硬质合金材料(1)
常用硬质合金的牌号 -回复
常用硬质合金的牌号-回复硬质合金,也被称为硬质合金材料或金属陶瓷材料,是由一种或几种金属元素和非金属元素的高硬度相组成的复合材料。
它具有硬度高、抗磨损、耐冲击、高强度等优良的力学性能,因此在诸多领域得到广泛应用。
以下是一些常用硬质合金的牌号,以及其特点和应用领域的介绍。
1. YG6:该牌号是指使用了镍基合金作为粘结相的固液相合金。
它具有优良的硬度、耐磨性和抗压性能。
广泛应用于机械加工、石油钻具、金属切削刀具等领域。
2. YG8:与YG6相似,YG8也是一种镍基合金的固液相合金,但其含碳量稍高。
这使得YG8具有更好的耐蚀性和耐磨性。
它通常被用于制作石油钻头、煤矿用机械零件、地砖切削刀片等。
3. YT5:YT5是一种钨基合金。
它具有较高的硬度和耐腐蚀性能,特别适用于制作加工硬度较高的材料、如钢铁、铸铁、不锈钢等。
因此,YT5广泛应用于车削刀具、铣削刀具等切削工具中。
4. YT15:YT15是另一种钨基合金,相较于YT5具有更高的硬度和耐磨性。
因此,YT15常用于制造高速切削刀具,如钻头、铣刀等。
5. YW1:YW1是一种钨钛合金,含有钛元素。
它具有良好的切削性能和耐腐蚀性能,尤其适用于制造各种切削刀具,如车刀、铣刀、钻头等。
6. YW2:YW2与YW1类似,也是一种钨钛合金,但其钛含量稍高。
这使得YW2具有更好的耐磨性和抗热性能。
因此,YW2常被用于制造耐磨切削刀具以及高温环境下的切削工具。
7. YS2T:YS2T是一种钛碳化钨合金。
它具有极高的硬度和耐磨性,尤其适用于加工硬度较高的材料,如钢铁、铸铁等。
因此,YS2T广泛应用于制造工作量大而硬度高的切削刀具。
通过以上介绍,我们可以看出不同牌号的硬质合金具有不同的特点和应用领域。
选择合适的硬质合金牌号对于提高切削工具的性能、延长工具使用寿命具有重要意义。
因此,在使用硬质合金时,需要根据具体的应用需求选择合适的牌号,并进行合理的刀具设计和切削参数的选择,才能充分发挥硬质合金的优势。
硬质合金牌号成分标准
硬质合金牌号成分标准
首先,硬质合金的主要成分包括碳化钨、钴、钛、钼等。
其中,碳化钨是硬质合金的主要成分,其含量通常在70%以上。
碳化钨具有极高的硬度和耐磨性,是硬质合金具有优异性能的关键成分。
而钴的作用则是增加硬质合金的韧性和强度,提高其加工性能和耐冲击性。
钛和钼的加入可以提高硬质合金的耐腐蚀性能,使其在恶劣环境下仍能保持稳定的性能。
其次,硬质合金的成分标准在不同的行业和应用中有所差异。
比如,用于机械加工的硬质合金通常要求硬度高、耐磨性好,因此碳化钨和钴的含量会相对较高;而用于石油钻探的硬质合金则需要具有较好的耐腐蚀性能,因此钛和钼的含量会相对较高。
因此,针对不同的应用,硬质合金的成分标准也会有所不同。
此外,硬质合金的成分标准还受到生产工艺、设备条件、成本控制等因素的影响。
在生产工艺方面,采用不同的制备方法和烧结工艺,可以调控硬质合金的微观结构和性能,从而影响其成分标准。
在设备条件和成本控制方面,生产企业需要根据自身的实际情况,合理调整硬质合金的成分标准,以实现性能和成本的平衡。
综上所述,硬质合金牌号成分标准是影响硬质合金性能和应用的重要因素。
了解硬质合金的成分标准,可以帮助生产企业选择合适的硬质合金材料,满足不同领域的需求。
同时,科研人员也可以根据硬质合金的成分标准,开展相关的材料设计和工艺优化研究,推动硬质合金材料的发展和应用。
希望本文对硬质合金牌号成分标准有所帮助,谢谢阅读!。
硬质合金
1 硬质合金的概念硬质合金是以高硬度、耐高温、耐磨的难熔金属碳化物(WC、TiC、CrZC3等)为主要成分,用抗机械冲击和热冲击好的铁族金属(Co、Mo、Ni等)作粘结剂,经粉末冶金方法烧结而成的一种多相复合材料[1]。
硬质合金也是由难熔金属硬质化合物(硬质相)和粘结金属经粉末冶金方法制成的高硬度材料[2]。
难熔金属硬质化合物通常指元素周期表第IV、V、VI族中过渡元素的碳化物,氮化物,硼化物和硅化物。
硬质合金中广泛使用的是碳化物,主要是碳化钨和碳化钽。
这些碳化物的共同特点是:熔点高,硬度高,化学稳定性好,热稳定性好,常温下与粘结金属的相互溶解作用很小等。
粘结金属应当符合下列要求:硬质合金的工作温度(1000℃)下不会出现液相;能较好的润湿碳化物表面;在烧结温度下不与碳化物发生化学反应;本身的物理力学性能较好等。
铁族金属及其合金能不同程度地满足上述要求。
其中最好的是钴,其次是镍,铁很少单独使用。
钨钴类硬质合金它由WC和Co组成,代号为YG,相当于ISO的K类。
我国常用的牌号有YG3,YG3X,YG6,YG6X,YG8等。
代号后面的数字为该牌号合金含钴量的百分数,X为细晶粒组织,无X为中晶粒组织。
随含钴量增加,材料抗弯强度和冲击韧性增加,但硬度,耐热,耐磨性逐渐下降。
YG类硬质合金主要用于加工硬,脆的铸铁,有色金属和非金属材料。
一般不宜于加工钢料,因为切钢时切削温度比较高,容易产生粘结与扩散磨损而使刀具迅速钝化。
但细晶粒组织的这类合金可用于加工一些特殊硬铸铁,不锈钢,耐热合金,钛合金等材料,因这时切削力大并集中于切削刃附近易崩刃,而YG合金的强度,韧性较好,导热性也不错,能达到良好的效果。
在YG类合金中添加少量的TaC(NbC)时,可明显提高合金的硬度,耐磨性,耐热性而不降低韧性,如YG6A,YG8A,(YG813)等牌号[3]。
至今硬质合金经历了飞速的发展,从普通合金到亚微米级(0.5~1μm)晶粒合金,再到超细级(0.1~0.5μm),以及至今的纳米级(≤0.1um)硬质合金。
硬质合金的牌号、性能及用途
硬质合金的牌号、性能及用途牌号相当于ISO分组代号YG3YG3XK01K01密度G/Cm314.9-15.315.1-15.4性能抗弯强度N/mm2≥1180≥1300硬度HRA≥90.5适合铸铁、有色金属及其合金与非合金材料连续切削时≥91.5的精车,半精车。
并能对钢、有色金属及其线材拉伸、亦适合于喷沙用喷咀YG6XYG6AYG6K10K2014.8-15.114.7-15.114.7-15.1≥1560≥1580≥1670≥91.0≥91.0≥89.5适合冷硬铸铁、合金铸铁、耐热钢、合金钢的加工。
亦适合普通铸铁的加工。
适合铸铁、有色金属、合金与非合金材料的精加工与半精加工,亦用于钢、有色金属线材的拉伸,地质用电钻、钢钻钻头等YG8K20-K3014.6-14.9≥1840≥89适合铸铁、有色金属、非金属材料的粗加工,钢及有色金属、管材的拉伸,地质用各种钻头、机器制造用工具及易磨损零件。
YS2TYG10HTYB06K30-M30K30-M30K05-K1014.5-14.814.4-14.614.9-15.0≥2300≥2100≥3000≥91.5≥93.5适用低速粗加工,铣削钛合金及耐热合金,做切断刀及丝锥尤佳。
适用于制作φ3.2-6.3mmPCB大直径钻头、φ0.8-3.2mmPCB微钻、微铣刀和铰刀等硬质合金工具。
YB10K05-K1014.4-14.5≥3000≥91.8适用普钢、铸铁、不锈钢、耐热钢、镍基及钛合金等材料的加工。
推荐用于麻花钻头、立铣刀、丝锥、枪钻等通用工具材料。
YB12K05-K1014.0-14.1≥3200≥92.0适用于钛合金,耐热合金,不锈钢,淬硬钢,灰口铸铁,用途玻璃纤维增强塑料等材料的加工。
用于制作各种规格的立铣刀、球头铣刀等硬质合金工具。
YK25YG11CYG15K40K40K4014-.3-14.614.0--14.413.9-14.1≥2100≥2060≥2020≥86.5≥86.0≥86.5适用于镶镶制造重型凿岩机用的钻头:如深孔钻进、凿岩台车等用的钎头。
硬质合金材料
硬质合金材料
硬质合金材料,又称硬质合金,是一种由钨、钴、钛、钼等金属粉末以及少量
粘结剂混合压制而成的坚硬材料。
它具有高硬度、耐磨、耐腐蚀、高强度和高熔点等特点,因此在机械加工、矿山工具、石油钻采、军工等领域有着广泛的应用。
首先,硬质合金材料的硬度非常高,通常在HRA80以上,有的甚至可以达到HRA90以上。
这种超高硬度使得硬质合金材料成为了加工硬质材料的理想选择,
比如加工钢铁、合金钢、铸铁、不锈钢等材料时,硬质合金刀具能够保持锋利,不易磨损,从而提高了加工效率和加工质量。
其次,硬质合金材料具有良好的耐磨性和耐腐蚀性。
在高速切削、重载切削等
恶劣工况下,硬质合金刀具能够保持较长时间的使用寿命,不易出现断裂、磨损等现象。
同时,硬质合金材料也具有良好的耐腐蚀性,能够在恶劣的工作环境下保持稳定的性能,延长使用寿命。
另外,硬质合金材料还具有高强度和高熔点的特点。
这使得硬质合金材料在高
温高压的环境下仍能保持稳定的性能,不易发生变形、断裂等现象。
因此,在矿山工具、石油钻采、军工等领域有着广泛的应用。
总的来说,硬质合金材料以其高硬度、耐磨、耐腐蚀、高强度和高熔点的特点,在机械加工、矿山工具、石油钻采、军工等领域有着广泛的应用前景。
未来,随着科学技术的不断进步,硬质合金材料的性能将得到进一步提升,应用领域也将不断扩大,为人类的生产生活带来更多的便利和效益。
硬质合金标准
硬质合金标准摘要:一、硬质合金概述二、硬质合金标准的重要性三、硬质合金标准的分类与内容四、我国硬质合金标准的发展五、硬质合金标准的应用与实践六、展望硬质合金标准的发展趋势正文:硬质合金是一种由钨、钴、碳等元素组成的粉末冶金材料,以其高硬度、高韧性、高熔点等优异性能在工业领域得到广泛应用。
硬质合金标准对于规范硬质合金的生产、研发、检测和应用具有重要意义。
一、硬质合金概述硬质合金是一种重要的金属材料,其主要成分是钨、钴、碳等元素。
通过粉末冶金技术,将这些元素混合、压制、烧结而成。
硬质合金具有高硬度、高韧性、高熔点、高热稳定性等优异性能,因此在工业领域具有广泛的应用,如切削工具、矿山工具、耐磨零件等。
二、硬质合金标准的重要性硬质合金标准是对硬质合金产品质量、性能、检测等方面的规范。
它对于保证硬质合金产品的可靠性和稳定性,提高我国硬质合金产业的国际竞争力具有重要意义。
三、硬质合金标准的分类与内容硬质合金标准主要包括以下几类:1.产品标准:规定硬质合金产品的分类、命名、性能、尺寸、形状、允许偏差等。
2.试验方法标准:规定硬质合金的试验方法,包括化学分析、物理性能、力学性能、金相检验等。
3.检验规则标准:规定硬质合金产品的检验程序、检验方法、判定规则等。
4.安全、卫生、环保标准:规定硬质合金生产过程中的安全、卫生、环保要求。
四、我国硬质合金标准的发展近年来,我国硬质合金标准不断完善,逐步形成了具有中国特色的硬质合金标准体系。
在与国际先进标准的对比中,我国硬质合金标准在技术要求、试验方法等方面与国际先进水平相当。
五、硬质合金标准的应用与实践硬质合金标准在硬质合金生产、研发、检测、应用等环节具有重要作用。
通过贯彻实施硬质合金标准,可以提高产品质量,降低生产成本,促进产业升级,满足市场需求。
六、展望硬质合金标准的发展趋势随着硬质合金产业的不断发展,硬质合金标准也将不断更新、完善。
未来的发展趋势主要包括:1.加强硬质合金标准的制定和修订,提高标准的科学性、实用性和前瞻性。
常见硬质合金材料特点
常见硬质合金材料特点硬质合金,也称为硬质质合金或硬质合金材料,是由坚硬的金属碳化物粒子(通常是钨碳化物WC)嵌入到柔软的金属基体中形成的一种复合材料。
在工业应用中,硬质合金被广泛应用于切削工具、矿山工具、钻头、机械零件等领域。
下面是硬质合金材料的常见特点:1.高硬度:硬质合金具有非常高的硬度,通常在HRA90以上。
这使得硬质合金材料在切削、磨削和磨料加工等方面表现出色。
2.高耐磨性:由于硬质合金的高硬度,它具有良好的耐磨性能。
硬质合金材料可用于制造切削刀具、刨刀、钻头等,能够长时间保持工作表面的锐利度。
3.高强度:硬质合金材料通常具有很高的抗拉强度和抗压强度。
这使得它们在应对高负荷和高压条件下表现出色,在机械零件和重要结构中得到广泛应用。
4.耐腐蚀性:硬质合金材料通常具有较好的耐腐蚀性。
对于一些酸、碱、盐等化学物质的腐蚀,硬质合金材料可以表现出良好的抗蚀性。
5.高温稳定性:硬质合金材料具有很好的高温稳定性,能够在高温环境下长时间使用而不发生软化、熔化等变形。
因此,在高速切削等需要耐高温性能的领域中,硬质合金得到广泛应用。
6.耐冲击性:虽然硬质合金材料非常硬,但其韧性也很好,对于冲击性能良好。
这使得硬质合金材料能够承受一定的冲击负荷,不易断裂。
总体而言,硬质合金材料以其高硬度、高强度、高耐磨性以及耐高温稳定性等特点而受到广泛应用。
在工业生产中,硬质合金材料已经取代了传统的工具钢,成为切削工具、矿山工具、机械零件等领域中的主要材料之一、然而,由于硬质合金材料具有较高的脆性,因此在一些对韧性和抗冲击性要求较高的领域中,仍然需要有其他材料进行替代。
硬质材料之硬质合金与硬质合金涂层
第一节 硬质合金
• “碳化钨”是非常硬的硬质合金颗粒,特别是碳 化钨在富铁基质的出现使得高速钢具有优异的加 工能力。早期的硬质合金在用于工业用途时过于 脆弱,但是不久发现将碳化钨粉末与大约10%的 金属,如铁、镍或钴,允许压坯在大约1500℃下 烧结,在这个过程中生成的产品具有低孔隙率、 非常高的硬度,而且相当大的强度。这些性质的 组合使得材料理想的适合用来作为切削金属的加 工刀具。
可惜得是,碳化钛和TiC基固溶体非常脆而且不如碳化钨耐 磨。因此尽可能地将TiC的含量保持在最低水平。
在极限配方中碳化物是不含钨的并且完全是基于TiC基础之 上的,但一般的TiC成分不能超过18%。如果超过这个数值, 碳化物变得过脆并且非常难于铜焊。
一般情况下 WC/TiC/Co的成分具有两种显著的碳化物相, 几乎纯净的WC角晶体和磨圆的TiC/Co 混合晶体。在发展的 制造业中尽管WC/TiC/Co硬金属应用非常广泛,在某些重要 的考虑中是禁止使用的,它们在许多应用中被具有更高强度 以及抗麻坑优势的WC/TiC/Ta(Nb)C/C9系列所替代。TiC, TiN以及其他在硬基质上的涂敷也已经减少了高速加工钢和铁 合金对高TiC成分的吸引力。
常用硬质合金的牌号
常用硬质合金的牌号硬质合金,也被称为钨钢或硬质合金钢,是一种由金属碳化物颗粒均匀分布在金属基体中形成的复合材料。
它具有高硬度、高耐磨性、高强度和良好的耐腐蚀性能,因此广泛应用于金属切削、矿石开采、石油钻探等领域。
在不同的应用场景中,常用的硬质合金牌号有以下几种。
1. YG6YG6是一种常用的硬质合金牌号,它的主要成分是钨和钴。
具有高硬度、耐磨性好、抗腐蚀性能强等优点。
YG6广泛应用于金属切削工具,如钻头、铣刀、刨刀等。
同时,它也用于石油钻头和煤矿机械的切削部件。
2. YG8YG8是另一种常见的硬质合金牌号,它也是由钨和钴组成。
相对于YG6,YG8的硬度更高,因此更适用于一些需要更高切削速度和更重切削负荷的工具。
YG8常用于制作金属铣刀、钻头和刨刀等工具。
3. YG15YG15是一种含有较高钨含量的硬质合金牌号。
它的硬度和耐磨性比YG6和YG8更高,适用于一些需要更高切削速度和更重切削负荷的工具。
YG15常用于制作金属切削工具,如钻头、铣刀和刨刀,以及用于挖掘机械和煤矿机械的切削部件。
4. YW1YW1是一种具有较高硬度和优良耐磨性能的硬质合金牌号。
它的主要成分是钨和钛碳化物。
YW1常用于制作冷模、热模和注塑模等工具。
它的耐磨性能和高温硬度使得YW1非常适用于模具行业的应用。
5. YS2TYS2T是一种钨钛碳化物基硬质合金牌号,具有较高的硬度和良好的耐磨性。
YS2T常用于金属切削工具和模具的制造,特别适用于高速切削工艺。
总结起来,常用的硬质合金牌号包括YG6、YG8、YG15、YW1和YS2T等。
这些硬质合金牌号在不同的应用领域具有广泛的应用,如金属切削、矿石开采、石油钻探和模具制造等。
根据具体的应用场景和需求,选择合适的硬质合金牌号可以提高工具的切削效率和使用寿命,从而提高生产效益。
什么是硬质合金?硬质合金的特点有哪些?常用硬质合金有哪些?
什么是硬质合⾦?硬质合⾦的特点有哪些?常⽤硬质合⾦有哪些?硬质合⾦是以⼀种或⼏种难熔碳化物(碳化钨、碳化钛等)的粉末为主要成分,加⼊作为粘接剂的⾦属粉末(钴、镍等),经粉末冶⾦法⽽制得的合⾦。
它主要⽤于制造⾼速切削刃具和硬、韧材料切削刃具,以及制作冷作模具、量具和不受冲击、振动的⾼耐磨零件。
硬质合⾦的特点⑴硬度、耐磨性和红硬性⾼硬质合⾦常温下硬度可达86~93HRA,相当于69~81HRC。
在900~1000℃能保持⾼硬度,并有优良的耐磨性。
与⾼速⼯具钢相⽐,切削速度可⾼4~7倍,寿命长5~80倍,可切削硬度⾼达50HRC的硬质材料。
⑵强度、弹性模量⾼硬质合⾦的抗压强度⾼达6000MPa,弹性模量为(4~7)×105MPa,都⾼于⾼速钢。
但其抗弯强度较低,⼀般为1000~3000MPa。
⑶耐蚀性、抗氧化性好⼀般能很好地抗⼤⽓、酸、碱等腐蚀,不易氧化。
⑷线膨胀系数⼩⼯作时,形状尺⼨稳定。
⑸成形制品不再加⼯、重磨由于硬质合⾦硬度⾼并有脆性,所以粉末冶⾦成形烧结后不再进⾏切削加⼯或重磨,特需再加⼯时,只能采⽤电⽕花、线切割、电解磨削等电加⼯或专门的砂轮磨削。
通常由硬质合⾦制成的⼀定规格的制品,采⽤钎焊、粘接或机械装夹在⼑体或模具体上使⽤。
常⽤硬质合⾦常⽤硬质合⾦按成分和性能特点分为三类:钨钴类、钨钛钴类、钨钛钽(铌)类。
⽣产中应⽤最⼴泛的是钨钴类和钨钛钴类硬质合⾦。
⑴钨钴类硬质合⾦主要成分是碳化钨(WC)和钴,牌号⽤代号YG(“硬”、“钴”两字汉语拼⾳字⾸),后加钴含量的百分数值表⽰。
如YG6表⽰钴含量为6%的钨钴类硬质合⾦,碳化钨含量wWC=1-wCo=94%。
⑵钨钛钴类硬质合⾦主要成分是碳化钨(WC)、碳化钛(TiC)及钴,牌号⽤代号YT(“硬”、“钛”两字汉语拼⾳字⾸),后加碳化钛含量的百分数值表⽰。
如YT15表⽰碳化钛含量wTiC=15%的钨钛钴类硬质合⾦。
⑶钨钛钽(铌)类硬质合⾦这类硬质合⾦⼜称通⽤硬质合⾦或万能硬质合⾦,主要成分是碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)或碳化铌(NbC)和钴组成。
硬质合金性能与检测(1)
矫顽力的测定
矫顽力的意义:表示对应于磁壁移动的阻抗量。可评定合金的组织状况。 随钴含量降低,矫顽力增大;当钴含量一定时,碳化钨晶粒越细,钴相分散 程度越高,矫顽力也越大。另外,当合金中出现非磁性相时,矫顽力会升高。 矫顽力的测定:矫顽力的测定比较简单,先对试样充磁,然后再对试样去 磁,并记下去磁电流,则试样的矫顽力为:Hc = KI。其中,Hc-矫顽力(奥 斯特); I-去磁电流(安); K-仪器常数。
测试原理
维氏硬度
维氏硬度试验方法是英国史密斯(R.L.Smith)和塞德兰德 (C.E.Sandland)于1925年提出的。和布氏、洛氏硬度试验 相比,维氏硬度试验测量范围较宽,从较软材料到超硬材料,几 乎涵盖各种材料。 维氏硬度的测定原理基本上和布氏硬度相同,也是根据压痕单位 面积上的载荷来计算硬度值。所不同的是维氏硬度试验的压头是 金刚石的正四棱锥体。 维氏硬度试验时,在一定载荷的作用下,试样表面上压出一个四 方锥形的压痕,测量压痕对角线长度,除以计算压痕的表面积, 载荷除以表面积的数值就是试样的硬度值,用符号HV表示。
2 1 ( 2 VT / VL) E 2 ( 1 ) 2 ( 2 ) 2 ( 2 VT / VL)
VL2
2 VT 2
σ-泊松比,E-扬氏弹性模量
洛氏硬度的测试
测试方法:硬质合金必须用洛氏硬度试验机来测定其硬度值(常用HRA,载 荷60Kg)。由于硬质合金硬度高,金刚石压头损坏快,若测试值误差大,可采 用比较测试法,即用二块硬度分别比所待测试样硬和软的硬质合金标准块, 与待测试样同时进行测试,再按下式算出待测试祥的硬度值。
• 试样应有足够厚度以保证裂纹尖端附近处于平面应变状态。此时,裂纹前 端处于三向拉应力状态,塑性变形困难,裂纹易扩展,材料脆性大。
常用的硬质合金成分
因而,YG3则适于精加工;反之YG15能承受较大的冲击载荷,适用于粗加工。 YG6 94.0 - - 6 适于铸铁、有色金属及其合金、非金属材料连续切削时的粗车,间断切削时的半精车、精车 YG8C 92.0 - - 8 适于冲击回转凿岩机凿坚硬岩石,含坚硬夹石的切煤机齿、油井钻头、钻进坚硬岩石的冲击式钻头、冲压模具、刨刀和插刀等 YG15 85 - - 15 适于冲击回转凿岩机凿坚硬、极坚硬岩石,在较大应力下工作的穿孔及冲压工具 钨钛类合金 YT5 85 5 - 10 适于碳钢、合金钢、锻件、冲压件、铸件的表皮加工,不平整断面、间断切削时的粗车、粗刨、半精刨。粗铣、钻孔等 加人碳化钛,提高了硬度和耐热性。
含碳化钛越多,钴越少,则合金的硬度、耐磨性和耐热性越好,而抗弯强度就越差。因此YT30用于精加工,而YT15适用于粗加工。 YT15 79 15 - 6 适于碳钢。合金钢连续切削时半精车、精车,间断切削时小断面精车,连续面半精铣、精铣、孔精扩、粗扩等 YT30 66 30 - 4 适于碳钢、合金钢精加工,如小断面精车、精镗、精扩等 通用合金 YW1 84~85 6 3~4 6 适于耐热钢、高锰钢、不锈钢等难加工钢材的精加工,及一般钢材、普通铸铁、有色金属的精加工 加人碳化钽,显著提高了合金的硬度、耐磨性、耐热性及抗氧化的能力。 可铸铁、耐热钢、高锰钢、高级合金钢等难加工的材料和有色金属。 YW2 82~83 6 3~4 8 适于耐热钢、高锰钢、不锈钢、高级合金钢等难加工钢材的半精加工,及一般钢材、普通铸铁、有色金属的半精加工 (5)钢结硬质合金
常用硬质合金的牌号、成分、性能与应用(见下表) 类别 牌号 化学成分 W/% 性能 适用范围 WC TiC TaC Co 钨钴类合金 YG3X 96.5 - <0.5 3 适于铸铁、有色金属及其合金的精镗、精车等,亦可用于合金钢、淬火钢及钨、钼材料的精加工 ?
整体硬质合金刀具技术材料
技术课件
16
整体硬质合金刀具
刃长l2:
立铣刀的刃长l2是端齿至周刃尾部的 长度。
刃长越短,刀具的刚性和切削性能越 好。立铣刀的刚性与刃长的3次方成反比。
在相同的切削条件下,因为立铣刀的 刃长增大以后,刀具的刚度将下降,从而 影响到被加工面的垂直度和表面质量。
技术课件
17
整体硬质合金刀具
刃数Z和芯厚k : 影响立铣刀切削性能的另一重要因素是切削刃 的刃数。一般情况下,切削刃数少的立铣刀的 容屑槽大,其切屑的排除性好,齿数多时,立 铣刀的横截面积大,刚性好;但容屑槽的能力 低,在加工中易出现切屑阻塞。 刃数:精/粗加工 芯厚:刚性、容屑槽(加工精度)切削效率;
角头、球头、平头
技术课件
13
整体硬质合金刀具
周刃形状: 柱状、锥状、成形铣刀
技术课件
14
整体硬质合金刀具
技术课件
15
整体硬质合金刀具
铣刀的直径d0: 铣刀的直径指周刃所在外圆的直径,
直径越大,刀齿的传热散热情况好,可提 高刀具的耐用度。但直径太大时,浪费刀 具材料,并在同样切削条件下切削力增加。 所以,铣刀直径应根据切削用量选取。
点的正交平面po内,前刀 面与基面之间的夹角。 后角αo——在正交平面po 内,主后刀面与基面之间的 夹角。 主偏角κr——主切削刃在基 面上的投影与进给方向的夹 角。 刃倾角λs——在切削平面ps 内,主切削刃与基面pr的夹 角。
技术课件
9
整体硬质合金刀具
铣刀 铣刀是一种多齿
刀具。它的使用广泛, 种类与规格都很多。 利用铣刀可以加工平 面、沟槽、台阶、螺 纹、型腔等各种成型 表面。
技术课件
18
整体硬质合金刀具
【2017年整理】硬质合金分类与用途
硬质合金分类与用途硬质合金分类及用途,直到国家标准正式发布之前,国内相关书本、杂志、资料中表述没有严格规范,通常按合金成份进行分类,用途表述则比较分散。
分类碳化钨基硬质合金:包括WC—Co、WC—TaC—Co、WC—TiC—Co、WC—TiC—TaC—Co、WC—Ti—TaC—NbC—Co等合金,这些合金均以碳化钨为主成份。
碳化钛基或碳氮化钛基硬质合金:通常以TiC或Ti(C、N)为基础成份,以Ni—Mo作粘结剂而组成的一种硬质合金。
这类硬质合金近几年又有许多新的进展,如含Ta、W等重金属元素的多元复式碳化物固溶体加入研制高性能Ti(C、N)基金属陶瓷等。
碳化铬基硬质合金:以Cr3C2为基,以Ni或Ni—W等作粘结剂而组成的硬质合金,通常用来作耐磨耐腐蚀零件,近几年还大量用于装饰品部件如表链等。
钢结硬质合金:以TiC或 WC为基,钢作粘结剂而组成的一种硬质合金,是一种可进行机加工和热处理的合金,是介于传统硬质合金与合金钢之间的一种工程材料。
涂层硬质合金:通常指在韧性的碳化钨基硬质合金基体上通过化学气相沉积或物理涂层方法,涂上几微米厚的TiC、TiN、Ti(C、N)、Al2O3之类的硬质化合物而生产的。
用途硬质合金具有一系列优良性能,用途十分广泛,随着时间推移用途还在不断扩大,主要用途分述如下:切削工具:硬质合金可用作各种各样的切削工具。
我国切削工具的硬质合金用量约占整个硬质合金产量的三分之一,其中用于焊接刀具的占78%左右,用于可转位刀具的占22%左右。
而数控刀具用硬质合金仅占可转位刀具用硬质合金的20%左右,此外还有整体硬质合金钻头,整体硬质合金小园锯片,硬质合金微钻等切削工具。
地质矿山工具:地质矿山工具同样是硬质合金的一大用途。
我国地矿用硬质合金约占硬质合金生产总量的25%,主要用于冲击凿岩用钎头,地质勘探用钻头、矿山油田用潜孔钻、牙轮钻以及截煤机截齿、建材工业冲击钻等。
模具:用作各类模具的硬质合金约占硬质合金生产总量的8%,有拉丝模、冷镦模、冷挤压模、热挤压模、热锻模、成形冲模以及拉拔管芯棒,如长芯棒、球状蕊棒、浮动蕊棒等,近十几年轧制线材用各类硬质合金轧辊用量增速很快,我国轧辊用硬质合金已占硬质合金生产总量的3%。
常用的硬质合金成分
常用的硬质合金成分常用的硬质合金以WC为主要成分,根据是否加入其它碳化物而分为以下几类:(1)钨钴类(WC+Co)硬质合金(YG)主要成分是碳化钨(WC)和粘结剂钴(Co)。
其牌号是由“YG”(“硬、钴”两字汉语拼音字首)和平均含钴量的百分数组成。
例如,YG8,表示平均WCo=8%,其余为碳化钨的钨钴类硬质合金。
它由WC和Co组成,具有较高的抗弯强度的韧性,导热性好,但耐热性和耐磨性较差,主要用于加工铸铁和有色金属。
细晶粒的YG类硬质合金(如YG3X、YG6X),在含钴量相同时,其硬度耐磨性比YG3、YG6高,强度和韧性稍差,适用于加工硬铸铁、奥氏体不锈钢、耐热合金、硬青铜等。
(2)钨钛钴类(WC+TiC+Co)硬质合金(YT)主要成分是碳化钨、碳化钛(TiC)及钴。
其牌号由“YT”(“硬、钛”两字汉语拼音字首)和碳化钛平均含量组成。
例如,YT15,表示平均WTi=15%,其余为碳化钨和钴含量的钨钛钴类硬质合金。
由于TiC的硬度和熔点均比WC高,所以和YG相比,其硬度、耐磨性、红硬性增大,粘结温度高,抗氧化能力强,而且在高温下会生成TiO 2,可减少粘结。
但导热性能较差,抗弯强度低,所以它适用于加工钢材等韧性材料。
(3) 钨钽钴类(WC+TaC+Co)硬质合金(YA)在YG类硬质合金的基础上添加TaC(NbC),提高了常温、高温硬度与强度、抗热冲击性和耐磨性,可用于加工铸铁和不锈钢。
(4)钨钛钽钴类(WC+TiC+TaC+Co))硬质合金(YW)主要成分是碳化钨、碳化钛、碳化钽(或碳化铌)及钴。
这类硬质合金又称通用硬质合金或万能硬质合金。
其牌号由“YW”(“硬”、“万”两字汉语拼音字首)加顺序号组成,如YW1。
在YT类硬质合金的基础上添加TaC(NbC),提高了抗弯强度、冲击韧性、高温硬度、抗氧能力和耐磨性。
既可以加工钢,又可加工铸铁及有色金属。
因此常称为通用硬质合金(又称为万能硬质合金)。
目前主要用于加工耐热钢、高锰钢、不锈钢等难加工材料。
“硬质合金”的特点及应用
硬质合金是以一种或几种难熔碳化物(碳化钨、碳化钛等)的粉末为主要成分,加入作为粘接剂的金属粉末(钴、镍等),经粉末冶金法而制得的合金。
它主要用于制造高速切削刃具和硬、韧材料切削刃具,以及制作冷作模具、量具和不受冲击、振动的高耐磨零件。
硬质合金的特点(1)硬度、耐磨性和红硬性高硬质合金常温下硬度可达86~93HRA,相当于69~81HRC。
在900~1000℃能保持高硬度,并有优良的耐磨性。
与高速工具钢相比,切削速度可高4~7倍,寿命长5~80倍,可切削硬度高达50HRC的硬质材料。
(2)强度、弹性模量高硬质合金的抗压强度高达6000MPa,弹性模量为(4~7)×105MPa,都高于高速钢。
但其抗弯强度较低,一般为1000~3000MPa。
(3)耐蚀性、抗氧化性好一般能很好地抗大气、酸、碱等腐蚀,不易氧化。
(4)线膨胀系数小工作时,形状尺寸稳定。
(5)成形制品不再加工、重磨由于硬质合金硬度高并有脆性,所以粉末冶金成形烧结后不再进行切削加工或重磨,特需再加工时,只能采用电火花、线切割、电解磨削等电加工或专门的砂轮磨削。
通常由硬质合金制成的一定规格的制品,采用钎焊、粘接或机械装夹在刀体或模具体上使用。
常用硬质合金常用硬质合金按成分和性能特点分为三类:钨钴类、钨钛钴类、钨钛钽(铌)类。
生产中应用最广泛的是钨钴类和钨钛钴类硬质合金。
(1)钨钴类硬质合金主要成分是碳化钨(WC)和钴,牌号用代号YG(“硬”、“钴”两字汉语拼音字首),后加钴含量的百分数值表示。
如YG6表示钴含量为6%的钨钴类硬质合金,碳化钨含量为94%。
(2)钨钛钴类硬质合金主要成分是碳化钨(WC)、碳化钛(TiC)及钴,牌号用代号YT(“硬”、“钛”两字汉语拼音字首),后加碳化钛含量的百分数值表示。
如YT15表示碳化钛含量15%的钨钛钴类硬质合金。
(3)钨钛钽(铌)类硬质合金这类硬质合金又称通用硬质合金或万能硬质合金,主要成分是碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)或碳化铌(NbC)和钴组成。
硬质合金材料有哪些
硬质合金材料有哪些硬质合金是一种广泛应用于机械加工、矿山工具、石油钻采、军工、航空航天等领域的新型材料。
它具有高硬度、耐磨、耐腐蚀等优良性能,因此备受青睐。
那么,硬质合金材料有哪些呢?接下来,我们将对硬质合金材料进行详细介绍。
首先,硬质合金材料主要包括钴基硬质合金、钨基硬质合金和钛基硬质合金三大类。
钴基硬质合金是以钴为基体,加入碳化钨、碳化钛等粉末制成的一种合金材料,具有良好的耐磨性和高温性能,广泛应用于刀具、钻头、铣刀等工具制造领域。
钨基硬质合金是以钨为基体,加入碳化钛、碳化钽等粉末制成的合金材料,具有极高的硬度和耐磨性,被广泛应用于金属切削、矿山工具等领域。
钛基硬质合金则是以钛为基体,加入碳化钨、碳化钼等粉末制成的合金材料,具有优异的耐磨性和抗腐蚀性能,适用于特殊工况下的刀具和零部件制造。
其次,硬质合金材料的性能特点主要包括高硬度、良好的耐磨性和耐腐蚀性。
硬质合金的硬度通常在HRA80以上,甚至可以达到HRA90以上,比普通的钢铁材料要硬得多。
这种高硬度使得硬质合金在切削、钻孔、磨削等加工过程中能够保持较长时间的刀具锋利度。
同时,硬质合金具有良好的耐磨性,能够在高速、高负荷的工况下保持较长的使用寿命。
此外,硬质合金还具有优异的耐腐蚀性能,能够在恶劣的工作环境下保持材料的稳定性和可靠性。
最后,硬质合金材料的应用领域非常广泛。
在机械加工领域,硬质合金被广泛应用于刀具、钻头、铣刀、车刀等工具的制造;在矿山工具领域,硬质合金被用于岩石钻采、煤矿开采等工作;在石油钻采领域,硬质合金被用于石油钻头的制造;在航空航天领域,硬质合金被用于航空发动机零部件的制造;在军工领域,硬质合金被用于制造弹头、导弹零部件等。
总的来说,硬质合金材料是一种性能优异、应用广泛的新型材料,具有重要的经济意义和战略意义。
随着科技的不断进步和工业的不断发展,相信硬质合金材料在未来会有更广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实例
添加TaC的合金有较高的强度,而添加NbC的合金硬度较高。
应根据合金的实际使用要求和其它经济技术指标,来生产各种含TaC, NbC或既含TaC,又含NbC的WC-TaC(NbC)-Co合金。
WC-TiC-Co硬质合金
WC-TiC-Co硬质合金
从理论上讲,WC-TiC-Co状态图应该是WTi-C-Co四元状态图的某一特殊界面。由于在 通常的烧结温度下,WC和TiC基本上不分解, 因此可以看作是一个单独组元。 WC-TiC-Co状态图在1350℃的等温截面比 较简单,只有三个相区:一个单相区(γ固溶 体),一个两相区[(TiW)C+γ]和一个三相区 [(TiW)C+WC+γ]。因此,正常的WC-TiC-Co 合金只有两种组织状态:一为(TiW)C+两相合 金,一为(TiW)C+WC+Y三相合金。 通常碳化钛含量低干30%的WC-TiC-Co合 金,WC不能完全进入钛相(TiW)C,而称为三 相合金;而当碳化钛含量高于30%时,碳化 钨作为能完全钛相,得到的为两相合金。 我国生产的YT30属于两相合金,YT5, YTl4,YTl5属于三相合金。
WC-Co硬质合金
W-C-Co三元系等温截面的特点
Co角有一个W和C在钴中的固溶体相单相区。沿Co-WC线
可把界面分为两个区域,Co-WC线左上方是三相区γ+WC+C 和狭窄的两相区γ+C;右下方是由γ、WC、W2C、W和三元化 合物ηl、η2、K相组成的多个相区。 两个三相区γ+WC+C和γ+WC+η1被一个狭窄的两相区γ+ WC分开。此两相区的大小表示WC-Co合金中碳量可允许的波 动范围,叫相区宽度。 此两相区是以W-C边线上的WC处为顶点;向Co角张开的三 角形,说明合金中Co含越高,即越接近Co角,从而合金允许 碳量的波动的范围越大;反之,越接近W-C边线,即合金中Co 含量越低,允许碳量的变动范围就越小,这表示低Co合金的碳 量控制更为困难。 碳量在Co-WC线之上时,合金组织中便会出现第三相-石墨。 在W角附近有几种标记的三元化合物ηl、η2、和k相,这些化 合物的通式可写成CoxWyCz。它们均为非正常价化合物,其成 分可以在某个范围变动(叫均相区)。此均相区越大,该化合 物越易出现,也越稳定,反之越不稳定。
单相区
W-C-Co系中的单相区是指碳和钨在钴中的固溶体区。在单相区内,随着碳 含量的降低,钨在钴中的溶解度可以升高约2倍,即从WC+γ高碳边界处9.4% (重量)增加到两相区WC+γ低碳边界处的18.4%(重量)。 钴相中钨的含量既影响钴相性质,也影响合金的性质。不仅应避免η1相和 石墨的出现,还应控制好钴相中的钨含量。
WC-Co硬质合金的生产工艺特点
控制好合金的碳含量:现有各类硬质合金中,其组织和性能对碳
量最为敏感,特别是低钴细晶粒合全更为突出。除必须严格控制好 碳化钨的含碳量以外,还必须使整个生产工艺过程出于稳定状态。 控制好合金的组织结构:由于碳量的严格控制,在不出现第三相 或只有微量石墨情况下,还必须使碳化钨相晶粒度以及分布的均匀 性符合条件。这就要求原始碳化钨粉末粒度组成范围要窄,均匀性 好,还必须辅以强化球磨,进一步使碳化钨破碎。为了防止烧结过 程中碳化钨晶粒过分长大,添加少量TaC、NbC或Cr3C2是有益的。 而采用真空烧结则有利于获得细晶粒合金。 严格控制过程工艺参数:现代硬质合金工厂不仅要求有高的技术 水平,还必须要有科学的管理能力。任何工序工艺参数的不正常波 动都会影响到合金的质量 通常,合金抗弯强度随钴量的增多而提高。但超过25%后,抗弯强 度反而下降。工业生产WC-Co合金,在0~25%钴含量范围内,其抗 弯强度随钻含量的增加而升高。
• 合金抗弯强度与碳化钨晶粒度的关系较为复杂。一般而言,低钴(10 %以下)粗晶粒合金的抗弯强度比细晶粒合金高;高钴(15%以上)细晶 粒合金的抗弯强度比粗晶柱合金高;但钴含量(10~15%)合金抗弯强 度较特殊,钴含量和碳化钨晶粒度以及碳含量之间要有适当的配合。 • 合金渗碳、脱碳及孔洞、裂纹等缺陷都会显著地降低试样的强度。
WC-Co合金的组织
WC-Co合金正常组织为两相合金,即多角形白色WC相与黑色部分Co粘结相。 当合金碳量不足时,会出现一种脱碳组织W3Co3C,常称η1相。这种相性脆, 能够导致合金强度的明显下降; 当合金碳量偏高时,会出现石墨,但石墨的有害作用比η1相小。因此,碳含 量可稍偏高并允许少量石墨的存在,但通常不准许出现η1相。
高钴合金既不出现石墨也不出现η1相的 碳区范围要比低钴合金为宽。因此,生 产优质低钴合金要困难得多。
YG合金的组织要求、成分与性能
YG合金的物理性质
矫顽磁力:
•由于钴的存在,硬质合金具有一定的磁性。WC-Co合金的矫顽力 主要与钻含量及其分散度有关。随钴含量的降低而提高。当钴量一 定时,由于钴相的分散程度随碳化钨晶粒变细而提高,使矫顽力也 随之增大。 •在其他条件相同的情况下,矫顽力可作为间接衡量合金中碳化钨晶 粒大小的参数。在正常组织的合金中,随着含碳量的降低,钴相中 钨含量增大,使钴相受到较大的强化,矫顽力会因此而增大。因此, 烧结时的冷却速度越大,矫顽力也愈大。 磁饱和:合金磁饱和值只与合金合钴量有关,而与碳化钨相的晶 粒度无关。因此,磁饱可用于对合金进行非破坏性的成分检查,或 鉴定已知成分的合金是否存在非磁性的η1相。
WC-TaC(NbC)-Co合金的性质
比重:同钴含量的WC-TaC(NbC)-Co合金比重比WC-Co合金低,而 且随着TaC(NbC)添加量增加,合金比重下降愈多。 硬度:添加少量碳化钽(碳化铌)可抑制碳化钨晶粒烧结时的长大, 细化合金晶粒并提高WC-TaC(NbC)-Co合金硬度。 抗弯强度:WC-TaC-Co合金抗弯强度较同钴量的WC-Co合金略有 降低;WC-NbC-Co合金降低的更显著。这主要由于铌比钽在钴中的 溶解度高,使钴相韧性降低较多,因而使合金抗弯强度明显降低。含 碳量对WC-TaC(NbC)-Co合金强度的影响与WC-Co类似,即缺碳和 过剩碳都会使合金强度降低。 高温性能:合金有较高的高温性能,而对其他性能影响不大。
WC-TiC-Co合金的正常组织
对两相合金而言,烧结时既有(TiW)C在钴中溶解,还有碳向钴溶解。 对三相合金而言,则还有WC向钴中溶解。因此,在三相合金的烧结体中, 应该有WC+γ 、Co+ γ、(TiW)C+γ二元共晶、WC+(TiW)C+γ、WC+γ+C 等三元共晶。而在两相合金的烧结体中,一般不会有WC+γ二元共晶及 WC+(TiW)C+γ,WC+γ+C三元共晶存在。
中间相的成分与特点
两相区WC+η
制取高质量硬质合金的必要条件之一是在其组织中不出现第三相石墨或η1 相,因为它会降低合金的机械性能和使用效果。 已有研究表明,WC-Co合金两相区的高碳边界与Co-WC线重合。因此, 在任何Co含量的合金中,达到或超过按照Co-WC线计算的理论碳含量时。 便会出现石墨。这样在确定两相区宽度时,只须定出低碳边界就够了。 低碳边界的WC含碳量与合金Co含量的关系如下: Co(%)(重量) 80 50 30 18 16 10 C (%)(重量) 5.22 5.58 5.83 5.99 6.00 6.04 或者用线性方程来表示合金低碳边界的碳量; C (%)(重量)=6.125%-0.0735%×Co(重量)
WC-TaC(NbC)-Co硬质合金
WC-TaC(NbC)-Co硬质合金
WC-TaC(NbC)-Co本质上仍然是一种碳化钨基合金,所不同的是在
WC-TaC(NbC)-Co合金中出现了一个以TaC(NbC)为基的新的固溶体 相(TaC-WC或NbC-WC)。 TaC(NbC)在碳化钨中几乎是不溶解的,而碳化钨在碳化钽(碳化铌) 中却有限溶解,因而形成有限固溶体。在通常的烧结温度下,WC在 TaC(NbC)中的溶解度约为10%(重量),且随温度的降低而降低。因此, WC-TaC(NbC)-Co合金正常组织由三相组成:即碳化钨相,固溶体相 和钴相。 合金中的石墨或η相属于非正常组织。 这类合金均为细晶粒合金。
YG合金的物理性质
弹性模量:由于碳化钨具有较高的弹性模量值,相应WC-Co合金
也具有高的弹性磨量。随着合金中钴含量的增加,弹性模量降低;合 金中碳化钨晶粒度对弹性模量无明显影响。 导热率:为避免工具在使用过程因过热而损坏,通常希望合金有较 高的导热率。WC-Co合金有较高的导热率,约为0.14-0.21卡/厘 米· 度· 秒,热率一般只与合金钴含量有关,随钴含量的降低而提高。 热膨胀系数:WC-Co合金的线膨胀系数随含钴量的增加而增大。 但合金的线膨胀系数值比钢材的线膨张系数低得多,这使合金工具镶 焊时,会产生较大的焊接压力,如果不采取缓冷措施,往往会造成合 金裂纹。
WC-TiC-Co合金的非正常组织
与WC-Co合金类似,在碳量不适当时,合金中也会出现石墨或η1相,只是由 于加入碳化钛以后,合全所允许的碳量波动范围要比WC-Co合金宽一些。 此外,在WC-TiC-Co合金中还可能出现两种非正常组织。 环形结构 • 在WC-TiC-Co合金磨片上有时可观察到,在(Ti, W)C固溶体晶粒上有一环 形边界,象一层包围核心的壳层一样,此核心部位是碳化钛,或者是含碳化 钨量较高的(Ti, W)C固溶体;外层(壳层)部分是含碳化钨量较高的(Ti, W)C 固溶体。由WC+TiC+Co混合料烧制合金时,最容易产生环形结构。预先制 取(Ti, W)C固溶体来制造硬质合金时,也可能出现环形结构晶粒。这种结构 通常是因碳化温度过低或碳化时间不是致使碳化不完全所造成的。 • WC-TiC-Co合金中出现环形结构,使合金的强度和韧性降低。
硬质合金的分类
WC-Co合金主要用于矿山工具、耐磨零件,及金属的加工工具。 WC-TiC-Co合金具有较高的抗月牙洼磨损能力,适用于作为切削具 有连续切削材料的刀具。在我国,WC-TiC-Co合金的生产量仅次于 WC-Co合金,主要用于钢材的切削加工。 加入少量(低于5%)TaC(NbC)以后,WC-TaC(NbC)-Co合金可作 为难加工钢材,如高强度钢、耐热钢等合金钢材的加工工具,提高 了合金的通用性。 以碳化物作硬质相,钢作粘结相所形成的复古材料叫钢结硬质合金。 钢结合主分两大类:一类是TiC-钢结合金;一类是WC-钢结合金。 目前已广泛用于模具、耐磨零件、耐腐蚀零件及矿山工具等。 硬质合金涂层。