最新4马尔科夫链_图文.ppt
10第四章马尔可夫链精品PPT课件

P(4) 00
0.5749
定义: 称 pj(n )P {X nj}(,j I)为n时刻马尔 可夫链的绝对概率;
称 P T (n ) { p 1 (n ),p 2 (n ), } , n 0为n时刻的 绝对概率向量。
定义: 称 pj(0 )P {X 0j} ,(j I)为马尔可夫链的 初始概率;简记为 p j
j i 1,i-1, i 1
1 0 0 0 0 . .
q
0
p
0
0
.
.
0 q 0 p 0 . .
P
0
0
q
0
p
.
.
0 0 0 q 0 . . . . . . . . .
例题:带2个吸收壁的随机游动
质点在数轴上移动,规律同上例。随机游动的状态 空间I={0,1,2…a}, 其中0和a为吸收态 。求一步转移 概率。
解:
P(2) 00
P{Xm2
0|
Xm
0}
P{Xm2 0, Xm P{Xm 0}
0}
P{Xm2 0, Xm1 0,Xm 0} P{Xm2 0, Xm1 1,Xm 0}
P{Xm 0}
P{Xm 0}
P{Xm2 0, Xm1 0,Xm 0}P{Xm1 0,Xm 0} P{Xm1 0,Xm 0}P{Xm 0}
p(n) 21
p(n) 12
p(n) 22
p(n) 1m
p(n) 2m
为马尔可夫链的n步转移矩阵。规定
p(0) ij
0, 1,
i j i j
例题
设马尔可夫链{Xn,n∈T}有状态空间I={0,1}, 其一步转移概率矩阵为
P
p00 p10
随机过程课件-马尔可夫链

对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。
《马尔可夫链分析法》课件

马尔可夫链分析法具有无后效性 、离散性和随机性,适用于描述 大量随机现象,如股票价格、人 口迁移等。
马尔可夫链分析法的应用领域
金融领域
马尔可夫链分析法用于描述股票价格、汇率等金融市场的随机波 动,以及风险评估和投资组合优化。
自然领域
在生态学、气象学、地质学等领域,马尔可夫链分析法用于描述物 种分布、气候变化、地震等自然现象。
ABCD
云计算应用
利用云计算资源,实现大规模数据的快速处理和 分析。
跨学科合作
加强与其他学科领域的合作,共同推动马尔可夫 链分析法的技术创新和应用拓展。
THANKS FOR WATCHING
感谢您的观看
CHAPTER 03
马尔可夫链分析法的基本步 骤
建立状态转移矩阵
确定系统的状态空间
首先需要确定系统可能的状态,并为其编号。
计算状态转移概率
根据历史数据或实验结果,计算从一个状态转移到另一个状态的 概率。
构建状态转移矩阵
将状态转移概率按照矩阵的形式排列,形成状态转移矩阵。
计算稳态概率
初始化概率向量
系统的长期行为
02
通过分析稳态概率,可以了解系统的长期行为和趋势,例如系
统的最终状态分布、系统的平衡点等。
预测未来状态
03
基于稳态概率,可以对系统未来的状态进行预测,从而为决策
提供依据。
CHAPTER 04
马尔可夫链分析法的应用实 例
人口迁移模型
描述人口迁移的动态过程
马尔可夫链分析法用于描述人口迁移的动态过程,通过分析人口在各个地区之间 的转移概率,预测未来人口分布情况。这种方法可以帮助政府和企业了解人口流 动趋势,制定相应的政策和计划。
《马尔可夫链讲》课件

在平稳分布下,系统的各个状态之间转移的次数趋于平衡,每个状态的平均逗留时 的 马尔可夫链,都存在至少一个平
稳分布。
存在性定理的证明基于遍历理论 ,即如果马尔可夫链是遍历的,
那么它必然存在平稳分布。
根据接受概率判断是否接受样本的技 术,可以提高样本的质量和效率。
接受-拒绝抽样技术
接受概率
根据目标分布和当前状态计算出的概率,用于判断是否接受当前状态 转移为下一个状态。
拒绝概率
根据当前状态和接受概率计算出的概率,用于判断是否拒绝当前状态 转移为下一个状态。
接受-拒绝抽样过程
根据当前状态和接受概率计算出接受该状态的概率,如果该概率大于 随机数,则接受该状态作为下一个状态,否则拒绝并重新抽样。
详细描述
马尔可夫链定义为一个随机过程,其 中每个状态只与前一个状态有关,当 前状态只依赖于前一时刻的状态,不 受到过去状态的影响。
马尔可夫链的应用场景
总结词
马尔可夫链在多个领域有广泛应用。
详细描述
在自然语言处理中,马尔可夫链可以用于生成文本、语言模型等;在金融领域 ,马尔可夫链可以用于股票价格预测、风险评估等;在物理学中,马尔可夫链 可以用于描述粒子运动、化学反应等。
模型训练与预测
模型选择
根据数据特点和业务需求选择合适的马尔可 夫链模型。
模型训练
使用历史数据训练马尔可夫链模型。
参数设置
根据经验和业务理解设置模型参数。
预测与推断
基于训练好的模型对未来或未知数据进行预 测和推断。
结果评估与优化
评估指标
选择合适的评估指标(如准确率、召回率、F1值等)对预测结果进行评估。
马尔可夫链精品PPT课件

例2.1 (一维随机游动)
12345
设一随机游动的质点, 在如右上图所示的
直线点集I={1,2,3,4,5}作随机游动,并且仅仅在1秒,2秒
…等时刻发生游动.游动的概率规则是:如果Q现在位于点
i(1<i<5), 则下一时刻各以1/3的概率向左或向右移动
一格,或以1/3的概率留在原处; 如果Q现在位于点1(或5)
式.
利用积事件的概率及上述定义知: P{X0=i0,X1=i1,…,Xn=in} =P{Xn=in|X0=i0,X1=i1,…,Xn-1=in-1}P{X0=i0,X1=i1,…, Xn-1=in-1} =P{Xn=in|Xn-1=in-1}P{X0=i0,X1=i1,…,Xn-1=in-1} =… =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1|Xn-2=in-2}…P{X1=i1| X0=i0}P{X0=i0}.
即马尔可夫链的统计特性完全由条件概率
P{Xn+1=in+1|Xn=in} 所决定. 如何确定这个条件概率,是马尔可夫链理论和应
用中的重要问题之一.
2.转移概率 条件概率P{Xn+1=j|Xn=i}的直观含义是:系统在时刻n处
于状态i的条件下,在时刻n+1系统处于状态j的概率.这相 当于随机游动的质点在时刻n处于状态i的条件下,下一步 转移到状态j的概率.
pij(n)为pij. 下面只讨论齐次马尔可夫链,并将齐次两字省略.
设I=P{为1,一2,步转移概率pij所组成的矩阵,状态空间
…},则 P=
p11 p12 … p1n … p21 p22 … p2n … … … … ……
pi1 pi2 … pin … …… … … …
第4章 马尔可夫链

(2)状态的常返性
首中概率——状态 i 经 n 步首次到达状态 j 的概率:
f ij( n ) P{ X m n j , X m v j , 1 v n 1 X m i}, n 1
f ij( 0 ) 0
系统从状态 i 出发,经有限步迟早会(首次)到达 状态 j 的概率:
i I
p i p ii1 p i n 1i n
马尔可夫链的有限维分布完全由它的初始概率和 一步转移概率所决定。
马尔可夫链的几个简单例子
[例1] 二进制对称信道模型——是常用 于表征通信系统的错误产生机制的离 散无记忆信道模型。假设某级信道输 入0, 1数字信号后,其输出正确的概 1 率为p,产生错误的概率为q,则该级 信道输入状态和输出状态构成一个两 状态的齐次马尔可夫链。 一步转移概率矩阵: p q P q p 0
目录
4.2 马尔可夫链的状态分类
设 { Xn , n >0 } 是齐次马尔可夫链,其状态空间 I = { 0, 1, 2, … },转移概率是 pij , i , j I ,初始分布 为{ Pj , j I } 。
8 1 9 2 1 1 6 1 5 2/3 1/3 1 4 1
1 7
( 2 ) P{ X n 2 c X n b}
17 30 1 3 1 2 1 ( 2) 2 8 (1) P P 15 4 5 3 5 50 17 30 1 (2) ( 2 ) P{ X n 2 c X n b} Pbc 6 9 40 3 10 3 20 5 24 1 6 17 90
连续马尔可夫过程(或扩散过程)
4.1 马尔可夫链的概念及转移概率
《马氏链及其应用》课件

马氏链的性质
总结词
马氏链具有无记忆性、强马尔可夫性和转移概率性等性质。
详细描述
马氏链的一个重要性质是无记忆性,即下一个状态与过去状 态无关,只与当前状态有关。此外,马氏链还具有强马尔可 夫性和转移概率性等性质,这些性质使得马氏链在描述随机 现象时具有独特的优势。
马氏链的分类
要点一
总结词
马氏链可以分为离散时间和连续时间的马氏链,以及有向 和无向的马氏链。
机器学习算法
马氏链在强化学习中用于 估计策略值函数和近似最 优策略,提高机器学习的 效率和准确性。
图像处理
通过马氏链模拟图像的随 机过程,实现图像的降噪 、增强和修复等处理。
数据压缩
利用马氏链对数据进行编 码和压缩,降低存储和传 输成本,提高数据处理的 效率。
在其他领域的应用
物理学中的随机过程模拟
在生态领域的应用
种群动态模拟
01
马氏链用于模拟物种数量的变化过程,研究种群的增长规律和
生态平衡机制。
生态系统稳定性分析
02
通过马氏链分析生态系统中的反馈机制和稳定性条件,评估生
态系统受到干扰后的恢复能力。
生物多样性保护
03
利用马氏链预测物种的灭绝风险和保护策略,为生物多样性保
护提供科学依据。
在计算机科学领域的应用
马氏链面临的挑战和问题
理论体系的完善
马氏链理论体系仍需不 断完善和发展,以适应 不断涌现的新问题和挑 战。
应用领域的拓展
尽管马氏链在某些领域 已经取得广泛应用,但 仍需拓展更多应用领域 ,解决实际问题。
计算效率的提高
随着数据规模的增大, 如何提高马氏链的计算 效率成为亟待解决的问 题。
THANKS
第四章 马尔可夫链

第四章 马尔可夫链随机过程在不同时刻下的状态之间一般具有某种关系,马尔可夫(Markov )过程就是描述一类状态之间具有某种特殊统计联系的随机过程.Markov 过程在近代物理学、生物学、管理科学、信息处理与数字计算方法等领域都有重要的应用.按其状态和时间参数是连续的或离散的,它可分为三类:(1)时间、状态都是离散的Markov 过程,称为Markov 链;(2)时间连续、状态离散的Markov 过程,称为连续时间的Markov 链;(3)时间、状态都连续的Markov 过程.本章主要讨论Markov 链,有关连续时间的Markov 链的相关理论将在下章讨论.4.1 马尔可夫链的概念和例子独立随机试验模型最直接的推广就是Markov 链模型,早在1906年俄国数学家Markov 对它进行研究而得名,以后Kolmogorov 、Feller 、Doob 等数学家发展了这一理论.4.1 .1 Markov 链的定义假设Markov 过程{,}n X n T ∈的参数集T 是离散时间集合,即{0,1,2,}T =,相应n X 可能取值的全体组成的状态空间是离散状态集012{,,,}I i i i =.定义 4.1 设有一随机过程{,}n X n T ∈,若对于任意整数n T ∈和任意011,,,n i i i I +∈,条件概率满足11001111{|,,,}{|}n n n n n n n n P X i X i X i X i P X i X i ++++=======则称{,}n X n T ∈为离散时间的Markov 链,简称Markov 链(Markov chains )或马氏链.从定义可以看出:Markov 链具有Markov 性(即无后效性),如果把时刻n 看作现在,那么,1n +是将来的时刻,而0,1,2,,1n -是过去的时刻.Markov 性表示在确切知道系统现在状态的条件下,系统将来的状况与过去的状况无关,而且Markov 链的统计特征完全由条件概率11{|}n n n n P X i X i ++==所决定. 因此,如何确定这个条件概率,是研究Markov 链理论和应用中十分重要的问题之一. 4.1.2 转移概率定义 4.2 称条件概率1(){|}ij n n p n P X j X i +=== (4.1)为Markov 链{,}n X n T ∈在时刻n 的一步转移概率,其中,i j I ∈,简称转移概率(transition probability ).一般地,转移概率()ij p n 不仅仅与状态,i j 有关,而且与时刻n 有关,如果()ij p n 不依赖时刻n 时,则称Markov 链具有平稳转移概率.定义 4.3 若对任意,i j I ∈,Markov 链{,}n X n T ∈的转移概率()ij p n 与n 无关,则称Markov 链是齐次的(或称时齐的)(time homogeneous -),并记()ij p n 为ij p . 下面只讨论齐次Markov 链,并且通常将“齐次”两字省去.定义 4.4 设P 表示一步转移概率ij p 所组成的矩阵,且状态空间{1,2,}I =,则1112121222...........................n n p p p P p p p ⎛⎫ ⎪= ⎪ ⎪⎝⎭称为系统状态的一步转移概率矩阵(transition probability matrix ),它具有性质: (1)0,,ij p i j I ≥∈; (2)1,ijj Ipi I ∈=∈∑.(2)式说明一步转移概率矩阵中任一行元素之和为1,通常称满足性质(1)(2)的矩阵为随机矩阵.定义 4.5 称条件概率(){|},n ij m n m p P X j X i +=== ,,0,1i j I m n ∈≥≥ (4.2)为Markov 链{,}n X n T ∈的n 步转移概率,并称()()()n n ij P p =为Markov 链{,}n X n T ∈的n 步转移矩阵.其中()()0,1n n ij ij j Ip p ∈≥=∑,即()n P 也是一个随机矩阵.特别地,当1n =时,(1)ij ij p p =,此时,一步转移矩阵(1)P P =.我们还规定(0)0,1,iji jpi j ≠⎧=⎨=⎩Markov 链n 步转移概率满足重要的Chapman Kolmogorov -方程(简称C K -方程)。
马尔科夫链的状态分类PPT课件

n1
第10页/共52页
2.首次到达分解式
定理2 对任意i, j I 及 n 1,有
n
p(n) ij
f p (m) (nm)
ij
jj
证
m1
设系统从状态i经n步转移到状态j,
那么首次到达 j 的时间Tij n 由条件概率及马氏性得
n
p(n) ij
P{Xn
j | X0
i}
P{
Tij
m, X n
说明
本定理表示 n 步转移概率pi(jn) 按首次到达时间Tij = m
( m =1,2,…,n) 的所有可能值进行分解,
建立了
f (m) ij
与pi(jn)
之间的关系公式
定理3 fij 0 的充要条件是i j
证
充分性
设i
j
则存在某n
1
,使
p(n) ij
0
由定理2得
n
p(n) ij
f p (m) (nm)
定理4 若 fii 1,则系统以概率 1 无穷次返回 i;
若 fii 1 ,则系统以概率 1 只有有穷次返回 i。
证 若 fii 1 则系统从状态i出发,经过有限次转移之后,
必定以概率1返回状态i。 再由马氏性 系统返回状态i要重复发生
第14页/共52页
这样,系统从状态i出发,又返回,再出发,再返 回,随着时间的无限推移,将无限次访问状态i。
证 记C为全体常返态所构成的集合,
N S C 为瞬时态全体 则由定理7知C为闭集
将C按互通关系分类:在 C 中任取一个状态i1 ,
凡是与 i1 互通的状态组成一个集合,记为 C1 ;
在组成C1
后,如果还有余下的状态,那么再从余下的状态 中任取一个状态 i2