半导体纳米材料的光学性能及研究进展
半导体激光器的研究进展
半导体激光器的研究进展摘要:本文主要述写了半导体激光器的发展历史和发展现状。
以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。
一、引言。
激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。
半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。
半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。
半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。
本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。
二、大功率半导体激光器的发展历程。
1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。
由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。
从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。
1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。
随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。
纳米光电技术的研究现状和应用前景
纳米光电技术的研究现状和应用前景纳米技术作为一个新兴的研究领域,得到了各个领域的高度重视。
而其中的纳米光电技术则成为了近年来的研究热点之一。
纳米光电技术不仅具有纳米技术的优点,同时又结合了电子与光子的重要特性,所以可以广泛应用于生物医学、环境监测、通信技术等领域。
一、纳米光电技术的研究现状1. 光电材料在纳米光电技术应用中使用的材料应该不仅具有特殊的物理和化学性质,同时还要便于制作、处理和控制。
常用的纳米光电材料包括半导体纳米量子点、纳米金、碳纳米管等。
半导体纳米量子点具有较强的发光性能,能够在控制的条件下发出不同颜色的光。
此外,由于其小尺寸,达到纳米级别,具有很强的光稳定性和耐久性,是光电设备和电子产品中的重要材料。
纳米金的光学特性在太阳能转换、生物成像、传感器和探测器等方面具有广泛的应用。
同时,金的化学惰性也保证其长期稳定性和不受疾病诱导的光学性能损害。
碳纳米管具有优良的光学和电学性能,广泛应用于电子、医学成像等领域。
其优异的机械特性使其成为高强度的建筑材料、超导体、动力学器件等的理想原料。
2. 纳米光电器件光电器件是纳米光电技术研究的另一重要领域。
一个完好的光电器件,需要有合适的纳米材料、优良的结构设计和高精度的加工工艺。
在全球范围内,科学家们已成功制备出一些高效的纳米光电器件。
例如,组合了纳米量子点和有机分子的有机光电探测器,已经被广泛地应用在太阳能电池、光学传感器和光学通讯领域;而基于纳米光子学的光波缆,可以大大提高光纤通讯的传输速率,这也将为人们带来更加方便快捷的网络通讯环境。
此外,在生物医学领域,基于纳米技术的生物成像技术,结合了纳米材料和对光的敏感检测器,能够有效地检测人体内不同类型的细胞、组织和器官。
3. 纳米光电技术的应用纳米光电技术目前已被广泛应用于不同领域,例如环境监测、生物医学和通信技术等领域。
在环境监测中,利用纳米材料的优良导电性和敏捷性,可以研究大气污染和水土污染等问题。
纳米半导体材料及其纳米器件研究进展
学和质量输运及其二者相互耦合的复杂过程 M OCVD 是在常压或低压 To rr 量级 下生长 的 氢气携带的金属有机物源 如 族 在扩散 通过衬底表面的停滞气体层时会部分或全部分解成
族原子 在衬底表面运动迁移到合适的晶格位 置 并捕获在衬底表面已热解了的 族原子 从 而形成 - 族化合物或合金 在通常温度下 MOCVD生长速率主要是由 族金属有机分子通过
2.3 应变自组装纳米量子点 线 结构生长技术
异质外延生长过程中 根据晶格失配和表
面 界面能不同 存在着三种生长模式[8] 晶格
匹配体系的二维层状 平面 生长的 F rank - Van
der Merwe 模式;大晶格失配和大界面能材料体系的
三维岛状生长模式 即 Volmer-Weber 模式 大晶
2 半导体纳米结构的制备技术
半导体纳米结构材料的发展很大程度上是依赖 材料先进生长技术 MBE, MOCVE 等 和精细加 工工艺 聚焦电子 离子束和 x- 射线 光刻技术 等 的进步 本节将首先介绍 MBE 和 MOCVD 技 术 进而介绍如何将上述两种技术结合起来实现纳 米量子线和量子点结构材料的制备 并对近年来得 到迅速发展的应变自组装制备量子点 线 和量子 点 线 阵列方法进行较详细讨论 最后对其它制 备技术也将加以简单介绍
目前 除研究型的 MBE 外 生产型的 MBE 设备也已有商品出售 如 Riber’s MBE6000 和VG Semicon’s V150 MBE 系统 每炉可生产 9×4" 4×6" 或 45×2" 片 每炉装片能力分别为 80×6" 180×4" 片和 64×6" 144×4" 片 App lied EPI MBE’s GEN2000 MBE 系统 每炉可生产 7×6" 片 每炉装片能力为 182×6" 片
半导体纳米材料范文
半导体纳米材料范文半导体纳米材料是一类具有特殊尺度效应的材料,其尺寸通常在1到100纳米之间。
由于其纳米尺寸,使得半导体纳米材料的电学、光学和磁学性质与其宏观对应物质存在较大的差异,具有许多独特的优势和应用前景。
以下是关于半导体纳米材料的一些重要内容。
首先,半导体纳米材料具有量子尺寸效应。
量子尺寸效应是指当半导体材料的尺寸缩小到纳米级别时,电子和空穴受限于内部空间,其运动仅限于三个维度之内,从而产生量子化的能级结构。
这种量子化的能级结构会影响材料的光学、电学和磁学性质,导致具有特殊的光学吸收、荧光发射性质等。
半导体纳米材料还具有高度可调性。
随着纳米颗粒的尺寸变化,半导体纳米材料的能带结构和带隙能随之改变。
这种可调性使得半导体纳米材料能够在可见光和红外光谱范围内表现出不同的光学吸收和发射性质,从而广泛应用于传感器、太阳能电池等领域。
此外,半导体纳米材料还具有高比表面积和界面效应。
由于其纳米尺寸,半导体纳米材料具有非常高的比表面积,使其能够提供更多的反应位点,从而增强了其在催化剂、储能材料等方面的应用潜力。
此外,纳米材料的界面效应也会对其光学和电学性质产生影响,从而进一步拓宽了其应用范围。
半导体纳米材料在能源领域具有广泛的应用前景。
例如,半导体纳米材料可以应用于太阳能电池中,以提高光电转化效率。
由于其量子尺寸效应和可调性,半导体纳米材料能够对太阳光谱的不同波长具有选择性地吸收和发射,从而实现更高效的光电转化。
此外,在储能材料方面,半导体纳米材料还可以用于锂离子电池、超级电容器等领域,以提高储能密度和循环稳定性。
此外,半导体纳米材料还具有许多其他应用。
例如,在生物医学领域,半导体纳米材料可以用于生物标记、癌症治疗等应用,通过调控其光学性质和表面功能化,实现对细胞和组织的高灵敏检测和精确治疗。
在光电子学领域,半导体纳米材料也可以用于光学器件和显示技术,如LED、激光器等。
总之,半导体纳米材料的独特性质使其在能源、生物医学、光电子学等领域具有广泛的应用前景。
半导体材料的历史现状及研究进展(精)
半导体材料的历史现状及研究进展(精)半导体材料的研究进展摘要:随着全球科技的快速发展,当今世界已经进入了信息时代,作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。
半导体材料凭借着自身的性能特点也在迅速地扩大着它的使用领域。
本文重点对半导体材料的发展历程、性能、种类和主要的半导体材料进行了讨论,并对半导体硅材料应用概况及其发展趋势作了概述。
关键词:半导体材料、性能、种类、应用概况、发展趋势一、半导体材料的发展历程半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。
宰二十世纪初,就曾出现过点接触矿石检波器。
1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。
1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。
50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。
60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。
1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。
90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。
新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展.以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表和第二代半导体材料(以砷化镓和磷化铟为代表之后,在近10年发展起来的新型宽带半导体材料.作为第一代半导体材料,硅基半导体材料及其集成电路的发展导致了微型计算机的出现和整个计算机产业的飞跃,并广泛应用于信息处理、自动控制等领域,对人类社会的发展起了极大的促进作用.硅基半导体材料虽然在微电子领域得到广泛应用,但硅材料本身间接能带结构的特点限制了其在光电子领域的应用.随着以光通状态所需的能量。
光电半导体材料的研究及其应用
光电半导体材料的研究及其应用光电半导体材料是当今高科技领域中最重要的材料之一。
作为一种集光学、电学、物理学和化学等多项学科的综合体,它具有独特的物理、化学、电学性能,以及优异的光电转换效率和储存容量。
在光纤通讯、太阳能电池、LED照明、半导体激光、集成电路以及医疗和生物科技领域等方面得到广泛应用。
本文将介绍光电半导体材料的研究发展和应用现状。
一、近年来光电半导体材料的研究进展光电半导体材料是由半导体材料和光电材料组成的材料,用于制造光电器件和设备。
其研究重点是提高材料的光电转换效率和储存容量,同时保持材料的稳定性和长寿命性能。
近年来,光电半导体材料的研究重点主要有以下几个方面:1.阴离子掺杂阴离子掺杂是将同种半导体材料中的一些离子替换成其他离子,从而改变材料的性质和性能的方法。
这种方法通过掺杂过程可以调节光电半导体材料的电学、光学和电子结构等性质,进而提高其光电转换效率。
一些研究人员利用阴离子掺杂技术改善了光电转换效率,加强了电子传输和缩短了自由载流子的寿命,实现了一些新型光电器件的研究和制备。
2.量子点技术量子点技术是一种将半导体材料限制在纳米尺度的制备方法,可以用于制备具有特殊光学、电学和磁学性质的新型光电器件。
这种制备方法可以大量提高光电半导体材料的储存容量和光电转换效率,进而提高其在光纤通讯、激光器、太阳能电池等领域的应用性能。
3.控制光学特性控制光学特性是一种通过改变光电半导体材料的表面形态和结构设计,从而改变其光电性质和性能的技术。
这种方法可以对光电半导体材料的光电转换效率和储存容量进行有效控制,增强水溶性材料的附着力和稳定性。
二、光电半导体材料在各领域中的应用光电半导体材料在各领域中的应用涵盖了光电信息、能源、生命科学等多个领域。
1. 半导体激光半导体激光器是将光电半导体材料转换成激光的器件,用于在通信、医疗、化妆品加工等领域。
近年来,半导体激光器的研发和应用领域不断拓展。
目前,半导体激光器已经广泛应用于太空通信、激光雷达、医疗设备、工业加工和消费电子产品等领域。
纳米材料的研究进展以及应用前景研究
纳米材料的研究进展以及应用现状1.绪论从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1~100纳米范围内的一种固体材料。
主要包括晶态、非晶态的金属、陶瓷等材料组成。
因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。
这些特殊性质所表现出来的有导电、导热、光学、磁性等。
目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。
纳米科学技术也引起了科学家的重视,在当代的科学界有着举足轻重的地位。
纳米技术的范围包括纳米加工技术、纳米测量技术,纳米材料技术等。
其中纳米材料技术主要应用于材料的生产,主要包括航天材料、生物技术材料,超声波材料等等。
从1861年开始,因为胶体化学的建立,人们开始了对直径为1~100纳米粒子的研究工作。
然而真正意义上的研究工作可以追溯到20世纪30年代的日本为了战争的胜利进行了“沉烟实验”,由于当时科技水平落后研究失败。
2.纳米材料的应用现状研究表明在纺织和化纤制品中添加纳米微粒,不仅可以除去异味和消毒。
还使得衣服不易出现折叠的痕迹。
很多衣服都是纤维材料制成的,通常衣服上都会出现静电现象,在衣服中加入金属纳米微粒就可消除静电现象。
利用纳米材料,冰箱可以消毒。
利用纳米材料做的无菌餐具、无菌食品包装用品已经可以在商场买到了。
另外利用纳米粉末,可以快速使废水彻底变清水,完全达到饮用标准。
这个技术可以提高水的重复使用率,可以运用到化学工业中。
比如污水处理厂、化肥厂等,一方面使得水资源可以再次利用,另一方面节约资源。
纳米技术还可以应用到食品加工领域,有益健康。
纳米技术运用到建筑的装修领域,可以使墙面涂料的耐洗刷性可提高11倍。
玻璃和瓷砖表面涂上纳米材料,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。
这样就可以节约成本,提高装修公司的经济效益。
使用纳米微粒的建筑材料,可以高效快速吸收对人体有害的紫外线。
纳米材料可以提高汽车、轮船,飞机性能指标。
纳米材料的光学性质研究
纳米材料的光学性质研究纳米材料的光学性质一直以来都是材料科学研究的热点之一。
随着纳米技术的迅速发展,人们对纳米材料的光学性质有了更深入的认识,并且发现其在光电器件和传感器等领域具有巨大的应用潜力。
本文将探讨纳米材料的光学性质及其研究进展。
一、纳米材料的定义与分类纳米材料是一种具有尺寸在纳米尺度范围内的物质,通常包括纳米粒子、纳米线、纳米片以及纳米结构的复合材料等。
根据其形貌和组成可分为金属纳米材料、半导体纳米材料和纳米复合材料等多种类型。
二、纳米材料的光学性质纳米材料具有与其尺寸有关的独特的光学性质,与宏观材料相比,纳米材料在吸收、散射、发射和透明度等方面表现出截然不同的特点。
1. 吸收性能纳米材料的吸收性能与其尺寸密切相关。
当材料的特征尺寸接近光波的波长时,会出现明显的吸收峰。
纳米材料所特有的局域表面等离子体共振效应(localized surface plasmon resonance, LSPR)是其吸收性能的重要因素之一。
2. 散射性能纳米材料的散射性能主要受到材料的折射率、尺寸和形状等因素的影响。
纳米材料的小尺寸和高表面积使其具有较大的散射截面,能够散射入射光的较大部分能量。
3. 发射性能纳米材料的发射性能体现了其荧光、磷光和拉曼散射等特性。
纳米材料的尺寸和表面修饰可以调控其发射性能,使其在不同波段呈现出不同的发射光谱。
4. 透明度纳米材料通常具有高透明度,并且可以通过调节纳米结构的尺寸和形貌,实现对不同波长的光的选择性透过。
三、纳米材料光学性质的研究方法研究纳米材料光学性质的方法主要包括吸收光谱、散射光谱、荧光光谱、表面增强拉曼光谱等。
1. 吸收光谱通过测量样品在不同波长下的吸收光谱,可以确定纳米材料的吸收能力以及吸收峰的位置和强度等。
吸收光谱是研究纳米材料光学性质的常用手段之一。
2. 散射光谱散射光谱可以通过测量样品对入射光的散射光进行分析,获得材料的散射特性。
根据散射的类型和强度等信息,可以了解纳米材料的形貌、尺寸和结构等信息。
低维半导体材料的生长与性能研究
低维半导体材料的生长与性能研究随着科技的不断发展和人们对于节能环保理念的日益强烈意识,对于新型半导体材料的研究也变得越来越重要。
低维半导体材料作为其中的一种新型半导体材料,备受关注。
一、低维半导体材料概述低维半导体材料是指一种宽带隙半导体材料,它在磊晶生长过程中的一个或多个尺度被限制在纳米级别。
这种材料呈现出非常特殊的光电性能,主要表现在:具有高载流子流动率、较小的载流子有效质量、超高自由载流子寿命以及较高的量子效率等方面。
由于低维半导体材料具有优异的性能,一些研究机构将其定义为“下一代新型半导体材料”。
二、低维半导体材料的生长低维半导体材料的生长是指将低维半导体材料从气体相、液相或固相转化成晶体的过程。
通常采用的生长方法有气相外延、液相外延、分子束外延以及溅射等方法。
其中气相外延是最常采用的低维半导体材料生长方法之一。
该方法通过控制气相物种与衬底表面反应,使半导体材料在衬底表面上生长而成。
气相外延还有一些衍生的方法,如金属有机气相外延、分子束流外延等。
液相外延是利用熔融合金与触晶棒之间相互扩散的方式,在触晶棒表面上生长低维半导体材料。
该方法相对于气相外延具有比较高的可生长面积和所需的设备成本低等优点。
溅射生长是通过离子轰击的方式,将靶材上的原子或离子释放到衬底表面上生成原子薄膜的生长方法。
此方法也是可生长面积较大、设备成本相对较低的方法,因此在低维晶体材料的生长中也得到广泛应用。
三、低维半导体材料的研究1. 光电性能低维半导体材料的光电性能是指材料对于光的响应及其光电特性,这也是低维半导体材料研究中的重要方面。
对于低维半导体材料而言,其载流子运动受到约束,因此载流子的寿命会变长。
同时,由于低维半导体材料表面积小,表面反应活性很强,因此极易出现表面态。
这些表面态往往会对材料的光电性能产生重要影响。
低维半导体材料的光电性能研究对于进一步了解材料的特性、提升材料的性能以及开发新型光电器件有着重要意义。
半导体光热转换纳米材料的研究进展
半导体光热转换纳米材料的研究进展半导体光热转换纳米材料是指通过吸收光能将其转换成热能的一类材料。
这类材料具有优异的光吸收、热传导和热稳定性能,可以在太阳能光电转换、光照明、光通信等领域发挥重要作用。
以下是半导体光热转换纳米材料研究进展的一些方面。
首先,研究人员对半导体纳米材料的合成方法进行了改进。
传统的合成方法包括溶剂热法、溶胶-凝胶法、气相法等,在纳米尺度下制备材料具有困难。
近年来,研究人员提出了一系列新的制备方法,如气相沉积法、溶剂热-水热法、微波辅助法等。
这些方法可以控制纳米材料的尺寸和形貌,提高材料的结晶度和光吸收性能。
其次,研究人员对半导体光热转换纳米材料的光学性能进行了深入研究。
半导体纳米材料的光学性能与其能带结构、晶格结构和尺寸有关。
通过调控这些因素,可以实现对光吸收、光散射和光学损耗的控制。
此外,人们还发现通过引入杂质、点缺陷和表面修饰等手段,可以增强材料对特定波长光的吸收能力。
第三,研究人员对半导体光热转换纳米材料的热传导性能进行了改进。
热传导是光热转换过程中一个重要的参数,影响材料的瞬态温度和热效应。
传统的半导体材料热传导性能较高,对光热转换效率有一定的限制。
因此,目前研究人员致力于寻找具有低热传导性能的半导体纳米材料,如石墨烯、碳纳米管等,以提高光热转换效率。
最后,研究人员对半导体光热转换纳米材料的应用进行了广泛探索。
半导体光热转换纳米材料具有较高的光热转换效率、稳定性和可调控性,可应用于太阳能光电转换、光照明、光通信等领域。
例如,利用半导体光热转换材料制备的太阳能光电池可以将光能高效转化为电能,提高太阳能转换效率。
此外,在光照明领域,半导体光热转换纳米材料可以用于制备高效、节能的照明器件。
在光通信领域,半导体光热转换纳米材料可以用于制备高速、低能耗的光通信器件。
综上所述,半导体光热转换纳米材料的研究进展包括合成方法改进、光学性能调控、热传导性能改进和应用研究等方面。
随着研究的不断深入,相信半导体光热转换纳米材料将在能源转换、光照明和光通信等领域发挥出更大的作用。
TiO2纳米结构、复合及其光催化性能研究共3篇
TiO2纳米结构、复合及其光催化性能研究共3篇TiO2纳米结构、复合及其光催化性能研究1TiO2纳米结构、复合及其光催化性能研究随着环境污染日益严重,光催化技术逐渐成为一种重要的治理手段。
其中,TiO2因其良好的光催化性能,在光催化领域中得到了广泛应用。
近年来,随着纳米技术的发展,研究人员开始尝试制备TiO2纳米结构及其复合材料,以提高其光催化性能。
本文将就TiO2纳米结构、复合及其光催化性能进行探讨。
TiO2是一种广泛应用于光催化领域的半导体材料。
其中,纳米级TiO2颗粒具有更高的比表面积和更好的光催化性能。
通过控制TiO2颗粒的形貌和尺寸,可以进一步提高其光催化性能。
目前,制备TiO2纳米颗粒的方法主要有溶胶-凝胶法、水热法、气-液界面法等。
其中,溶胶-凝胶法是最常用的制备方法之一。
通过将钛酸四丁酯、乙醇等原料混合后,进行溶胶-凝胶、干燥、煅烧等步骤,即可制备纳米级TiO2颗粒。
研究表明,通过控制煅烧温度和时间,可以控制TiO2颗粒的尺寸和形貌。
例如,较高温度和较长时间会导致颗粒尺寸增大,形貌由球形转变为椭球形或纺锤形等。
除了纳米颗粒外,掺杂和复合是另一种提高TiO2光催化性能的有效手段。
掺杂主要是通过将其他元素掺入TiO2晶格中,以改变其电子结构,提高光催化性能。
目前常用的掺杂元素包括银、氮、碳等。
复合则是将TiO2与其他材料复合,以提高其光催化稳定性和性能。
常用的复合材料包括金属氧化物、石墨烯、聚合物等。
对于掺杂TiO2,研究发现,掺杂银元素可以增加TiO2的光催化活性和稳定性。
由于银元素具有良好的表面等离子共振吸收效应,可促进TiO2的光吸收和电子传输。
同时,掺杂氮和碳元素可以缩小TiO2带隙,增强光吸收效果。
对于复合TiO2,研究发现,纳米级TiO2颗粒与金属氧化物复合,可以提高其光吸收和电子传输效果,从而提高光催化性能。
总体而言,制备TiO2纳米结构、掺杂和复合是提高TiO2光催化性能的有效手段。
纳米材料导论 第六章光学性能
第六章纳米材料的光学性能第一节基本概念纳米材料的量子效应、大的比表面效应、界面原子排列和键组态的较大无规则等特性对纳米微粒的光学特性有很大影响,使纳米材料与同质的体材料有很大不同。
研究纳米材料光学特性的理论基础是量子力学,本章将不详述这种具体理论,但在了解纳米材料光学特性的过程中,经常会遇到以下几个概念,这里先作介绍。
一、激子激子(Exciton)可以简单地理解为束缚的电子-空穴对。
从价带激发到导带的电子通常是自由的,在价带自由运动的空穴和在导带自由运动的电子,通过库仑相互作用束缚在一起,形成束缚的电子-空穴对,就形成激子,电子和空穴复合时便发光,即以光子的形式释放能量,如图6-1所示。
根据电子和空穴相互作用的强弱,激子分为万尼尔(Wannier )激子(松束缚)和弗仑克尔(Frenkel )激子(紧束缚)。
在半导体、金属等纳米材料中通常遇到的多是万尼尔激子。
这种激子能量与波矢K 的关系可写为:)3,2,1(2)(2*22 n n R m K E K E g n(6-1)其中g E 为相应材料的能隙,**h e m m m 是电子和空穴的有效质量之和,*R 是激子的等效里德伯能量:eV 6.132* R , 是相对介电常数(有时直称为介电常数), 是电子与空穴的折合质量,**111h e m m 。
如果(6-1)式中0 K ,则激子能量:)3,2,1()(2*n n R E K E g n(6-2))(K E n 比能隙小,所以允许带间直接跃迁时,激子光吸收过程所需光子的能量比本征吸收要小,亦即在本征吸收限的长波方向存在与激子光吸收相对应的吸收过程。
图6-1 半导体激子及发光示意图由于激子的本征方程与类氢原子类似,激子的半径也是量子化的,最小的激子半径称之为激子玻尔半径,表示为:)nm (053.00 m a B(6-3)其中0m 是电子的静质量。
在半导体发光材料中,当材料体系的尺寸与激子玻尔半径相近时,就会出现量子限域效应,亦即系统中的能级出现一系列分立值,电子在能级出现量子化的系统中的运动受到了约束限制。
gC3N4光催化性能的研究进展
gC3N4光催化性能的研究进展一、本文概述1、介绍gC3N4的基本性质和应用背景。
石墨相氮化碳(gC3N4)是一种新兴的二维纳米材料,因其独特的电子结构和物理化学性质,在光催化领域引起了广泛关注。
gC3N4具有类似于石墨烯的层状结构,但其组成元素为碳和氮,而非石墨烯中的纯碳。
这种结构赋予了gC3N4良好的化学稳定性和独特的光学特性。
在光照条件下,gC3N4能够有效吸收光能并转化为化学能,从而驱动光催化反应的发生。
近年来,随着环境污染问题的日益严重和能源需求的不断增长,光催化技术作为一种高效、环保的能源转换和污染物治理手段,受到了广泛研究。
gC3N4作为一种性能优异的光催化剂,在光解水产氢、有机物降解、二氧化碳还原等方面展现出巨大的应用潜力。
gC3N4还具有原料来源广泛、制备工艺简单、成本低廉等优点,使得其在光催化领域的应用前景十分广阔。
因此,对gC3N4光催化性能的研究不仅有助于推动光催化技术的发展,也为解决当前的环境和能源问题提供了新的思路和方法。
本文将对gC3N4光催化性能的研究进展进行综述,以期为相关领域的研究提供参考和借鉴。
2、阐述光催化技术的重要性和gC3N4在光催化领域的研究意义。
光催化技术,作为一种高效、环保的能源转换方式,近年来受到了广泛的关注和研究。
该技术利用光能激发催化剂产生电子-空穴对,进而驱动氧化还原反应的发生,实现光能向化学能的转换。
这种技术不仅可以在太阳能利用、环境治理、有机物合成等领域发挥重要作用,而且对于推动可持续发展和绿色化学的发展具有重要意义。
在众多光催化剂中,石墨相氮化碳(gC3N4)因其独特的结构和性质,成为了光催化领域的研究热点。
gC3N4是一种非金属半导体材料,具有合适的禁带宽度、良好的化学稳定性和丰富的表面活性位点,这些性质使得gC3N4在光催化领域具有广阔的应用前景。
gC3N4的制备原料丰富、成本低廉,且制备方法多样,这为其在实际应用中的推广提供了有力支持。
纳米ZnO及复合物的可控制备与光催化性能研究
纳米ZnO及复合物的可控制备与光催化性能研究一、本文概述随着环境问题的日益严重和能源需求的不断增长,光催化技术作为一种高效、环保的能源转换和污染物降解手段,受到了广泛的关注和研究。
在众多光催化剂中,氧化锌(ZnO)因其独特的物理和化学性质,如宽禁带、高激子结合能以及优异的光电性能,被认为是一种理想的光催化材料。
然而,ZnO在实际应用中仍面临一些挑战,如光生电子-空穴对的快速复合、可见光利用率低等。
为了解决这些问题,研究者们尝试通过制备ZnO复合物、调控其形貌和结构等方式来提高其光催化性能。
本文旨在研究纳米ZnO及其复合物的可控制备方法,并探讨它们的光催化性能。
我们将介绍纳米ZnO及其复合物的制备方法,包括溶胶-凝胶法、水热法、微波辅助法等,并对比各种方法的优缺点。
然后,我们将重点讨论如何通过调控制备条件,如温度、浓度、时间等,来实现纳米ZnO及其复合物的形貌、结构和性能的调控。
接着,我们将对所制备的纳米ZnO及其复合物进行光催化性能评价,包括光催化降解有机物、光催化产氢等方面,并通过对比实验,探究不同制备方法和条件对光催化性能的影响。
我们将总结本文的主要研究成果,并提出未来可能的研究方向和应用前景。
通过本文的研究,我们期望能够为纳米ZnO及其复合物在光催化领域的应用提供理论基础和技术支持,同时也为其他光催化材料的研究和开发提供借鉴和参考。
二、文献综述纳米ZnO及其复合物作为一种重要的半导体材料,近年来在光催化领域受到了广泛关注。
其独特的物理和化学性质,如大的比表面积、高的光催化活性以及良好的稳定性,使得纳米ZnO在光催化降解有机物、光解水产氢、太阳能电池和气体传感器等领域具有广阔的应用前景。
早期的研究主要集中在纳米ZnO的合成方法上,如溶胶-凝胶法、化学沉淀法、水热法、气相法等。
随着纳米科技的不断发展,研究者们开始关注纳米ZnO的形貌控制,以期获得具有更高光催化活性的材料。
例如,通过调节反应条件,可以制备出不同形貌的纳米ZnO,如纳米颗粒、纳米棒、纳米线、纳米花等。
纳米材料研究现状及展望
纳米材料研究现状及展望摘要:在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,组件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。
新材料的创新,以及在此基础上诱发的新技术。
本文介绍了纳米材料和纳米技术的概念及其研究进展,并且着重介绍了纳米科技在催化、精细化工、浆料等领域的应用。
关键词:纳米材料纳米技术研究进展应用发展趋势前言新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。
纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。
1、纳米材料和纳米技术什么是纳米材料?纳米[1](nm)是长度单位,一纳米是十亿分之一米,对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000—8000nm,人体红细胞的直径一般为3000—5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。
一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1—100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
所谓的纳米技术是指:用纳米材料制造新型产品的科学技术。
它是现代科学(混沌物理、量子力学、介观物理学、分子生物学、化学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术、合成技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如纳米电子学、纳米材料学、纳米机械学等。
在新的世纪,纳米将带给人们更多功能超常的生产生活工具,把人们带向一个从未见过的生活环境。
纳米材料光学性质
纳米材料的特性美国著名物理学家,1965 年诺贝尔物理奖获得者R.P Feynman 在1959 年曾经说过:“如果有一天能按人的意志安排一个个原子分子将会产生什么样的奇迹” ,纳米科学技术的诞生将使这个美好的设想成为现实。
纳米材料是纳米科学技术的一个重要的发展方向。
纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm )的固态材料。
由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。
固体材料的光学性质与其内部的微结构,特别是电子态、缺陷态和能级结构有密切的关系。
纳米结构材料在结构上与常规的晶态和非晶态体系有很大的差别,表现为:小尺寸、能级离散性显著、表(界)面原子比例高、界面原子排列和键的组态的无规则性较大等。
这些特征导致纳米材料的光学性质出现一些不同于常规晶态和非晶态的新现象。
1、宽频带强吸收性大块金属具有不同的金属光泽,表明它们对可见光中的各种波长的光的反射和吸收能力不同。
当尺寸减小到纳米级时,各种金属纳米粒子几乎都呈黑色,它们对可见光的反射率极低,而吸收率相当高。
例如,Pt纳米粒子的反射率为1%, Au纳米粒子的反射率小于10%。
纳米SiN、SiC以及Al 2O3粉等对红外有一个宽频强吸收谱。
r不同温度退火下纳米Al 2O3材料的红外吸收谱纳米材料的红外吸收谱宽化的主要原因:(1)尺寸分布效应:通常纳米材料的粒径有一定的分布,不同的颗粒的表面张力有差异,弓I起晶格畸变程度的不同,这就导致纳米材料键长有一个分布,造成带隙的分布,这是引起红外吸收宽化的原因之一。
(2)界面效应:界面原子的比例非常高,导致不饱和键、悬挂键以及缺陷非常多,界面原子除与体相原子能级不同外,相互之间也可能不同,从而导致能级分布的展宽,与常规大块材料不同, 没有一个单一的、择优的键振动模,而存在一个较宽的键振动模的分布,对红外光作用下的红外光吸收的频率也就存在一个较宽的分布。
超快光学方法研究半导体纳米材料的光学性质
超快光学方法研究半导体纳米材料的光学性质超快光学方法是一种研究材料光学性质的重要手段,通过对材料的光学特征进行分析,可以更好地理解材料的物理性质和结构特征,对材料的应用性能也有着重要的指导作用。
半导体纳米材料是当前研究的热点之一,超快光学方法对于研究其光学性质具有非常重要的意义。
在研究半导体纳米材料的光学性质时,超快光学方法可以提供短脉冲时间域信号,同时也能够提供高能量的光学信号,从而实现对材料的深度分析。
超快光学方法主要包括飞秒光谱、超快闪烁、非线性光学等技术,其中飞秒光谱技术是研究半导体纳米材料最常用的方法之一。
飞秒光谱技术是利用飞秒激光器激发材料表面电荷载流子的方法,通过光学响应来研究材料内部的光学性质。
在飞秒光谱技术中,光子在半导体纳米材料中会导致电子和空穴的激子产生,并伴随着电荷分离、复合和再生等过程。
这些过程不仅对材料的光电性能有着非常重要的影响,而且也与材料的光学性质密切相关。
对于半导体纳米材料而言,飞秒光谱技术可以用来研究其光生载流子激发、非线性光学性质、光生电荷分离机理等方面的问题。
例如,在研究过程中,可以将银纳米颗粒与半导体材料结合起来,利用激光脉冲对复合体系进行激光脉冲谱分析,从而确定金属-半导体复合体系的局域表面等离子体激元垂直激发光谱。
在分析中,还可以利用时间域反射光谱技术实现对材料表面反射率的测量与分析。
另外,超快闪烁技术也是研究半导体纳米材料的重要方法之一,可以用于研究材料内部载流子的动态行为。
在超快闪烁技术中,激光束被扫描扰动材料的表面,通过对反射光的计算和分析,可以获得载流子的时间域信号。
该技术能够提供非常高的时间分辨率,从而实现对材料的动态行为分析。
总的来说,超快光学方法是研究半导体纳米材料光学性质非常有力的工具。
在未来的研究中,我们可以通过这一技术手段进一步探究材料的内部结构和性质,为半导体纳米材料的应用提供更深入的理论指导。
纳米材料的光学性能和应用
纳米材料的光学性能和应用一、纳米材料概述随着科技的不断发展,纳米技术越来越受到人们的关注。
纳米材料是指尺寸在纳米级别(10^-9m)的物质,具有独特的物理、化学、生物等性质。
纳米材料的应用领域非常广泛,从电子、医学、环境到能源等等,都有着巨大的潜力。
二、纳米材料的光学性能1. 纳米材料的表面增强拉曼光谱纳米材料的表面增强拉曼光谱(Surface Enhanced Raman Scattering,SERS)是指在金属或半导体纳米结构表面上,某些分子或化学物质的振动和转动对应的光谱线强度被增强的现象。
这种增强效应非常强,相当于将样品浓度增加了10^6倍以上。
SERS技术有着广泛的应用前景,例如在生物医学检测、环境检测、食品安全等领域。
2. 纳米材料的荧光性质纳米材料通常具有较高的荧光量子产率、宽发射光谱范围、较长的荧光寿命等特点,这使得它们在生物荧光探针等方面有着广泛的应用。
例如,在医学领域中,纳米材料可以被用作生物成像技术的探针,帮助医生更好地观察患者体内的某些生物分子或细胞。
3. 纳米材料的表面等离子体共振现象表面等离子体共振(Surface Plasmon Resonance,SPR)是指金属纳米颗粒在其表面激发的一种电磁波振荡现象。
这种现象对应的吸收和散射光谱在可见光区域内非常强,可以被用于生物分子、化学物质的检测、研究等领域。
例如,在医学领域中,SPR技术可以用于生物分子的相互作用研究。
三、纳米材料的应用1. 生物、医学领域纳米材料可以作为生物成像技术的探针,从而帮助医生更好地观察患者体内的某些生物分子或细胞。
例如,在癌症治疗领域中,纳米材料可以被用于靶向治疗,使药物更准确地作用于肿瘤细胞,从而避免对正常细胞的损伤。
2. 环境保护领域纳米材料可以被用于吸附、分解大气污染物、有害物质等环境问题中,促进环境清洁化。
例如,纳米氧化铁可以用于水中污染物的去除,超细颗粒二氧化钛可以用于空气净化。
3. 能源领域纳米材料可以被应用于太阳能电池、生物质能源等领域,使其性能得到提高。
一维Ⅱ-Ⅵ族半导体纳米材料的设计合成与性能研究
一维Ⅱ-Ⅵ族半导体纳米材料的设计、合成与性能研究Design, synthesis and function of one-dimensional II-VI semiconductor nanomaterials● 主要要研究内容★提出了溶剂热条件下一维纳米晶的合成方法,运用配位分子模板机制,合成出系列半导体纳米棒、纳米管;★发展了室温合成过渡金属与主族硫属化合物纳米晶的新途径,利用稀土氧化物有机溶剂液相离子交换直接合成法制备出稀土硫氧化物纳米材料;★发展了液相自组装方法,成功地合成出一系列半导体纳米管,单晶纳米线。
● 研究成果的科学意义和应用前景II-VI族半导体纳米材料因其具有优异的物理特性和潜在的应用前景,受到了材料科学家的高度重视,特别是其一维量子线的研究,不仅有助于人们在原子或分子水平上认识晶体的成核与生长,同时对进一步探索纳米材料的维度控制规律和量子尺寸效应与相关的新性质间的关系,为未来实现在分子水平设计、制造半导体纳米量子器件与分子导线奠定理论与实验基础。
●代表性论文★Yadong Li*, H.Liao and Y.Qian et al. “Non-aqueous Synthesis of CdS Nanorod Smiconductor. ” ,Chem. Mater. 10(9),2301 (1998)★Yadong Li*, Y.Ding, Y.Zhang et al., “A Solvothermal Elemental Reaction to ZnSe Nanocrystalline”,Inorg. Chem. 1998,37(12), 2844★Yadong Li*, H.Liao and Y.Ding et al. “ Novel Solvother mal Synthesis of CdE(E=S,Se,Te) Semiconductor Nanorod. ”,Inorg. Chem. 1999, 38(7), 1382★Yadomg Li*, Z. Wang, Y. Ding, “Room Temperature synthesis of Metal Chaleogenides in Ethylenediamine”,Inorg. Chem. , 1999, 38(21), 4737★Yadong Li*, Y. Huang, T. Bai, et al., “A Straightforward Conversion Route to Nanocrystalline Rare Earth Mono-thio Oxides in Sulfur Ethylenediamine Solution”, Inorg. Chem. 2000,39,3418★Yadong Li*, Yi Ding, and Zhaoyu Wang “A Novel Chemical Route To ZnTe Semiconductor Nanorods”, Adv. Mater.,1999, 11(10), 847★Li Yadong*,Sui Mong, Ding Yi, et al. “Preparation of Mg(OH)2 nanorods” Adv. Mater. 2000,12(11),818无机/有机纳米微粒的制备复合与组装The Preparation, Composite And Assembly Of Inorgano/Organo-Nanoparticles由于纳米微粒的特殊层次和状态,人们若想将其特殊性能以材料形式付诸于应用,则必须实现它以某种形式与体相材料的复合与组装。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
・综合评述・半导体纳米材料的光学性能及研究进展Ξ关柏鸥 张桂兰 汤国庆(南开大学现代光学研究所,天津300071)韩关云(天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。
关键词 半导体纳米材料;光学性能The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a lsGuan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun(Institute of M odern Op tics,N ankaiU niversity,T ianjin300071)Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understandingof m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op ticalp roperties of nano size sem iconducto r m aterials.Key words nano size sem iconducto r m aterials;op tical p roperties1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。
八十年代起,低维材料已成为倍受人们重视的研究领域。
低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。
随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。
低维材料开辟了材料科学研究的新领域。
本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。
2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。
关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。
他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rµa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h <R<a e)和强受限(Rνa e,Rνa h)三种情况进行讨论,给出了各种情况下的激子能级公式。
后来L.E.B ru s 和Y.Kayanum a等人[2~6]发展了文献[1]的工作。
根据文献[2~6]最低激发态能级为 E(R)=E g+∂2Π22ΛR2-1.786e2Ε2R-0.248E R式子右边第一项为体材料带隙,第二项为动能项(量子 光电子・激光 第9卷 第3期1998年6月JOU RNAL O F O PTO EL ECTRON I CS・LA SER V o l.9 N o.3 Jun.1998Ξ国家自然科学基金和国家教委光学信息技术科学开放实验室资助课题收稿日期:1997209201修订日期:1997212230受限项),第三项为电子、空穴间的库仑作用能,第四项为表面极化项(通常情况下很小)。
从此式可以看出E (R )随微粒尺寸R 的变化情况。
3 半导体纳米材料的线性光学性质3.1 光吸收特性 由于量子尺寸效应导致能隙增大,半导体纳米材料的吸收光谱向高能方向移动,即吸收蓝移[7,8]。
同时,由于电子和空穴的运动受限,他们之间的波函数重叠增大,激子态振子强度增大[9~12],导致激子吸收增强,因此很容易观察到激子吸收峰,导致吸收光谱结构化,如图1所示[13]。
图1 CuCl 纳米微晶的激子吸收峰粒径:1231nm ;222.9nm ;322.0nmF ig .1 Exc ition spectra for CuCl m icrocryst allites as the radius R changes fro m 31nm (curve 1)to 2.9nm(curve 2)to 2.0nm (curve 3) 通常通过吸收光谱来研究半导体纳米微粒的量子尺寸效应和激子能级结构,近年来,研究较多的有[14~20]: 2 族半导体GaA s 、InSb 和GaP ; 2 族半导体ZnS 、CdS 、CdSe 和CdT e ; 2 族半导体Cu 2C l 、CuB r 和Cu I ;PbS 、Pb I 和间接带隙半导体材料A g 2B r ;过渡金属氧化物Fe 2O 3、Cu 2O 、ZnO 和非过渡金属氧化物SnO 2、In 2O 3、B i 2O 3等。
余保龙等人[21]研究发现,SnO 2纳米微粒用表面活性剂分子包覆时,由于表面的介电限域效应其吸收带边发生红移,而且随着表面包覆物与SnO 2的介电常数差值增大和包覆物的浓度增大,其红移量增大。
3.2 发光特性 半导体纳米微粒受光激发后产生电子2空穴对(即激子),电子与空穴复合的途径有 (1)电子和空穴直接复合,产生激子态发光。
由于量子尺寸效应的作用,发射波长随着微粒尺寸的减小向高能方向移动(蓝移)。
(2)通过表面缺陷态间接复合发光[9,22]。
在纳米微粒的表面存在着许多悬挂键、吸附类等,从而形成许多表面缺陷态。
微粒受光激发后,光生载流子以极快的速度受限于表面缺陷态,产生表面态发光。
微粒表面越完好,表面对载流子的陷获能力越弱,表面态发光就越弱。
(3)通过杂质能级复合发光。
这三种情况是相互竞争的。
如果微粒表面存在着许多缺陷,对电子、空穴的俘获能力很强,一经产生就被其俘获,它们直接复合的几率很小,则激子态发光很弱,甚至可能观察不到,而只有表面缺陷态发光。
要想有效地产生激子态发光,就要设法制备表面完好的纳米微粒,或通过表面修饰来减少其表面缺陷,使电子和空穴能够有效地直接辐射复合。
图2a 是分散于聚合物薄膜中的CdS 纳米微粒的发射光谱,几种发光机制如图2b 所示[23]。
(a )图2 (a )CdS 纳米微粒的发射光谱三条曲线分别对应于三种不同方法制得的不同尺寸的样品F ig .2 (a )The lu m i nescence spectra for CdS m icrocryst allites with differen t di ameter(b )图2 (b )CdS 纳米微粒的可能发光机制F ig .2 (b )Sche matic di agram of possible lu m i nescencetrasition s for a CdS m icrocryst allite 人们还发现[24~29],一些本来不发光的半导体材料,当其尺寸减小到纳米量级时,却可以产生很强的光发射。
Si 和Ge 都是间接带隙半导体,其导带极小和价带极大不在K 空间同一点上,电子带间跃迁后动量要发生变化,必须由声子提供动量才能满足动量守恒条件,因此电子带间跃迁必须有光子和声子共同参与才能实现。
这是一种二次跃迁过程,发生的几率非常小,因此发光效率非常非常低。
但是,尺寸在4nm 以下的・162・ 第3期 关柏鸥等:半导体纳米材料的光学性能及研究进展Ge超微粒在室温下就有很强的发光,纳米尺寸的Si 也能产生很强的光发射。
有关发光机理,还有待于进一步研究。
B hargava等人[30,31]首次研究了掺杂半导体纳米材料ZnS:M n2+的光学特性。
体材料ZnS:M n2+粉末是一类广泛使用的发光材料,基质带间激发后,将能量有效转移给M n2+离子,导致M n2+离子4T1→6A1跃迁发射。
B hargava发现,尺寸为3nm的ZnS:M n2+纳米微粒的发光效率高达18%,M n2+离子4T1→6A1跃迁的辐射寿命比体材料快了5个数量级,而且,发光效率随着微粒尺寸的减小而增大。
他认为ZnS:M n2+纳米微晶如此高的发光效率是由于在纳米体系中电子、空穴对能够快速向M n2+转移以及M n2+离子4f电子的快的复合寿命导致的。
对于发光效率随着粒径的减小而增大的原因,亦做了解释。
勒春明等人[32,33]研究了表面活性剂对纳米ZnS:M n2+材料中M n2+离子发光的影响,并对ZnS:M n2+微晶掺杂玻璃的光学性质做了研究。
对纳米尺寸ZnS:M n2+的研究开创了半导体纳米材料研究的新领域,同时也表明纳米材料中杂质离子与基质之间的相互作用还有许多新的物理内容需要揭示和探索。
4 半导体纳米材料的非线性光学性质4.1 共振的三阶光学非线性 半导体纳米微粒的共振光学非线性模型是由Y. W ang等人[34,35]建立起来的。
根据微粒尺寸R与体材料激子半径a B之比分为以下三种情况: (1)弱受限(Rµa B)。
在此区域内,纳米微粒的光学非线性机制与体材料相类似,可用带填充模型来描述[34]。
三阶非线性极化率的大小由电子、空穴的有效质量m e3、m h3和吸收系数Α决定。
利用泵浦探测技术,根据吸收光谱随光子能量的变化关系,能够得到∃Α的值。
(2)中等受限(R≈a B)。
Y.W ang等[34,35]认为,在此区域内共振光学非线性来源于纳米微粒的表面效应。
他们用p s光脉冲激发CdS超微粒,然后用探测脉冲(p s)研究CdS超微粒受激发后的光吸收行为,发现激子吸收被漂白了,认为这种激子吸收漂白效应是由于纳米微粒的表面效应引起的。
在纳米微粒的表面存在着许多悬挂键、吸附类等,从而形成许多表面缺陷态,光激发后,光生载流子以极快的速度(<1p s)受限于表面缺陷态[22,36,37]。
受限的电子、空穴与激子之间发生很强的相互作用,如图3所示。