分布式实验报告
分布式计算环境实验报告
分布式计算环境实验报告实验名称:在虚拟机下安装Linux系统和Hadoop专业班级:网络1101学生学号:3110610007学生姓名:平淑容目录实验目的..............................................................................P 实验仪器...............................................................................P 实验内容和步骤...................................................................P 安装过程的问题以及解决方法............................................P 代码运行以及实验结果.......................................................P 运行过程中的问题................................................................P 实验总结................................................................................P一、实验目的在虚拟机上安装CentOS系统并在Linux系统上安装Hadoop单机模式并且执行一个Java程序。
二、实验仪器硬件:虚拟机CentOS软件:Windows 7操作系统三、实验内容及步骤实验内容一、安装虚拟机二、安装Linux操作系统三、设置静态ip四、修改主机名四、绑定ip和主机五、关闭防护墙六、关闭防火墙的自动运行七、设置ssh八、安装JDK九、安装Hadoop十、在单机上运行Hadoop十一、Hadoop执行Java程序实验步骤:一、安装虚拟机此处安装的虚拟机是VMware Workstation版本,直接从压缩包里面解压安装即可,此处不做过多介绍。
hadoop分布式实验总结
hadoop分布式实验总结Hadoop分布式实验总结一、实验目标本次实验的目标是深入理解Hadoop分布式文件系统(HDFS)和MapReduce计算模型,通过实际操作和案例分析,掌握Hadoop的基本原理和应用。
二、实验内容在本次实验中,我们主要完成了以下几个部分的内容:1. HDFS的基本操作:包括在HDFS中创建文件夹、上传和下载文件等。
2. MapReduce编程:编写Map和Reduce函数,实现对数据的处理和分析。
3. Hadoop集群搭建:配置Hadoop集群,了解节点间的通信和数据传输机制。
4. 性能优化:通过调整参数和优化配置,提高Hadoop集群的性能。
三、实验过程1. HDFS操作:首先,我们在本地机器上安装了Hadoop,并启动了HDFS。
然后,我们通过Hadoop命令行工具对HDFS进行了基本的操作,包括创建文件夹、上传和下载文件等。
在操作过程中,我们遇到了权限问题,通过修改配置文件解决了问题。
2. MapReduce编程:我们选择了一个经典的问题——单词计数作为案例,编写了Map和Reduce函数。
在编写过程中,我们了解了MapReduce的基本原理和编程模型,以及如何处理数据的分片和shuffle过程。
3. Hadoop集群搭建:我们在实验室的局域网内搭建了一个Hadoop集群,配置了各个节点之间的通信和数据传输。
在配置过程中,我们注意到了防火墙和网络通信的问题,通过调整防火墙规则和配置网络参数,解决了问题。
4. 性能优化:我们对Hadoop集群进行了性能优化,通过调整参数和优化配置,提高了集群的性能。
我们了解到了一些常用的优化方法,如调整数据块大小、优化网络参数等。
四、实验总结通过本次实验,我们深入了解了Hadoop分布式文件系统和MapReduce计算模型的基本原理和应用。
在实验过程中,我们遇到了一些问题,但通过查阅资料和互相讨论,最终解决了问题。
通过本次实验,我们不仅掌握了Hadoop的基本操作和编程技能,还提高了解决实际问题的能力。
分布式系统实验报告
中南大学分布式系统实验报告目录(我选做 4 题,按住ctrl点击目录条可直达,wps下有效)实验一数据包 socket 应用 (4)一、实验目的 (4)二、预习与实验要求 (4)三、实验环境 (4)四、实验原理 (4)五、实验内容 (6)六、实验报告 (7)七、思考题 (7)实验二流式 socket 应用 (8)一、实验目的 (8)二、预习与实验要求 (8)三、实验环境 (8)四、实验原理 (8)五、实验内容 (9)六、实验报告 (9)七、思考题 (11)实验三客户/ 服务器应用开发 (11)一、实验目的 (11)二、预习与实验要求 (11)三、实验环境 (11)四、实验原理 (12)五、实验内容 (12)六、实验报告 (13)实验九虚拟机的使用与 Linux 系统的安装 (37)一、实验目的 (37)二、实验内容和步骤 (38)三、实验结果 (40)实验一数据包 socket 应用一、实验目的1. 理解数据包 socket 的应用2. 实现数据包 socket 通信3. 了解 Java 并行编程的基本方法二、预习与实验要求1. 预习实验指导书及教材的有关内容,了解数据包 socket 的通信原理;2. 熟悉一种 java IDE 和程序开发过程;3. 了解下列 Java API:Thread、Runnable;4. 尽可能独立思考并完成实验。
三、实验环境a) 独立计算机或计算机网络;b) Windows 操作系统。
c) Jdk 工具包d) JCreator or others四、实验原理1. 分布式计算的核心是进程通信。
操作系统、网卡驱动程序等应用从不同抽象层面提供了对进程通信的支持,例如Winsock、.*。
Socket API 是一种作为 IPC 提供对系统低层抽象的机制。
尽管应用人员很少需要在该层编写代码,但理解 socket API 非常重要,因为:1,高层设施是构建于socketAPI 之上的,即他们是利用 socket API 提供的操作来实现;2,对于以响应时间要求较高或运行于有限资源平台上的应用来说,socket API 可能是最适合的。
分布式数据库性能测试实验报告
分布式数据库性能测试实验报告引言:分布式数据库是由多个节点构成的数据库系统,每个节点都可以独立地处理查询和事务操作。
为了评估分布式数据库的性能表现,本实验进行了一系列的性能测试并得出了相应的结果和结论。
本报告旨在对分布式数据库性能进行全面的评估和分析。
实验目的:1. 通过性能测试评估分布式数据库的处理能力和并发性能。
2. 分析分布式数据库对于不同规模数据和负载的响应情况。
3. 探讨分布式数据库在扩展性和容错性方面的表现。
实验环境:- 数据库系统:分布式数据库系统XYZ- 硬件:主机配置为X GHz处理器、XGB内存、XGB磁盘空间- 软件:操作系统为X,数据库管理系统为XYZ- 数据集:使用XGB规模的数据集进行测试实验方法:1. 测试负载:使用不同类型的查询和事务操作构建测试负载,包括读操作、写操作和复杂查询操作。
2. 并发用户数:逐步增加并发用户数,从10个用户逐渐增加到100个用户。
3. 测量指标:记录每个操作的执行时间、吞吐量和响应时间。
实验结果与分析:1. 响应时间:随着并发用户数的增加,响应时间逐渐增加,但整体呈现出较好的线性扩展性。
2. 吞吐量:在低并发用户数时,吞吐量随并发用户数的增加而逐渐提高。
然而,当并发用户数达到一定阈值后,吞吐量的增加速度减缓。
3. 数据一致性:由于分布式数据库的数据分布在多个节点上,数据一致性成为一个重要的考虑因素。
实验结果表明,在正常情况下,分布式数据库能够保持数据一致性。
4. 容错性:通过模拟节点故障,实验发现分布式数据库具有较好的容错性能,能够在某些节点故障的情况下继续正常运行。
结论:1. 分布式数据库在处理大规模数据和并发操作方面表现出良好的性能。
2. 分布式数据库的吞吐量随并发用户数的增加呈现出递增趋势,但在一定阈值后增速减缓。
3. 数据一致性和容错性是分布式数据库设计和管理的重要考虑因素。
4. 开发人员和系统管理员应根据实际需求选择合适的分布式数据库,并且注意数据库的配置和优化。
分布式系统性能实验报告
分布式系统性能实验报告一、实验目的分布式系统是由多个独立的计算机节点组成的系统,每个节点通过通信协议进行交互,共同完成任务。
本实验旨在通过对分布式系统的性能进行测试和评估,以提供有关系统可靠性、扩展性和效率等方面的数据和结论。
二、实验环境本次实验使用了一个由5台计算机组成的分布式系统,这些计算机分别命名为节点A、节点B、节点C、节点D和节点E。
每个节点都装有相同的硬件和软件配置,包括操作系统、分布式系统运行环境等。
三、实验过程1. 引言在实验开始前,首先介绍了分布式系统的定义、特点和优势,以及本次实验的目标和意义。
2. 实验设计为了综合评估分布式系统的性能,我们进行了以下几个方面的测试:- 负载均衡测试:通过向各个节点发送任务并观察任务的分配情况,评估系统的负载均衡能力。
- 吞吐量测试:通过向系统发送大量请求,并测量系统在处理请求时的吞吐量,评估系统的处理能力。
- 响应时间测试:通过向系统发送请求,并测量系统在响应请求时的时间,评估系统的响应速度。
3. 实验步骤与结果分析首先,我们进行了负载均衡测试。
通过向各个节点发送不同数量的任务,我们观察到系统能够合理地将任务分配给各个节点,从而实现负载均衡。
同时,我们计算了每个节点的平均负载,并绘制了负载均衡的图表。
接下来,我们进行了吞吐量测试。
通过向系统发送大量请求并测量处理完成的请求数量,我们评估了系统在单位时间内能够处理的请求数量,即吞吐量。
我们根据不同的负载情况进行了多次测试,并对吞吐量进行了分析和比较。
最后,我们进行了响应时间测试。
通过向系统发送请求,并测量系统在响应请求时所花费的时间,我们得到了系统的响应时间数据。
我们分析了不同负载情况下的响应时间,并对系统的性能进行了评估。
4. 实验结论通过上述实验,我们得出了以下结论:- 分布式系统能够实现负载均衡,有效地将任务分配给各个节点。
- 分布式系统具备较高的处理能力,能够在单位时间内处理大量的请求。
分布式系统性能监控与优化实验报告
分布式系统性能监控与优化实验报告"性能监控与优化"在分布式系统中扮演着至关重要的角色。
随着分布式系统的广泛应用,保证其稳定运行和高效性能成为了工程师们的挑战。
本实验报告旨在介绍分布式系统的性能监控与优化方法,并通过实验验证其有效性。
一、引言名言:“不测量,就没有优化。
”分布式系统由多个相互连接的模块组成,这些模块相互协作以提供高效、可靠的服务。
然而,分布式系统的架构使得性能问题的排查和解决十分困难。
因此,性能监控与优化成为了分布式系统开发与管理中不可或缺的环节。
通过监控系统的性能指标,并针对性地进行调整与优化,可以提高系统的吞吐量、降低延迟时间,更好地满足用户需求。
二、分布式系统性能监控分布式系统的性能监控旨在采集、存储和分析系统中的性能指标。
常见的性能指标包括:吞吐量、延迟、错误率等。
通过对这些指标的监控,可以追踪系统在不同负载下的表现,并及时发现潜在的问题。
1. 监控指标的选择不同的系统可能关注的性能指标有所差异。
在选择监控指标时,应根据系统的实际需求进行权衡。
例如,对于一个电商网站,关注订单处理的延迟时间和吞吐量可能更为重要。
通过分析系统的瓶颈点,确定关键指标,可以提高监控效果。
2. 监控工具的选择当下,有众多的监控工具可供选择,例如Prometheus、Zabbix等。
在选择监控工具时,需要考虑其适应性、可扩展性和易用性。
我选用了Prometheus作为本次实验的监控工具。
三、实验设计与过程我们设计了一个包含多个节点的分布式系统,其中包括一个负载均衡节点和多个工作节点。
实验的目标是使用Prometheus监控工具进行性能监控,并通过优化手段提升系统的性能表现。
1. 系统架构设计我们采用了一种基于微服务架构的系统设计方案。
通过将整个系统拆分为多个小型服务,提高系统的可扩展性和稳定性。
负载均衡节点将请求转发至后端的工作节点,后者进行实际的处理工作。
2. 实验步骤- 步骤一:配置监控指标。
分布式实验报告
实验一、基于TCP的套接字编程一、实验目的用C或JAVA语言编写客户端、服务器端程序,实现基于TCP或UDP 的网络通信或数据传输服务,熟悉基于TCP或UDP的Socket编程原理。
二、实验环境建立在TCP/IP网络结构之上计算机网络实验环境。
计算机具备Windows环境中套接字socket的编程接口功能,可为用户提供全网范围的进程通信功能。
三、实验要求要求学生使用Linux或Windows平台下的套接字实现方式完成TCP客户端与服务器端的通信实现,无界面化要求,功能实现即可。
四、实验内容基于TCP的socket编程的大致实现过程如下--1、编写服务器端程序如下:import java.io.*;import .*;public class TCPServer {public static void main(String[] args) throws Exception{ ServerSocket server=null;Socket client=null;server=new ServerSocket(8888);client=server.accept();PrintWriter out=null;out=new PrintWriter(client.getOutputStream());out.println("Hello 阙凤林!");out.close();client.close();server.close();}}2、编写客户端程序如下:import java.io.*;import .*;public class TCPClient {public static void main(String[] args)throws Exception { Socket client=null;BufferedReader buf=null;client=new Socket("localhost",8888);buf=new BufferedReader(new InputStreamReader(client.getInputStream()));System.out.println();System.out.println(buf.readLine());buf.close();client.close(); }}3、在DOS命令行下分别编译上述.java文件,生成对应的.class文件,如下图所示:4、打开主机端口:在“运行”框中输入Telnet,进入如下画面:5、键入o localhost 8888 执行完上述结果后得到下图所示界面:6、最后重新打开一个界面(服务器server保持运行状态),输入cmd,执行客户端程序,得到运行结果如下:实验二、一个RMI实例开发一、实验目的用C或JAVA语言编写客户端、服务器端程序,模拟实现不同操作系统之间程序的方法调用。
分布式文件系统实验报告
分布式文件系统实验报告引言:“分布式文件系统”这个概念最早在20世纪80年代被提出,并随着科技的发展得到了广泛应用。
它是一种能够分布式管理和存储大量文件的系统,可以提供高性能的数据访问和共享。
本实验报告旨在通过对分布式文件系统的设计和实验的描述,来展现其在解决数据存储和访问的问题上的优越性及应用价值。
1. 实验背景在当今信息时代,企业和组织需要存储和处理大量的数据,传统的集中式文件系统已经不能满足这种需求,因此分布式文件系统应运而生。
分布式文件系统能够将数据分散存储在多个节点上,不仅提高了存储容量和性能,还具备高可用性和容错性。
2. 实验目的本次实验的目的是设计和实现一个基于分布式存储的文件系统,通过模拟网络上不同节点之间的数据传输和共享,验证其在数据存储和访问方面的优势,并对其性能进行评估和分析。
3. 测试环境与实验步骤3.1 测试环境搭建通过搭建一组具有不同存储能力和计算资源的分布式节点,构建一个分布式文件系统的实验环境。
在每个节点上安装相应的软件,并进行配置和连接,确保节点之间可以相互通信和共享数据。
3.2 实验步骤3.2.1 文件分布和备份策略设计根据实验需求和数据分布情况,设计文件的分布和备份策略,确定文件在各节点之间的存储位置以及备份方式。
可以采用数据分块的方式,将一个文件分成多个块并分别存储在不同节点上,同时进行冗余备份,提高数据的可靠性和可用性。
3.2.2 数据读写和一致性协议实现设计和实现数据的读写操作以及分布式一致性协议,保证在多个节点之间进行数据访问时的数据一致性和正确性。
可以采用Paxos或Raft 等一致性算法来实现。
3.2.3 性能评估和分析通过模拟不同的负载情况和数据访问模式,对分布式文件系统进行性能评估和分析。
可以测量系统的吞吐量、延迟以及数据一致性的开销,比较不同的存储和访问策略对系统性能的影响。
4. 实验结果与讨论根据实验数据和结果,对分布式文件系统进行评估和分析。
分布式数据库管理实验报告
分布式数据库管理实验报告一、引言随着互联网和大数据技术的迅速发展,传统的集中式数据库管理系统已经无法满足日益增长的数据处理需求。
分布式数据库管理系统应运而生,能够将数据分散存储在不同的节点上,并实现数据的有效管理和处理。
本实验旨在通过对分布式数据库管理系统的实验操作,深入了解其工作原理和应用场景。
二、实验目的1. 了解分布式数据库管理系统的基本概念和特点;2. 掌握分布式数据库管理系统的架构和工作原理;3. 能够使用实际案例进行分布式数据库管理系统的操作。
三、实验内容1. 搭建分布式数据库管理系统的实验环境;2. 创建分布式数据库并进行数据导入;3. 进行跨节点的数据查询和更新操作;4. 测试分布式数据库管理系统的性能和扩展性。
四、实验步骤1. 搭建实验环境在实验室服务器上安装分布式数据库管理系统软件,并配置节点信息,确保各节点之间可以正常通信。
2. 创建分布式数据库使用SQL语句在不同节点上创建分布式数据库,并将数据导入到对应的表中。
3. 数据查询和更新编写SQL查询语句,可以跨节点进行数据查询操作,并测试分布式数据库系统的读写性能。
4. 性能测试模拟大量的数据操作,测试分布式数据库管理系统在高负载情况下的性能表现,并观察系统的负载均衡能力。
五、实验结果分析通过实验操作,我们成功搭建了分布式数据库管理系统的实验环境,并能够灵活操作数据库中的数据。
在性能测试中,我们发现分布式数据库系统能够有效分担数据处理压力,提高系统的稳定性和可靠性。
六、结论分布式数据库管理系统是当前大数据时代的重要组成部分,能够满足高并发、大规模数据处理的要求。
通过本次实验,我们对分布式数据库管理系统有了更深入的了解,可以更好地应用于实际的数据处理工作中。
七、参考文献1. 《分布式数据库管理系统原理与技术》2. 《大规模分布式存储系统设计与实现》3. 《分布式数据库管理系统性能优化与调优》以上是本次分布式数据库管理实验报告的具体内容,希朓能对您有所帮助。
《分布式计算机技》实验报告
《分布式计算机技术》实验报告一、分布并行计算环境的安装和设置1.实验目的:掌握分布并行计算环境ProActive的安装和设置,理解客户-服务器模式以及涉及到的各种概念:分布式计算技术、通信与命名。
2.实验内容:①熟悉ProActive软件,完成JDK和ProActive在PC机上的安装和基本配置。
②理解ProActive的活动对象的概念和基本原理。
③理解客户-服务器模式,并且独立运行实例。
3.实验步骤及结果:①安装JDK1.4或者高于1.4的版本。
安装过程和配置过程略。
②ProActive安装过程和基本配置过程略。
③运行例子例子的运行除了运行例子的主类以外,ProActive为例子的运行提供了了脚本程序,scripts 所在的目录在:④Tiny版本的“HelloWorld”例子的运行,运行脚本程序:输出:⑤Reader(读者写者)例子的运行⑥Philosopher(哲学家)例子的运行(1)结果:(2)(3)(4)(5)4.归纳总结,撰写心得体会:在经过本次实验课的内容操作之后,我对分布并行计算环境ProActive有了一些基本的理解以及一些常用操作,也让我们了解客户-服务器模式,了解分布式计算技术、通信与命名等概念。
ProActive 是一个由法国的INRIA机构开发的并行分布式计算的Java 中间件,使用ProActive 能方便地开发网格和网络环境下的应用。
ProActive 是一个支持开发网格和网络环境下并行、分布及并发计算的Java 库。
具有如下特点:(1)纯Java 编写;(2)迁移性;(3)类型组通信和组件编程模式,支持面向对象的SPMD 程序设计;(4)支持Globus、PBS、LSF、SSH 和RSH等网络网格环境和中间件的接口;(5)强大的XML 部署描述器和安全机制。
Hello world ! 是一个最小的Proactive程序。
这是用主动对象概念写的最简单的程序。
为的是用尽量少的API知识快速展示一下怎样编写这类代码。
分布式实验报告
分布式实验报告在当今数字化和信息化的时代,分布式系统的应用越来越广泛,其在处理大规模数据、提供高可用性服务等方面发挥着重要作用。
本次分布式实验旨在深入研究分布式系统的工作原理、性能特点以及面临的挑战,并通过实际操作和测试来验证相关理论和技术。
一、实验背景随着互联网的快速发展,用户数量和数据量呈爆炸式增长,传统的集中式系统在处理能力、可扩展性和可靠性等方面逐渐难以满足需求。
分布式系统通过将任务分布在多个节点上协同工作,能够有效地解决这些问题。
然而,分布式系统也带来了一系列新的技术挑战,如数据一致性、网络延迟、节点故障等。
二、实验目的本次实验的主要目的包括:1、深入理解分布式系统的架构和工作原理。
2、掌握分布式系统中的数据分布、副本管理和一致性算法。
3、评估分布式系统在不同负载情况下的性能表现。
4、分析分布式系统在面对节点故障时的容错能力和恢复机制。
三、实验环境为了进行本次实验,我们搭建了一个由多台服务器组成的分布式集群环境。
具体配置如下:服务器数量:5 台操作系统:CentOS 7CPU:Intel Xeon E5-2620 v4 @ 210GHz内存:32GB存储:1TB SATA 硬盘网络:千兆以太网在每台服务器上,我们安装了所需的软件和依赖,包括分布式系统框架(如 Hadoop、Zookeeper 等)、数据库(如 MySQL)、监控工具(如 Nagios)等。
四、实验内容1、数据分布策略实验我们首先研究了不同的数据分布策略,如哈希分布、范围分布和随机分布。
通过在分布式系统中插入和查询大量数据,比较了不同策略下的数据均衡性、查询效率和数据迁移成本。
实验结果表明,哈希分布在数据均衡性方面表现较好,但在处理范围查询时效率较低;范围分布适用于范围查询,但容易导致数据倾斜;随机分布的性能较为不稳定。
2、副本管理实验接着,我们对副本管理进行了实验。
设置了不同的副本数量(如 1 个副本、2 个副本和 3 个副本),并模拟了节点故障的情况,观察系统在数据可用性和恢复时间方面的表现。
分布式实验报告-张莹-2011127129
实验:仿真组件对象目录实验目的 (1)实验内容 (1)实验环境 (2)实验要求 (3)实验步骤 (4)软件下载 (4)实验过程 (5)实验心得 (35)实验目的1.学习掌握开发编译器中性、可维护、可升级的组件对象的基本原理、基本方法;2.学习分别使用异种编译器开发组件的服务器端和客户端。
实验内容使用VC开发一个以DLL作为载体的仿真COM对象, 此对象支持多个接口.每个接口支持不同的功能. 使用BC开发一个客户,创建此仿真COM对象,并调用它的不同接口的功能. 要求在试验过程中主要完成如下工作:1.验证名字改编造成的编译器依赖性.2.验证头文件的改变带来的DLL升级的问题.3.验证接口类带来的升级便利.4.验证普通析构函数带来的编译器依赖性..5.验证普通析构函数带来的内存泄漏.6.验证虚拟析构函数带来的编译器依赖性.7.验证RTTI的编译器依赖性.8.验证引用计数带来的客户端的便利.实验环境1.Windows7 专业版2.Microsoft Visual Studio3.Borland C++ Builder 6实验要求1.自行拟定组件的业务功能,但应与讲义中例程不同。
2.逐步完善其结构,记录下在此过程中客户端的症状。
(比如以屏幕截屏的方式)3.分析原因, 提出解决方法4.记录试验过程,以及主要源代码5.撰写实验报告.1.使用VC建立一个DLL,输出一个类。
在VC客户端使用此类。
2.验证bc的客户端无法使用此类3.以避免名字改编的方式输出一个函数以代替构造函数。
4.验证功能函数被名字改编导致无法链接5.将功能函数改为虚函数并验证虚函数可以顺利调用6.验证虚析构函数的编译器依赖性7.以虚功能函数的方式来完成对象的释放工作8.验证数据成员的存在导致升级困难。
9.验证参数入栈方向不一致所导致的错误10.从实现类中分离出接口类。
客户端只与接口类交互。
11.接口类使用普通析构函数。
验证同种编译器产生的客户端会出现内存泄漏,验证异种编译器所产生的客户端无法链接。
分布式系统设计与实现实验报告
分布式系统设计与实现实验报告引言:分布式系统是由多个计算机节点组成的系统,通过网络相互连接和协作,共同完成一定的任务。
在现代计算机应用中,分布式系统扮演着重要的角色,应用广泛。
本实验旨在通过设计和实现一个简单的分布式系统,探索其原理和应用。
一、系统设计1. 系统架构我们采用了客户端-服务器的系统架构,其中服务器端负责处理用户请求、存储数据和协调各个客户端之间的通信与协作。
客户端通过与服务器进行通信来实现任务的分配和执行。
2. 任务分配为了实现系统的负载均衡和容错机制,我们采用了分布式任务分配的策略。
服务器端将任务分割成多个子任务,并向各个客户端发送任务请求。
每个客户端接收到任务请求后,根据系统负载和任务优先级来决定是否接受任务。
如果客户端接受任务,则开始执行任务并将执行结果返回服务器端。
3. 数据存储为了实现数据的共享和一致性,我们引入了分布式文件系统。
每个客户端都可以访问文件系统,并可以在其中读取和写入数据。
服务器端负责协调各个客户端对文件系统的访问,并处理潜在的数据冲突和一致性问题。
二、系统实现1. 网络通信我们使用TCP/IP协议作为系统的通信协议。
通过建立客户端与服务器之间的TCP连接,可以实现可靠的数据传输和通信。
2. 任务调度服务器端采用了基于优先级队列的调度算法,根据任务的优先级和客户端的负载情况来进行任务调度。
具体而言,服务器将任务优先级高的任务放入优先级队列的前端,并向负载较低的客户端发送任务请求。
3. 数据一致性为了保证数据一致性,我们使用了副本机制。
在每个客户端上都存储有数据的副本,并通过心跳检测和数据同步机制来实现副本的一致性。
当某个客户端上的数据发生变化时,将通过广播机制通知其他客户端进行数据同步。
三、实验结果与分析在实验过程中,我们设计并实现了一个分布式系统,用于模拟一个简单的任务调度和数据共享场景。
通过对系统的压力测试和性能分析,我们得到了以下实验结果和分析:1. 系统性能通过增加客户端的数量,我们可以观察到系统整体的吞吐量和响应时间的变化。
分布式计算机实验报告
一、实验目的1. 了解分布式系统的基本概念和原理;2. 掌握分布式系统的架构和关键技术;3. 通过实验加深对分布式系统理论知识的理解;4. 提高编程能力和系统设计能力。
二、实验环境1. 操作系统:Linux;2. 编程语言:Java;3. 实验工具:Eclipse、JGroups、NetBeans等。
三、实验内容1. 分布式系统的基本概念和原理2. 分布式系统的架构和关键技术3. 分布式文件系统的实现4. 分布式计算任务的调度与执行5. 分布式锁的机制与实现四、实验步骤1. 分布式系统的基本概念和原理(1)了解分布式系统的定义、特点和应用场景;(2)掌握分布式系统的基本原理,如一致性、可用性、分区容错性等;(3)学习分布式系统的基本模型,如客户端-服务器模型、对等模型等。
2. 分布式系统的架构和关键技术(1)了解分布式系统的架构,如层次结构、总线结构等;(2)掌握分布式系统的关键技术,如通信、同步、数据一致性等;(3)学习分布式系统的设计原则,如模块化、分布式算法等。
3. 分布式文件系统的实现(1)使用Java实现一个简单的分布式文件系统;(2)实现文件系统的基本操作,如创建、删除、读取、写入等;(3)实现分布式文件系统的数据一致性、容错性等特性。
4. 分布式计算任务的调度与执行(1)使用Java实现一个简单的分布式计算任务调度系统;(2)实现任务的分配、调度、执行和监控等功能;(3)学习分布式计算任务的负载均衡、容错性等策略。
5. 分布式锁的机制与实现(1)了解分布式锁的概念、作用和实现方式;(2)使用Java实现一个简单的分布式锁机制;(3)实现分布式锁的同步、释放、失效等特性。
五、实验结果与分析1. 分布式系统的基本概念和原理实验结果:通过学习分布式系统的基本概念和原理,对分布式系统的特点、应用场景和基本模型有了深入的了解。
2. 分布式系统的架构和关键技术实验结果:通过学习分布式系统的架构和关键技术,掌握了分布式系统的设计原则和实现方法。
分布式系统实验报告
分布式系统实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII中南大学分布式系统实验报告目录(我选做 4 题,按住ctrl点击目录条可直达,wps下有效)实验一数据包 socket 应用 (4)一、实验目的 (4)二、预习与实验要求 (4)三、实验环境 (4)四、实验原理 (5)五、实验内容 (6)六、实验报告 (7)七、思考题 (9)实验二流式 socket 应用 (9)一、实验目的 (9)二、预习与实验要求 (9)三、实验环境 (9)四、实验原理 (10)五、实验内容 (10)六、实验报告 (10)七、思考题 (13)实验三客户/ 服务器应用开发 (14)一、实验目的 (14)二、预习与实验要求 (14)三、实验环境 (14)四、实验原理 (14)五、实验内容 (15)六、实验报告 (15)实验九虚拟机的使用与 Linux 系统的安装 (34)一、实验目的 (34)二、实验内容和步骤 (34)三、实验结果 (36)实验一数据包 socket 应用一、实验目的1. 理解数据包 socket 的应用2. 实现数据包 socket 通信3. 了解 Java 并行编程的基本方法二、预习与实验要求1. 预习实验指导书及教材的有关内容,了解数据包 socket 的通信原理;2. 熟悉一种 java IDE 和程序开发过程;3. 了解下列 Java API:Thread、Runnable;4. 尽可能独立思考并完成实验。
三、实验环境a) 独立计算机或计算机网络;b) Windows 操作系统。
c) Jdk 工具包d) JCreator or others四、实验原理1. 分布式计算的核心是进程通信。
操作系统、网卡驱动程序等应用从不同抽象层面提供了对进程通信的支持,例如Winsock、.*。
Socket API 是一种作为 IPC 提供对系统低层抽象的机制。
分布式光度计实验报告
一、实验目的1. 理解分布式光度计的工作原理及测量方法。
2. 学习如何使用分布式光度计进行灯具配光性能测试。
3. 掌握灯具光度性能测试数据的处理与分析。
二、实验原理分布式光度计是一种高精度、高自动化灯具配光性能测试系统。
其原理是通过测量灯具在不同角度上的光强分布,从而获得灯具的配光曲线。
实验过程中,将灯具放置在分布式光度计的测量平台上,通过旋转灯具和测量头,实现对灯具全角度范围内的光强分布测量。
三、实验仪器1. GPM-1900 运动反光镜分布式光度计2. 灯具待测样品3. 计算机及配套软件四、实验步骤1. 样品准备:将待测灯具放置在分布式光度计的测量平台上,确保灯具中心与测量平台中心对齐。
2. 系统校准:启动分布式光度计,进行系统校准。
校准内容包括测量头校准、灯具中心校准等。
3. 测量设置:根据待测灯具的规格,设置测量方案。
包括测量范围、步长、测量次数等。
4. 测量执行:启动测量程序,分布式光度计将自动旋转灯具和测量头,进行全角度范围内的光强分布测量。
5. 数据采集:测量完成后,将测量数据传输至计算机,保存为文件。
6. 数据处理:使用配套软件对测量数据进行处理和分析,包括配光曲线绘制、光强分布计算、光度性能评估等。
五、实验结果与分析1. 配光曲线绘制:根据测量数据,绘制灯具的配光曲线。
配光曲线反映了灯具在不同角度上的光强分布情况。
2. 光强分布计算:计算灯具在不同角度上的光强分布,包括最大光强、平均光强、光强均匀性等指标。
3. 光度性能评估:根据灯具的配光曲线和光强分布计算结果,对灯具的光度性能进行评估。
六、实验总结1. 通过本次实验,掌握了分布式光度计的使用方法,了解了灯具配光性能测试的基本流程。
2. 熟悉了灯具光度性能评估的方法,能够对灯具的光度性能进行合理判断。
3. 认识到分布式光度计在灯具研发、生产、检验等环节的重要性。
七、注意事项1. 实验过程中,确保灯具与测量平台中心对齐,以保证测量结果的准确性。
dcs实验报告
dcs实验报告
DCS实验报告
实验目的:通过DCS(分布式控制系统)的实验,探索其在工业控制领域的应
用及性能表现。
实验设备:我们使用了一套由DCS控制器、传感器、执行器等组成的工业控制
系统,并搭建了一个简单的模拟工业生产线。
实验过程:在实验过程中,我们首先对DCS控制器进行了配置和编程,设置了
一些基本的控制逻辑和参数。
然后,我们将传感器和执行器连接到DCS控制器,并进行了调试和测试。
最后,我们模拟了一些常见的工业生产场景,如温度控制、液位控制等,通过DCS控制器对生产线进行了控制和监控。
实验结果:通过实验,我们发现DCS在工业控制领域具有以下优点:首先,DCS可以实现分布式控制,多个控制器可以相互通信和协作,提高了系统的灵
活性和可靠性;其次,DCS具有强大的数据采集和处理能力,可以实时监控和
分析生产过程中的数据,为生产过程的优化提供了有力支持;此外,DCS还具
有良好的扩展性和可维护性,可以方便地进行系统升级和维护。
结论:通过本次实验,我们认为DCS在工业控制领域具有广阔的应用前景,可
以为工业生产带来更高的效率和更好的控制性能。
我们将继续深入研究DCS在
实际生产中的应用,并不断优化和完善其性能,以更好地满足工业生产的需求。
分布式系统实验报告
目录一、需求分析 (1)1. 1课程设计题目 (1)1. 2课程设计任务和要求 (1)要求: (1)任务: (1)1. 3课程设计环境 (1)1. 4实验资源配置 (1)二、概要设计 (2)2. 1设计内容 (2)三、测试与操作 (2)3.1.1 创建DFS根 (2)3.1.2 为DFS根添加链接 (3)3.1.3 使用DFS副本实现容错和负载均衡 (4)3.1.4 检测实验结果 (7)五、课程设计总结与体会 (8)六、致谢 (8)一、需求分析1. 1课程设计题目本课程设计题目为:卷影副本和分布式文件系统1. 2课程设计任务和要求要求:通过DFS将整个局域网同一网段的所有的共享文件夹集成到一个树状结构中供用户访问。
任务:1.创建DFS根;2.为DFS根添加链接;3.使用DFS副本实现容错和负载均衡;1. 3课程设计环境Windows Server 20031. 4实验资源配置1.4台虚拟机,Server1,Server2,server3和client1,server1作为域控制器,其他计算机作为域中的成员计算机;2.将Server2,Server3,client1分别加入到域;二、概要设计2. 1设计内容分布式文件系统(Distributed File System,DFS)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。
也就是说网络资源可能分散在网络中的任何一台计算机上,用户为了能够访问到这些共享文件夹必须知道这些共享文件夹的网络路径(UNC路径)才能够访问这些共享文件夹,并且当要访问多个相关的共享文件夹时必须在“网上邻居”或“网络驱动器”之间切换。
为了避免上面这种情况,Windows Server 2003引入了DFS,DFS使得用户无需知道文件夹具体在哪台计算机上,而只需要知道DFS文件服务器的UNC路径或IP地址就可以了。
因为通过DFS可以将整个局域网同一网段的所有的共享文件夹集成到一个树状结构中供用户访问,这样当用户需要访问分散在网络中的多个共享资源的时候并不需要自己去各个服务器上寻找共享文件夹,而是只需要访问DFS服务器上的共享文件夹就可以了。
分布式实验报告
实验一循环灯监控一、实验目的1、掌握s7300与wincc如何通信2、掌握wincc变量定义及与控制变量如何绑定3、了解分布式控制系统中操作站的主要功能。
4、熟悉WINCC软件图形开发界面。
二、实验要求实现控制系统组态过程,具体要求如下:1、S7300PLC仿真器与计算机相连的组态过程。
2、图形界面设计实现。
3、数据报表界面实现三、实验原理与常规的仪表控制方式不同的是集散控制系统通过人机操作界面不仅可以实现一般的操作功能,而且还增加了其他功能,例如控制组态、画面组态等工程实现的功能和自诊断、报警等维护修理等功能。
此外,画面方便的切换、参数改变的简单等性能也使集散控制系统的操作得到改善。
操作站的基本功能:显示、操作、报警、系统组态、系统维护、报告生成。
操作站的基本设备有操作台、微处理机系统、外部存储设备、操作键盘及鼠标、图形显示器、打印输出设备和通信接口等。
(1)西门子S7系列PLC编程软件本装置中PLC控制方案采用了德国西门子公司S7-300PLC,采用的是Step 7编程软件。
利用该软件可以对相应的PLC进行编程、调试、下装、诊断。
(2)西门子WinCC监控组态软件S7-300PLC控制方案采用WinCC软件作为上位机监控组态软件,WinCC 是结合西门子在过程自动化领域中的先进技术和Microsoft的强大功能的产物。
作为一个国际先进的人机界面(HMI)软件和SCADA系统,WinCC提供了适用于工业的图形显示、消息、归档以及报表的功能模板;并具有高性能的过程耦合、快速的画面更新、以及可靠的数据;WinCC还为用户解决方案提供了开放的界面,使得将WinCC集成入复杂、广泛的自动化项目成为可能。
四、实验步骤1、对PLC进行硬件组态:在新建项目下选择“SIMATIC 300 Station”---“hardware”,打开硬件组态窗口。
2、点击项目名称,在右方的空白处添加PROFIBUS和MPI对CPU和PROFIBUS 和MPI进行总线的连接。
分布式存储系统设计与实现实验报告
分布式存储系统设计与实现实验报告引言:分布式存储系统是一个基于多个独立节点的存储架构,它通过在多台服务器上分布和存储数据来提供高可用性、容错性和性能。
本实验旨在设计和实现一个分布式存储系统,并通过测试和评估其性能和可靠性。
一、系统设计1.1 系统架构我们的分布式存储系统采用客户端/服务器模型。
每个客户端通过网络与一组分布式存储服务器通信。
客户端可以发送读写请求,在存储服务器上执行相应操作,并返回结果给客户端。
1.2 数据分布策略为了实现负载均衡和容错性,我们采用了一致性哈希算法来分布数据。
该算法根据数据的键值将其映射到存储服务器上的位置。
这样可以有效地均衡数据在存储服务器之间的分布,当一个服务器失效时,只需重新映射一小部分数据。
1.3 数据一致性为了保证数据的一致性,我们引入了副本机制。
每个数据块都会被复制到多个存储服务器上,以提高数据的可靠性和可用性。
当写操作发生时,要求对所有副本进行同步更新;而读操作则从其中一个副本读取,以减少网络传输延迟。
二、系统实现2.1 选用技术我们选择使用Java语言来实现分布式存储系统。
Java提供了一组强大的工具和框架,使得开发和调试分布式系统变得更加容易。
2.2 客户端客户端使用Java的网络编程API与存储服务器进行通信。
它负责将用户的读写请求发送给存储服务器,并接收和处理服务器返回的结果。
客户端还负责将数据分块,并根据一致性哈希算法将每个块映射到特定的服务器位置。
2.3 服务器存储服务器之间通过网络进行通信,以实现数据的复制和同步。
每个服务器都维护了一个本地存储空间,用于存储分配到该服务器的数据块。
服务器还负责处理客户端的读写请求,并将结果返回给客户端。
为了实现高可用性,我们使用了心跳检测和故障恢复机制,以及自动数据迁移策略。
三、实验与评估3.1 实验环境我们在一组相互连接的物理机上搭建了一个分布式存储系统。
每台机器都充当了一个存储服务器,模拟了真实的网络环境和计算资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机科学与技术学院实验报告(学年度第学期)课程名称分布式实验名称分布式实验姓名学号专业计算机班级地点教师实验一:.NET Remoting一:实验目的和要求:目的:所谓.NET Remoting就是跨应用程序域边界调用程序集。
Remoting服务端承载远程对象,使外界能与之通信,对外的信道可以是HTTP、TCP或者IPC。
而我在此次试验中选择的是TCP。
最基本的.NET Remoting应用程序应该由三部分构成:∙服务端。
承载远程对象。
∙远程对象。
需要跨应用程序域边界调用的程序集。
∙客户端。
用于调用远程对象。
此次实验就是要在掌握的理论基础之上实现远程调用。
要求:1.进行实验预习工作;2.准备实验必须的完整程序流程及源代码;3.上机编程,调试程序,得到实验结果;4.写出实验报告二:实验环境:Visual Studio 2010三:实验步骤:首先下载安装Visual Studio 2010,此过程比较简单,在这就不介绍了。
远程对象是根本,服务端只是一个载体,那么我们就先要创建一个简单的远程对象:1.打开Visual Studio 2010,在在主界面中选择文件,选择“新建”→“项目”命令,新建一个Remoting类库项目。
2.把默认的Class1.cs重命名为RemoteObject.cs,打开cs文件,修改代码为:using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace Remoting{publicclass MyObject:MarshalByRefObject{//减法publicint Sub(int a, int b){return a - b;}//获得服务器时间publicstring GetDate(){return DateTime.Now.ToString();}}}在创建了远程对象后就需要创建Remoting服务端来发布这个远程对象了。
3.我使用Windows应用程序做服务端。
在解决方案中新建一个名为RemotingServer的控制台应用程序,把Program.cs修改成如下:using System;using System.Collections.Generic;using System.Linq;using System.Windows.Forms;namespace RemotingServer{staticclass Program{///应用程序的主入口点[STAThread]staticvoid Main(){Application.EnableVisualStyles();Application.SetCompatibleTextRenderingDefault(false);Application.Run(new RemotingServer());}}}4.使用.NET Remoting发布远程对象并不复杂,首先需要告知程序使用哪种信道发布远程对象。
在这里我们选择TCP信道,并在40001端口通信。
然后我们来完成用客户端应用程序调用远程对象。
客户端应用程序使用应用程序作为客户端。
privatestaticstring RemotingMethod_1(int num1, int num2, outint result){//声明远程服务端对象Remoting.MyObject mo =(Remoting.MyObject)Activator.GetObject(typeof(Remoting.MyObject), "tcp://localhost:40001/myObject");//调用服务器端对象的方法result = mo.Sub(num1, num2);string date = mo.GetDate();return date;}在这里,我们从远程地址tcp://localhost:40001/myObject创建远程对象,并调用了对象的Sub()方法。
myObject就是在服务端中为知名对象起的名字。
5.在服务器端创建RemotingServer.cs,代码如下:using System;using System.Collections.Generic;using ponentModel;using System.Data;using System.Drawing;using System.Linq;using System.Text;using System.Windows.Forms;//需要在解决方案的引用中添加System.Runtime.Remotingusing System.Runtime.Remoting;using System.Runtime.Remoting.Channels;using System.Runtime.Remoting.Channels.Tcp;namespace RemotingServer{publicpartialclass RemotingServer : Form{public RemotingServer(){InitializeComponent();}privatevoid btnStart_Click(object sender, EventArgs e){//注册服务端对象RemotingConfig_1();//显示消息txtMessage.Text = "Congratulations ! \r\nRemoting服务启动成功;//禁用服务启动按钮btnStart.Enabled = false;}privatestaticvoid RemotingConfig_1(){//创建TCP信道,端口为40001TcpChannel tc = new TcpChannel(40001);//注册TCP信道ChannelServices.RegisterChannel(tc, false);//注册在服务器激活的知名对象wellKnownRemotingConfiguration.RegisterWellKnownServiceType(typeof(Remoting.MyObject), "myObject", WellKnownObjectMode.SingleCall);}}}6.在客户端创建Client.cs,代码如下:using System;using System.Collections.Generic;using ponentModel;using System.Data;using System.Drawing;using System.Linq;using System.Text;using System.Windows.Forms;//读取配置文件using System.Configuration;namespace RemotingClient{publicpartialclass Client : Form{public Client(){InitializeComponent();}privatevoid btnRemoting_Click(object sender, EventArgs e) {//保存转换后的整数int num1 = 0;int num2 = 0;//读取输入的字符string strNum1 = txtNum1.Text.Trim();string strNum2 = txtNum2.Text.Trim();//检测数字输入是否正确if (Int32.TryParse(strNum1, out num1) != true){txtResult.Text = "请输入正确的数字";return;}//检测数字输入是否正确if (Int32.TryParse(strNum2, out num2) != true){txtResult.Text = "请输入正确的数字";return;}//调用服务端方法int result;string date = RemotingMethod_2(num1, num2, out result);//格式化结果字符串string message = string.Format("远程对象返回的计算结果为:{0},服务器时间为:{1}",result,date);//显示计算结果txtResult.Text = (message + Environment.NewLine);}privatestaticstring RemotingMethod_1(int num1, int num2, outint result){//声明远程服务端对象Remoting.MyObject mo = (Remoting.MyObject)Activator.GetObject(typeof(Remoting.MyObject), "tcp://localhost:40001/myObject");//调用服务器端对象的方法result = mo.Sub(num1, num2);string date = mo.GetDate();return date;}}}7.最后还要添加两个app.config:服务器端的app.config的代码如下:<?xml version="1.0"encoding="utf-8" ?><configuration><system.runtime.remoting><application name="RemoteHostService"><service><wellknown type="Remoting.MyObject, Remoting"objectUri="myObject"mode="SingleCall" /></service><channels><channel ref="tcp"port="40001" /></channels></application></system.runtime.remoting></configuration>客户端的app.config的代码如下:<?xml version="1.0"encoding="utf-8" ?><configuration><appSettings><add key="TCPChannel"value="tcp://localhost:40001/myObject"/> </appSettings></configuration>四:实验结果按Ctrl + f5执行,出现:点击启动Remoting服务,出现:接着按照下面图所示执行操作出现下图:输入正确的数据(例如分别输入7和3),可以得到以下截图:看到这个结果说明此次试验时成功的。