马氏体PPT.
合集下载
《马氏体相变》课件
由于外界应力的作用,晶体结构 发生变形,形成弹性变形。
核化和形核
马氏体晶体生长
形核是马氏体相变的起始过程, 晶体结构中形成马氏体的小区域。
形核后的马氏体晶体开始在晶界 上生长,同时产生剩余奥氏体。
相变的影响因素
温度
相变温度是马氏体相变的一 个重要参数,不同温度下会 产生不同的相变行为。
合金化元素
添加合金元素可以调控马氏 体相变的速率和转变温度。
《马氏体相变》PPT课件
相信大家对于马氏体相变并不陌生,但是真正了解它的人却寥寥无几。本课 件将带您深入了解马氏体相变的概述及其形成机理。
马氏体相变的概述
马氏体相变是材料在冷却或应力作用下从奥氏体晶体结构转变为马氏体晶体 结构的过程。这种相变具有显著的物理和机械性能改善效果。
马氏体的形成机理
弹性变形发生
形状记忆合金
马氏体相变可以用于制造形状记 忆合金,可以实现金属材料的形 状记忆和恢复功能。
金属焊接
马氏体相变可以应用于金属焊接, 提高焊接接头的强度和韧性。
相变过程的图解
1
奥氏体
材核化
马氏体晶体开始在晶界上形成小的马氏体区域。
3
马氏体生长
马氏体晶体在晶界上迅速生长,同时奥氏体产生剩余。
总结与展望
马氏体相变具有广泛的应用前景,为材料科学领域带来了新的突破和挑战。未来的研究将致力于探究更高效的 相变控制方法和应用领域的拓展。
晶体结构
晶体结构对于马氏体相变的 发生和转变过程起着重要作 用。
马氏体相变的分类
稳定马氏体相变 非稳定马氏体相变 自适应马氏体相变
通过淬火等方法形成的马氏体相变
通过应力作用下的马氏体相变
通过金属合金中微观结构变化而形成的马氏体相 变
核化和形核
马氏体晶体生长
形核是马氏体相变的起始过程, 晶体结构中形成马氏体的小区域。
形核后的马氏体晶体开始在晶界 上生长,同时产生剩余奥氏体。
相变的影响因素
温度
相变温度是马氏体相变的一 个重要参数,不同温度下会 产生不同的相变行为。
合金化元素
添加合金元素可以调控马氏 体相变的速率和转变温度。
《马氏体相变》PPT课件
相信大家对于马氏体相变并不陌生,但是真正了解它的人却寥寥无几。本课 件将带您深入了解马氏体相变的概述及其形成机理。
马氏体相变的概述
马氏体相变是材料在冷却或应力作用下从奥氏体晶体结构转变为马氏体晶体 结构的过程。这种相变具有显著的物理和机械性能改善效果。
马氏体的形成机理
弹性变形发生
形状记忆合金
马氏体相变可以用于制造形状记 忆合金,可以实现金属材料的形 状记忆和恢复功能。
金属焊接
马氏体相变可以应用于金属焊接, 提高焊接接头的强度和韧性。
相变过程的图解
1
奥氏体
材核化
马氏体晶体开始在晶界上形成小的马氏体区域。
3
马氏体生长
马氏体晶体在晶界上迅速生长,同时奥氏体产生剩余。
总结与展望
马氏体相变具有广泛的应用前景,为材料科学领域带来了新的突破和挑战。未来的研究将致力于探究更高效的 相变控制方法和应用领域的拓展。
晶体结构
晶体结构对于马氏体相变的 发生和转变过程起着重要作 用。
马氏体相变的分类
稳定马氏体相变 非稳定马氏体相变 自适应马氏体相变
通过淬火等方法形成的马氏体相变
通过应力作用下的马氏体相变
通过金属合金中微观结构变化而形成的马氏体相 变
钢中马氏体组织形态稳定化课件
01
马氏体是一种由碳和其他合金元 素在钢中形成的硬且脆的晶体结 构,通常在低温或室温下形成。
02
马氏体具有高密度位错和孪晶结 构,使其具有高硬度和耐磨性。
马氏体的形成与转变
马氏体的形成通常是在冷却过程中发 生的,当钢的温度低于其马氏体转变 温度时,马氏体开始形成。
马氏体的转变是非扩散性的,这意味 着碳原子不会在转变过程中发生大规 模的移动。
01
马氏体形态稳定化 的方法与技术
热处理工艺对马氏体形态的影响
温度
不同的热处理温度会影响马氏体的形态,过高或过低 的温度可能导致马氏体形态不稳定。
时间
热处理时间对马氏体形态的影响也较为显著,时间过 长可能导致马氏体形态发生变化。
冷却方式
不同的冷却方式对马氏体形态的影响较大,如油淬、 水淬等。
合金元素对马氏体形态的影响
钢中马氏体组织形态 稳定化课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 钢中马氏体的基本概念 • 马氏体形态稳定化的重要性 • 马氏体形态稳定化的方法与技术 • 马氏体形态稳定化的研究进展与展
望 • 实际应用案例分析
01
钢中马氏体的基本 概念
马氏体的定义
不锈钢中马氏体的形态稳定化应用
总结词
不锈钢中马氏体的形态稳定化主要应用 于提高材料的耐腐蚀性能和力学性能。
VS
详细描述
不锈钢中的马氏体可以在特定的热处理条 件下形成,通过控制马氏体的形态和分布 ,可以提高材料的耐腐蚀性能和力学性能 。例如,通过控制固溶处理和时效处理工 艺,可以获得具有优良耐腐蚀性能和力学 性能的马氏体组织。
工具钢中马氏体的形态稳定化应用
钛合金中的马氏体相变 ppt
-
2
• 二、其他金属中的马氏体相变
•
20世纪以来,对钢中 马氏体相
变的特征累积了较多的知识,又相继发现
在某些纯金属和合金中也具有马氏体相变,
如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、
Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-
Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni
数
-
4
• 3.2 钛合金马氏体相变的原理
高纯钛在缓冷退火后,获得多 面的α组织,如果自高温快速冷却,将发 生马氏体转变,晶界变得不完整且呈锯齿 状。钛合金自高温快速冷却时,视合金成 分的不同, β相可转变为马氏体(α‘或 者α“)、ω相或者过冷β相,在快速冷 却过程中,由于从β相转变为α相的过程 来不及进行, β相将转变为成分与母相相 同、晶体结构不同的过饱和固溶体,即马 氏体。
钛合金中的马氏体相变
杨金文 2012730047
-
1
一、马氏体 - 马氏体概念
马氏体最初是在钢(中、 高碳钢)中发现的:将钢加热 到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能 使钢变硬、增强的一种淬火组织。
最先由德国冶金学家 Adolf Martens(1850-1914)于19世纪 90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片 状(plate)或者板条状(lath),片状马氏体在金相观察中(二维) 通常表现为针状(needle-shaped),这也是为什么在一些地方 通常描述为针状、竹叶状的原因,板条状马氏体在金相观察中 为细长的条状或板状。奥氏体中含碳量≥1%的钢淬火后,马氏 体形态为片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火后, 马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方 结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高 的强度和硬度是钢中马氏体的主要特征之一,同时马氏体的脆 性也比较高。
钢中的回火转变之马氏体的分解课件
马氏体是钢在冷却过程中,当温度低 于某一特定点时,奥氏体转变成的一 种晶体结构,其晶体结构与奥氏体不 同,呈现出特定的晶体学特征。
马氏体的结构特点
总结词
马氏体的结构特点是具有高密度位错和孪晶,这些结构特征使得马氏体具有较 高的硬度和强度。
详细描述
马氏体的晶体结构中,存在大量的位错和孪晶,这些结构缺陷使得马氏体具有 较高的硬度和强度。同时,马氏体的碳原子在晶体结构中以一种特殊的方式排 列,使得马氏体具有较好的耐磨性和耐腐蚀性。
研究背景和意义
随着工业技术的发展,对钢的性能要 求越来越高,马氏体分解的研究对于 提高钢的性能具有重要意义。
目前,关于马氏体分解的研究尚不够 深入,因此开展相关研究具有重要的 理论和实践意义。
02
马氏体的基本特性
马氏体的定义
总结词
马氏体是钢在冷却过程中形成的具有 特定晶体结构的相变产物。
详细描述
合金元素
合金元素对回火转变的影响也很大。 一些合金元素可以改变原子扩散速 度和马氏体的稳定性,从而影响回 火转变的过程和结果。
04
马氏体的分解过程
马氏体分解的定义
马氏体分解是指钢在回火过程中,马氏体结构发生改变的 现象。
马氏体分解是钢回火过程中的一个重要阶段,它决定了钢 的力学性能和显微组织。
马氏体分解的原理
马氏体分解过程中伴随着晶体 结构和化学成分的变化,这些
变化会影响钢的性能。
通过控制回火工艺,可以实现 对钢的性能的精细调控,以满
足不同应用场景的需求。
研究展望
01
深入探究马氏体分解的 微观机制和晶体学原理, 为钢的性能优化提供理 论支持。
02
开展新型钢种的开发和 研究,拓展其在航空航 天、汽车、能源等领域 的应用。
马氏体的结构特点
总结词
马氏体的结构特点是具有高密度位错和孪晶,这些结构特征使得马氏体具有较 高的硬度和强度。
详细描述
马氏体的晶体结构中,存在大量的位错和孪晶,这些结构缺陷使得马氏体具有 较高的硬度和强度。同时,马氏体的碳原子在晶体结构中以一种特殊的方式排 列,使得马氏体具有较好的耐磨性和耐腐蚀性。
研究背景和意义
随着工业技术的发展,对钢的性能要 求越来越高,马氏体分解的研究对于 提高钢的性能具有重要意义。
目前,关于马氏体分解的研究尚不够 深入,因此开展相关研究具有重要的 理论和实践意义。
02
马氏体的基本特性
马氏体的定义
总结词
马氏体是钢在冷却过程中形成的具有 特定晶体结构的相变产物。
详细描述
合金元素
合金元素对回火转变的影响也很大。 一些合金元素可以改变原子扩散速 度和马氏体的稳定性,从而影响回 火转变的过程和结果。
04
马氏体的分解过程
马氏体分解的定义
马氏体分解是指钢在回火过程中,马氏体结构发生改变的 现象。
马氏体分解是钢回火过程中的一个重要阶段,它决定了钢 的力学性能和显微组织。
马氏体分解的原理
马氏体分解过程中伴随着晶体 结构和化学成分的变化,这些
变化会影响钢的性能。
通过控制回火工艺,可以实现 对钢的性能的精细调控,以满
足不同应用场景的需求。
研究展望
01
深入探究马氏体分解的 微观机制和晶体学原理, 为钢的性能优化提供理 论支持。
02
开展新型钢种的开发和 研究,拓展其在航空航 天、汽车、能源等领域 的应用。
§8-5_马氏体转变
shiyama-Wassermann(N-W,西山 关系 ) ,西山)关系 {111}γ∥{110}M <112>γ∥<110>M 按西山关系,在每个{111}γ面上,马氏体可能有 面上,马氏体可能有3 按西山关系,在每个 种取向,故马氏体共有12种取 变体) 种取向,故马氏体共有 种取 向(变体)。 (3) Greninger-Troiano (G-T)关系 ) 关系 和 K-S关系略有偏差 关系略有偏差 {111}γ∥{110}M 差1° <110>γ∥<111>M 差2° °
' '
薄板状马氏体
薄片状马氏体
三. 马氏体转变的热力学 1. 相变驱动力 G T0为相同成分的马氏 体和奥氏体两相热力学 平衡温度, 平衡温度,此时 ∆Gγ→α’ = 0 ∆Gγ→α’ 称为马氏体相 变驱动力。 变驱动力。 Ms T0 Gα′ Gγ T ∆Gγ→α′
自由焓——温度曲线 自由焓——温度曲线 ——
§7 马氏体转变
马氏体——碳在 碳在α-Fe 中的过饱和固溶体。 中的过饱和固溶体。 马氏体 碳在 1895年:Osmond, M.F.提出,为纪念德国冶金学家 年 提出, 提出 Martens, A.把这种组织命名为马氏体(Martensite). 把这种组织命名为马氏体( 把这种组织命名为马氏体 马氏体转变——获得马氏体组织的转变。 获得马氏体组织的转变。 马氏体转变 获得马氏体组织的转变 在有色金属、陶瓷、高分子材料相继发现马氏体。 在有色金属、陶瓷、高分子材料相继发现马氏体。 广义马氏体——通过马氏体转变所获得的组织。 通过马氏体转变所获得的组织。 广义马氏体 通过马氏体转变所获得的组织
时
TTT
,C
五. 马氏体转变机制 1. 马氏体形核 按均匀形核的经典理论: 按均匀形核的经典理论: 设马氏体核心为凸透镜状, 设马氏体核心为凸透镜状 , 其半径为r,中心厚度为2c, 其半径为 ,中心厚度为 ,而且 r>>c , 此 时 核 心 的 近 似 体 积 为 4πr3 /3 ,表面积为 2。 表面积为2πr 形核时系统自由能的变化∆G 形核时系统自由能的变化 为:
' '
薄板状马氏体
薄片状马氏体
三. 马氏体转变的热力学 1. 相变驱动力 G T0为相同成分的马氏 体和奥氏体两相热力学 平衡温度, 平衡温度,此时 ∆Gγ→α’ = 0 ∆Gγ→α’ 称为马氏体相 变驱动力。 变驱动力。 Ms T0 Gα′ Gγ T ∆Gγ→α′
自由焓——温度曲线 自由焓——温度曲线 ——
§7 马氏体转变
马氏体——碳在 碳在α-Fe 中的过饱和固溶体。 中的过饱和固溶体。 马氏体 碳在 1895年:Osmond, M.F.提出,为纪念德国冶金学家 年 提出, 提出 Martens, A.把这种组织命名为马氏体(Martensite). 把这种组织命名为马氏体( 把这种组织命名为马氏体 马氏体转变——获得马氏体组织的转变。 获得马氏体组织的转变。 马氏体转变 获得马氏体组织的转变 在有色金属、陶瓷、高分子材料相继发现马氏体。 在有色金属、陶瓷、高分子材料相继发现马氏体。 广义马氏体——通过马氏体转变所获得的组织。 通过马氏体转变所获得的组织。 广义马氏体 通过马氏体转变所获得的组织
时
TTT
,C
五. 马氏体转变机制 1. 马氏体形核 按均匀形核的经典理论: 按均匀形核的经典理论: 设马氏体核心为凸透镜状, 设马氏体核心为凸透镜状 , 其半径为r,中心厚度为2c, 其半径为 ,中心厚度为 ,而且 r>>c , 此 时 核 心 的 近 似 体 积 为 4πr3 /3 ,表面积为 2。 表面积为2πr 形核时系统自由能的变化∆G 形核时系统自由能的变化 为:
《铁素体型马氏体型》课件
1
质量
原材料的质量和纯度对组织形成有
温度
2
重要影响。
冷却温度和加热温度影响相变的发
生和形成。
3
合金元素
合金元素的添加会改变钢材的组织 和性能。
ቤተ መጻሕፍቲ ባይዱ
应用领域
汽车工业
用于制造发动机零部件、车轴和车桥等。
航空航天
用于制造航空发动机和航天器结构零部件。
机械制造
用于制造重型机械设备和工具。
能源行业
用于制造核电站设备和石油钻探设备。
《铁素体型马氏体型》 PPT课件
了解钢的组织结构、铁素体和马氏体的形成过程、以及两者的区别。探讨影 响形成的因素和应用领域。最后得出结论。
钢的组织结构
铁素体
钢中最常见的组织形式,由α铁单相组织 构成。
奥氏体
高温下的钢的组织结构,由γ铁单相组织 构成。
马氏体
通过淬火或变形处理后形成,具有硬度高、 强度大的特点。
珠光体
热处理后冷却速度较慢的钢的组织结构, 由α+γ铁组织构成。
铁素体的形成过程
1 冷却速度降低
当钢材冷却速度较慢时,铁元素会在晶界上析出,形成铁素体。
2 固溶度降低
合金元素的加入会降低铁的固溶度,促使铁素体的生成。
3 温度降低
通过降低钢材的温度,可以促进铁素体的形成。
马氏体的形成过程
淬火
通过快速冷却钢材,使铁素 体转变为马氏体。
结论
通过深入了解钢的组织结构、铁素体和马氏体的形成过程,我们可以更好地 应用于各个领域的相关工作。
扭转
通过扭转变形,使铁素体发 生相变,形成马氏体。
加工硬化
通过加工处理,使铁素体变 形,形成马氏体。
CH6.5 马氏体的性能及影响因素PPT(10级)
马氏体转变
6.5 马氏体的性能及影响因素
2020/3/7
1
授课 朱世杰
马氏体转变
4.8.1 马氏体的硬度和强度
一.马氏体的高硬度和高强度 1.钢中马氏体力学性能的显著特点是具有高硬度和高强度。 2.马氏体的硬度主要取决于马氏体的含碳量。通常情况下,马 氏体的硬度随含碳量的增加而升高。但当碳含量超过0.6%时, 硬度增长趋势下降。
2020/3/7
15
授课 朱世杰
作为形成显微裂纹的敏感度。
2020/3/7
11
授课 朱世杰
马氏体转变
(一)影响形成显微裂纹因素
1.含碳量
当WC<1.4%时,随碳量增加,SV 急
剧增加,因而此时生成的是细而长的 横贯奥氏体晶粒的{225}M,易受撞击 而断裂。当WC>1.4%时,随碳量增加,
SV 反而下降,因此时生成短而宽的
{259}M,不易受撞击断裂。通常马氏
2020/3/7
10
授课 朱世杰
马氏体转变
6.5.5 高碳马氏体的显微裂纹
马氏体片形成速度极快,互相撞击或与奥氏体晶界相撞时 可形成很大的应力集中,加之高碳马氏体本身很脆,故在撞 击时极易产生裂纹。这些裂纹虽很小,但可成为疲劳裂纹源 而导致开裂。
以单位体积马氏体内出现显微裂纹的面积SV (mm2/mm3 )
3.淬火钢的硬度取决于马氏体 和残余奥氏体的相对含量。只 有当残余奥氏体量很少时,钢 的硬度与马氏体的硬度才趋于 一致。这是必须注意的。 4.马氏体的屈服强度随含碳量 的增加而升高。
2020/3/7
含碳量对马氏体的强度与硬度的影响
2
授课 朱世杰
马氏体转变
不同碳含量的钢淬火后的硬度及碳含量与残 余奥氏体量的关系。 曲线1是完全淬火并进行冷处理后马氏体的 硬度。奥氏体全部转化为马氏体,所得即 为马氏体硬度和碳含量关系。
6.5 马氏体的性能及影响因素
2020/3/7
1
授课 朱世杰
马氏体转变
4.8.1 马氏体的硬度和强度
一.马氏体的高硬度和高强度 1.钢中马氏体力学性能的显著特点是具有高硬度和高强度。 2.马氏体的硬度主要取决于马氏体的含碳量。通常情况下,马 氏体的硬度随含碳量的增加而升高。但当碳含量超过0.6%时, 硬度增长趋势下降。
2020/3/7
15
授课 朱世杰
作为形成显微裂纹的敏感度。
2020/3/7
11
授课 朱世杰
马氏体转变
(一)影响形成显微裂纹因素
1.含碳量
当WC<1.4%时,随碳量增加,SV 急
剧增加,因而此时生成的是细而长的 横贯奥氏体晶粒的{225}M,易受撞击 而断裂。当WC>1.4%时,随碳量增加,
SV 反而下降,因此时生成短而宽的
{259}M,不易受撞击断裂。通常马氏
2020/3/7
10
授课 朱世杰
马氏体转变
6.5.5 高碳马氏体的显微裂纹
马氏体片形成速度极快,互相撞击或与奥氏体晶界相撞时 可形成很大的应力集中,加之高碳马氏体本身很脆,故在撞 击时极易产生裂纹。这些裂纹虽很小,但可成为疲劳裂纹源 而导致开裂。
以单位体积马氏体内出现显微裂纹的面积SV (mm2/mm3 )
3.淬火钢的硬度取决于马氏体 和残余奥氏体的相对含量。只 有当残余奥氏体量很少时,钢 的硬度与马氏体的硬度才趋于 一致。这是必须注意的。 4.马氏体的屈服强度随含碳量 的增加而升高。
2020/3/7
含碳量对马氏体的强度与硬度的影响
2
授课 朱世杰
马氏体转变
不同碳含量的钢淬火后的硬度及碳含量与残 余奥氏体量的关系。 曲线1是完全淬火并进行冷处理后马氏体的 硬度。奥氏体全部转化为马氏体,所得即 为马氏体硬度和碳含量关系。
第五章 马氏体
第五章 马氏体
92
马氏体:碳在α-Fe中过饱和 的固溶体,用符号“M”表示。 马氏体的形态特点:其组织形态分为板 条状和针状两大类: 板条马氏体:显微组织如图所示。形态 呈细长的扁棒状,显微组织为细条状。
马氏体板条内的亚结构是高密度的位错,
板条马氏体
因而又称为位错马氏体。
针状马氏体:显微组织如图所示。形态 呈双凸透镜的片状,显微组织为针状。其亚 结构主要是孪晶,因此又称为孪晶马氏体。
动画39 碳含量对马氏体转变温度的影响
4
马氏体转变特点
过冷A转变为马氏体是低温转变过程, 转变温 度在Ms~Mf之间, 该温区称马氏体转变区。 ①过冷A转变为马氏体是一种非扩散型转变
②马氏体的形成速度很快
③马氏体转变是不彻底的 ④马氏体形成时体积膨胀, 在钢中造成很大的 内应力
低碳马氏体的组织形态
高碳马氏体的组织形态
5
低碳板条状马氏体组 织金相图
高碳针片状马氏体 组织金相图
6
的形态取决于碳含量。当wC<0.2%时,为板条M;当wC >1.0%时,为针状M;当wC =0.2 %~1.0%时,为板条和针状的 混合组织。 马氏体的性能: 马氏体的硬度、韧性与碳 含量的关系如动画所示。 碳含量:如碳含量增加, 其硬度就增加。所以马氏体是 钢的主要强化手段之一。 塑性和韧性:主要取决于 亚结构形式和碳在马氏体中的 过饱和度。
动画 碳含量对马氏体性能的影响
3
94
马氏点概念及马氏体转变归纳(见39): 上马氏体点:发生马氏体转变的开始温度称为上马氏体点,用 “Ms”表示。 下马氏体点:马氏体转变的终 了温度称为下马氏体点, 用“Mf” 表示。 因此马氏体转变可归纳为: 高速长大; 马氏体转变的不完全性; 存在残余奥氏体用“A残”表示; Ms 、Mf取决于奥氏体的碳含量。
92
马氏体:碳在α-Fe中过饱和 的固溶体,用符号“M”表示。 马氏体的形态特点:其组织形态分为板 条状和针状两大类: 板条马氏体:显微组织如图所示。形态 呈细长的扁棒状,显微组织为细条状。
马氏体板条内的亚结构是高密度的位错,
板条马氏体
因而又称为位错马氏体。
针状马氏体:显微组织如图所示。形态 呈双凸透镜的片状,显微组织为针状。其亚 结构主要是孪晶,因此又称为孪晶马氏体。
动画39 碳含量对马氏体转变温度的影响
4
马氏体转变特点
过冷A转变为马氏体是低温转变过程, 转变温 度在Ms~Mf之间, 该温区称马氏体转变区。 ①过冷A转变为马氏体是一种非扩散型转变
②马氏体的形成速度很快
③马氏体转变是不彻底的 ④马氏体形成时体积膨胀, 在钢中造成很大的 内应力
低碳马氏体的组织形态
高碳马氏体的组织形态
5
低碳板条状马氏体组 织金相图
高碳针片状马氏体 组织金相图
6
的形态取决于碳含量。当wC<0.2%时,为板条M;当wC >1.0%时,为针状M;当wC =0.2 %~1.0%时,为板条和针状的 混合组织。 马氏体的性能: 马氏体的硬度、韧性与碳 含量的关系如动画所示。 碳含量:如碳含量增加, 其硬度就增加。所以马氏体是 钢的主要强化手段之一。 塑性和韧性:主要取决于 亚结构形式和碳在马氏体中的 过饱和度。
动画 碳含量对马氏体性能的影响
3
94
马氏点概念及马氏体转变归纳(见39): 上马氏体点:发生马氏体转变的开始温度称为上马氏体点,用 “Ms”表示。 下马氏体点:马氏体转变的终 了温度称为下马氏体点, 用“Mf” 表示。 因此马氏体转变可归纳为: 高速长大; 马氏体转变的不完全性; 存在残余奥氏体用“A残”表示; Ms 、Mf取决于奥氏体的碳含量。
第五章马氏体转变ppt课件
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
5.1.2
马氏体的晶体结构
1 钢中马氏体晶体结构特点 C 在α-Fe 中的过饱和固溶体。 ——亚稳;单相 C 位置:扁八面体间隙, R间隙0.19Å,RC 0.77 Å ——晶格畸变较严重
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
(2)反常轴比现象:
实际中马氏体 的晶体结构除与 C 含量有关 外,还与 C 原子位置的变化有关,在某些条件 下可能出现反常轴比现象:
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
共析碳钢 CCT曲线A1
Ms
Mf Vc
奥氏体化的钢,以>Vc的速度冷却时, 过冷奥氏体冷却到Ms温度以下,转变为马 氏体,这种操作叫淬火。马氏体是强化钢材 的重要组织。
与K-S关系
比较 差1 ° 差2 °
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
(
011
)
'
(111 )
10 1 , 11 1 '
(
011
)
'
(111 )
10 1 , 11 1 '
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
第十七章-马氏体
南京航空航天大学 材料科学与技术学院
缪强
第十七章 马氏体转变
前言
马氏体转变是由钢奥氏体化后快速冷却,抑 制其扩散型分解,在低温下进行的无扩散型相 变。马氏体转变是钢件热处理强化的主要手段, 产生马氏体组织的热处理工艺称为淬火。因此 马氏体转变的理论研究与热处理生产实践有密 切的关系。
前言
由于钢的成分和热处理条件不同,所获得的 马氏体的形态和亚结构也不相同,继而对钢件 的组织和力学性能产生不同的影响。通过对马 氏体形成规律的了解,才能正确地指导热处理 生产实践,充分发挥钢材的潜力。
第一节 钢中马氏体的晶体结构
结果使短轴方向的Fe间距伸长36%),而另两 个方向缩短4%,从而使体心立方变为体心正方 点阵。
由间隙碳原子造成 的这种非对称畸变称 为畸变偶极,可将其 视为一个强烈的应力 场,C原子就在这个 应力场的中心。
第一节 钢中马氏体的晶体结构
马氏体具有体心正方晶格 (a=b≠c)
第二节 马氏体转变的特点
γ
α’
γ 惯习面
C
F
G
S’ S
B
T’
T
D
E
R
A O
H P
中脊面
N M
马氏体形成时引起的表面倾动
第二节 马氏体转变的特点
若相变前在试样抛光面上刻一直线划痕STR,则 相变后产生浮凸使其变为折线S’T’TR,在显微镜 光线照射下,浮凸两边呈现明显的山阴和山阳。故 马氏体的形成是通过切变方式来进行的,马氏体和 奥氏体界面的原子是二者共有的,而整个相界面是 相互牵制的。
第二节 马氏体转变的特点
这种界面称为切变共格界面,即通过母相的切变 来维持共格关系的,也称第二类共格界面。
在具有共格界面的新旧两相中,原子位置有对应 关系,新相长大时,原子只作有规则的迁动而不改 变共格状态。
缪强
第十七章 马氏体转变
前言
马氏体转变是由钢奥氏体化后快速冷却,抑 制其扩散型分解,在低温下进行的无扩散型相 变。马氏体转变是钢件热处理强化的主要手段, 产生马氏体组织的热处理工艺称为淬火。因此 马氏体转变的理论研究与热处理生产实践有密 切的关系。
前言
由于钢的成分和热处理条件不同,所获得的 马氏体的形态和亚结构也不相同,继而对钢件 的组织和力学性能产生不同的影响。通过对马 氏体形成规律的了解,才能正确地指导热处理 生产实践,充分发挥钢材的潜力。
第一节 钢中马氏体的晶体结构
结果使短轴方向的Fe间距伸长36%),而另两 个方向缩短4%,从而使体心立方变为体心正方 点阵。
由间隙碳原子造成 的这种非对称畸变称 为畸变偶极,可将其 视为一个强烈的应力 场,C原子就在这个 应力场的中心。
第一节 钢中马氏体的晶体结构
马氏体具有体心正方晶格 (a=b≠c)
第二节 马氏体转变的特点
γ
α’
γ 惯习面
C
F
G
S’ S
B
T’
T
D
E
R
A O
H P
中脊面
N M
马氏体形成时引起的表面倾动
第二节 马氏体转变的特点
若相变前在试样抛光面上刻一直线划痕STR,则 相变后产生浮凸使其变为折线S’T’TR,在显微镜 光线照射下,浮凸两边呈现明显的山阴和山阳。故 马氏体的形成是通过切变方式来进行的,马氏体和 奥氏体界面的原子是二者共有的,而整个相界面是 相互牵制的。
第二节 马氏体转变的特点
这种界面称为切变共格界面,即通过母相的切变 来维持共格关系的,也称第二类共格界面。
在具有共格界面的新旧两相中,原子位置有对应 关系,新相长大时,原子只作有规则的迁动而不改 变共格状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ห้องสมุดไป่ตู้
•
•
•
•
组织的形成
•
马氏体由奥氏体急速冷却(淬火)形成,这种情况下奥氏体中固溶的碳原子 没有时间扩散出晶胞。当奥氏体到达马氏体转变温度(Ms)时,马氏体转变 开始产生,母相奥氏体组织开始不稳定。在Ms以下某温度保持不变时,少部 分的奥氏体组织迅速转变,但不会继续。只有当温度进一步降低,更多的奥 氏体才转变为马氏体。最后,温度到达马氏体转变结束温度Mf,马氏体转变 结束。马氏体还可以在压力作用下形成,这种方法通常用在硬化陶瓷上(氧 化钇、氧化锆)和特殊的钢种(高强度、高延展性的钢)。因此,马氏体转 变可以通过热量和压力两种方法进行。
组成类型
• 常见马氏体组织有两种类型。中低碳钢淬火获得板条状马氏体,板条 状马氏体是由许多束尺寸大致相同,近似平行排列的细板条组成的组 织,各束板条之间角度比较大;高碳钢淬火获得针状马氏体,针状马 氏体呈竹叶或凸透镜状,针叶一般限制在原奥氏体晶粒之内,针叶之 间互成60°或120°角。
• 马氏体转变同样是在一定温度范围内(Ms-Mz)连续进行的,当温度 达到Ms点以下,立即有部分奥氏体转变为马氏体。板条状马氏体有 很高的强度和硬度,较好的韧性,能承受一定程度的冷加工;针状马 氏体又硬又脆,无塑性变形能力。马氏体转变速度极快,转变时体积 产生膨胀,在钢丝内部形成很大的内应力,所以淬火后的钢丝需要及 时回火,防止应力开裂。[1]
19世纪90年代最先由德国冶金学家阿道夫· 马滕斯(Adolf Martens, 1850-1914)于在一种硬矿物中发现。马氏体最初是在钢(中、高碳钢) 中发现的:将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火), 得到的能使钢变硬、增强的一种淬火组织。1895年法国人奥斯蒙 (F.Osmond)为纪念德国冶金学家马滕斯(A.Martens),把这种组织 命名为马氏体(Martensite)。人们最早只把钢中由奥氏体转变为马氏体的 相变称为马氏体相变。20世纪以来,对钢中马氏体相变的特征累积了较 多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如: Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、 Au-Cd、Au-□n、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地 把基本特征属马氏体相变型的相变产物统称为马氏体(见固态相变)。
形态特征
•
马氏体的三维组织形态通常有片状(plate)或者板条状(lath),片状马氏体在金相观察中(二维)通常表现为针状 (needle-shaped),这也是为什么在一些地方通常描述为针状、竹叶状的原因,板条状马氏体在金相观察中为细 长的条状或板状。奥氏体中含碳量≥1%的钢淬火后,马氏体形态为片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火 后,马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获 得这种组织。高的强度和硬度是钢中马氏体的主要特征之一,同时马氏体的脆性也比较高。 相变特征和机制:马氏体相变具有热效应和体积效应,相变过程是形核和长大的过程。但核心如何形成,又如何长 大,目前尚无完整的模型。马氏体长大速率一般较大,有的甚至高达10cm/s。人们推想母相中的晶体缺陷(如位错) 的组态对马氏体形核具有影响,但目前实验技术还无法观察到相界面上位错的组态,因此对马氏体相变的过程,尚 不能窥其全貌。其特征可概括如下: 马氏体相变是无扩散相变之一,相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相 的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移 是切变式的(图1切变式位移示意)。原子位移的结果产生点阵应变(或形变)(图2 原子位移产生点阵应变)。这种 切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。将一个抛光试样的表面先划上一条直线,如图3a马 氏体相变时的形状改变中的PQRS,若试样中一部分(A□B□C□D□-A□B□C□D□)发生马氏体相变(形成马氏体), 则PQRS直线就折成PQ、QR□及R□S□三段相连的直线,两相界面的平面A□B□C□D□及A□B□C□D□保持 无应变、不转动,称惯习(析)面。这种形状改变称为不变平面应变(图3 马氏体相变时的形状改变)。形状改变 使先经抛光的试样表面形成浮突。由图4 高碳钢中马氏体的表面浮突×600可见,高碳钢马氏体的表面浮突,它可由 图5表面浮突示意示意,可见马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度 以及完整尖锐的边缘(图6Co-30.5Ni合金形成六方马氏体时产生的表面浮突干涉图像)。 马氏体的惯习(析)面 马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简 单的指数面,如镍钢中马氏体在奥氏体(γ)的{135}上最先形成(图7 Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥 氏体)。马氏体形成时和母相的界面上存在大的应变。为了部分地减低这种应变能,会发生辅助的变形,使界面改 变如图7Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥氏体中由{135}变为{224}面。图7Fe-25Ni-0.3V-0.3C钢中的马 氏体及其周围的奥氏体中马氏体呈透镜状,它具有中脊面,是孪晶密度很高的面,即{135}□面,这些马氏体内部的 孪晶是马氏体内的亚结构。在铁基合金的马氏体中存在孪晶或(和)位错,在非铁合金中一般存在孪晶或层错。由 图7Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥氏体还可见到:在马氏体周围的母相(奥氏体)中形成密度很 高的位错,这是在马氏体相变时,母相发生协作形变而形成的。 由于马氏体相变时原子规则地发生位移,使新相(马氏体)和母相之间始终保持一定的位向关系。在铁基合金中由面 心立方母相γ变为体心立方(正方)
马氏体组织
起源
• 马氏体(martensite)是黑色金属材料的一种组织名称。最 先由德国冶金学家 Adolf Martens(1850-1914)于19世纪90 年代在一种硬矿物中发现。马氏体的三维组织形态通常有 片状(plate)或者板条状(lath),但是在金相观察中(二维) 通常表现为针状(needle-shaped),这也是为什么在一 些地方通常描述为针状的原因。马氏体的晶体结构为体心 四方结构(BCT)。中高碳钢中加速冷却通常能够获得这 种组织。高的强度和硬度是钢中马氏体的主要特征之一。 • 中文名:马氏体 • 外文名:martensite
•
•
•
•
组织的形成
•
马氏体由奥氏体急速冷却(淬火)形成,这种情况下奥氏体中固溶的碳原子 没有时间扩散出晶胞。当奥氏体到达马氏体转变温度(Ms)时,马氏体转变 开始产生,母相奥氏体组织开始不稳定。在Ms以下某温度保持不变时,少部 分的奥氏体组织迅速转变,但不会继续。只有当温度进一步降低,更多的奥 氏体才转变为马氏体。最后,温度到达马氏体转变结束温度Mf,马氏体转变 结束。马氏体还可以在压力作用下形成,这种方法通常用在硬化陶瓷上(氧 化钇、氧化锆)和特殊的钢种(高强度、高延展性的钢)。因此,马氏体转 变可以通过热量和压力两种方法进行。
组成类型
• 常见马氏体组织有两种类型。中低碳钢淬火获得板条状马氏体,板条 状马氏体是由许多束尺寸大致相同,近似平行排列的细板条组成的组 织,各束板条之间角度比较大;高碳钢淬火获得针状马氏体,针状马 氏体呈竹叶或凸透镜状,针叶一般限制在原奥氏体晶粒之内,针叶之 间互成60°或120°角。
• 马氏体转变同样是在一定温度范围内(Ms-Mz)连续进行的,当温度 达到Ms点以下,立即有部分奥氏体转变为马氏体。板条状马氏体有 很高的强度和硬度,较好的韧性,能承受一定程度的冷加工;针状马 氏体又硬又脆,无塑性变形能力。马氏体转变速度极快,转变时体积 产生膨胀,在钢丝内部形成很大的内应力,所以淬火后的钢丝需要及 时回火,防止应力开裂。[1]
19世纪90年代最先由德国冶金学家阿道夫· 马滕斯(Adolf Martens, 1850-1914)于在一种硬矿物中发现。马氏体最初是在钢(中、高碳钢) 中发现的:将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火), 得到的能使钢变硬、增强的一种淬火组织。1895年法国人奥斯蒙 (F.Osmond)为纪念德国冶金学家马滕斯(A.Martens),把这种组织 命名为马氏体(Martensite)。人们最早只把钢中由奥氏体转变为马氏体的 相变称为马氏体相变。20世纪以来,对钢中马氏体相变的特征累积了较 多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如: Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、 Au-Cd、Au-□n、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地 把基本特征属马氏体相变型的相变产物统称为马氏体(见固态相变)。
形态特征
•
马氏体的三维组织形态通常有片状(plate)或者板条状(lath),片状马氏体在金相观察中(二维)通常表现为针状 (needle-shaped),这也是为什么在一些地方通常描述为针状、竹叶状的原因,板条状马氏体在金相观察中为细 长的条状或板状。奥氏体中含碳量≥1%的钢淬火后,马氏体形态为片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火 后,马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获 得这种组织。高的强度和硬度是钢中马氏体的主要特征之一,同时马氏体的脆性也比较高。 相变特征和机制:马氏体相变具有热效应和体积效应,相变过程是形核和长大的过程。但核心如何形成,又如何长 大,目前尚无完整的模型。马氏体长大速率一般较大,有的甚至高达10cm/s。人们推想母相中的晶体缺陷(如位错) 的组态对马氏体形核具有影响,但目前实验技术还无法观察到相界面上位错的组态,因此对马氏体相变的过程,尚 不能窥其全貌。其特征可概括如下: 马氏体相变是无扩散相变之一,相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相 的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移 是切变式的(图1切变式位移示意)。原子位移的结果产生点阵应变(或形变)(图2 原子位移产生点阵应变)。这种 切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。将一个抛光试样的表面先划上一条直线,如图3a马 氏体相变时的形状改变中的PQRS,若试样中一部分(A□B□C□D□-A□B□C□D□)发生马氏体相变(形成马氏体), 则PQRS直线就折成PQ、QR□及R□S□三段相连的直线,两相界面的平面A□B□C□D□及A□B□C□D□保持 无应变、不转动,称惯习(析)面。这种形状改变称为不变平面应变(图3 马氏体相变时的形状改变)。形状改变 使先经抛光的试样表面形成浮突。由图4 高碳钢中马氏体的表面浮突×600可见,高碳钢马氏体的表面浮突,它可由 图5表面浮突示意示意,可见马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度 以及完整尖锐的边缘(图6Co-30.5Ni合金形成六方马氏体时产生的表面浮突干涉图像)。 马氏体的惯习(析)面 马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简 单的指数面,如镍钢中马氏体在奥氏体(γ)的{135}上最先形成(图7 Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥 氏体)。马氏体形成时和母相的界面上存在大的应变。为了部分地减低这种应变能,会发生辅助的变形,使界面改 变如图7Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥氏体中由{135}变为{224}面。图7Fe-25Ni-0.3V-0.3C钢中的马 氏体及其周围的奥氏体中马氏体呈透镜状,它具有中脊面,是孪晶密度很高的面,即{135}□面,这些马氏体内部的 孪晶是马氏体内的亚结构。在铁基合金的马氏体中存在孪晶或(和)位错,在非铁合金中一般存在孪晶或层错。由 图7Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥氏体还可见到:在马氏体周围的母相(奥氏体)中形成密度很 高的位错,这是在马氏体相变时,母相发生协作形变而形成的。 由于马氏体相变时原子规则地发生位移,使新相(马氏体)和母相之间始终保持一定的位向关系。在铁基合金中由面 心立方母相γ变为体心立方(正方)
马氏体组织
起源
• 马氏体(martensite)是黑色金属材料的一种组织名称。最 先由德国冶金学家 Adolf Martens(1850-1914)于19世纪90 年代在一种硬矿物中发现。马氏体的三维组织形态通常有 片状(plate)或者板条状(lath),但是在金相观察中(二维) 通常表现为针状(needle-shaped),这也是为什么在一 些地方通常描述为针状的原因。马氏体的晶体结构为体心 四方结构(BCT)。中高碳钢中加速冷却通常能够获得这 种组织。高的强度和硬度是钢中马氏体的主要特征之一。 • 中文名:马氏体 • 外文名:martensite