直角三角形的分类讨论

合集下载

易错04 三角形全等问题的分类讨论中漏解从而产生易错(解析版)-2021学年八上期末提优训练

易错04 三角形全等问题的分类讨论中漏解从而产生易错(解析版)-2021学年八上期末提优训练

12020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)易错04 三角形全等问题的分类讨论中漏解从而产生易错【典型例题】1.(2020·江西南昌市·八年级期中)如图,已知在△ABC 中,AB =AC ,BC =12厘米,点D 为AB 上一点且BD =8厘米,点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,设运动时间为t ,同时,点Q 在线段CA 上由C 点向A 点运动.(1)用含t 的式子表示PC 的长为 ;(2)若点Q 的运动速度与点P 的运动速度相等,当2t =时,三角形BPD 与三角形CQP 是否全等,请说明理由; (3)若点Q 的运动速度与点P 的运动速度不相等,请求出点Q 的运动速度是多少时,能够使三角形BPD 与三角形CQP 全等?【答案】解:(1) 由题意得出:122BC BP t ==,122PC BC BP t -=-=,故答案为:()122cm t -(2)当2t =时,224BP CQ ==⨯=厘米,8BD =厘米.2又,12PC BC BP BC =-=厘米,1248PC ∴=-=厘米,PC BD ∴=,又AB AC =,B C ∴∠=∠,在BPD △和CQP 中,BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,()BPD CQP SAS ∴≌;③P Q v v ≠,BP CQ ∴≠,又,BPD CPQ B C ∠=∠≌,6cm,8cm BP PC CQ BD ∴====,∴点P ,点Q 运动的时间6322PB t ===秒, 83Q CQ V t ∴==厘米/秒. 即点Q 的运动速度是83厘米/秒时,能够使三角形BPD 与三角形CQP 全等. 【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,题目比较好,但是有一定的难度.【专题训练】一、填空题1.(2020·黑龙江齐齐哈尔市·八年级期中)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=_____时,△ABC和△APQ全等.34 【答案】8cm 或15cm解:①当P 运动到AP =BC 时,如图1所示:在Rt △ABC 和Rt △QP A 中,AB QPBC PA =⎧⎨=⎩,∴Rt △ABC ≌Rt △QP A (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,5AB PQ AC PA=⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm 或15cm .【点睛】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解. 2.(2020·四川成都市·天府四中七年级期中)如图,ABC ∆中,90,6,8ACB ACcm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.【答案】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或7 2.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.3.(2020·宁波市曙光中学九年级月考)如图,已知点(44)A-,,一个以A为顶点的45︒角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E、F,连接EF.当△AEF直角三角形时,点E的坐标是________.67 【答案】(8)0,或(40),①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOEAFD OEF AF EF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,8∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,, 综上所述,满足条件的点E 坐标为(8,0)或(4,0)故答案为:(8,0)或(4,0)【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解. 4.(2020·常州市北郊初级中学八年级期中)如图,在△ABC 中,AB =AC =12,BC =8,D 为 AB 的中点,点 P 在线段 BC 上以每秒2 个单位的速度由 B 点向 C 点运动,同时,点 Q 在线段 CA 上以每秒 x 个单位的速度由C 点向 A 点运动.当△BPD 与以 C 、Q 、P 为顶点的三角形全等时,x 的值为_____.【答案】2 或 3解:设经过 t 秒后,使△BPD 与△CQP 全等.∵AB =AC =12,点 D 为 AB 的中点.∴BD =6.∵∠ABC =∠ACB .∴要使△BPD 与△CQP 全等,必须 BD =CP 或 BP =CP .9即 6=8﹣2t 或 2t =8﹣2t .1t =1,2t =2.当t =1 时,BP =CQ =2,2÷1=2.当t =2 时,BD =CQ =6,6÷2=3.即点 Q 的运动速度是 2 或 3,故答案为:2 或 3.【点评】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.5.(2020·铜陵市第二中学)如图,5AB cm =,4AC BD cm ==,60CAB DBA ∠=∠=︒.点E 沿线段AB 由点A 向点B 运动,点F 沿线段BD 由点B 向点D 运动,E 、F 同两点时出发,它们的运动时间记为t 秒.已知点E 的运动速度是1cm s ,如果顶点是A 、C 、E 的三角形与顶点是B 、E 、F 的三角形全等,那么点F 的运动速度为______cm s .【答案】1或85解:根据题意,∵60CAB DBA ∠=∠=︒,当AE =BF ,AC =BE 时,△ACE ≌△BEF ,∵AE =t ,5BE t =-,AC =4,∴54t -=,∴1t =,∴BF=AE=1,∴点F的运动速度为1cm s;当AE=BE,AC=BF时,△ACE≌△BFE,∴1155222 AE BE AB===⨯=,∴52 t=;∴点F的速度为:584/25cm s ÷=;综合上述,点F的运动速度为1或85cm s.【点睛】本题考查了全等三角形的判定和性质,点的运动问题,解题的关键是熟练掌握全等三角形的判定和性质,注意运用分类讨论的思想,数形结合的思想进行解题.6.(2020·全国八年级单元测试)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E 为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.【答案】3或9 2解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∵B=∵C,10∵∵当BE=CP=6,BP=CQ时,∵BPE与∵CQP全等,此时,6=8﹣3t,解得t=2 3,∵BP=CQ=2,此时,点Q的运动速度为2÷23=3厘米/秒;∵当BE=CQ=6,BP=CP时,∵BPE与∵CQP全等,此时,3t=8﹣3t,解得t=4 3,∵点Q的运动速度为6÷43=92厘米/秒;故答案为3或9 2.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的理解能力和计算能力.7.(2020·河南商丘市·八年级期中)在平面直角坐标系中,点A(4,0)、B(3,2),点P在坐标平面内,以A、O、P为顶点的三角形与∵AOB全等(点P与B不重合),写出符合条件的点P的坐标________________.【答案】(3,-2)或(1,2)或(1,-2)如图:11符合条件的点P有3个,(3,-2)或(1,2)或(1,-2)故答案为:(3,-2)或(1,2)或(1,-2).【点睛】本题考查坐标与图形性质、全等三角形的判定等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.(2020·广西玉林市·八年级期中)已知点A,B的坐标分别为(2,2),(2,4),O是原点,以A,B,P为顶点的三角形与△ABO全等,写出所有符合条件的点P的坐标:_______________.【答案】(4,0)(0,6)(4,6)解:如图,符合条件的点P的坐标有三种情况,分别是:(4,0)、(0,6)、(4,6),故答案为:(4,0)、(0,6)、(4,6).1213【点睛】本题考查三角形全等的判定与直角坐标系的综合运用,根据三角形全等的判定画出全等三角形后写出顶点坐标是解题关键. 9.(2020·江西省宜春实验中学八年级期中)如图,在△ABC 中,点A 的坐标为(0,1),点B 的坐标为(0,4),点C 的坐标为(4,3),点D 在平面直角坐标系中且不与C 点重合,若ABD △与△ABC 全等,则点D 的坐标是_________.【答案】(4,2)或(4,2)-或(4,3)-解:当D 点与C 点关于y 轴对称时,△ABD 与△ABC 全等,此时D 点坐标为∵-4∵3∵;当点D 与点C 关于AB 的垂直平分线对称时,△ABD 与△ABC 全等,此时D 点坐标为∵4∵2∵;点D 点与∵4∵2∵关于y 轴对称时,△ABD 与△ABC 全等,此时D 点坐标为∵-4∵2∵;综上所述,D 点坐标为∵-4∵3∵∵∵4∵2∵∵∵-4∵2∵.故答案为:∵-4∵3∵∵∵4∵2∵∵∵-4∵2∵.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.也考查了坐标与图形性质.10.(2020·广州市第五中学八年级期中)如图,CA⊥AB,垂足为点A,AB=8cm,AC=4cm,射线BM⊥AB,垂足为点B,一动点E从A点出发,以2cm/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动_________秒时,点B、D、E组成的三角形与点A、B、C组成的三角形全等.【答案】0或2或6或8△≌BDE,解:①当E在线段AB上,AB=BE时,ACB这时E在A点未动,因此时间为0秒;△≌BED,②当点E在线段AB上,AC=BE时,ACB∵AC=4cm,∴BE=4cm,∴AE=AB-BE=8-4=4cm,∴点E的运动时间为4÷2=2(秒);△≌BED,③当E在BN上,AC=BE时,ACB∵AC=4cm,∴BE=4cm,∴AE=AB+BE=8+4=12cm,∴点E的运动时间为12÷2=6(秒);14△≌BDE,④当E在BN上,AB=BE时,ACB∵AB=8cm,∴BE=8cm,∴AE=AB+BE=8+8=16cm,∴点E的运动时间为16÷2=8(秒),综上所述,当点E运动0或2或6或8秒时,点B、D、E组成的三角形与点A、B、C组成的三角形全等.故答案为:0或2或6或8.【点睛】本题考查了直角三角形全等的判定,解题的关键是熟练的掌握直角三角形全等的判定定理.二、解答题11.(2020·兴化市乐吾实验学校八年级月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).Array(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】1516解:(1)当1t =时,1AP BQ ==,3BP AC ==,又90A B ∠=∠=︒,在ACP ∆和BPQ ∆中,AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩()ACP BPQ SAS ∴∆≅∆.ACP BPQ ∴∠=∠,90APC BPQ APC ACP ∴∠+∠=∠+∠=︒.90CPQ ∴∠=︒,即线段PC 与线段PQ 垂直.(2)①若ACP BPC ∆≅∆,则AC BP =,AP BQ =,则34tt xt =-⎧⎨=⎩,解得:11t x =⎧⎨=⎩;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,则34xtt t=⎧⎨=-⎩,解得:232 tx=⎧⎪⎨=⎪⎩;综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得ACP∆与BPQ∆全等.【点睛】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用.12.(2020·长春市第九十七中学校八年级期中)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A出发,沿A→B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)求证:AB//DE.(2)写出线段AP的长(用含t的式子表示).(3)连结PQ,当线段PQ经过点C时,求t的值.【答案】(1)证明:在ABC 和EDC中,1718 AC ECACB ECD BC DC=⎧⎪∠=∠⎨⎪=⎩, ∵ABC ∵EDC (SAS ),∵∵A =∵E ,AB =DE =4∵AB //DE .(2)解:当0≤t ≤43时,AP =3tcm ; 当43<t ≤83时,BP =(3t ﹣4)cm ,则AP =4﹣(3t ﹣4)=(8﹣3t )cm ;综上所述,线段AP 的长为3tcm 或(8﹣3t )cm ;(3)解:由(1)得:∵A =∵E ,ED =AB =4cm ,在ACP 和ECQ 中,A EAC CE ACP ECO∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵ACP ∵ECQ (ASA ),∵AP =EQ ,当0≤t ≤43时,3t =4﹣t ,解得:t =1; 当43<t ≤83时,8﹣3t =4﹣t ,解得:t =2;19综上所述,当线段PQ 经过点C 时,t 的值为1s 或2s .【点睛】本题考查了全等三角形的判定与性质、平行线的判定以及一元一次方程的应用等知识;证明三角形全等是解题的关键,属于中考常考题型.13.(2020·湖南长沙市·八年级月考)如图,已知△ABC 中,20cm AB AC ==,16cm BC =,点D 为AB 的中点.(1)如果点P 在线段BC 上以6cm /s 的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【答案】(1)①因为t =1(秒),所以BP =CQ =6(厘米)∵AB =20,D 为AB 中点,20∴BD =10(厘米)又∵PC =BC −BP =16−6=10(厘米)∴PC =BD ,∵AB =AC ,∴∠B =∠C ,在△BPD 与△CQP 中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ , 故CQ =BD =10.所以点P 、Q 的运动时间t =84663BP ==(秒), 此时V Q =1043CQ t ==7.5(厘米/秒); (2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程, 设经过x 秒后P 与Q 第一次相遇,依题意得152x=6x+2×20,解得x=803(秒)此时P运动了803×6=160(厘米)又因为△ABC的周长为56厘米,160=56×2+48,所以点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【点睛】此题考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用,解题的根据是熟练掌握三角形全等的判定和性质.21。

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。

2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。

2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。

七上期中数学分类讨论(已整理)

七上期中数学分类讨论(已整理)

【前言】 考虑问题要全面一、什么就是分类讨论思想如果一个命题得题设或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现得各种情况分门别类地加以讨论,最后综合归纳出问题得正确答案,这种解决问题得思想叫做分类讨论。

二、“分类讨论”得解题步骤1、明确要分类进行讨论得对象(留意讨论对象得取值范围);2、原则:正确选择分类得标准,进行合理分类 (确定分类得标准就是重点、难点);3、归纳并作出结论;三、分类得原则1、不重复例1 对三角形进行分类,把三角形划分为:锐角三角形 、直角三角形、钝角三角形、等腰三角形分析:等腰三角形划分进来不恰当,分类得标准不一致,产生重合要么按角划分、要么按边划分回顾:书本对于有理数得划分,按照正负分,按整数分数分2、不遗漏例2 比较a 与-a 比较大小分析:a 得正负无法确定,故需要按照0,0,0a a a ><=分3种情况来讨论,不要遗漏0a =得情况3、逐层分类例3 已知0,0,,a ab b c a <>>>化简c a b a c b c a -+--+++2分析:除了对C 取值进行分类外,还需要进一步对2a c -进行分类讨论详细解答见--数形结合(答案)四、哪些地方可能会出现分类讨论从代数与几何得角度瞧都有可能。

其一就是涉及代数式或函数或方程中,根据字母不同得取值情况,分别在不同得取值范围内讨论解决问题。

其二就是根据几何图形得点与线出现不同位置得情况,逐一讨论解决问题【题型划分】【1、有理数概念、定义】例1 下列个数中:1330.70125---,,,,,中负分数有 个;负整数有 个;自然数有 个例2 已知数轴上有A 、B 两点,A 、B 之间得距离为1,点A 与原点O 得距离为3,那么点B 所对应得数为___________练习1、⑴在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数得个数为 个.⑵①10a -;②21a --;③a -;④2(1)a -+一定就是负数得就是 (填序号).2、⑴下列说法正确得就是( )A 、a -表示负有理数B 、一个数得绝对值一定不就是负数C 、两个数得与一定大于每个加数D 、绝对值相等得两个有理数相等⑵两数相加,其与小于其中一个加数而大于另一个加数,那么( )A 、这两个加数得符号都就是正得B 、这两个加数得符号都就是负得C 、这两个加数得符号不能相同D 、这两个加数得符号不能确定3、已知点A 在数轴上对应得数就是1,点B 对应得数就是-2,数轴上动点甲与乙,甲从A出发,开始以每秒1个单位长度移动,乙从B 出发,开始以每秒2个单位长度移动,若甲、乙两点同时开始移动,移动3秒钟后,甲、乙两点甲点对应得数就是几?乙点对应得数就是几?【2、绝对值中得a a 型】 当0a >时,1a a a a ==;当0a <时,1a a a a==-。

专题02 直角三角形中分类讨论问题(老师版)

专题02 直角三角形中分类讨论问题(老师版)

专题2直角三角形中分类讨论问题【典型例题】1.(2022·江西九江·八年级期末)已知在平面直角坐标系中A(﹣0)、B(2,0)、C(0,2).点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为________.【答案】(0,0),0),(﹣2,0)【解析】【分析】因为点P、A、B在x轴上,所以P、A、B三点不能构成三角形.再分Rt△PAC和Tt△PBC两种情况进行分析即可.【详解】解:∵点P、A、B在x轴上,∴P、A、B三点不能构成三角形.设点P的坐标为(m,0).当△PAC为直角三角形时,①∠APC=90°,易知点P在原点处坐标为(0,0);②∠ACP=90°时,如图,∵∠ACP=90°∴AC2+PC2=AP2,22222∴+++=+,解得,m P0);22(m m当△PBC为直角三角形时,①∠BPC=90°,易知点P在原点处坐标为(0,0);②∠BCP=90°时,∵∠BCP=90°,CO⊥PB,∴PO=BO=2,∴点P的坐标为(﹣2,0).综上所述点P的坐标为(0,0),,0),(﹣2,0).【点睛】本题考查了勾股定理及其逆定理,涉及到了数形结合和分类讨论思想.解题的关键是不重复不遗漏的进行分类.【专题训练】1.(2021·江苏兴化·八年级期中)在Rt △ABC 中,∠BAC =90°,点D 、E 在边BC 所在的直线上,且AB =DB ,AC =EC ,则∠DAE 的度数为________.【答案】45°或135°【解析】【分析】分四种情况:若点D 、E 在线段BC 上时;若点D 在线段BC 上,点E 在BC 的延长线上时;若点D 在CB 的延长线上点E 在BC 的延长线上时;若点D 在CB 的延长线上,点E 在线段BC 上时讨论,即可求解.【详解】解:如图,若点D 、E 在线段BC 上时,∵AB =DB ,AC =EC ,∴∠BAD =∠ADB ,∠CAE =∠AEC ,∴∠BAE +∠DAE =∠CAD +∠C ,∠CAD +∠DAE =∠BAE +∠B ,∴∠BAE +∠CAD +2∠DAE =∠CAD +∠BAE +∠B +∠C ,∴2∠DAE =∠B +∠C ,∵∠BAC =90°,∴∠B +∠C =90°,∴∠DAE =45°;如图,若点D 在线段BC 上,点E 在BC 的延长线上时,∵AC =EC ,∴可设∠E =∠CAE =x ,∴∠ACB =∠E +∠CAE =2x ,∵∠BAC =90°,∴∠B =90°-∠ACB =90°-2x ,∵AB =DB ,∴()1180452BAD ADB B x ∠=∠=︒-∠=︒+,∵∠ADB =∠DAE +∠E ,∴∠DAE =45°;如图,若点D 在CB 的延长线上,点E 在BC 的延长线上时,∵AC =EC ,∴∠E =∠CAE ,∴∠ACB =∠E +∠CAE =2∠CAE ,∵AB =DB ,∴∠D =∠BAD ,∴∠ABC =∠D +∠BAD =2∠BAD ,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∴2∠CAE +2∠BAD =90°,∴∠CAE +∠BAD =45°,∴∠DAE =∠CAE +∠BAD +∠BAC =135°;如图,若点D 在CB 的延长线上,点E 在线段BC 上时,∵AB =DB ,∴可设∠D =∠BAD =y ,∴∠ABC =∠D +∠BAD =2y ,∴∠ABC =2y ,∵∠BAC =90°,∴∠C =90°-2y ,∵AC =EC ,∴∠AEC =∠CAE =()1180452C y ︒-∠=︒+,∵∠AEC =∠D +∠DAE ,∴∠DAE =45°综上所述,∠DAE 的度数为45°或135°.故答案为:45°或135°【点睛】本题主要考查了等腰三角形的性质,直角三角形两锐角互余,利用分类讨论思想解答是解题的关键.2.(2021·全国·八年级专题练习)如图,在ABC 中,AC BC =,CD AB ⊥,5CD =,24AB =.E 是AB 边上的一个动点,点F 与点A 关于直线CE 对称,当AEF 为直角三角形时,AE 的长为________.【答案】7或17【解析】【分析】分当E 在线段AD 上时,当E 在线段BD 上时分别求解即可.【详解】解:当E 在线段AD 上时,连接CE ,作A 关于CE 的对称点F ,连接AF ,EF ,CF ,∵∠AEF =90°,∴∠AEC =∠FEC =360902︒-︒=135°,∴∠CED =45°,∴CD =ED =5,∴AE =AD -ED =12-5=7;当E 在线段BD 上时,连接CE ,作A 关于CE 的对称点F ,连接EF ,CF ,AF ,∵∠AEF =90°,∴∠CEF =∠CEA =45°,∴ED =CD =5,∴AE =AD +DE =17,故答案为:7或17.【点睛】本题考查了等腰三角形三线合一的性质,等腰直角三角形的性质,轴对称的性质,解本题的关键是注意运用数形结合的思想解决问题.3.(2021·河南·郑州市第六十三中学三模)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是边AC上一动点,把△ABP沿直线BP折叠,使得点A落在图中点A′处,当△AA′C是直角三角形时,则线段CP的长是_________.【答案】4或3【解析】【分析】分类讨论分别当∠AA′C=90°时,当∠ACA′=90°时,根据折叠的性质函数直角三角形的性质即可得到结论.【详解】解:如图1,当∠AA′C=90°时,∵以直线BP为轴把△ABP折叠,使得点A落在图中点A′处,∴AP=A′P,∴∠PAA′=∠AA′P,∵∠ACA′+∠PAA′=∠CA′P+∠AA′P=90°,∴∠PCA′=∠PA′C,∴PC=PA′,∴PC=12AC=4,如图2,当∠ACA′=90°时,∵在Rt△ABC中,∠ACB=90°,且AC=8,BC=6.∴AB=10,∵以直线BP为轴把△ABP折叠,使得点A落在图中点A′处,∴A′B=AB=10,PA=PA′,∴A′C=4,设PC=x,∴AP=8-x,∵A′C2+PC2=PA′2,∴42+x2=(8-x)2,解得:x=3,∴PC=3,综上所述:当△AA ′C 是直角三角形时,则线段CP 的长是4或3,故答案为:4或3.【点睛】本题考查了翻折变换(折叠问题)直角三角形的性质,正确的作出图形是解题的关键.4.(2021·全国·八年级专题练习)如图,60BOC ∠=︒,点A 是BO 延长线上的一点,10cm OA =,动点P 从点A 出发沿AB 以3cm/s 的速度移动,动点Q 从点O 出发沿OC 以1cm/s 的速度移动,如果点P Q ,同时出发,用(s)t 表示移动的时间,当t =_________s 时,POQ △是等腰三角形;当t =_________s 时,POQ △是直角三角形.【答案】52或54或10【解析】【分析】根据POQ ∆是等腰三角形,分两种情况进行讨论:点P 在AO 上,或点P 在BO 上;根据POQ ∆是直角三角形,分两种情况进行讨论:PQ AB ⊥,或PQ OC ⊥,据此进行计算即可.【详解】解:如图,当PO QO =时,POQ ∆是等腰三角形,103PO AO AP t =-=-,OQ t =,∴当PO QO =时,103t t -=,解得52t =;如图,当PO QO =时,POQ ∆是等腰三角形,310PO AP AO t =-=-,OQ t =,∴当PO QO =时,310t t -=,解得5t =;如图,当PQ AB ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2(310)t t =⨯-,解得4t =;如图,当PQ OC ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2310t t =-,解得:t =10.故答案为:52或5;4或10.【点睛】本题主要考查了等腰三角形的性质以及直角三角形的性质,解决问题的关键是进行分类讨论,分类时注意不能遗漏,也不能重复.5.(2021·广东广州·八年级阶段练习)在ABC 中,若过顶点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC 的关于点B 的二分割线.例如:如图1,在Rt ABC 中,90A ∠=︒,20C ∠=︒,若过顶点B 的一条直线BD 交AC 于点D ,且20DBC ∠=︒,则直线BD 是ABC的关于点B 的二分割线.如图2,已知18C ∠=︒,ABC 同时满足:①C ∠为最小角;②存在关于点B 的二分割线,则BAC ∠的度数为______.【答案】36︒或45︒或54︒【解析】【分析】根据关于点B 的二分割线的定义即可得到结论.【详解】解:如图2所示:36BAC ∠=︒,如图3所示:45BAC ∠=︒,如图所示:54BAC ∠=︒,故答案为:36︒或45︒或54︒.【点睛】本题考查了直角三角形,等腰三角形的性质,正确地理解“△ABC 的关于点B 的二分割线”是解题的关键.。

三角形问题中的数学思想方法

三角形问题中的数学思想方法

三角形问题中的数学思想方法数学思想和方法是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂.因此,在解三角形题过程中准确快捷的关键是正确运用数学思想方法.这里对三角形解题时常用的分类讨论思想、整体思想、方程思想、转化思想、数形结合思想等举例予以说明,以供同学们学习参考应用.一、分类讨论思想由于题目的约束较弱(条件趋一般)或图形位置的变化常常使同一问题具有多种形态,因而有必要考查全面(所有不同情况)才能把握问题的实质.此种情况下应当进行适当分类,就每种情形研究讨论结论的正确性.例1 在等腰三角形中,一腰上的中线把它的周长分为15cm 和6cm 两部分,求三角形各边的长.分析:要注意等腰三角形有两边相等, 一腰上的中线把它的腰分成的两段相等.由于问题中未指明哪一段为15cm ,哪一段为6cm ,故需分类讨论.解:设腰长为xcm ,底边为ycm ,即AB=x ,则AD=CD=21x ,BC=y ⑴ 若x+21x=6时,则y+21x=15. 由x+21x=6得x=4.把x=4代入y+21x=15得y=13. 因为4+4<13,所以不能构成三角形. ⑵ 若x+21x=15时,则y+21x=6. 由x+21x=15得x=10.把x=10代入y+21x=15得y=1. 10+1>10符合题意, 所以三角形三边分别为10cm 、10cm 、1cm.例2 已知非直角三角形ABC 中,∠A=45°,高BD 和CE 所在直线交于H ,求∠BHC 的度数.分析:三角形的形状不同,高的交点的位置也就不同.高的交点可能在三角形内部,也可能在三角形外部,故应分两种情况加以讨论.解:⑴当△ABC 为锐角三角形时(图2)∵BD 、CE 是△ABC 的高, ∠A=45°, ∴∠ADB=∠BEH=90°. 在△ABD 中, ∠ABD=180°-90°-45°=45°.图1图2ABC D H E∵∠BHC 是△BHE 的外角, ∴∠BHC=90°+45°=135°. ⑵当△ABC 为钝角三角形时(图3)∵H 是△ABC 两条高所在直线的交点 ∠A=45°, ∴∠ABD=180°-90°-45°=45°.在Rt △BEH 中, ∠BHC=180°-90°-45°=45°. ∴∠BHC 的度数是135°或45°.注意:涉及三角形高的问题,常常会因为高的位置而需要讨论,否则就会漏解. 二、整体思想研究某些数学问题时,往往不是以问题的某个组成部分为着眼点,而是将待解决的问题看作一个整体,通过研究问题的整体形式,整体结构做整体处理后,达到解决问题的目的.例3 如图4,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数.分析:观察图形可得,图由一个四边形和一个三角形构成,可根据四边形和三角形的内角和定理求度数之和.解:因为∠A +∠C+∠E=180°, 又因为∠B+∠D+∠F+∠G=360°,所以∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.剖析:例题中若直接求出每一角的度数再求其和显然是做不到的.因此,设法整体求值是解题的关键.事实上,有些数学问题,如果从局部去考虑,拘泥于常规,则举步维艰.如果从全局着手,突破常规,则会柳暗花明.三、方程思想求值时,当问题不能直接求出时,一般需要设未知数继之建立方程.用解方程的方法求出结果,这也是解题中常见的具有导向作用的一种思想.例4 如图5,在△ABC 中,∠B =∠C ,∠1=∠2,∠BAD=40°.求∠EDC. 分析:利用三角形的外角性质,设法建立关于∠EDC 的方程. 解:设∠EDC=x.因为∠1是△DEC 的外角,所以∠1=x+∠C. 又因为∠1=∠2,所以∠2=x+∠C.又因为∠2是△ABD 的外角,所以∠ADC=∠B+∠BAD. 所以∠B+∠BAD =∠2+x ,即∠B+40°=∠C+2x. 因为∠B =∠C ,所以2x=40°,解得x=20°.A BDHCE图3图5AEGFB CD图4剖析:方程是解决很多数学问题的重要工具,很多数学问题可以通过构造方程而获解.事实上,用设未知数的方法表示所求,可使计算过程书写简便,也易于表明角与角之间的关系.四、转化思想用简单、已学过的知识解决复杂、未知的知识,把复杂的问题转化为简单的问题,将陌生的问题转化为熟悉的问题来解.这种解题思想叫转化思想.例5 如图6,求五角星各顶角之和.分析:因为∠A 、∠B 、∠C 、∠D 、∠E 较分散,本例中又不 知其度数,因此,应设法将它们集中起来,将问题转化为三角形 来处理.根据三角形外角性质和内角和定理可以求解.解:因为∠1=∠C+∠E ,∠2=∠B+∠D ,又因为∠1+∠2+∠A=180°,所以∠A+∠B+∠C+∠D+∠E=180°.点拨:此题还可以连接CD 求解.当我们求多个角之和不能直接计算时,应考虑转化为三角形求解.五、数形结合思想例6 如图7,在△ABC 中,已知AD 是角平分线, ∠B=60°,∠C=45°,求∠ADB 和∠ADC 的度数.分析:在△ABD 中,∠ADB 是一个内角,它等于180°-∠B -∠BAD ,故求出∠BAD 即可求出∠ADB 的度数,这由已知条件不难求得;同理可求出∠ADC 的度数.解:在△ABC 中,∵∠B=60°, ∠C=45°, ∠B+∠C+∠BAC=180°, ∴∠BAC=180°-∠B -∠C=180°-60°-45°=75°. 又∵AD 是角平分线, ∴∠BAD=∠DAC=21∠BAC=37.5°. 在△ABD 中,∠ADB=180°-∠B -∠BAD=180°-60°-37.5°=82.5°. 同理∠ADC=180°-∠C -∠DAC=180°-45°-37.5°=97.5°.点拨:几何与代数是患难兄弟,密不可分.在求解几何题中,通常数与形要结合起来才能打开思路,进行运算.否则,一头舞水,扑朔迷离,茫然不知所措.图6A D 图7数学思想方法在三角形中的应用一、方程思想方法:例1、已知:等腰三角形的周长是24cm ,腰长是底边长的2倍,求腰长.分析:根据等腰三角形的周长=腰长+腰长+底边长和腰长是底边长的2倍,可设一腰长的长为xcm ,可列方程为x +2x +2x =24,解之即可.解:(1)设底边长x cm ,则腰长为2x cm x +2x +2x =24 x =4.8∴腰长=2x =2×4.8=9.6 (cm)点拨:用设未知数,找相等关系,列方程来解,体现了几何问题用代数方法解和方程思想.二、分类讨论的思想方法:例2、已知斜三角形ABC 中,∠A=45°,高BD 和CE 所在直线交于H ,求∠BHC 的度数.分析:三角形的形状不同,高的交点的位置也就不同,斜三角形包括锐角三角形和钝角三角形,故应分两种情况讨论.图1ACD解:∵△ABC 为斜三角形,∴△ABC 可能是锐角三角形,也可能是钝角三角形, (1) 当△ABC 为锐角三角形时(如图1), ∵BD 、CE 是△ABC 的高,∠A=45°, ∴∠ADB=∠BEH=90°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABH+∠BEH=45°+90°=135°.(2)当△ABC为钝角三角形时(如图2),H为△ABC的两条高所在直线的交点,∠A=45°,∴∠ABD=90°-45°=45°,在Rt△EBH中,∠BHC= 90°-∠ABD=90°-45°=45°.综上所述,∠BHC的度数是135°或45°.点拨:当问题出现的结果不唯一时,我们就需要分不同的情况来解决,这就是分类的思想.此类问题的出现,往往会被同学们忽视,或考虑不全面,希望大家在平时就要养成分类解析的习惯.本题易犯的错误是只考虑锐角三角形的情况,而造成解答不全面的错误.三、转化的数学思想方法:例3、如图3,已知五角星形的顶点分别为A、B、C、D、E,请你求出∠A+∠B+∠C+∠D+∠E的度数.分析:直接求这五个角的度数和显然比较难,又考虑到此图中提供的角应与三角形有关,我们应该想办法将这几个角转化成三角形的内角,然后利用三角形的内角和定理求解.解法一:∵∠1是△CEM的外角,∴∠1=∠C+∠E,∵∠2是△BDN的外角,∴∠1=∠B+∠D.在△AMN中,由三角形内角和定理,得∠A+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=180°.解法二:如图4,连结CD,在△BOE和△COD中,∠5=∠6,∵∠3+∠4+∠6=∠B+∠E+∠5=180°,∴∠3+∠4=∠B+∠E.在△ACD中,∠A+∠ACE+∠ADC=180°,∴∠A+∠ACE+∠ADC+∠3+∠4+∠ADB=180°,∴∠A+∠B+∠C+∠D+∠E=180°.点拨:在遇到不熟悉的数学问题时,要善于研究分析该问题的结构,通过“拼”、“拆”、“合”、“分”等方法将之转化为熟悉问题来解决.这种将不熟悉的数学问题转化为熟悉的数学问题来解决,这就是转化的思想.在运用三角形知识解决有关问题时,通过添加辅助线将一般图形转化为三角形来解决是常用解答方法之一.。

中考专题复习:直角三角形的分类讨论

中考专题复习:直角三角形的分类讨论

中考专题复习:直角三角形的分类常见解题思路:(1)分类讨论:按直角顶点进行讨论 (2)借助勾股定理(3)利用相似三角形 一、直角三角形的边不确定1. 直角三角形的两边长分别为3,4,则第三边长为 .2. 已知x ,y为直角三角形两边的长,满足240x -=,则第三边的长为 .二、图形折叠与直角三角形3、(2012河南)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,BC =3,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为直角三角形时,BD 的长为__________.三、动点与直角三角形类型一:直角三角形中有一边确定4、在平面直角坐标系中,矩形 OABC,的顶点C (0,2),A (5,0),在直线BC 上找一点D ,使得△OAD 为直角三角形,并求出点D 的坐标。

5、在平面直角坐标系中,直线b kx y +=过A(—4,4)、B (0,34)两点,交x 轴于点C ,点P 是y 轴上的一个动点。

(1)求直线AB 的解析式及点C的坐标。

(2)点P 运动到什么位置时,△APC 是直角三角形,并求出点P 的坐标。

EF C D B A 第15题5、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E(4,m)两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).⑴求该抛物线的解析式;⑵设动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标..6、在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为()10-,.如图所示,B 点在抛物线211222y x x =+-图象上,过点B 作BD x ⊥轴,垂足为D ,且B 点横坐标为3-.(1)求证:BDC COA △≌△;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使ACP △是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.7、(2012广州市)如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.8、(2011沈阳)如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段34PQ AB =时,求tan ∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.类型二:直角三角形中没有确定的边9、(2011河南)如图,在Rt △ABC 中,∠B =90°,BC C =30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE 、EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由. (3)当t 为何值时,△DEF 为直角三角形?请说明理由.10、(2008河南)如图,直线y=434+-x 和x 轴、y 轴的交点分别为B ,C 。

二次函数九种类型题及解析

二次函数九种类型题及解析

1. 在平面直角坐标系xOy中,抛物线y=-x 2+bx+c经过点 A(-1,0),B(3,0),与y轴相交于点C. (1)求这条抛物线的解析式; (2)经过点D(2,2)直线与抛物线交于M,N两点, 若线段MN正好被直线BC平分,求直线MN的解析式; (3)直线x=a上存在点P,使得△PBC为等腰三角形? 若这样的点P有且只有三个,请直接写出符合条件的a 值及其取值范围
1. 如图,二次函数y=x 2+bx+c的图象与x轴交于A、B两点,且A点坐 标为(-3,0),经过B点的直线交抛物线于点D(-2,-3). (1)求抛物线的解析式 (2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛 物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在, 求出满足条件的a;如果不存在,请说明理由. (3)在二次函数上有一动点P,过点P作PM⊥x轴交线段BD于点M, 判断PM有最大值还是有最小值,如有,求出线段PM长度的最大值 或最小值.
1. 如图,在平面直角坐标系中,抛物线y=ax 2+bx+3与x轴 交于A(-4,0)、B(-l,0)两点,与y轴交于点C,点D 是第三象限的抛物线上一动点. (1)求抛物线的解析式; (2)设点D的横坐标为m,△ACD的面积为S求出S与m的 函数关系式,并确定m为何值时S有最大值,最大值是多 少? (3)若点P是抛物线对称轴上一点,是否存在点P使得 ∠APC=90°?若存在,请直接写出点P的坐标;若不存在, 请说明理由.
1 23 1 如图所示,抛物线y=- x - x+2和直线y= x+2相交于A、C两点,抛物线与 2 2 2 x轴的另一个交点为B,在抛物线的对称轴上是否存在点P,使得△ PBC为直角 三角形,如果存在请求出P点坐标,如果不存在,请说明理由。ຫໍສະໝຸດ 型三:直角三角形的分类讨论:

苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]

苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b =【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 60b a B ==⨯=° 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c ==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【课程名称:解直角三角形及其应用 395952 :例1(1)-(3)】【变式】(1)已知∠C=90°,,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ;【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【课程名称:解直角三角形及其应用395952:例2】【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=55FB =+,解得5 3.66(m)FB ==. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。

三角形的分类

三角形的分类

三角形的分类三角形是几何学中最常见和最基本的图形之一。

根据其特性,三角形可以分为不同的类型。

以下是三角形的一些主要分类:1等边三角形:三条边都相等的三角形称为等边三角形。

这种三角形的所有角都是相等的,每个角都是60度。

等边三角形是一种特殊的等腰三角形。

2等腰三角形:有两条边长度相等的三角形称为等腰三角形。

这种三角形的两个底角是相等的,顶角与两个底角的和加起来等于180度。

直角三角形:有一个角是90度的三角形称为直角三角形。

这种三角形的斜边长等于其两条直角边的平方和的平方根。

直角三角形的一个锐角是45度。

钝角三角形:有一个角大于90度的三角形称为钝角三角形。

这种三角形的钝角对应的边比其他两边长。

锐角三角形:所有角都小于90度的三角形称为锐角三角形。

这种三角形的所有边都相等。

斜三角形:三条边长度不相等的三角形称为斜三角形。

斜三角形可以进一步分为钝角斜三角形和锐角斜三角形,取决于其最大的角是钝角还是锐角。

这些分类可以根据三角形的不同特性进行进一步的细分。

例如,等腰三角形可以进一步分为等边等腰三角形和底角与顶角不相等的等腰三角形等。

还有等腰直角三角形等腰钝角三角形等特殊形式。

三角形的分类对于理解几何学中的基本概念和性质非常重要。

通过掌握不同类型的三角形的特性和关系,我们可以更好地理解几何学中的基本原理和应用。

三角形是数学几何中一个非常基础且重要的概念,而三角形的分类也是学生需要掌握的一项重要技能。

根据边长和角的特征,三角形可以分为以下几类:等边三角形等腰三角形、直角三角形和普通三角形。

等边三角形是一种三边长度相等的三角形,其中三个角的大小也相等。

等边三角形的判定方法是:如果一个三角形的三边长度相等,那么这个三角形就是等边三角形。

等边三角形是一个特殊的等腰三角形。

等腰三角形是一种两边长度相等的三角形,其中两个角的大小也相等。

等腰三角形的判定方法是:如果一个三角形有两条边的长度相等,那么这个三角形就是等腰三角形。

特殊三角形培优专项训练(解析版)

特殊三角形培优专项训练(解析版)

【期末复习】浙教版八年级上册提分专题:特殊三角形培优专项训练一.选择题1.(等腰直角三角形“手拉手”模型)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断.【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC,∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.2.(共斜边的直角三角形+勾股定理)如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为()A.2B.C.8D.9【分析】连接EF、DF,根据直角三角形的性质得到EF=BC=9,得到FE=FD,根据等腰三角形的性质得到FG⊥DE,GE=GD=DE=5,根据勾股定理计算即可.【解答】解:连接EF、DF,∵BD⊥AC,F为BC的中点,∴DF=BC=9,同理,EF=BC=9,∴FE=FD,又G为DE的中点,∴FG⊥DE,GE=GD=DE=5,由勾股定理得,FG==2,故选:A.3.(直角三角形勾股定理与面积)如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【分析】如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,根据△ACG,△BCH,△ABF是等边三角形,求得S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,根据勾股定理得到c2=a2+b2,于是得到结论.【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.(轴对称与勾股定理综合)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上,AD=AC,AE ⊥CD,垂足为F,与BC交于点E,则BE的长是()A.3B.5C.D.6【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=8﹣x,在Rt△BDE中,由勾股定理得出方程,解方程即可.【解答】解:连接DE,如图所示,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,∵AD=AC=6,AF⊥CD,∴DF=CF,∴CE=DE,BD=AB﹣AD=4,在△ADE和△ACE中,,∴△ADE≌△ACE(SSS),∴∠ADE=∠ACE=90°,∴∠BDE=90°,设CE=DE=x,则BE=8﹣x,在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,即x2+42=(8﹣x)2,解得:x=3;∴CE=3;∴BE=8﹣3=5.故选:B.5.(勾股定理+中点)如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=5,AD=,则AB的长为()A.10B.4C.D.8【分析】设EC=x,DC=y,则直角△BCE中,x2+4y2=BE2=25,在直角△ADC中,4x2+y2=AD2=55,解方程组可求得x、y,在直角△ABC中,根据勾股定理求得AB.【解答】解:设EC=x,DC=y,∠ACB=90°,∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=25.在直角△ADC中,AC2+CD2=4x2+y2=AD2=55,解得x=,y=.在直角△ABC中,AB===8.故选:D.6.(勾股定理与面积规律)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1﹣S2+S3+S4等于()A.4B.6C.8D.12【分析】过F作AM的垂线交AM于D,通过证明S2=S Rt△ABC;S3=S△FPT;S4=S Rt△ABC,进而即可求解.【解答】解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=S Rt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S Rt△ABC.易证Rt△ABC≌Rt△EBN,∴S4=S Rt△ABC,∴S1﹣S2+S3+S4=(S1+S3)﹣S2+S4=S Rt△ABC﹣S Rt△ABC+S Rt△ABC=6﹣6+6=6,故选:B.7.(勾股定理与整体思想)如图,在等腰直角△ABC中,∠BAC=90°,AD是△ABC的高线,E是边AC上一点,分别作EF⊥AD于点F,EG⊥BC于点G,几何原本中曾用该图证明了BG2+CG2=2(BD2+DG2),若△ABD与△AEF的面积和为8.5,BG=5,则CG的长为()A.2B.2.5C.3D.3.5【分析】由S△AEF+S△ABD=8.5,得BD2+DG2=17,从而有BG2+CG2=34,即可得出答案.【解答】解:由题意知:△ABD,△AEF都是等腰直角三角形,∴S△AEF=,S,∵S△AEF+S△ABD=8.5,∴BD2+DG2=17,∵BG2+CG2=2(BD2+DG2),∴BG2+CG2=34,∵BG=5,∴CG==3,故选:C.8.(等边三角形“手拉手”模型)已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列六个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤BD∥MN.⑥CP平分∠BPD其中,正确的有()A.3个B.4个C.5个D.6个【分析】①根据等边三角形的性质得CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,则∠ACE=60°,利用“SAS”可判断△ACD≌△BCE,则AD=BE;②由△ACD≌△BCE得到∠CAD=∠CBE,然后根据“ASA”判断△ACN≌△BCM,即可解决问题;③根据三角形内角和定理可得∠CAD+∠CDA=60°,而∠CAD=∠CBE,则∠CBE+∠CDA=60°,然后再利用三角形内角和定理即可得到∠BPD=120°,即可得到结论;④由△ACD≌△BCE得到∠CAD=∠CBE,然后根据“ASA”判断△ACN≌△BCM,所以AN=BM;⑤由△ACN≌△BCM得到CN=BM,加上∠MCN=60°,则根据等边三角形的判定即可得到△CMN为等边三角形,得到∠CMN=60°,所以∠CMN=∠BCM,于是根据平行线的判定即可得到MN∥BC;⑥作CH⊥BE于H,CQ⊥AD于Q,如图,由△ACD≌△BCE得到CQ=CH,于是根据角平分线的判定定理即可得到CP平分∠BPD.【解答】证明:①∵△ABC和△CDE都是等边三角形,∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,∴∠ACE=60°,∴∠ACD=∠BCE=120°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;②∵△ACD≌△BCE,∴∠CAD=∠CBE,在△ACN和△BCM中,,∴△ACN≌△BCM(ASA),∴AN=BM,∠BMC=∠ANC;故②④正确;③∵∠CAD+∠CDA=60°,而∠CAD=∠CBE,∴∠CBE+∠CDA=60°,∴∠BPD=120°,∴∠APM=60°;故③正确;⑤∵△ACN≌△BCM,∴CN=BM,而∠MCN=60°,∴△CMN为等边三角形;∴∠CMN=60°,∴∠CMN=∠BCM,∴MN∥BC;故⑤正确;⑥作CH⊥BE于H,CQ⊥AD于Q,如图,∵△ACD≌△BCE,∴CQ=CH,∴CP平分∠BPD,故⑥正确.正确的有:①②③④⑤⑥,共6个.故选:D.9.(三角形与特殊三角形性质的综合)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.下列结论正确的有()个.①BF=AC;②CE=BF;③△DGF是等腰三角形;④BD+DF=BC;⑤;A.5B.4C.3D.2【分析】由“AAS”可证△BDF≌△CDA,可得BF=AC,故①正确.由等腰三角形的性质可得AE=EC=AC =BF,故②正确,由角的数量关系可求∠DGF=∠DFG=67.5°,可得DG=DF,即△DGF是等腰直角三角形,故③正确.由全等三角形的性质可得DF=DA,则可得BC=AB=BD+DF,故④正确;由角平分线的性质可得点F到AB的距离等于点F到BC的距离,由三角形的面积公式可求=,故⑤正确,即可求解.【解答】解:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,∴BA=BC,∵BE⊥AC,∴AE=EC=AC=BF,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDC=90°,BH=HC,∴∠BHG=90°,∴∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,∴△DGF是等腰直角三角形,故③正确.∵△BDF≌△CDA,∴DF=AD,∴BC=AB=BD+AD=BD+DF,故④正确;∵BE平分∠ABC,∴点F到AB的距离等于点F到BC的距离,∴=,故⑤正确,故选:A.10.(折叠与勾股定理求长度)如图,已知长方形纸片ABCD,点E在边AB上,且BE=2,BC=3,将△CBE沿直线CE翻折,使点B落在点G,延长EG交CD于点F处,则线段FG的长为()A.B.C.D.1【分析】由将△CBE沿直线CE翻折,使点B落在点G,可得∠BEC=∠GEC,GE=BE=2,CG=BC=3,CF =EF,设FG=x,则CF=EF=x+2,根据勾股定理可得x2+32=(x+2)2,即可解得答案.【解答】解:∵将△CBE沿直线CE翻折,使点B落在点G,∴∠BEC=∠GEC,GE=BE=2,CG=BC=3,∵四边形ABCD是矩形,∴CD∥AB,∴∠BEC=∠FCE,∴∠GEC=∠FCE,∴CF=EF,设FG=x,则CF=EF=x+2,在Rt△CFG中,FG2+CG2=CF2,∴x2+32=(x+2)2,解得x=,∴FG=,故选:A.11.(三角形与特殊三角形性质的综合)如图,在Rt△ABC中,CA=CB,D为斜边AB的中点,Rt∠EDF在△ABC 内绕点D转动,分别交边AC,BC点E,F(点E不与点A,C重合),下列说法正确的是()①∠DEF=45°;②BF2+AE2=EF2;③CD<EF≤CD.A.①②B.①③C.②③D.①②③【分析】由“ASA”可证△ADE≌△CDF,可得DE=DF,AE=CF,可得∠DEF=∠DFE=45°,EC=BF,可判断①,在直角三角形CEF中,由勾股定理可得BF2+AE2=EF2,可判断②,由特殊位置可求CD的范围,可判断③,即可求解.【解答】解:∵∠ACB=90°,CA=CB,D为斜边AB的中点,∴CD=AD=DB,∠A=∠B=∠ACD=∠BCD=45°,AB⊥CD,∵ED⊥FD,∴∠EDF=∠ADC=90°,∴∠ADE=△CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF,AE=CF,∴∠DEF=∠DFE=45°,AC﹣AE=BC﹣CF,故①正确;∴EC=BF,∵CF2+CE2=EF2;∴BF2+AE2=EF2;故②正确;当点E与点A重合时,EF=AC=CD,当DE⊥AC时,则DF⊥BC,∴四边形DECF是矩形,∴EF=CD,∴CD≤EF<CD,故③错误,故选:A.二.填空题12.(中垂线性质定理与特殊角的应用)在△ABC中,∠A=15°,∠C=30°,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,DE=2,则AC的长为.【分析】利用线段垂直平分线的性质,说明△BCE和△ADB是等腰三角形,再利用等腰三角形的性质求出∠BEA和∠BDC的度数,利用特殊的直角三角形的性质求出BE、DB的长,最后利用线段的和差关系得结论.【解答】解:∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴CE=BE,BD=AD.∴∠C=∠CBE=30°,∠A=∠ABD=15°.∴∠BDC=∠A+∠ABD=30°,∠BEA=∠C+∠CBE=60°.∴∠EBD=90°.在Rt△BED中,∵ED=2,∠BDC=30°,∴BE=1,BD=.∴CE=BE,AD=BD.∴AC=CE+AD+ED=1+2+=3+.故答案为:3+.13.(特殊三角形的判定)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.【分析】首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.【解答】解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.14.(赵爽弦图)如图由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNPQ的面积分别为S1,S2,S3,若S1+S2+S3=60,则S2的值是.【分析】先设一个直角三角形的面积为x,然后结合正方形ABCD,正方形EFGH,正方形MNPQ的面积关系和S1+S2+S3=60得到S2的值.【解答】解:设一个直角三角形的面积为x,∵图中的三角形全等,∴S1=S2﹣4x,S3=S2+4x,∵S1+S2+S3=60,∴S2﹣4x+S2+S2+4x=60,∴S2=20.故答案为:20.15.(直角三角形的分类讨论)如图,已知Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P是BC边上的一个动点,点B与B′是关于直线AP的对称点,当△CPB'是直角三角形时,BP的长=.【分析】分两种情形:∠PCB′=90°,∠CPB′=90°,利用勾股定理构建方程求解即可.【解答】解:如图1中,当∠PCB′=90°时,设PB=PB′=x.∵AC=3,CB=4,∠ACB=90°,∴AB===5,由翻折的性质可知,AB=AB′=5,在Rt△PCB′中,PC2+CB′2=PB′2,∴(4﹣x)2+22=x2,∴x=,∴PB=.如图2中,当∠CPB′=90°,设PB=y.过点A作AT⊥B′P交B′P的延长线于点T,则四边形ACPT是矩形,∴PT=AC=3,AT=CP=4﹣y,在Rt△ATB′中,AB′2=AT2+B′T2,∴52=(4﹣y)2+(y+3)2,解得y=1或0(0舍弃),∴PB=1,综上所述,PB的值为:1或.16.(将军饮马)如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.【分析】如图,作点P关于AB,AC的对称点E,F,连接PE,PF,P A,EM,FN,AE,AF.首先证明E,A,F共线,则PM+MN+PN=EM+MN+NF≥EF,推出EF的值最小时,PM+MN+PN的值最小,求出P A的最小值,可得结论.【解答】解:如图,作点P关于AB,AC的对称点E,F,连接PE,PF,P A,EM,FN,AE,AF.∵∠BAC=90°,AB=4,AC=3,∴BC===5,由对称的性质可知,AE=AP=AF,∠BAP=∠BAE,∠CAP=∠CAF,∵∠P AB+∠P AC=∠BAC=90°,∴∠EAF=180°,∴E,A,F共线,∵ME=MP,NF=NP,∴PM+MN+PN=EM+MN+NF,∵EM+MN+NF≥EF,∴EF的值最小时,PM+MN+PN的值最小,∵EF=2P A,∴当P A⊥BC时,P A的值最小,此时P A==,∴PM+MN+PN≥,∴PM+MN+PN的最小值为.故答案为:.17.(角平分线与将军饮马)如图,BD是Rt△ABC的角平分线,点F是BD上的动点,已知AC=2,AE=2﹣2,∠ABC=30°,则:(1)BE=.(2)AF+EF的最小值是.【分析】(1)根据直角三角形的性质得到BC=2AC=4,由勾股定理得到AB===2,于是得到结论;(2)作点A关于BD的对称点A′,根据等腰三角形的性质得到点A′落在BC上,求得A′B=AB=2,连接A′E交BD于F,则此时AF+EF的值最小且等于A′E,过E作EH⊥BC于H,根据勾股定理即可得到结论.【解答】解:(1)∵∠BAC=90°,AC=2,∠ABC=30°,∴BC=2AC=4,∴AB===2,∵AE=2﹣2,∴BE=2;故答案为:2;(2)作点A关于BD的对称点A′,∵BD是Rt△ABC的角平分线,∴点A′落在BC上,∴A′B=AB=2,连接A′E交BD于F,则此时AF+EF的值最小且等于A′E,过E作EH⊥BC于H,∴EH=BE=1,BH==,∴A′H=,∴BH=A′H,∴A′E=BE=2,∴AF+EF的最小值是2,故答案为:2.18.(折叠与直角三角形分类讨论)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=2,点D在AB上,连结CD,将△ADC沿CD折叠,点A的对称点为E,CE交AB于点F,△DEF为直角三角形,则CF=.【分析】分两种情况讨论,当∠EFD=90°时和当∠EDF=90°时,然后利用折叠的性质和含30°角的直角三角形三边关系求解.【解答】解:∵∠A=30°,∠ACB=90°,BC=2,∴AB=2BC=4,AC=2,∠B=60°,由折叠得,∠E=∠A=30°,①如图1,当∠EFD=90°时,∠BFC=90°,∵∠B=60°,∴∠BCF=30°,∴BF=BC=×2=1,CF=BF=;②如图2,当∠EDF=90°时,∵∠E=30°,∴∠EFD=60°,∴∠BFC=60°,∵∠B=60°,∴△BFC是等边三角形,∴CF=BC=2,综上所述,当△BFC为直角三角形时,CF=2或.故答案为:2或.三.解答题19.(“两定一动”型等腰三角形分类讨论)如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D运动的速度为每秒1个单位长度.(1)当t=2时,CD=,AD=;(请直接写出答案)(2)当△CBD是直角三角形时,t=;(请直接写出答案)(3)求当t为何值时,△CBD是等腰三角形?并说明理由.【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC﹣CD代入数据进行计算即可得解;(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;(3)分①CD=BD时,过点D作DE⊥BC于E,根据等腰三角形三线合一的性质可得CE=BE,从而得到CD =AD;②CD=BC时,CD=6;③BD=BC时,过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【解答】解:(1)t=2时,CD=2×1=2,∵∠ABC=90°,AB=8,BC=6,∴AC===10,AD=AC﹣CD=10﹣2=8;(2)①∠CDB=90°时,S△ABC=AC•BD=AB•BC,即×10•BD=×8×6,解得BD=4.8,∴CD===3.6,t=3.6÷1=3.6秒;②∠CBD=90°时,点D和点A重合,t=10÷1=10秒,综上所述,t=3.6或10秒;故答案为:(1)2,8;(2)3.6或10秒;(3)①CD=BD时,如图1,过点D作DE⊥BC于E,则CE=BE,∴CD=AD=AC=×10=5,t=5÷1=5;②CD=BC时,CD=6,t=6÷1=6;③BD=BC时,如图2,过点B作BF⊥AC于F,则CF=3.6,CD=2CF=3.6×2=7.2,∴t=7.2÷1=7.2,综上所述,t=5秒或6秒或7.2秒时,△CBD是等腰三角形.20.(直角三角形判定与角度转化)如图,△ABC是等腰直角三角形,∠HAC=30°,∠ACD=α,点D是线段AH 上的一个动点,连接CD,将线段CD绕C点顺时针旋转90°至点E,连接DE交BC于点F.(1)连接BE,求证:△ACD≌△BCE;(2)当α=15°时,判断△BEF是什么三角形?并说明理由.(3)在点D运动过程中,当△BEF是锐角三角形时,求α的取值范围.【分析】(1)根据同角的余角相等得到∠ACD=∠BCE,利用SAS定理证明△ACD≌△BCE;(2)根据三角形内角和定理求出∠ADC,根据全等三角形的性质求出∠CEB,根据等腰直角三角形的性质求出∠CED,结合图形计算,得到答案;(3)根据三角形内角和定理求出∠ADC,用α表示出∠BEF,根据锐角的概念列式计算即可.【解答】(1)证明:∵∠ACB=∠DCE=90°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:△BEF是直角三角形,理由如下:∵∠HAC=30°,∠ACD=15°,∴∠ADC=180°﹣30°﹣15°=135°,∵△ACD≌△BCE,∴∠CEB=∠CDA=135°,∵CE=CD,∠DCE=90°,∴∠CED=∠CDE=45°,∴∠BEF=∠BEC﹣∠CED=135°﹣45°=90°,∴△BEF是直角三角形;(3)解:∵∠HAC=30°,∠ACD=α,∴∠ADC=180°﹣30°﹣α=150°﹣α,∵△ACD≌△BCE,∴∠CEB=∠CDA=150°﹣α,∠CBE=∠CAD=30°,∴∠BEF=∠BEC﹣∠CED=150°﹣α﹣45°=105°﹣α,由题意得:105°﹣α<90°,180°﹣30°﹣(105°﹣α)<90°,解得:15°<α<45°.21.(操作类等腰三角形分类讨论)我们数学八年级上册书本第64页作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成三张小纸片,使每张小纸片都是等腰三角形.你能办到吗?请画出示意图说明理由.小明在做此题时发现有多种剪法,图1为其中一种方法示意图.定义:如果我们用n条线段将一个三角形分成n+1个等腰三角形,我们把这种分法叫做这个三角形的n+1等分线图.显然,如图1所示的剪法是这个三角形的3等分线图.(1)如图2,△ABC为等腰直角三角形,请你画出一个这个△ABC的4等分线的示意图.(2)请你探究:如图3,边长为1的正三角形是否具有4等分线图.若无,请说明理由;若有,请画出所有符合条件的这个正三角形的4等分线图(若两种方法分得的三角形分别成4对全等三角形,则视为一种.)【分析】(1)取三边的中点D,E,F,并连接,即可画出一个这个△ABC的4等分线的示意图;(2)①如图,取三边的中点D,E,F,得4个等边三角形;②作CF⊥AB于点F,取CA和CB的中点D,E,连接DF,EF,得△ADF和△BEF是等边三角形,△CDF和△CEF是底角为30°的等腰三角形;③如图,在CA上取点E,在CB上取点F,使CE=2AE,CF=2BF,再取EF的中点D,连接DA,DB,△AEF是等边三角形,△DAB是等腰三角形,△ADE和△BDF是等腰三角形.【解答】解:(1)如图2,取三边的中点D,E,F,并连接,得4个等腰三角形;(2)①如图,取三边的中点D,E,F,得4个等边三角形;②如图,作CF⊥AB于点F,取CA和CB的中点D,E,连接DF,EF,得△ADF和△BEF是等边三角形,△CDF和△CEF是底角为30°的等腰三角形;③如图,在CA上取点E,在CB上取点F,使CE=2AE,CF=2BF,再取EF的中点D,连接DA,DB,所以△AEF是等边三角形,△DAB是等腰三角形,△ADE和△BDF是等腰三角形.22.(特殊三角形与方程思想)如图,在Rt△ABC中,AB=10,BC⊥AC,P为线段AC上一点,点Q,P关于直线BC对称,QD⊥AB于点D,DQ与BC交于点E,连结DP,设AP=m.(1)若BC=8,求AC的长,并用含m的代数式表示PQ的长;(2)在(1)的条件下,若AP=PD,求CP的长;(3)连结PE,若∠A=60°,△PCE与△PDE的面积之比为1:2,求m的值.【分析】(1)利用勾股定理求出AC,再根据对称性PQ=2PC,可得结论;(2)证明P A=PQ,构建方程求出m即可.(3)证明DE=EQ,设DE=EQ=x,根据BC=5,构建方程求出x,再求出AQ,PQ,可得结论.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AB=10,BC=8,∴AC===6,∵P,Q关于BC对称,∴PC=CQ=6﹣m,∴PQ=2PC=12﹣2m;(2)当AP=PD时,∠A=∠PDA,∵QD⊥AB,∴∠ADQ=90°,∴∠PDQ+∠ADP=90°,∠Q+∠A=90°,∴∠Q=∠PDQ,∴PD=PQ,∴P A=PQ,∴m=12﹣2m,∴m=4,∴CP=AC﹣AP=6﹣4=2;(3)∴CP=CQ,∴S△PEC=S△ECQ,∵S△PDE=2S△PEC,∴S△PDE=S△PEQ,∴DE=QE,设DE=EQ=x,∵∠A=60°,∠ACB=90°,∴∠B=90°﹣60°=30°,∴BE=2x,∵∠ADQ=90°,∴∠Q=90°﹣60°=30°,∴EC=EQ=x,∵BC=AB•=5,∴2x+x=5,∴x=2,∴DQ=2x=4,CQ=PC=EQ•=3,∵AQ=5+3=8,∴m=AP=AQ﹣PQ=8﹣6=2.23.(特殊三角形动点问题)如图,Rt△AOB中,∠AOB=90°,OA=OB=4,点P在直线OA上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)若AP=AB,则点P到直线AB的距离是;(2)若点O′恰好落在直线AB上,求△OBP的面积;(3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,请直接写出OP的长;若不存在,请说明理由.【分析】(1)接BP,设点P到直线AB的距离为h,根据三角形的面积公式即可得到结论;(2)分P在x轴的正半轴和负半轴:①当P在x轴的正半轴时,求OP=O'P=AO'=4﹣4,根据三角形面积公式可得结论;②当P在x轴的负半轴时,同理可得结论;(3)分4种情况:分别以P、B、Q三点所成的角为顶角讨论:①当BQ=QP时,如图2,P与O重合,②当BP=PQ时,如图3,③当PB=PQ时,如图4,此时Q与C重合;④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,根据图形和等腰三角形的性质可计算OP 的长.【解答】解:(1)连接BP,设点P到直线AB的距离为h,Rt△AOB中,∠AOB=90°,OA=OB=4,∴AB==4,∵AP=AB,∴AP=AB=4,∴S△ABP=AB•h=AP•OB,∴h=OB=4,即点P到直线AB的距离是4,故答案为:4;(2)存在两种情况:①如图1,当P在x轴的正半轴上时,点O′恰好落在直线AB上,则OP=O'P,∠BO'P=∠BOP=90°,∵OB=OA=4,∴△AOB是等腰直角三角形,∴AB=4,∠OAB=45°,由折叠得:∠OBP=∠O'BP,BP=BP,∴△OBP≌△O'BP(AAS),∴O'B=OB=4,∴AO'=4﹣4,Rt△PO'A中,O'P=AO'=4﹣4=OP,∴S△BOP=OB•OP==8﹣8;②如图所示:当P在x轴的负半轴时,由折叠得:∠PO'B=∠POB=90°,O'B=OB=4,∵∠BAO=45°,∴PO'=PO=AO'=4+4,∴S△BOP=OB•OP=×4×(4+4)=8+8;(3)分4种情况:①当BQ=QP时,如图2,点P与点O重合,此时OP=0;②当BP=PQ时,如图3,∵∠BPC=45°,∴∠PQB=∠PBQ=22.5°,∵∠OAB=45°=∠PBQ+∠APB,∴∠APB=22.5°,∴∠ABP=∠APB,∴AP=AB=4,∴OP=4+4;③当PB=PQ时,如图4,此时Q与C重合,∵∠BPC=45°,∴∠PBA=∠PCB=67.5°,△PCA中,∠APC=22.5°,∴∠APB=45+22.5°=67.5°,∴∠ABP=∠APB,∴AB=AP=4,∴OP=4﹣4;④当PB=BQ时,如图5,此时Q与A重合,则P与A关于y轴对称,∴此时OP=4;综上,OP的长是0或4+4或4﹣4或4.24.(特殊三角形综合题)已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.【分析】(1)①要证明△BDF≌△ADC,如图,在△ABD中,∠ABC=45°,AD⊥BC,可证BD=AD,∠BDF =∠ADC;在△ADC中,可证得∠AFE=∠ACD,又∵∠AFE=∠BFD(对顶角相等),∴∠ACD=∠BFD;运用AAS,问题可证.②由△BDF≌△ADC可证得DF=DC;∵AD=AF+FD,∴AD=AF+DC;由GF∥BD,∠ABC=45°,可证得AF=GF;于是问题可证.(2)∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴FG=AF=AD+DF;DF=DC可通过证明△BDF≌△ADC得到,故可得:FG=DC+AD.【解答】解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵△FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴F A=FG;∴FG+DC=F A+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠F AE+∠DFB=∠F AE+∠DCA=90°,∴∠DFB=∠DCA;又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.。

直角三角形分类讨论

直角三角形分类讨论

1
3-x
x
1、当∠ACB=90°时,AB为斜边.
5 x (3 x) 1 , 解得: x 3
2 2 2
2、当∠CAB=90°时,CB为斜边.
4 则(3 x) x 1 , 解得: x 3
2 2 2
3、当∠ABC=90°时,AC为斜边.
则(3 x) x 1 ,因为 0,
(3)当∠ACB为直角时,以AB为直径作圆交直线与点 C3、C4
C1●
C4


C3
● ●
C2
四、相似三角形的分类讨论转化为直角的分类讨论
例:在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC, BC=10cm,CD=6cm,在线段BC、CD上有动点F、E,点F 以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时 点E以每秒1cm的速度,在线段CD上从点C向点D匀速运动.当 点F到达C时,点E同时停止运动.设点F运动的时间为t(秒)
FC AC tan 30 1
AC BC tan30 3
三、通过作图,确定点的个数。
例:已知:A(-4,0),B(2,0),点C在函数
y=-0.5x+2的图像上,要使△ABC为直角三角形,满 足条件的点C的个数为( ) A.1 B.2 C.3 D.4
(1)当∠CAB为直角时,过A作AC⊥AB交直线与点C1 (2)当∠CBA为直角时,过B作BC⊥AB交直线与点C2
当∠EFC为直角时
CF CD 6 10 2t 3 , , CE CB 10 t 5 50 100 解得:t , 此时BF 2t cm. 13 13 综上所述,当 CEF与BDC相似时,
60 100 BF cm或BF cm. 11 13

直角三角形分类讨论

直角三角形分类讨论

物理学中的应用
重力与加速度
在物理学的运动学中,直角三角 形被用于描述重力与加速度之间 的关系,例如自由落体运动中, 利用直角三角形计算速度和位移。
力的分解
在力学中,力可以分解为水平和 垂直方向的分力,而直角三角形
是解决这类问题的有效工具。
电磁学
在电磁学中,直角三角形用于描 述电场、磁场和电流之间的关系, 例如在电磁感应和交流电的分析
面积计算方法
直接计算
已知直角三角形的底和高,可以直接使用面积公式进行计算。
间接计算
当只知道直角三角形的一边和夹角时,可以通过三角函数或勾股 定理求出其他边长,再计算面积。
相似三角形法
当两个直角三角形相似时,可以通过相似比来计算面边角关系定理
勾股定理
钝角三角形边角关系
建筑设计
直角三角形在建筑设计中应用广 泛,如金字塔、塔吊等,利用其 稳定性来支撑和保持结构的平衡。
桥梁工程
在桥梁设计中,直角三角形常被用 于支撑和固定桥面,以确保桥梁的 稳定性和安全性。
建筑测量
直角三角形在建筑测量中用于确定 角度和高度,例如在测量建筑物的 高度和角度时,可以利用直角三角 形的性质来计算。
直角三角形中,两条 直角边的平方和等于 斜边的平方。
直角三角形中,两个 锐角的和为90度。
02
直角三角形的分类
按照角度分类
30-60-90度直角三角形
这类三角形中,有一个30度的锐角和两个60度的锐角,边长之间有一定的比例关 系,如3-4-5等。
45-45-90度直角三角形
这类三角形中,两个锐角都是45度,边长之间也有一定的比例关系,如1-1$sqrt{2}$等。
按照边长分类
等腰直角三角形

万能解题模型(9) 直角三角形中的分类讨论

万能解题模型(9) 直角三角形中的分类讨论
分情况:①以 A 为直角顶点,即∠BAP=90°;②以 B 为直角顶点,即 ∠ABP=90°;③以 P 为直角顶点,即∠APB=90°.
作图找点: ①过点 A 作 AB 的垂线,与已知直线 l 的交点 P1 即为所求; ②过点 B 作 AB 的垂线,与已知直线 l 的交点 P2 即为所求; ③以 AB 的中点 Q 为圆心,QA 的长为半径画圆,与已知直线 l 的交点 P3,P4 即为所求.
∵∠CBP+∠ABO=90°, ∴∠ABO=∠BPC. 又∵∠AOB=∠BCP=90°, ∴△AOB≌△BCP(AAS). ∴PC=OB=4,BC=OA=2. ∴OC=OB-BC=2. ∴P(4,2);
②当∠BAP′=90°时, 过点 P′作 P′D⊥OA 于点 D, 同①的方法得,△ADP′≌△BOA, ∴DP′=OA=2,AD=OB=4. ∴OD=AD-OA=2. ∴P′(2,-2). 综上所述,满足条件的点 P 的坐标为(4,2)或(2,-2).
又∵∠D′OC=∠COA=90D3′O. ∴D′O=9. ∴D′(-9,0). 综上所述,点 D 的坐标为(0,0)或(-9,0).
温馨提示:学完模型,建议完成红版练习册(P137),进行强化训练.
湖北世纪华章文化传播有限公司
数学 第一轮 中考考点系统复习(讲解册)
万能解题模型(九) 直角三角形中的 分类讨论
直角三角形存在性的问题,首先需要观察图形,判断直角顶点是否确 定.若不确定,则需要进行分类讨论,如下面模型构建.
问题:已知点 A,B 和直线 l,在 l 上求点 P,使△PAB 为直角三角形.
4.如图,抛物线与 x 轴交于 A(1,0),B(-3,0)两点,与 y 轴交 于点 C(0,3).在 x 轴上找一点 D,使得以 A,C,D 为顶点的三角形 是直角三角形,求点 D 的坐标.

谈谈运用分类讨论思想解题的步骤

谈谈运用分类讨论思想解题的步骤

分类讨论思想是根据题目的特点和要求,把所有研究的问题分成若干类,转化成若干个小问题,按不同情况分类,然后再逐一进行讨论、求解的思想.分类讨论思想是解答复杂问题的重要工具,尤其对于一些结论不唯一,表示形式不唯一,含有参数的复杂问题,运用分类讨论思想求解最为有效.运用分类讨论思想解题的步骤可以概括为以下几步:1.明确研究的对象.仔细分析题意,明确哪些变量、参数可直接影响所求的结果,据此确定研究的对象.常见的研究对象有参数、自变量、绝对值内部式子、方程的根,函数的定义域、直线的位置、角度等.2.明确分类标准.在确定了需要讨论的对象后,就可以选择合适的分类标准,按照其特征将所有可能会出现的情况全部罗列出来.常见的分类标准有概念、公式、定理的应用条件,代数式的意义,曲线的范围等.3.逐级讨论.在分类后,原先的复杂、困难的问题已经被分为若干个简单、容易的子问题,把所有子问题逐个逐级进行解答,计算出结果即可.当子问题也无法解答时,需要对子问题进一步分类,并且依然要遵循分类标准统一的原则,分类时要做到不重复、不遗漏任何一种情况.4.得出结论.最后需要将所有子问题的结果进行汇总,得到完整的结论.下面举例说明.例1.已知集合M ={a 2,a +1,-3},N ={a -3,2a -1,a 2+1},若M ∩N ={-3},求a 的值.解:因为M ∩N ={-3},所以-3∈N ={a -3,2a -1,a 2+1},(1)若a -3=-3,则a =0,此时M ={1,0,-3},N ={-3,-1,1},M ∩N ={-3,1},故不满足题意;(2)若2a -1=-3,则a =-1,此时M ={}1,0,-3,N ={}-4,-3,2,M ∩N ={}-3,满足题意;(3)若a 2+1=-3,此方程无实数解;所以a =-1.对于集合中求参数的值和参数的取值范围问题,通常要运用分类讨论思想求解.往往需讨论集合中元素的取值,集合是否为空集,含参方程是否有解.只有明确参数的不同取值会导致哪些不同的结果,找到进行分类讨论的原因,才能确定问题研究的对象和分类原则,合理进行分类.例2.设函数f ()x =a ln x +x -1x +1,其中a 为常数,试讨论函数f ()x 的单调性.解:由题意可知函数f ()x 的定义域为(0,+∞),对其求导可得f ′()x =ax 2+()2a +2x +ax (x +1)2,(1)当a ≥0时,f ′()x ≥0,则函数f ()x 在(0,+∞)上单调递增,(2)当a <0时,令g ()x =ax 2+()2a +2x +a ,可得∆=4()2a +1,①当a =-12时,∆=0,f ′()x ≤0,则函数f ()x 在(0,+∞)上单调递减,②当a <-12时,∆<0,f ′()x <0,则函数f ()x 在(0,+∞)上单调递减,③当-12<a <0时,∆>0,所以f ′()x ≤0,设x 1,x 2()x 1<x 2是函数g ()x 的两个零点,则x 1=-()a +1+2a +1a ,x 2=-()a +1-2a +1a,因为x 1=0,所以x ∈(0,x 1)时,g (x )<0,f ′()x <0,则函数f ()x 在(0,+∞)上单调递减;当x ∈(x 1,x 2)时,g (x )>0,f ′()x >0,则函数f ()x 在(0,+∞)上单调递增;当x ∈(x 2,+∞)时,g (x )<0,f ′()x <0,则函数f ()x 在(0,+∞)上单调递减.综上可知:当a ≥0时,函数f ()x 在(0,+∞)上单调递增,当a ≤-12时,函数f ()x 在(0,+∞)上单调递减,当-12<a <0时,函数f ()x 在æèççöø÷÷0,-()a +1+2a +1a ,思路探寻46(-()a+1-2a+1a,+∞)上单调递减,在(-()a+1+2a+1a,-()a+1-2a+1a)上单调递增.含参函数问题主要有两种类型,一是由于函数的概念或性质的限制,需要分类讨论参数的取值或取值范围;二是当参数为函数的系数时,需对参数进行分类讨论,此时要根据函数图象及函数对应方程的判别式来确定分类讨论的分界点.对于二次函数y=ax2+bx+c,当二次项的系数a>0时,二次函数图象的开口向上;当a=0时,该函数为一次函数;当a<0时,二次函数图象的开口向下.二次方程ax2+bx+c=0的判别式∆又决定了二次函数的零点的个数,如下表所示.因此,在讨论二次函数的零点时,可以分∆>0、=0、例3.已知函数f()x=ln xx+1+1x,当x>0且x≠1时,f()x>ln xx−1+k x,求k的取值范围.解:f()x-(ln x x-1+k x)=11-x2[2ln x+()k-1()x2-1x],令h()x=2ln x+()k-1()x2-1x()x>0,则h′()x=()k-1()x2+1+2xx2=k()x2+1-(x-1)2x2,(1)当k≤0时,由h′()x=k()x2+1-(x-1)2x2可知,当x≠1时,h′()x<0,h()1=0,当x∈()0,1时,h()x>0,可得11-x2h()x>0,当x∈()1,+∞时,h′()x<0,可得11-x2h()x>0,所以当x>0且x≠1时,f()x-æèöøln xx-1+k x>0,即f()x>ln xx-1+k x,(2)当0<k<1时,x∈æèöø1,11-k,()k-1(x2+1)+2x>0,所以当x∈æèöø1,11-k时,h()x>0,可得11-x2h()x<0,与题意不相符;(3)当k≥1时,此时h′()x>0,可得11-x2h()x<0,与题意不相符;综上所述,k的取值范围为(-∞,0].解答含参不等式问题,通常需要运用分类讨论思想对不等式的二次项系数以及一元二次不等式对应的方程的根来进行分类讨论.若含参一元二次不等式对应的方程存在两个根,则需要讨论两根的大小关系,进而确定解集.例4.设F1,F2为椭圆x29+y24=1的两个焦点,点P为椭圆上一点,已知点P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则PF1|PF2|=________.解:(1)若∠PF2F1=90°,则|PF1|2=|PF2|2+|F1F2|2,又|PF1|+|PF2|=6,|F1F2|=25,解得|PF1|=143,|PF2|=43,可得|PF1||PF2|=72.(2)若∠F1PF2=90°,则|F1F2|2=|PF1|2+|PF2|2,所以|PF1|2+(6-|PF1|)2=20,又|PF1|>|PF2|,可得|PF1|=4,|PF2|=2,所以|PF1||PF2|=2.综上可知,|PF1||PF2|=72或2.要求|PF1||PF2|,需寻找满足|PF1|>|PF2|的条件,分两种情况讨论Rt△PF1F2的直角所在的位置.解答几何问题,经常要讨论图形中点、直线、曲线的位置,图形的形状、角的取值范围等.总之,对于某些不确定的数量、不确定图形的形状或位置、不确定的结论等,都需运用分类讨论思想,通过分类讨论,保证其完整性,使之具有确定性.分类讨论思想是解答含参集合问题、含参函数问题、含参不等式问题、含参解析几何问题、含参数列问题的重要工具.同学们要熟练掌握分类讨论思想的应用技巧和步骤,使复杂问题简单化.(作者单位:哈尔滨师范大学教师教育学院)思路探寻47。

专题14 直角三角形中的分类讨论模型(解析版)

专题14 直角三角形中的分类讨论模型(解析版)

专题14直角三角形中的分类讨论模型模型1、直角三角形中的分类讨论模型【知识储备】凡是涉及直角三角形问题,优先考虑直角顶点(或斜边)分类讨论,再利用直角三角形的性质或勾股定理解题即可。

1)无图需分类讨论:①已知边长度无法确定是直角边还是斜边时要分类讨论;②已知无法确定是哪个角是直角时要分类讨论(常见与折叠、旋转中出现的直角三角形)。

2)“两定一动”直角三角形存在性问题:(常见于与坐标系综合出题,后续会专题进行讲解)即:如图:已知A ,B 两点是定点,找一点C 构成Rt ABC △方法:两线一圆具体图解:①当︒=∠90BAC 时,过点A 作AB 的垂线,点C 在该垂线上(A 除外)②当︒=∠90ABC 时,过点B 作AB 的垂线,点C 在该垂线上(B 除外)。

③当︒=∠90ACB 时,以AB 为直径作圆,点C 在该圆上(A ,B 除外)。

例1.(2023春·江苏·八年级假期作业)若三角形的三边长是6,8,x ,当2x 的值为时,该三角形是直角三角形.【答案】100或28【分析】三角形是直角三角形,这里给出三边的长,只要用两小边的平方和等于最长边的平方即可求解,所以要分情况讨论,当最长边为8时,和最长边不是8时,再根据勾股定理进行计算.【详解】①最长边为8时,82-62=2x ,则2x =28;②最长边不是8时,82+62=2x ,则2x =100.【点睛】本题考查勾股定理的逆定理,解题的关键是分情况讨论最长边.例2.(2023春·江苏宿迁·八年级统考期末)如图,在ABC 中,9040BAC C ∠=︒∠=︒,,AH 、BD 分别是ABC 的高和角平分线,点E 为BC 边上一点,当BDE 为直角三角形时,则CDE ∠=︒.【答案】50或25/25或50【分析】根据三角形内角和定理得ABC ∠形时,存在两种情况:分别根据三角形外角的性质即可得出结论.【详解】解:∵9040BAC C ∠=︒∠=︒,∵BD 平分ABC ∠∴1DBC ABC ∠=∠=∵40C ∠=︒,∴904050CDE ∠=︒-︒=︒②当90BDE ∠=︒时,如图2,∴902565BED ∠=︒-︒=︒,∵BED ∠=∠综上,CDE ∠的度数为50︒或25︒.故答案为:【点睛】本题考查的是直角三角形的两锐角互余,题的关键.A.1个【答案】C【分析】根据题意,结合图形,分两种情况讨论:其中的一条腰.【点睛】本题考查了等腰直角三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.例4.(2023·江苏·九年级假期作业)外部作等腰直角ABC,或(37),【答案】(74)∵BAC AOB AEC ∠=∠=∠∵AB AC =,∴AOB △≌△同法可得,当AB BC =',当AB 是等腰直角三角形的斜边时,综上所述,满足条件的点.【答案】2或5/5或2【分析】当90B ED ∠'=︒时,先求出时,作AH BC ⊥,证明出ADH 【详解】解:当90B ED ∠'=︒时,如图,AB AC = ,AE BC ⊥,BE ∴=由折叠得BD B D =',AB AB '=在Rt B DE ' 中,224)8(x -+=当90B DE ∠'=︒时,如图,作AH 90B DE ∠'=︒ ,ADB ADB ∴∠=∠6DH AH ∴==,BD BH DH ∴=-【点睛】本题考查了轴对称的性质,勾股定理的应用及等腰直角三角形的性质,掌握勾股定理是解题关键.例8.(2023秋·广东·八年级专题练习)如图,5(1)如图1,若点F 恰好落在边BC 上,判断BDF V 的形状,并证明;(2)如图2,若点F 落在ABC 内,且DF 的延长线恰好经过点C ,CF EF =,求A ∠的度数;(3)若9AB =,当BDF V 是直角三角形时,直接..写出AD 的长.【答案】(1)BDF V 是等边三角形;见解析(2)40A ∠=︒;(3)AD 的长是3或6【分析】(1)根据平行线的性质即可求出相等的角,再根据等边三角形的判定即可得到结论;(2)根据折叠的性质可知角相等,再根据三角形的内角和定理即可得到结果;(3)根据题意分两种情况,再根据图形以及折叠的性质得到AD 的长度.【详解】(1)解:BDF V 是等边三角形,理由如下:∵60B DE BC ∠=︒,∥,∴60ADE B ∠=∠=︒,由折叠可得60FDE ADE ∠=∠=︒,∴60BDF ∠=︒,∴60DFB B BDF ∠=∠=∠=︒,∴BDF V 是等边三角形;(2)解:由折叠可得A DFE ∠=∠,∵60FDE ADE ∠=∠=︒,∴120ADC ∠=︒,∵CF EF =,∴FEC FCE ∠=∠,设FEC FCE x ∠=∠=,则2A DFE FEC FCE x ∠=∠=∠+∠=,在ADC △中,180A ACD ADC ∠+∠+∠=︒,即2120180x x ++︒=︒,解得20x =︒,∴240A x ∠==︒;(3)解:AD 的长是3或6,理由如下:当90BFD ∠=︒时,点F 在ABC 内(如图所示)∵60BDF ∠=︒,∴30DBF ∠=︒,∴2BD DF=由折叠得DF AD =,∴2BD AD =,∴39AD =,∴3AD =;当90DBF ∠=︒时,点F 在ABC 外,同理可得2AD DF BD ==,∴6AD =.【点睛】本题考查了折叠的性质,等边三角形的性质,含30︒角的直角三角形的性质,平行线的性质,根据题意画出图形是解题的关键.例10.(2023秋·江苏盐城·八年级统考期末)如图,已知直线1l 经过点()5,6,交x 轴于点()30A -,,直线2:3l y x=交直线1l 于点B .(1)求直线1l 的函数表达式和点B 的坐标;(2)求AOB 的面积;(3)在x 轴上是否存在点C ,使得ABC 是直角三角形?若存在,求出点C 的坐标:若不存在,请说明理由.39=+;()1,3(2)9(3)()1,0 y x②当90ABC ∠=︒时,点C 在图中C 的位置:设【答案】(1)见解析;(2)①721y x =--;②()4,2Q 或2022,33⎛⎫ ⎪⎝⎭.【分析】(1):利用角的数量关系可求得D E ∠=∠,ACD EBC ∠=∠,然后根据(2)①:过点B 作BC AB ⊥交2l 于C ,过C 作CD y ⊥轴于D ,由(1三角形的性质求出C 的坐标,再利用待定系数法求2l 的解析式即可;②可得:(AAS)AMQ QNP ≌,利用全等三角形的性质建立关系式求解即可.∵45BAC ∠=︒,∴ABC ∵14:43l y x =+,令y =令0x =,则4y =,∴∴437OD =+=.∴C 将点(3,0)A -,(4,7C -当90AQP ∠=︒时,由(1)同理可证:∴QN AM =,即86(2m m -=--【点睛】本题主要考查了全等三角形的判定和性质、待定系数法求一次函数解析式等知识点,灵活运用全等三角形的性质是解题的关键.课后专项训练A.2【答案】D【分析】由条件可求得t<<两种情况,根据当610三角形的性质求解即可得.△【详解】解:在Rt ABC【答案】90︒或34︒【分析】分当90A ∠=︒时,当【详解】解:当90A ∠=︒时,满足【答案】2483-或【分析】由等边三角形的性质可得角三角形的性质可求【答案】125或247或325①当04t <≤时,3AP t =,BP 在Rt BPQ 中,2BP BQ =,即12②当46t <≤时,312BP t =-,①当04t <≤时,3AP t =,BP AB =在Rt BPQ 中,2BQ BP =,即2t =②当46t <≤时,312BP t =-,在【答案】3-【分析】分两种情况:即可求得EF;当EF.【答案】103或53【分析】分BMN ∠=【详解】解:由题意得,当90BMN ∠=︒时,【答案】30︒或45︒【分析】分两种情况:当点E在∆外时,由折叠可得:AE在ACB【详解】解:分两种情况:如图,由折叠可得:AE AC =,C ∠= AD 平分CAE ∠,45CAD ∴∠=︒,故答案为30︒或45︒.【点睛】本题考查折叠的性质,解本题要注意分类讨论.熟练掌握折叠的性质、直角三角形的性质和三角【答案】4,6或73【分析】由题意分AD =BD 【详解】解:如图,当AD ∵Rt △ABC 中,∠C =90°∵AB =BD ,∴CD BD BC =-如图,当AB =AD 时,∵AB =BD ,∠C =90°,∴综上可得CD 的长为4,【点睛】本题考查等腰三角形的性质以及勾股定理的应用,熟练掌握利用方程根据勾股定理建立方程求解以及进行全面思考、分类讨论是解题的关键12.(2023春·江苏·八年级期末)在为线段AB 上的动点,当【答案】69°或11°【分析】分情况讨论,当∠时,通过三角形内角和求出∠【详解】∵80C ∠=︒,∠∵BD平分∠ABC,∴∠DBE如图,当∠ADE=90°时,∵BD平分∠ABC,∴∠DBC∴∠ADB=∠DBC+∠C=21°+80°=101°【点睛】本题考查了三角形内角和定理、角平分线的定义和三角形外角的性质,解题的关键是根据题意画一共可作出6【点睛】本题考查了等腰直角三角形,作出图形,利用数形结合的思想求解更形象直观.14.(2023·江苏兴化·八年级期中)在Rt△ABC中,∠BAC=90°,点D、E在边BC所在的直线上,且AB=DB,AC=EC,则∠DAE的度数为________.【答案】45°或135°【分析】分四种情况:若点D 、E 在线段BC 上时;若点D 在线段BC 上,点E 在BC 的延长线上时;若点D 在CB 的延长线上点E 在BC 的延长线上时;若点D 在CB 的延长线上,点E 在线段BC 上时讨论,即可求解.【详解】解:如图,若点D 、E 在线段BC 上时,∵AB =DB ,AC =EC ,∴∠BAD =∠ADB ,∠CAE =∠AEC ,∴∠BAE +∠DAE =∠CAD +∠C ,∠CAD +∠DAE =∠BAE +∠B ,∴∠BAE +∠CAD +2∠DAE =∠CAD +∠BAE +∠B +∠C ,∴2∠DAE =∠B +∠C ,∵∠BAC =90°,∴∠B +∠C =90°,∴∠DAE =45°;如图,若点D 在线段BC 上,点E 在BC 的延长线上时,∵AC =EC ,∴可设∠E =∠CAE =x ,∴∠ACB =∠E +∠CAE =2x ,∵∠BAC =90°,∴∠B =90°-∠ACB =90°-2x ,∵AB =DB ,∴()1180452BAD ADB B x ∠=∠=︒-∠=︒+,∵∠ADB =∠DAE +∠E ,∴∠DAE =45°;如图,若点D 在CB 的延长线上,点E 在BC 的延长线上时,∵AC =EC ,∴∠E =∠CAE ,∴∠ACB =∠E +∠CAE =2∠CAE ,∵AB =DB ,∴∠D =∠BAD ,∴∠ABC =∠D +∠BAD =2∠BAD ,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∴2∠CAE +2∠BAD =90°,∴∠CAE +∠BAD =45°,∴∠DAE =∠CAE +∠BAD +∠BAC =135°;如图,若点D 在CB 的延长线上,点E 在线段BC 上时,∵AB =DB ,∴可设∠D =∠BAD =y ,∴∠ABC =∠D +∠BAD =2y ,∴∠ABC =2y ,∵∠BAC =90°,∴∠C =90°-2y ,∵AC =EC ,∴∠AEC =∠CAE =()1180452C y ︒-∠=︒+,∵∠AEC =∠D +∠DAE ,∴∠DAE =45°综上所述,∠DAE 的度数为45°或135°.故答案为:45°或135°【点睛】本题主要考查等腰三角形的性质,直角三角形两锐角互余,利用分类讨论思想解答是解题的关键.15.(2022·广东·八年级课时练习)如图,60BOC ∠=︒,点A 是BO 延长线上的一点,10cm OA =,动点P 从点A 出发沿AB 以3cm/s 的速度移动,动点Q 从点O 出发沿OC 以1cm/s 的速度移动,如果点P Q ,同时出发,用(s)t 表示移动的时间,当t =_________s 时,POQ △是等腰三角形;当t =_________s 时,POQ △是直角三角形.5类时注意不能遗漏,也不能重复.16.(2022·浙江·义乌市八年级期中)如图,已知Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P是BC 边上的一个动点,点B与B′是关于直线AP的对称点,当△CPB'是直角三角形时,BP的长=_______.24=5,PB′2,是矩形,2,1,17.(2022·河北承德·八年级期末)如图,60ABC ∠=︒,3AB =,动点P 从点B 出发,以每秒1个单位长度的速度沿射线BC 运动,嘉琪在研究过程中发现,随着点Р运动,ABP △形状在发生变化,设点P 的运动时间为t 秒.(1)当ABP △是直角三角形时,t 的值为______;(2)当ABP △是钝角三角形时,t 满足的条件是__________.19.(2022·江苏镇江·八年级期中)点P,Q分别是边长为4cm的等边△ABC的边AB,BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都是1cm/s,设运动时间为t秒.(1)连接AQ,CP交于点M,则在P,Q运动的过程中,∠CMQ变化吗?若变化,则说明理由;若不变,则求出它的度数;(2)连接PQ.①当△BPQ为等边三角形时,t=秒;②当△BPQ为直角三角形时,t=秒.(直接写出结果)(1)点M,N运动几秒后,AMN如存在,请求出此时∆?到直角三角形AM N【答案】(1)12秒(2)存在,,AMN ANM ∴∠=∠,∴∠AB BC AC == ,ΔACB ∴AMC ANB Ð=ÐQ ,C ∠=CM BN ∴=,1236t ∴-=2BN t = ,AM t =,AN ∴如图,若90ANM ∠=︒,由2AN AM =,则2(12当点N 在AC 上运动时,点当点N 在BC 上运动时,如图,当点由ABC ∆时等边三角形知如图,当点M 位于BC 中点处时,由ABC ∆时等边三角形知AM 综上,当3t =或245或15或【点睛】本题考查了等边三角形的性质及判定,全等三角形的性质与判定,等腰三角形的性质,角三角形的性质,关键是根据题意设出未知数,理清线段之间的数量关系.(1)在图2的ABC 中,20C ∠=︒,110ABC ∠=︒.请在图2中画出ABCDBC ∠的度数;(2)已知20C ∠=︒,在图3中画出两种不同于图1、图2的ABC ,所画ABC 同时满足:①∠C 为最小角;②存在关于点B 的伴侣分割线,请画出其伴侣分割线,标出所画ABC 中各个角的度数.【答案】(1)见解析(2)见解析【分析】(1)首先了解伴侣分割线的定义,然后把∠ABC 分成90°角和20°角即可;(2)根据等腰三角形的性质,直角三角形的性质和三角形内角和求解即可.【详解】(1)如图所示:(2)如图所示:【点睛】本题考查了作图—应用与设计作图,直角三角形的性质,等腰三角形的性质及三角形内角和定理,涉及分类讨论,解题的关键是掌握等腰三角形的性质和直角三角形的性质.23.(2023秋·四川成都·八年级校考期末)如图,在平面直角坐标系内,点O 为坐标原点,经过A(-2,6)的直线交x 轴正半轴于点B ,交y 轴于点C ,OB=OC ,直线AD 交x 轴负半轴于点D ,若△ABD 的面积为27.(1)求直线AD 的解析式;(2)横坐标为m 的点P 在AB 上(不与点A ,B 重合),过点P 作x 轴的平行线交AD 于点E ,设PE 的长为y (y≠0),求y 与m 之间的函数关系式并直接写出相应的m 的取值范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使△PEF 为等腰直角三角形?若存在求出点F 的坐标,若∴EF=-m+4,∴-m+4=3 2③当∠PFE=90°时,如图∵∠FPE+∠EFP+∠FEP=180°∴∠PFR=180°-∠FPE-∠∵点R与点E的纵坐标相同,∴∴PR=FR=-m+4=-107+4=18。

数三角形奥数题技巧

数三角形奥数题技巧

数三角形奥数题技巧摘要:1.数三角形的基本概念与分类2.数三角形的方法与技巧3.典型例题解析4.练习与提高的建议正文:在我们日常生活中,数学题型繁多,其中数三角形是一种具有趣味性和挑战性的题目。

要解决这类题目,我们需要掌握一定的方法和技巧。

接下来,我们将详细介绍数三角形的基本概念、方法与技巧,并通过典型例题进行解析,以帮助大家更好地应对这类题目。

一、数三角形的基本概念与分类三角形是由三条线段(边)和三个顶点组成的平面几何图形。

根据三角形的角度和边长关系,我们可以将三角形分为以下几类:1.直角三角形:有一个角为90度的三角形。

2.锐角三角形:三个角都小于90度的三角形。

3.钝角三角形:有一个角大于90度的三角形。

二、数三角形的方法与技巧1.了解三角形的性质:掌握三角形的角度和边长关系,如三角形内角和为180度,三角形两边之和大于第三边等。

2.分类讨论:根据题目要求,对三角形进行分类讨论,如按角度分类、按边长分类等。

3.利用数学公式:熟练掌握三角形的相关公式,如三角函数、勾股定理等。

4.画图辅助:对于复杂题目,可以通过画图来辅助解题,直观地分析问题。

5.举例验证:通过举例验证方法的正确性,避免走入死胡同。

三、典型例题解析例题1:已知一个直角三角形的一条直角边长为3,另一条直角边长为4,求斜边长。

解:利用勾股定理,斜边长=√(3+4)=5。

例题2:已知一个锐角三角形的三个角分别为45度、45度和90度,求三角形边长。

解:设三角形边长为a、b,根据角度和为180度,可得a=b。

又因为45度角所对的边长为a/√2,可得a=2。

四、练习与提高的建议1.多做习题:通过大量练习,熟练掌握数三角形的技巧。

2.总结经验:在做题过程中,总结经验教训,形成自己的解题方法。

3.查阅资料:遇到难题时,查阅相关资料,如数学课本、参考书等。

4.请教老师或同学:在遇到疑问时,及时请教老师或同学,共同探讨解题方法。

总之,数三角形作为一种有趣的数学题目,需要我们掌握一定的方法和技巧。

模型33 两垂一圆构造直角三角形(解析版)

模型33 两垂一圆构造直角三角形(解析版)

模型介绍【模型】平面内有两点A,B,再找一点C,使得ΔABC为直角三角形.【结论】分类讨论:若∠A=90°,则点C在过点A且垂直于AB的直线上(除点A外);若∠B=90°,则点C在过点B且垂直于AB的直线上(除点B外);若∠C=90°,则点C在以AB为直径的圆上(除点A,B外).以上简称“两垂一圆”.“两垂一圆”上的点能构成直角三角形,但要除去A,B两点.例题精讲【例1】.在平面直角坐标系中,有两点A(3,0),B(9,0)及一条直线,若点C在已知直线上,且使△ABC为直角三角形,则点C的坐标是(3,),(9,6),(,).解;当点C在C1处时,△ABC为直角三角形,C的坐标是(3,),当点C在C2处时,△ABC为直角三角形,C的坐标是(9,6)当点C在C3处时,△ABC为直角三角形,过C3作C3M⊥AB,设C3的横坐标是x,则C3M=,AM=x﹣3,BM=9﹣x,∵△AC3B是直角三角形,∴△AMC3∽△C3MB,∴AM:C3M=C3M:BM,∴C3M2=AM•BM,∴()2=(x﹣3)(9﹣x),解得:x=,点C的纵坐标是:﹣=,∴点C的坐标是:(,);故答案为:(3,),(9,6),(,).变式训练【变式1-1】.在平面直角坐标系中,点A的坐标是(﹣8,﹣8),点B在坐标轴上,且△OAB 是等腰直角三角形,则点B的坐标不可能是()A.(0,﹣8)B.(﹣8,0)C.(﹣16,0)D.(0,8)解:如图,△OAB是等腰直角三角形,∵A(﹣8,﹣8),∴OB=8,∴B(﹣8,0);如图,△OAB是等腰直角三角形,∵A(﹣8,﹣8),∴OB=16,∴B(﹣16,0);如图,△OAB是等腰直角三角形,∵A(﹣8,﹣8),∴OB=8,∴B(0,﹣8).故B点的坐标不可能是(0,8),故选:D.【变式1-2】.在平面直角坐标系xOy中,点A的坐标为(2,0),点B的坐标为(0,4),直线l经过(﹣1,0)并且与x轴垂直于点D,请你在直线l上找一点C,使△ABC为直角三角形,并求出点C的坐标.解:设点C的坐标为(﹣1,b),AB2=22+42=20,AC2=32+b2,BC2=(4﹣b)2+12,当∠ABC=90°时,(4﹣b)2+12+20=32+b2,解得,b=;当∠BAC=90°时,(4﹣b)2+12=20+32+b2,解得,b=﹣;当∠ACB=90°时,(4﹣b)2+12+32+b2=20,解得b1=1,b2=3,∴△ABC为直角三角形时,点C的坐标为(﹣1,),(﹣1,﹣),(﹣1,1),(﹣1,3).【例2】.如图,在平面直角坐标系中,已知A(4,0),B(0,3),以AB为一边在△AOB 外部作等腰直角△ABC.则点C的坐标为(7,4)或(3,7)或().解:如图,当AB=AC,∠=90°时,作CE⊥x轴于E.∵∠BAC=∠AOB=∠AEC=90°,∴∠ABO+∠BAO=90°,∠OAB+∠CAE=90°,∴∠ABO=∠CAE,∵AB=AC,∴△AOB≌△CEA(AAS),∴AE=OB=3,CE=OA=4,∴C(7,4),同法可得,当AB=BC′,∠ABC′=90°,C′(3,7),当AB是等腰直角三角形的斜边时,C″是BC的中点,C″(,),综上所述,满足条件的点C的坐标为(7,4)或(3,7)或(,).故答案为:(7,4)或(3,7)或(,).变式训练【变式2-1】.如图,在5×4的正方形网格中,每个小正方形的边长均为1,点A、B均在格点上.在格点上确定点C,使△ABC为直角三角形,且面积为4,则这样的点C的共有()A.1个B.2个C.3个D.4个解:点C的位置如图所示,共有3个.故选:C.【变式2-2】.如图,在平面直角坐标系xOy中,点A,B的坐标分别为A(0,2),B(8,8),点C(m,0)为x轴正半轴上一个动点.(1)当m=4时,写出线段AC=2,BC=4.(2)求△ABC的面积.(用含m的代数式表示)(3)当点C在运动时,是否存在点C使△ABC为直角三角形,如果存在,请求出这个三角形的面积;如果不存在,请说明理由.解:(1)如图,过点B作BE⊥x轴于E,∵点A(0,2),点B(8,8)C(4,0)∴BE=8,OE=8,AO=2,OC=4,∴CE=4,∴AC===2,BC==4,故答案为:2,4;(2)当点C在OE上时,∵点A(0,2),点B(8,8),点C(m,0)∴BE=8,OE=8,AO=2,OC=m,=×(AO+BE)×OE﹣×AO×OC﹣×BE×CE,∴S△ABC=×(2+8)×8﹣×2×m﹣×8×(8﹣m)=8+3m;∴S△ABC当点C在线段OE的延长线上时,=×(AO+BE)×OE+×BE×CE﹣×AO×OC∵S△ABC=×(2+8)×8+×8×(m﹣8)﹣×2×m=3m+8,∴S△ABC=3m+8;综上所述:S△ABC(3)当∠BAC=90°时,BC2=AB2+AC2,则64+(8﹣m)2=64+(8﹣2)2+4+m2,解得m=,=3×+8=;∴S△ABC当∠ACB=90°时,AB2=AC2+BC2,则64+(8﹣2)2=4+m2+64+(8﹣m)2,解得m=4,=3×4+8=20;∴S△ABC当∠ABC=90°时,AC2=AB2+BC2,则4+m2=64+(8﹣2)2+64+(8﹣m)2,解得m=14,=3×14+8=50;∴S△ABC综上所述:存在m的值为或4或14,使△ABC为直角三角形,面积为或20或50.1.在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(3,0),点P在反比例函数y =的图象上.若△PAB为直角三角形,则满足条件的点P的个数为()A.2个B.4个C.5个D.6个解:设点P的坐标为(x,y),当∠APB=90°时,以AB为直径作圆,如图所示,∵圆与双曲线无交点,∴点P不存在;当∠PAB=90°时,x=﹣3,y==﹣3,∴点P的坐标(﹣3,﹣3);当∠PBA=90°时,x=3,y==3,∴点P的坐标为(3,3).综上所述:满足条件的点P有2个.故选:A.2.如图,已知A(2,6)、B(8,﹣2),C为坐标轴上一点,且△ABC是直角三角形,则满足条件的C点有()个.A.6B.7C.8D.9解:分三种情况考虑:①当A为直角顶点时,过A作AC⊥AB,交x轴于点C1,交y轴于点C2,此时满足题意的点为C1,C2;②当B为直角顶点时,过B作BC⊥AB,交x轴于点C3,交y轴于点C4,此时满足题意的点为C3,C4;③当C为直角顶点时,以AB为直径作圆,由A(2,6)、B(8,﹣2),可得此圆与y 轴相切,则此圆与y轴有1个交点,与x轴有2个交点,分别为C5,C6,C7.综上,所有满足题意的C有7个.故选:B.3.如图,已知点A(﹣1,0)和点B(1,2),在y轴正半轴上确定点P,使得△ABP为直角三角形,则满足条件的点P的坐标为(0,3)或(0,1+).解:如图,过B作BP⊥AB,交y轴于P,过B作BD⊥CP于D,则∠ABP=90°,BD =1,∵点A(﹣1,0)和点B(1,2),∴直线AB的表达式为y=x+1,令x=0,则y=1,∴C(0,1),即OC=1=OA,∴△AOC是等腰直角三角形,∴∠ACO=45°=∠BCP,∴△BCP是等腰直角三角形,∴CP=2BD=2,∴OP=1+2=3,∴P(0,3);如图,当∠APB=90°时,△ABP是直角三角形,∵点A(﹣1,0),点B(1,2),点C(0,1),∴C为AB的中点,AB=2,∴CP=AB=,∴OP=1+,∴P(0,1+),综上所述,点P的坐标为(0,3)或(0,1+).故答案为:(0,3)或(0,1+).4.如图,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(﹣2,0);(2)在y轴上画点C,使△ABC为直角三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.解:(1)如图所示:(2)满足条件的点有2个,C(0,﹣2)或(0,0).5.如图,在平面直角坐标系中,点A坐标为(6,0),点B坐标为(2,﹣2),直线AB与y轴交于点C.(1)求直线AB的函数表达式及线段AC的长;(2)点B关于y轴的对称点为点D.①请直接写出点D的坐标为(﹣2,﹣2);②在直线BD上找点E,使△ACE是直角三角形,请直接写出点E的横坐标为或7或3+或3﹣.解:(1)设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为y=x﹣3;令x=0,则y=﹣3,∴C(0,﹣3).∴OC=3,∵点A坐标为(6,0),∴OA=6,∴AC===3;(2)①∵点B与点D关于y轴的对称,∴D(﹣2,﹣2);故答案为:(﹣2,﹣2);②当∠ACE=90°时,如图,∵EC⊥AC,∴直线EC的解析式为y=﹣2x﹣3,令y=﹣2,则﹣2x﹣3=﹣2,∴x=﹣,∴E(,﹣2);当∠CAE=90°时,如图,∵EC⊥AC,∴设直线EC的解析式为y=﹣2x+m,∴0=﹣2×6+m=0,∴m=12,∴直线EC的解析式为y=﹣2x+12,令y=﹣2,则﹣2=﹣2x+12,∴x=7,E(7,﹣2);当∠AEC=90°时,如图,过点E作EF⊥x轴于点F,过点C作CG⊥FE,交FE的延长线于点G,∵∠AEC=90°,∴∠FEA+∠CEG=90°,∵CG⊥FE,∴∠GCE+∠CEG=90°,∠GCE=∠FEA,∵∠CGE=∠AFE=90°,∴△CGE∽△EFA,∴.由题意得:CG=OF=6+AF,EF=OH=2,EG=CH=1,∴.∴AF=﹣3.∴OF=3+,∴E(3+,﹣2),同理可求当点E在y轴左侧时,E(3﹣,﹣2).综上,在直线BD上找点E,使△ACE是直角三角形,点E的横坐标为或7或3+或3﹣.故答案为:或7或3+或3﹣.6.图1、图2是两张形状、大小完全相同的方格纸,方格纸的每个小正方形的边长均为1,点A,B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形,并且面积为4;(画一个即可)(2)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为钝角三角形,并且面积为4.(画一个即可)解:(1)如图1:(2)如图2:7.如图,在平面直角坐标系中,△ABO为等腰直角三角形,∠AOB=90°,AO=BO,点A的坐标为(3,1).(1)求点B的坐标;(2)在x轴上找一点P,使得PA+PB的值最小,求出点P的坐标;(3)在第四象限是否存在一点M,使得以点O,A,M为顶点的三角形是等腰直角三角形,若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.解:(1)过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵点A的坐标为(3,1),∴OC=3,AC=1,又∵AC⊥x轴,BD⊥x轴,∴∠ACO=∠BDO=90°,∴∠OAC+∠AOC=90°,又∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OAC=∠BOD,又∵AO=BO,∴△AOC≌△OBD(AAS),∴OC=BD=3,AC=OD=1,∴点B的坐标为(﹣1,3);(2)如图2,作点B关于x轴的对称点B',连接AB'交x轴于点P,连接BP,由对称性可知BP=B'P,∴AP+BP=AP+B'P≥AB',∴当A、B'、P三点共线时PA+PB的值最小,连接BB'交x轴于点E,则E(﹣1,0),∵点B与B'关于x轴对称,∴点B'的坐标为(﹣1,﹣3),设直线AB'的解析式为y=kx+b,∴,∴,∴y=x﹣2,∴P(2,0);(3)存在一点M,使得以点O,A,M为顶点的三角形是等腰直角三角形,理由如下:①当∠AOM=90°时,AO=OM,如图3,过点A作AF⊥y轴交于点F,过点M作ME⊥y轴交于点E,∵∠FOA+∠FAO=90°,∠FOA+∠EOM=90°,∴∠FAO=∠EOM,∵AO=OM,∴△FAO≌△EOM(AAS),∴OF=EM,OE=FA,∵A(3,1),∴AF=3,OF=1,∴M(1,﹣3);②如图4,当∠OAM=90°时,OA=AM,过点A作AF⊥y轴交于F点,过点M作MG⊥AF交于点G,∵∠FAO+∠FOA=90°,∠FAO+∠GAM=90°,∴∠AFO=∠GAM,∴△FAO≌△GMA(AAS),∴AF=GM,OF=AF,∵A(3,1),∴AF=3,OF=1,∴M(4,﹣2);③如图5,当∠OMA=90°时,OM=AM,过点M作MQ⊥y轴交于Q点,过点A作AP⊥QM交于P点,∵∠OMQ+∠QOM=90°,∠OMQ+∠AM=90°,∴∠QOM=∠AMP,∴△OQM≌△MPA(AAS),∴OQ=MP,QM=AP,∵A(3,1),∴QM+MP=3,1+QO=QM,∴1+QO+OQ=3,∴QO=1,∴M(2,﹣1);综上所述:M点坐标为(1,﹣3)或(4,﹣2)或(2,﹣1).8.已知:直线y=+6与x轴、y轴分别相交于点A和点B,点C在线段AO上.将△ABO 沿BC折叠后,点O恰好落在AB边上点D处.(1)直接写出A、B两点的坐标:A:(﹣8,0),B:(0,6);(2)求出OC的长;(3)如图,点E、F是直线BC上的两点,若△AEF是以EF为斜边的等腰直角三角形,求点F的坐标;(4)取AB的中点M,若点P在y轴上,点Q在直线AB上,是否存在以C、M、P、Q 为顶点的四边形为平行四边形?若存在,请求出所有满足条件的Q点坐标;若不存在,请说明理由.解:(1)如图1,直线y=+6,当y=0时,由0=+6得,x=﹣8;当x=0时,y=6,∴A(﹣8,0),B(0,6),故答案为:(﹣8,0),(0,6).(2)如图1,由折叠得,DB=OB=6,DC=OC,∠BDC=∠BOC=90°,∴∠ADC=180°﹣∠BDC=90°,AC=8﹣OC,∵AB===10,∴AD=10﹣6=4,∵CD2+AD2=AC2,∴OC2+42=(8﹣OC)2,解得,OC=3.(3)如图2,作AG⊥EF于点G,GT⊥x轴于点T,∵OC=3,∴BC===,AC=8﹣3=5,得,×AG=×5×6,解得,AG=,由BC•AG=AC•OB=S△ABC∵AE=AF,∠EAF=90°,∴EG=FG,∴AG=EF=EG=FG=,∵∠AGC=90°,∴CG===,∴CE=+=,∴CE=BC,∴点E与点B关于点C对称,∵C(﹣3,0),B(0,6),∴E(﹣6,﹣6);得,×5GT=××,解得,GT=2,由AC•GT=AG•CG=S△AGC∵∠ATG=90°,∴AT===4,∴OT=8﹣4=4,∴G(﹣4,﹣2),∵CF=FG﹣CG=﹣=,∴CF=CG,∴点F与点G(﹣4,﹣2)关于点C(﹣3,0)对称,∴F(﹣2,2),综上所述,点F的坐标为(﹣6,﹣6)或(﹣2,2).(4)存在.如图3,四边形PQMC是平行四边形,则CP∥QM,PQ∥CM,设直线PC的解析式为y=x+a,则×(﹣3)+a=0,解得,a=,∴y=x+,∴P(0,);∵M是AB的中点,∴M(﹣4,3),设直线CM的解析式为y=kx+b,则,解得,,∴y=﹣3x﹣9,∴直线PQ的解析式为y=﹣3x+,由得,,∴Q(﹣1,);如图3,四边形P′Q′CM是平行四边形,则P′Q′∥CM∥PQ,P′Q′=CM=PQ,∴∠BP′Q′=∠BPQ,∠BQ′P′=∠BQP,∴△BP′Q′≌△BPQ(ASA),∴BQ′=BQ,∴点Q′与点Q关于点B(0,6)对称,∴Q′(1,);如图3,L为CM的中点,PL的延长线交AB于点Q1,连接CQ1,∵∠LQ1M=∠LPC,∠LMQ1=∠MCP,ML=CL,∴△LMQ1≌△LCP(AAS),∴Q1M=CP,∵Q1M∥CP,∴四边形PMQ1C是平行四边形,∴点Q1与点P关于点L对称,∵L(,),P(0,),∴Q1(﹣7,),综上所述,点Q的坐标为(﹣1,)或(1,)或(﹣7,).9.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,且与y轴相交于点C,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点C的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为直角三角形,请直接写出所有符合条件的点M的坐标.解:∵抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,∴,∴,∴抛物线的解析式为y=x2﹣2x﹣3,(2)如图1,∵点A,B关于直线l对称,∴连接BC交直线l于点P,由(1)知,抛物线的解析式为y=x2﹣2x﹣3,∴直线l:x=1,C(0,﹣3),∵B(3,0),∴直线BC的解析式为y=x﹣3,当x=1时,y=﹣2,∴P(1,﹣2),(3)设点M(1,m),∵A(﹣1,0),C(0,﹣3),∴AC2=10,AM2=m2+4,CM2=(m+3)2+1=m2+6m+10,∵△MAC为直角三角形,∴当∠ACM=90°时,∴AC2+CM2=AM2,∴10+m2+6m+10=m2+4,∴m=﹣,∴M(1,﹣)当∠CAM=90°时,∴AC2+AM2=CM2,∴10+m2+4=m2+6m+10,∴m=,∴M(1,)当∠AMC=90°时,AM2+CM2=AC2,∴m2+4+m2+6m+10=10,∴m=﹣1或m=﹣2,∴M(1,﹣1)或(1,﹣2),即:满足条件的点M的坐标为(1,﹣)或(1,)或(1,﹣1)或(1,﹣2).10.如图1,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0),B(6,0),与y轴交于点C,顶点为D,直线AD交y轴于点E.(1)求抛物线的解析式.(2)如图2,将△AOE沿直线AD平移得到△NMP.①当点M落在抛物线上时,求点M的坐标.②在△NMP移动过程中,存在点M使△MBD为直角三角形,请直接写出所有符合条件的点M的坐标.解:(1)抛物线的表达式为:y=a(x+2)(x﹣6)=a(x2﹣4x﹣12)=ax2﹣4ax﹣12a,即:﹣12a=6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,令y=0,解得:x=4或﹣2,故点A(﹣2,0),函数的对称轴为:x=2,故点D(2,8);(2)由点A、D的坐标得,直线AD的表达式为:y=2x+4,设点N(n,2n+4),∵MN=OA=2,则点M(n+2,2n+4),①将点M的坐标代入抛物线表达式得:2n+4=﹣(n+2)2+2(n+2)+6,解得:n=﹣2±2,故点M的坐标为(2,4)或(﹣2,﹣4);②点M(n+2,2n+4),点B、D的坐标分别为(6,0)、(2,8),则BD2=(6﹣2)2+82,MB2=(n﹣4)2+(2n+4)2,MD2=n2+(2n﹣4)2,当∠BMD为直角时,由勾股定理得:(6﹣2)2+82=(n﹣4)2+(2n+4)2+n2+(2n﹣4)2,解得:n=;当∠MBD为直角时,同理可得:n=﹣4,当∠MDB为直角时,同理可得:n=,故点M的坐标为:(﹣2,﹣4)或(,)或(,)或(,).11.如图,顶点为A(﹣4,4)的二次函数图象经过原点(0,0),点P在该图象上,OP 交其对称轴l于点M,点M、N关于点A对称,连接PN,ON.(1)求该二次函数的表达式;(2)若点P的坐标是(﹣6,3),求△OPN的面积;(3)当点P在对称轴l左侧的二次函数图象上运动时,请解答下面问题:①求证:∠PNM=∠ONM;②若△OPN为直角三角形,请直接写出所有符合条件的点P的坐标.(1)解:设二次函数的表达式为y=a(x+4)2+4,把点(0,0)代入表达式,解得.∴二次函数的表达式为,即;(2)解:设直线OP为y=kx(k≠0),将P(﹣6,3)代入y=kx,解得,∴.当x=﹣4时,y=2.∴M(﹣4,2).∵点M、N关于点A对称,∴N(﹣4,6).∴MN=4.=S△OMN+S△PMN=12;∴S△PON(3)①证明:设点P的坐标为,其中t<﹣4,设直线OP为y=k′x(k′≠0),将P代入y=k′x,解得.∴.当x=﹣4时,y=t+8.∴M(﹣4,t+8).∴AN=AM=4﹣(t+8)=﹣t﹣4.设对称轴l交x轴于点B,作PC⊥l于点C,则B(﹣4,0),C.∴OB=4,NB=4+(﹣t﹣4)=﹣t,PC=﹣4﹣t,NC==.则,.∴.又∵∠NCP=∠NBO=90°,∴△NCP∽△NBO.∴∠PNM=∠ONM.②△OPN能为直角三角形,理由如下:解:分三种情况考虑:(i)若∠ONP为直角,由①得:∠PNM=∠ONM=45°,∴△PCN为等腰直角三角形,∴CP=NC,即m﹣4=m2﹣m,整理得:m2﹣8m+16=0,即(m﹣4)2=0,解得:m=4,此时点A与点P重合,故不存在P点使△OPN为直角三角形;(ii)若∠PON为直角,根据勾股定理得:OP2+ON2=PN2,∵OP2=m2+(﹣m2﹣2m)2,ON2=42+m2,AN2=(m﹣4)2+(﹣m2﹣2m+m)2,∴m2+(﹣m2﹣2m)2+42+m2=(m﹣4)2+(﹣m2﹣2m+m)2,整理得:m(m2﹣8m﹣16)=0解得:m=0或m=﹣4﹣4或﹣4+4(舍去),当m=0时,P点与原点重合,故∠PON不能为直角,当m=﹣4﹣4,即P(﹣4﹣4,4)时,N为第四象限点,成立,故∠PON能为直角;(iii)若∠NPO为直角,可得∠NPM=∠OBM=90°,且∠PMN=∠BMO,∴△PMN∽△BMO,又∵∠MPN=∠OBN=90°,且∠PNM=∠OND,∴△PMN∽△BON,∴△PMN∽△BMO∽△BON,∴=,即=,整理得:(m﹣4)2=0,解得:m=4,此时A与P重合,故∠NPO不能为直角,综上,点P在对称轴l左侧的二次函数图象上运动时,△OPN能为直角三角形,当m=4+4,即P()时,N为第四象限的点成立.12.如图,在平面直角坐标系中,二次函数y=x2+bx+c的对称轴为经过点(1,0)的直线,其图象与x轴交于点A、B,且过点C(0,﹣3),其顶点为D.(1)求这个二次函数的解析式及顶点坐标;(2)在y轴上找一点P(点P与点C不重合),使得∠APD=90°,求点P的坐标;(3)在(2)的条件下,将△APD沿直线AD翻折得到△AQD,求点Q的坐标.解:(1)由题意得二次函数图象的对称轴x=1,则﹣=1,b=﹣2.又二次过点C(0,﹣3),∴﹣3=c,c=﹣3.即二次函数解析式为:y=x2﹣2x﹣3由y=x2﹣2x﹣3=(x﹣1)2﹣4,得顶点坐标D为:(1,﹣4);(2)(2)解法一:设P(0,m)由题意,得PA=,PD=,AD=2,∵∠APD=90°,∴PA2+PD2=AD2,即()2+()2=(2)2解得m1=﹣1,m2=﹣3(不合题意,舍去).∴P(0,﹣1);解法二:如图,作DE⊥y轴,垂足为点E,则由题意,得DE=1,OE=4…(1分)由∠APD=90°,得∠APO+∠DPE=90°,由∠AOP=90°,得∠APO+∠OAP=90°,∴∠OAP=∠EPD又∠AOP=∠OED=90°,∴△OAP∽△EPD∴=,设OP=m,PE=4﹣m则=,解得m1=1,m2=3(不合题意,舍去),∴P(0,﹣1);(3)解法一:如图,作QH⊥x轴,垂足为点H,易得PA=AQ=PD=QD=,∠PAQ=90°,∴四边形APDQ为正方形.由∠QAP=90°,得∠HAQ+∠OAP=90°,由∠AOP=90°,得∠APO+∠OAP=90°,∴∠OPA=∠HAQ,又∠AOP=∠AHQ=90°,PA=QA∴△AOP≌△AHQ,∴AH=OP=1,QH=OA=3.∴Q(4,﹣3);解法二:设Q(m,n),则AQ==,QD==,解得,(不合题意,舍去),∴Q(4,﹣3).13.如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.解:(1)将B(0,1),D(1,0)的坐标代入y=x2+bx+c,得:,解得,∴解析式y=x2﹣x+1.(2)当P在x轴上的任何位置(点A除外)时,根据三角形两边之差小于第三边得|PB ﹣PC|<BC,当点P在点A处时,|PB﹣PC|=BC,这时,|PB﹣PC|最大,即P在A点时,|PB﹣PC|最大.∵直线y=x+1交x轴与A点,令y=0,x=﹣2,即A(﹣2,0),∴P(﹣2,0).(3)设符合条件的点P存在,令P(a,0):当P为直角顶点时,如图:过C作CF⊥x轴于F;∵∠BPO+∠OBP=90°,∠BPO+∠CPF=90°,∴∠OBP=∠FPC,∴Rt△BOP∽Rt△PFC,∴,即,整理得a2﹣4a+3=0,解得a=1或a=3;∴所求的点P的坐标为(1,0)或(3,0),综上所述:满足条件的点P共有2个.14.如图,抛物线y=﹣x2+bx+c与x轴交于A(2,0)、B(﹣4,0)两点,交y轴于点C.(1)求该抛物线的解析式;(2)在第二象限的抛物线上,是否存在点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC面积的最大值;若不存在,请说明理由;(3)在该抛物线的对称轴上是否存在点Q,使得△QAC为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)将A(2,0)、B(﹣4,0)代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2﹣2x+8;(2)存在,理由如下:如图1,过点P作PF⊥x轴交BC于点F,设BC的解析式为y=kx+b,∴,解得,∴y=2x+8,设P(t,﹣t2﹣2t+8),则F(t,2t+8),∴PF=﹣t2﹣4t,=×4×(﹣t2﹣4t)=﹣2(t+2)2+8,∴S△PBC的面积有最大值8,∴当t=﹣2时,S△PBC此时P(﹣2,8);(3)存在,理由如下:令x=0,则y=8,∴C(0,8),∴OC=8,∵A(2,0),∴AO=2,设Q(﹣1,m),①如图2,当∠CAQ=90°时,过点Q作QG⊥x轴交于点G,∵∠CAO+∠GAQ=90°,∠CAO+∠OCA=90°,∴∠GAQ=∠ACO,∵tan∠OCA=,∴==,∴m=﹣,∴Q(﹣1,﹣);②如图3,当∠ACQ=90°时,过点Q作QH⊥y轴交于点H,∵∠QCH+∠OCA=90°,∠QCH+∠CQH=90°,∴∠OCA=∠CQH,∵tan∠OCA=,∴==,∴m=,∴Q(﹣1,);③如图4,当∠CQA=90°时,∵A(2,0),C(0,8),∴AC=2,AC的中点N(1,4),∴QN=,∴=,∴m=4+或m=4﹣,∴Q(﹣1,4+)或Q(﹣1,4﹣);综上所述:Q点坐标为(﹣1,﹣)或(﹣1,)或(﹣1,4+)或(﹣1,4﹣).15.如图,在平面直角坐标系中,点A的坐标为(1,),点B的坐标(﹣2,0),点O 为原点.(1)求过点A,O,B的抛物线解析式;(2)在x轴上找一点C,使△ABC为直角三角形,请直接写出满足条件的点C的坐标;(3)将原点O绕点B逆时针旋转120°后得点O′,判断点O′是否在抛物线上,请说明理由;(4)在x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点E,线段OE把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOE面积比为2:3,若存在,求出点P的坐标,若不存在,请说明理由.解:(1)设y=ax2+bx+c,根据题意得,解得,所以y=x2+x.(2)C(1,0)或C(2,0)(3)由题意得O′(﹣3,),将O′(﹣3,)代入y=x2+x,左边=右边∴点O′在函数图象上.(4)点P坐标为(﹣,﹣).∵A的坐标为(1,),点B的坐标(﹣2,0),设直线AB的解析式为y=kx+b,则有解得:,∴直线AB的解析式为:y=x+假设存在这样的点P ,它的横坐标为h ,则点P 坐标为(h ,h 2+h ),点E 坐标为(h ,h +),分两种情况:①△OBE 的面积:四边形BPOE 面积=2:3,则[×2×(h +)]:[×2×(h +)+×2×(﹣h 2﹣h )]=2:3,解得h =﹣,此时点P 坐标为(﹣,﹣);②△AOE 的面积:四边形BPOE 面积=2:3,则[﹣×2×(h +)]:[×2×(h +)+×2×(﹣h 2﹣h )]=2:3,解得:h =﹣,或h =﹣2(不合题意,舍去),此时点P 坐标为(﹣,﹣).综上所述:点P 坐标为(﹣,﹣).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求证:AE=DF.
(2)四边形AEFD能成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.
(3)当t为何值时,△ DEF为直角三角形?请说明理由.
(3)当t为何值时,△ DEF为直角三角形?请说明理由.
如图:当∠EDF=90°
30°
∵四边形EBFD是矩形∴在Rt△AED中,∠ADE=∠C=30° ∴AD=2AE,即10-2t=2t,解得t=2.5
由题意得:(3 x)2 x2 12,因为 0, 所以没有实数根,
这种情况不存在。
综上所述,当x 5 或x 4 时,
3
3
ABC为直角三角形
即时训练
1、(2012河南15题)如图,在Rt△ABC中, ∠ACB=90°,∠B=30°,BC=3.点D是BC边上 一动点(不与点B、C重合),过点D作DE⊥BC 交AB于点E,将∠B沿直线DE翻折,点B落在射 线BC上的点F处.当△AEF为直角三角形时,BD 的长为 。
11
11
七、谈谈收获:
1、直角三角形指代不明应分类讨论。
2、直角三角形的分类方法。
3、用作图的方法解决直角三角形的分类
4、将直角三角形相似的分类转化为直角 的分类。
八、布置作业
1、说明检测P98页23题 2、
谢谢合作!
如图:当∠DEF=90°
AD 1 AE 10 2t 1 t解得t 4.
2
2
∠EFD=90°,此种情况不存在
综上所述,当t 5 或t 4时,△DEF为直角三角形 2
五、通过作图,确定点的个数
例2: 已知:A(-4,0),B(2,0),点C在函数
y=-0.5x+2的图像上,要使△ABC为直角三角形,满足
条件的点C的个数为(

A.1 B.2
C.3 D.4
(1)当∠CAB为直角时,A存在,过A作AC⊥AB交直线与点C1. (2)当∠CBA为直角时,B存在,过B作BC⊥AB交直线与点C2. (3)当∠ACB为直角时,C不存在,以AB为直径作圆交直线与点
C3、C4.
C1●
C● 4

C3●● C2
即时训练:2012年广州24题
22
2、(2011河南22题)
如图,在Rt△ABC中,∠B=90°,BC= 5 3 , ∠C=30°,点D从点C出发沿CA方向以每秒2个单位长的 速度向点A匀速运动,同时点E从点A出发沿AB方向以每 秒1个单位长的速度向点B匀速运动,当其中一个点到达 终点时,另一个点也随之停止运动.设点D、E运动的时间 为t秒(t>0),过点D作DF⊥BC于点F,连结DE、EF.
1、两锐角互余 2、勾股定理 3、直角三角形中斜边上的中线长等于斜边长的一
半 4、锐角三角函数 5、直角三角形的相似
小试牛刀:
直角三角形两边长分别为3、4,则
第三边长为 5或 7 .
可见,直角三角形指代不清楚时,应分类讨论。
四、直角三角形的分类方法
例1、已知A、B是线段MN上的两点,MN=4, MA=1,MB>1,以A为中心顺时针旋转点M,以B为 中心逆时针旋转点N,使M、N两点重合成一点C,构 成△ABC,设AB=x,若△ABC为直角三角形,求x的 值.
1
3-x
x
提示:直角三角形指代不清楚时,应分类讨论。
(1)、当∠ACB=90°时,AB为斜边
由题意得:x2 (3 x)2 12, 解得:x 5 3
(2)、当∠CAB=90°时,CB为斜边
由题意得:(3 x)2 x2 12, 解得:x 4 3
(3)、当∠ABC=90°时,AC为斜边
(1)求AD的长;
(2)点F、E在运动过程中,如△CEF与△BDC相似,求 线段BF的长.
分析:△BDC为直角三角形,所以△CEF也应为 直角三角形。因为∠C不会为直角,所以分为 ∠CEF为直角和∠CFE为直角两种情况。
当∠EFC为直时
CEF CBD CF CD 6 10 2t 3 CE CB 10 t 5
(3)已知A(-4,0),B(2,0),E(4,0),直线m过E 点,M为直线m上的动点,当以A、B、M为顶点所作的直角三 角形有且只有三个时,求直线m的解析式.

分析:过点A、B分别作x轴
的垂线,这两条垂线与直线
m总是有交点的,即2个点M



C
● ●
以AB为直径的⊙C如果 与直线m相交,那么就 有两个点,这时共有4个 点,不符合题意;如果 与直线m相切,就只有1 个点M,这时共有3个点, 符合题意。

六、相似三角形的分类讨论转化为直角的分类讨论
例3:在直角梯形ABCD中,AD∥BC,∠A=90°, BD⊥DC,BC=10cm,CD=6cm,在线段BC、CD上有 动点F、E,点F以每秒2cm的速度,在线段BC上从点B向 点C匀速运动;同时点E以每秒1cm的速度,在线段CD上 从点C向点D匀速运动.当点F到达C时,点E同时停止运动. 设点F运动的时间为t(秒)
分类讨论之二
直角三角形 的分类讨论
一、教学目标
1、复习巩固直角三角形的相关知识 2、掌握直角三角形的分类方法 3、用作图的方法解决直角三角形的分类
二、教学重、难点
教学重点:熟练掌握直角三角形的分类方法; 教学难点:拓宽数学视野,提高分类意识。
三、知识回顾
看到直角三角形你会想到那些知识?
当∠EFA=90°时
分析:
60° 30°
30°30°
AC BC tan 30 3 FC AC tan30 1
BD DF 1 BF 1 (BC FC) 1
2
2
当∠EAF=90°时,此时点F在点C的右侧
60° 30°
30°
分析:
AC BC tan 30 3 FC AC tan30 1 BD DF 1 BF 1 (BC FC) 2
解得:t 50 ,此时BF 2t 100 cm.
13
13
综上所述,当CEF与BDC相似时,
BF 60 cm或BF 100 cm.
11
13
当∠FEC为直角时
CEF CDB CE CD , t 3 CF CB 10 2t 5
解得:t 30 ,此时BF 2t 60 cm.
相关文档
最新文档