马氏体PPT.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形态特征
•
马氏体的三维组织形态通常有片状(plate)或者板条状(lath),片状马氏体在金相观察中(二维)通常表现为针状 (needle-shaped),这也是为什么在一些地方通常描述为针状、竹叶状的原因,板条状马氏体在金相观察中为细 长的条状或板状。奥氏体中含碳量≥1%的钢淬火后,马氏体形态为片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火 后,马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获 得这种组织。高的强度和硬度是钢中马氏体的主要特征之一,同时马氏体的脆性也比较高。 相变特征和机制:马氏体相变具有热效应和体积效应,相变过程是形核和长大的过程。但核心如何形成,又如何长 大,目前尚无完整的模型。马氏体长大速率一般较大,有的甚至高达10cm/s。人们推想母相中的晶体缺陷(如位错) 的组态对马氏体形核具有影响,但目前实验技术还无法观察到相界面上位错的组态,因此对马氏体相变的过程,尚 不能窥其全貌。其特征可概括如下: 马氏体相变是无扩散相变之一,相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相 的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移 是切变式的(图1切变式位移示意)。原子位移的结果产生点阵应变(或形变)(图2 原子位移产生点阵应变)。这种 切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。将一个抛光试样的表面先划上一条直线,如图3a马 氏体相变时的形状改变中的PQRS,若试样中一部分(A□B□C□D□-A□B□C□D□)发生马氏体相变(形成马氏体), 则PQRS直线就折成PQ、QR□及R□S□三段相连的直线,两相界面的平面A□B□C□D□及A□B□C□D□保持 无应变、不转动,称惯习(析)面。这种形状改变称为不变平面应变(图3 马氏体相变时的形状改变)。形状改变 使先经抛光的试样表面形成浮突。由图4 高碳钢中马氏体的表面浮突×600可见,高碳钢马氏体的表面浮突,它可由 图5表面浮突示意示意,可见马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度 以及完整尖锐的边缘(图6Co-30.5Ni合金形成六方马氏体时产生的表面浮突干涉图像)。 马氏体的惯习(析)面 马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简 单的指数面,如镍钢中马氏体在奥氏体(γ)的{135}上最先形成(图7 Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥 氏体)。马氏体形成时和母相的界面上存在大的应变。为了部分地减低这种应变能,会发生辅助的变形,使界面改 变如图7Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥氏体中由{135}变为{224}面。图7Fe-25Ni-0.3V-0.3C钢中的马 氏体及其周围的奥氏体中马氏体呈透镜状,它具有中脊面,是孪晶密度很高的面,即{135}□面,这些马氏体内部的 孪晶是马氏体内的亚结构。在铁基合金的马氏体中存在孪晶或(和)位错,在非铁合金中一般存在孪晶或层错。由 图7Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥氏体还可见到:在马氏体周围的母相(奥氏体)中形成密度很 高的位错,这是在马氏体相变时,母相发生协作形变而形成的。 由于马氏体相变时原子规则地发生位移,使新相(马氏体)和母相之间始终保持一定的位向关系。在铁基合金中由面 心立方母相γ变为体心立方(正方)
19世纪90年代最先由德国冶金学家阿道夫· 马滕斯(Adolf Martens, 1850-1914)于在一种硬矿物中发现。马氏体最初是在钢(中、高碳钢) 中发现的:将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火), 得到的能使钢变硬、增强的一种淬火组织。1895年法国人奥斯蒙 (F.Osmond)为纪念德国冶金学家马滕斯(A.Martens),把这种组织 命名为马氏体(Martensite)。人们最早只把钢中由奥氏体转变为马氏体的 相变称为马氏体相变。20世纪以来,对钢中马氏体相变的特征累积了较 多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如: Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、 Au-Cd、Au-□n、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地 把基本特征属马氏体相变型的相变产物统称为马氏体(见固态相变)。
马氏体组织
起源
• 马氏体(martensite)是黑色金属材料的一种组织名称。最 先由德国冶金学家 Adolf Martens(1850-1914)于19世纪90 年代在一种硬矿物中发现。马氏体的三维组织形态通常有 片状(plate)或者板条状(lath),但是在金相观察中(二维) 通常表现为针状(needle-shaped),这也是为什么在一 些地方通常描述为针状的原因。马氏体的晶体结构为体心 四方结构(BCT)。中高碳钢中加速冷却通常能够获得这 种组织。高的强度和硬度是钢中马氏体的主要特征之一。 • 中文名:马氏体 • 外文名:martensite
组成类型
• 常见马氏体组织有两种类型。中低碳钢淬火获得板条状马氏体,板条 状马氏体是由许多束尺寸大致相同,近似平行排列的细板条组成的组 织,各束板条之间角度比较大;高碳钢淬火获得针状马氏体,针状马 氏体呈竹叶或凸透镜状,针叶一般限制在原奥氏体晶粒之内,针叶之 间互成60°或120°角。
• 马氏体转变同样是在一定温度范围内(Ms-Mz)连续进行的,当温度 达到Ms点以下,立即有部分奥氏体转变为马氏体。板条状马氏体有 很高的强度和硬度,较好的韧性,能承受一定程度的冷加工;针状马 氏体又硬又脆,无塑性变形能力。马氏体转变速度极快,转变时体积 产生膨胀,在钢丝内部形成很大的内应力,所以淬火后的钢丝需要及 时回火,防止应力开裂。[1]
•
•
•
•Байду номын сангаас
组织的形成
•
马氏体由奥氏体急速冷却(淬火)形成,这种情况下奥氏体中固溶的碳原子 没有时间扩散出晶胞。当奥氏体到达马氏体转变温度(Ms)时,马氏体转变 开始产生,母相奥氏体组织开始不稳定。在Ms以下某温度保持不变时,少部 分的奥氏体组织迅速转变,但不会继续。只有当温度进一步降低,更多的奥 氏体才转变为马氏体。最后,温度到达马氏体转变结束温度Mf,马氏体转变 结束。马氏体还可以在压力作用下形成,这种方法通常用在硬化陶瓷上(氧 化钇、氧化锆)和特殊的钢种(高强度、高延展性的钢)。因此,马氏体转 变可以通过热量和压力两种方法进行。