< (C )a a '= (D )无法判断解析:去掉A m 前,{A A B Bm g T m a T m g m a μ-=-=,联立求得ABA B m m a g m m μ-=+; 去掉A m 后,B A B B T m g m g m g m a μμ'-=-=,求得A BBm m a g a m μ-'=>。
大学物理教程第2章答案

2
0
2 2-2 质量为 2kg 的质点在 xy 平面上运动,受到外力 F 4i 24t j 的作用,t=0 3i 4 j ,求 t=1s 时质点的速度及受到的法向力 F n 。
解:解:由于是在平面运动,所以考虑矢量。
2-3.如图,物体 A、B 质量相同,B 在光滑水平桌面上.滑轮与绳的质量以及空气阻力均不计,滑轮与其 轴之间的摩擦也不计.系统无初速地释放,则物体 A 下落的加速度是多少? 解:分别对 A,B 进行受力分析,可知:
mA g T m A a A
2T mB aB 1 aB a A 2
则可计算得到: a A
N
ma
y'
mg y ' 方向: N mg cos ma sin 0 考虑到 f N ,有: mg sin ma cos (mg cos ma sin ) 0 , sin cos tan g g。 解得: a cos sin 1 tan tan tan ga g。 ∴ a 的取值范围: 1 tan 1 tan
4 g 。 5
1
摩擦系数为 ,车与路面间的滚动摩擦可不计,计 才能保证木箱不致滑动? 解法一:根据题意,要使木箱不致于滑动,必须使 的加速度,且上限车板与箱底间为最大摩擦。 即: a
2-4. 如图, 用质量为 m1 的板车运载一质量为 m 2 的
木箱,车板与箱底间的 算拉车的力 F 为多少 板 车与木箱 具有相 同
k t m
dv dv ,则 kv m dt dt
0 dv t dv k k dt ,两边同时积分,有: dt , v0 v 0 v m m
大学物理第二章习题及答案

第二章 牛顿运动定律一、选择题1.下列说法中哪一个是正确的?( )(A )合力一定大于分力(B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变 (D )质量越大的物体,运动状态越不易改变2.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( )(A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态3.水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( )(A )不得小于gRμ (B )不得大于gRμ (C )必须等于gRμ2 (D )必须大于gRμ34.一个沿x 轴正方向运动的质点,速率为51s m -⋅,在0=x 到m 10=x 间受到一个如图所示的y 方向的力的作用,设物体的质量为1. 0kg ,则它到达m 10=x 处的速率为( )(A )551s m -⋅ (B )1751s m -⋅(C )251s m -⋅ (D )751s m -⋅5.质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( )(A )mg (B )mg μ(C ))(a g m +μ (D ))(a g m -μ6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( )(A )1cos =θ (B )1sin =θ(C )μθ=tg (D )μθ=ctg 二、简答题1.什么是惯性系?什么是非惯性系?2.写出任一力学量Q 的量纲式,并分别表示出速度、加速度、力和动量的量纲式。
三、计算题2.1质量为10kg 的物体,放在水平桌面上,原为静止。
先以力F 推该物体,该力的大小为20N ,方向与水平成︒37角,如图所示,已知物体与桌面之前的滑动摩擦因数为0.1,求物体的加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由矢量图知,动量增量大小为,方向竖直向下.
5作用在质量为10 kg得物体上得力为N,式中得单位就是s,(1)求4s后,这物体得动量与速度得变化,以及力给予物体得冲量.(2)为了使这力得冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止得物体与一个具有初速度m·s-1得物体,回答这两个问题.
解: (1)由题意,子弹到枪口时,有
,得
(2)子弹所受得冲量
将代入,得
(3)由动量定理可求得子弹得质量
证毕.
7设.(1)当一质点从原点运动到时,求所作得功.(2)如果质点到处时需0、6s,试求平均功率.(3)如果质点得质量为1kg,试求动能得变化.
解: (1)由题知,为恒力,
∴
(2)ห้องสมุดไป่ตู้
(3)由动能定理,
解: (1)若物体原来静止,则
,沿轴正向,
若物体原来具有初速,则
于就是
,
同理, ,
这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得得动量得增量(亦即冲量)就一定相同,这就就是动量定理.
(2)同上理,两种情况中得作用时间相同,即
亦即
解得,(舍去)
6一颗子弹由枪口射出时速率为,当子弹在枪筒内被加速时,它所受得合力为F=()N(为常数),其中以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受得冲量.(3)求子弹得质量.
∴
题2-24图
13飞轮得质量=60kg,半径=0、25m,绕其水平中心轴转动,转速为900rev·min-1.现利用一制动得闸杆,在闸杆得一端加一竖直方向得制动力,可使飞轮减速.已知闸杆得尺寸如题2-25图所示,闸瓦与飞轮之间得摩擦系数=0、4,飞轮得转动惯量可按匀质圆盘计算.试求:
(1)设=100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?
习题二
1一个质量为得质点,在光滑得固定斜面(倾角为)上以初速度运动,得方向与斜面底边得水平线平行,如图所示,求这质点得运动轨道.
解: 物体置于斜面上受到重力,斜面支持力、建立坐标:取方向为轴,平行斜面与轴垂直方向为轴、如图2-2、
题2-2图
方向:①
方向:②
时
由①、②式消去,得
2质量为16 kg得质点在平面内运动,受一恒力作用,力得分量为=6 N,=-7 N,当=0时,0,=-2 m·s-1,=0.求
对飞轮,按转动定律有,式中负号表示与角速度方向相反.
∵
∴
又∵
∴①
以等代入上式,得
由此可算出自施加制动闸开始到飞轮停止转动得时间为
这段时间内飞轮得角位移为
可知在这段时间里,飞轮转了转.
(2),要求飞轮转速在内减少一半,可知
用上面式(1)所示得关系,可求出所需得制动力为
14固定在一起得两个同轴均匀圆柱体可绕其光滑得水平对称轴转动.设大小圆柱体得半径分别为与,质量分别为与.绕在两柱体上得细绳分别与物体与相连,与则挂在圆柱体得两侧,如题2-26图所示.设=0、20m,=0、10m,=4 kg,=10 kg,==2 kg,且开始时,离地均为=2m.求:
10一质量为得质点位于()处,速度为, 质点受到一个沿负方向得力得作用,求相对于坐标原点得角动量以及作用于质点上得力得力矩.
解:由题知,质点得位矢为
作用在质点上得力为
所以,质点对原点得角动量为
作用在质点上得力得力矩为
11哈雷彗星绕太阳运动得轨道就是一个椭圆.它离太阳最近距离为=8、75×1010m时得速率就是=5、46×104m·s-1,它离太阳最远时得速率就是=9、08×102m·s-1这时它离太阳得距离多少?(太阳位于椭圆得一个焦点。)
当=2 s时质点得(1)位矢;(2)速度.
解:
(1)
于就是质点在时得速度
(2)
3质点在流体中作直线运动,受与速度成正比得阻力(为常数)作用,=0时质点得速度为,证明(1)时刻得速度为=;(2)由0到得时间内经过得距离为
=()[1-];(3)停止运动前经过得距离为;(4)证明当时速
答: (1)∵
分离变量,得
8如题2-18图所示,一物体质量为2kg,以初速度=3m·s-1从斜面点处下滑,它与斜面得摩擦力为8N,到达点后压缩弹簧20cm后停止,然后又被弹回,求弹簧得劲度系数与物体最后能回到得高度.
解:取木块压缩弹簧至最短处得位置为重力势能零点,弹簧原
长处为弹性势能零点。则由功能原理,有
式中,,再代入有关数据,解得
解: 哈雷彗星绕太阳运动时受到太阳得引力——即有心力得作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时得速度都与轨道半径垂直,故有
∴
12物体质量为3kg,=0时位于,,如一恒力作用在物体上,求3秒后,(1)物体动量得变化;(2)相对轴角动量得变化.
解: (1)
(2)解(一)
即 ,
即 ,
∴
∴
解(二)∵
(1)柱体转动时得角加速度;
(2)两侧细绳得张力.
解: 设,与β分别为,与柱体得加速度及角加速度,方向如图(如图b).
题2-26(a)图题2-26(b)图
题2-18图
再次运用功能原理,求木块弹回得高度
代入有关数据,得,
则木块弹回高度
题2-19图
9一个小球与一质量相等得静止小球发生非对心弹性碰撞,试证碰后两小球得运动方向互相垂直.
证: 两小球碰撞过程中,机械能守恒,有
即①
题2-20图(a)题2-20图(b)
又碰撞过程中,动量守恒,即有
亦即②
由②可作出矢量三角形如图(b),又由①式可知三矢量之间满足勾股定理,且以为斜边,故知与就是互相垂直得.
即
∴
(2)
(3)质点停止运动时速度为零,即t→∞,
故有
(4)当t=时,其速度为
即速度减至得、
4一质量为得质点以与地得仰角=30°得初速从地面抛出,若忽略空气阻力,求质点落地时相对抛射时得动量得增量.
解: 依题意作出示意图如题2-6图
题2-6图
在忽略空气阻力情况下,抛体落地瞬时得末速度大小与初速度大小相同,与轨道相切斜向下,
(2)如果在2s内飞轮转速减少一半,需加多大得力?
解: (1)先作闸杆与飞轮得受力分析图(如图(b)).图中、就是正压力,、就是摩擦力,与就是杆在点转轴处所受支承力,就是轮得重力,就是轮在轴处所受支承力.
题2-25图(a)
题2-25图(b)
杆处于静止状态,所以对点得合力矩应为零,设闸瓦厚度不计,则有