锅炉车间输煤机组控制的设计方案( word 可编辑版)

合集下载

PLC课程设计题目

PLC课程设计题目

PLC课程设计题目1锅炉车间输煤机组控制系统设计2十字路口带倒计时显示交通信号灯的PLC控制3 狭窄隧道汽车双向行的PLC控制4 自动售货机PLC控制5 病床紧急呼叫系统PLC控制6 PLC在组合机床控制中的应用7 停车场车位PLC控制8 6组抢答器控制9 工件传送机械手的PLC控制10 工作台自动往返循环控制11 四层简易电梯的PLC控制12 锯齿波发生器??13 全自动洗衣机PLC控制14 自动传送系统的PLC控制15 根据压力上下限变化对4台水泵进行恒压供水控制16 自动门控制装置17基于计算机链接通信的十字路口交通灯监控选题一、锅炉车间输煤机组控制系统设计1.输煤机组控制系统示意图图1 输煤机组控制系统示意图表1 输煤机组控制信号说明输入输出文字符号说明文字符号说明SA1-1输煤机组手动控制开关KM1给料器和磁选料器接触器SA1-2输煤机组自动控制开关KM21#送煤机接触器SB1输煤机组自动开车按钮KM3破碎机接触器SB2输煤机组自动停车按钮KM4提升机接触器SB3输煤机组紧急停车按钮KM52#送煤机接触器SB4给料器和磁选料器手动按钮KM6回收机接触器SB51#送煤机手动按钮HL7手动运行指示灯SB6破碎机手动按钮HL8紧急停车指示灯SB7提升机手动按钮HL9系统正常运行指示灯SB82#送煤机手动按钮HL10系统故障指示灯SB9回收机手动按钮HA报警电铃KM M1~M6,YA运行正常信号HL1~6输煤机组单机运行指示FR M1~M6,YA过载保护信号输煤机组的拖动系统由6台三相异步电动机M1~M6和一台磁选料器YA组成。

SA1为手动/自动转换开关,SB1和SB2为自动开车/停车按钮,SB3为事故紧急停车按钮,SB4~SB9为6个控制按钮,手动时单机操作使用。

HA为开车/停车时讯响器,提示在输煤机组附近的工作人员物煤机准备起动请注意安全。

HL1~HL6为Ml~M6电动机运行指示,HL7为手动运行指示,HL8为紧急停车指示,HL9为系统运行正常指示,HL10为系统故障指示。

锅炉车间输煤机控制系统设计

锅炉车间输煤机控制系统设计

锅炉车间输煤机控制系统设计Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】过程控制系统课程设计题目:基于组态软件的锅炉车间输煤机组控制系统设计院系名称:电气工程学院专业班级:自动化1304 学生姓名:付成龙学号: 0414指导教师:**设计地点: 31520 设计时间:设计成绩:指导教师:本栏由指导教师根据大纲要求审核后,填报成绩并签名。

摘要随着我国经济的发展,资源和环境矛盾同趋尖锐,使我国的现代化建设面临严峻挑战。

作为供热系统重要能源转换设备的燃煤锅炉能耗巨大,占我国原煤产量的三分之一左右。

然而,我国目前很多自动运行的锅炉控制系统自动化水平不高、安全性低,工作效率和环境污染普遍低于国家标准,因此实现锅炉的计算机自动控制具有重要的意义。

本文基于西门子公司的S7-200 PLC设计了锅炉输煤机组控制系统。

该系统包括下位机控制和上位机控制两部分,下位机控制系统采编用CPU224模块作为控制系统的核心。

采用 STEP 7 Micro/WIN程软件,进行PLC程序设计;选用组态软件“组态王6.53”进行上位机监控画面设计。

关键词:PLC 输煤皮带传送组态王目录1 引言锅炉是工业生产或生活采暖的供热源,按其供热的方式分为蒸汽和热水两种。

前者主要用于发电、工业生产及间接供热;后者主要用于生活供暖和生活热水,多用于集中供暖地区及宾馆、饭店等。

从80年代石横工程[1]全套引进第一台300MW机组[1]到至今,锅炉厂房控制系统、控制思路发生了很大的变化,其设计逐渐成熟。

由原来的继电器实现控制功能转化为用PLC实现控制功能。

随着电力系统市场的开放,减人增效越来越得到工厂包括各级领导的重视,如何优化车间的控制已成为每个工程所必须面临的问题。

所谓锅炉输煤系统,是指从送煤开始,一直到将合格的煤块送到原煤仓的整个工艺过程,它包括以下几个主要环节:给煤生产线、选煤、皮带运输系统、破碎与提升、回收系统以及一些辅助生产环节。

PLC控制锅炉输煤系统设计

PLC控制锅炉输煤系统设计
(1)熔体在线路中或电动机正常工作时不应熔断需满足:
Ier≥Ijs
式中Ijs为正常运行时流经熔体的工作电流。对于单台电动机支线,Ijs就是电动机的额定电流(A);对于干线,Ier= I30(A)
(2)熔体在电动机启动时不应熔断。对于单台电动机支线,电动机的启动情况一般有两种,一是轻载启动,又称正常启动,其启动时间为6~10S,其平均启动时间为8S。另一种是重载启动,又称困难启动,其启动时间为15~20S。
关键词:PLC,控制系统,煤流量,输煤系统
ABSTRACT
This paper takesHOLLiAS LMPLC asdesigned for a power output of boilers30t/h medium-sized lost control of coal on the electrical system.The system can work reliably with property of easy operation and maintenance.The safety locks protection control function:In the system of losing the coal electrical engineering have the strict control in moving and stopping, each other has the homologous lock interaction relation, being start some set to lose the coal equipments, from that equipments below process of end lose the coal equipments start heading up pursue class start, then can make finally that set equipments start;When the stop some set loses the coal equipments or some set equipmentses to break down, from that equipments up the source head of the process starts get down for the coal equipments to pursue the class to park the car, then can make that set equipments stop finally.Thus, guaranteed the normal movement that last coal deliver, avoid the leather belt up the pile up of coal, also protected the leather belt. Lose the coal distance to control the system with the PLC, not only carried out the automation management that equipments circulate and supervision, raise the credibility and safeties of the system, but also improved the work environment, raise the business enterprise economic performance and work efficiencies.therefore the system bears certain practical applying significance and popularizing value .

热电厂输煤自动控制系统的设计

热电厂输煤自动控制系统的设计

石家庄铁道大学四方学院毕业设计热电厂输煤自动控制系统的设计The Design of Coal Power Plant Control System2013 届电气工程系专业电气工程及其自动化学号学生姓名指导教师完成日期 2013年5月27日毕业设计任务书摘要传统的热电厂输煤控制系统是一种基于继电接触器的系统,由于输煤系统现场环境十分恶劣,不仅极大损害了工人的身体健康,而且由于输煤系统范围大,经常有皮带跑偏、皮带撕裂及落煤管堵塞等等麻烦,大大降低了发电厂的生产效率。

随着发电厂规模的扩大,对煤量的需求大大提高,传统的输煤系统己无法满足发电厂的需要。

本设计以PLC控制技术为核心,以传送带输煤为设计对象,让传送带依次延时逆煤启动,延时顺煤方向停止,自动进行上煤和卸煤功能,并且具有上煤和卸煤的预警信号和故障时自动报警的能力,输煤系统的传送带是由电动机提供动力,利用GX Developer来进行仿真,可以直接观看各个传送带的运行状态。

采用整个控制系统结构简单,维修方便,经济适用。

本文在充分考虑输煤系统的作用和运行可靠性基础上,设计了一条两路多段互为备用的输煤系统,从结构上保证了输煤系统的运行可靠性。

最终实现了由料斗和1#-3#皮带依次启动输送至配煤场,再由4#-7#皮带传送至锅炉。

关键词:输煤控制系统传送带PLCAbstractConventional thermal power plant coal handling system is based on relay contacts system, because coal handling system environment is very bad scene, not only greatly damaged the health of workers, and because the coal handling system range, often with belt deviation, belt tear crack and coal chute blockage so cumbersome, greatly reducing the productivity of plants. As the plant grows, the demand for coal has greatly improved the traditional coal handling system has been unable to meet the plant's needs.The design of PLC control technology as the core, coal conveyor design objects, so in turn delay counter coal conveyor start, stop delay direction along the coal, coal and coal unloading on automatically, it also has the unloading of coal and warning signal when the automatic alarm and fault capacity, coal conveyor system is powered by an electric motor, to simulate the use of GX Developer, you can directly watch the running status of each belt. Using the entire control system is simple, easy maintenance, affordable.In this paper, give full consideration to the role and operation of coal handling system reliability based on the design of a two-way multi-segment mutual backup coal handling system, from the structure to ensure the coal handling system reliability. Ultimately realized by the hopper and 1#-3# converyor belt starts to turn coal field,then by 4#-7# and sent to the boiler belt.Key words:Coal transfer Conveyor PLC目录第1章绪论 (1)1.1课题研究的目的意义 (1)1.2国内外研究现状 (1)1.3论文研究内容 (2)第2章可编程序控制器的概况 (3)2.1PLC的概念及发展 (3)2.1.1可编程序控制器的历史 (3)2.1.2可编程序控制器的物理结构 (4)2.1.3可编程序控制器的特点及应用 (4)2.2PLC控制系统的设计步骤 (5)第3章系统的硬件设计 (7)3.1器件的选择 (7)3.1.1PLC机型的选择 (7)3.1.2电动机的选型 (8)3.1.3其他元件的选型 (9)3.2I/O接线图 (10)3.3电机主电路图的设计 (11)第4章系统的软件设计 (12)4.1系统软件控制 (12)4.2卸煤控制部分 (14)4.3上煤部分的控制 (20)第5章仿真 (26)第6章结论与展望 (28)6.1结论 (28)6.2展望 (28)参考文献 (29)致谢 (30)附录 (31)附录A外文资料 (31)附录B上煤步进流程 (39)附录C梯形图 (42)附录D指令表 (47)第1章绪论皮带传输系统因其结构简单,使用方便,造价低廉被广泛应用于工业、商业、农业、医药、军事等方面,在采矿运输、冶金送料、车站及码头的货物运输更是广泛使用,同样,发电厂的输煤系统也采用皮带传输。

锅炉车间输煤机控制系统设计概述

锅炉车间输煤机控制系统设计概述

过程控制系统课程设计题目:基于组态软件的锅炉车间输煤机组控制系统设计院系名称:电气工程学院专业班级:自动化1304 学生:付成龙学号: 4指导教师:杰设计地点: 31520 设计时间:设计成绩:指导教师:摘要随着我国经济的发展,资源和环境矛盾同趋尖锐,使我国的现代化建设面临严峻挑战。

作为供热系统重要能源转换设备的燃煤锅炉能耗巨大,占我国原煤产量的三分之一左右。

然而,我国目前很多自动运行的锅炉控制系统自动化水平不高、安全性低,工作效率和环境污染普遍低于国家标准,因此实现锅炉的计算机自动控制具有重要的意义。

本文基于西门子公司的S7-200 PLC设计了锅炉输煤机组控制系统。

该系统包括下位机控制和上位机控制两部分,下位机控制系统采编用CPU224模块作为控制系统的核心。

采用V4.0 STEP 7 Micro/WIN程软件,进行PLC程序设计;选用组态软件“组态王6.53”进行上位机监控画面设计。

关键词:PLC 输煤皮带传送组态王目录1 引言 (1)2 设计容和要求 (1)3 设计方案 (2)3.1 设计信号说明 (3)3.2 输煤机组运行过程 (3)4 硬件电路设计 (4)4.1 系统控制主电路图设计 (4)4.2 电器元件的选择 (5)4.3 I/O地址分配 (6)4.4 PLC控制电路接线图 (7)5 软件设计 (8)5.1 顺序功能图 (8)5.2 程序设计 (9)6 系统组态设计 (10)6.1 组态软件简介 (10)6.2 定义设备变量 (11)6.3 建立动画连接 (13)6.4 配置运行系统 (15)设计心得 (17)参考文献 (18)附录1:PLC梯形图程序 (19)附录2:组态王应用程序命令语言 (27)1 引言锅炉是工业生产或生活采暖的供热源,按其供热的方式分为蒸汽和热水两种。

前者主要用于发电、工业生产及间接供热;后者主要用于生活供暖和生活热水,多用于集中供暖地区及宾馆、饭店等。

从80年代石横工程[1]全套引进第一台300MW 机组[1]到至今,锅炉厂房控制系统、控制思路发生了很大的变化,其设计逐渐成熟。

PLC锅炉车间输煤机组控制(DOC)

PLC锅炉车间输煤机组控制(DOC)

目录摘要 (1)第一章 PLC控制系统设计 (1)1.1 PLC控制系统设计的基本原则 (1)1.2 PLC机型选择 (2)第二章锅炉车间输煤机组控制PLC电气控制系统 (5)2.1 锅炉车间输煤机组控制系统设计任务 (5)2.1.1 锅炉车间输煤机组控制 (5)2.1.2 输煤机组控制要求 (6)2.2 锅炉车间输煤机组控制系统总体方案设计 (7)2.3锅炉车间输煤机组控制原理图设计 (7)2.4 PLC硬件控制电路设计 (8)2.5 PLC控制程序设计 (10)2.6 梯形图程序调试 (22)第三章心得体会 (23)参考文献 (24)摘要作为通用工业控制计算机,30年来,可编程控制器从无到有,实现了工业控制领域接线逻辑到存储逻辑的飞跃;其功能从弱到强,实现了逻辑控制到数字控制的进步;其应用领域从小到大,实现了单体设备简单控制到胜任运动控制、过程控制、及集散控制等各种任务的跨越。

今天的可编程控制器正在成为工业控制领域的主流控制设备,在世界各地发挥着越来越大的作用。

个人计算机(简称PC)发展起来后,为了方便,也为了反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC),现在,仍常常将PLC简称PC。

可编程控制器的定义可编程控制器,简称PLC,是指以计算机技术为基础的新型工业控制装置。

在1987年国际电工委员会颁布的PLC标准草案中对PLC 做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。

它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。

PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。

锅炉上煤机电气控制设计

锅炉上煤机电气控制设计

电气控制课程设计说明书设计题目锅炉上煤机控制设计学生姓名 XXX学号 03专业班级电气 1231指导教师 XX XX2014年12月1日~12月12日目录前言 (1)第一章课程设计的目的和要求 (2)1.1课程设计的目的 (2)1.2课程设计的要求 (2)第二章设计任务书 (2)2.1设计课题 (2)2.2控制设计要求 (3)第三章设计过程 (3)3.1设计方案的确定 (3)3.2单元电路设计 (3)3.2.1 主电路设计 (3)3.2.2控制电路设计 (6)3.3电路原理说明 (7)第四章控制板安装 (8)4.1元器件选择 (8)4.1.1 空气开关的选择 (8)4.1.2 接触器的选择 (8)4.1.3 热继电器的选择 (8)4.1.1 时间继电器的选择 (9)4.1.5 行程开关的选择 (9)4.1.6 按钮的选择 (9)4.2 元器件清单 (10)4.3 控制板安装原则 (11)4.4 电路板实物连接图 (11)4.4 安装调试过程中出现的问题及解决方法 (12)第五章 PLC系统设计 (12)5.1 PLC的选择 (12)5.1.1 对输入输出点数的选择 (12)5.1.2 对存储容量的选择 (12)5.1.3 对I/O响应时间的选择 (13)5.1.4 PLC的型号 (13)5.2 I/O分配 (13)5.3 PLC程序指令 (14)5.4 PLC运行过程图(梯形图) (14)设计小结 (17)【参考文献】 (18)前言当今社会,科学技术的飞速发展,人民生活水平的提高,使人们越来越注重生活质量和工作环境。

为了适应这种发展的需要,减轻操作人员的劳动强度和保持工作环境的清洁成为工程设计人员在设计开发时需要考虑的重要因素。

锅炉上煤机就是这样一种减轻劳动强度、改善工作环境的设备。

小型锅炉上煤设备在大型工业生产中的应用并不广泛,但在人们的生活作业中却有重要的作用,例如小型供暖系统、食堂的生产过程等都跟人们的生活有着千丝万缕的联系。

锅炉车间输煤机组控制系统模拟

锅炉车间输煤机组控制系统模拟

课程设计报告书课程名称:《PLC技术与工程应用》课题名称:锅炉车间输煤机组控制系统模拟系部名称:自动控制系专业班级:计控141姓名:高永生学号:1414131102016 年7 月1 日目录1方案论证 (2)1.1锅炉系统 (2)1.2章节结构 (2)2系统硬件设计 (3)2.1 系统硬件选型 (3)2.2 系统I/O配置 (4)2.3系统电气原理图 (4)3系统控制软件设计 (6)4系统的模拟调试 (9)5心得体会 (12)附录1: (13)参考文献: (13)1方案论证1.1锅炉系统本设计首先阐述了锅炉自动输煤系统的基本构成及特点,然后通过对基于继电器锅炉输煤系统和基于PLC的锅炉输煤系统对比论证,根据控制要求,本设计采用PLC控制,实现自动化控制。

PLC不仅能实现自动化控制,还具有快速响应,便于维修等诸多特点,比一般的继电器接触器控制系统优越了很多,而且单机运行时都有音响提示,因此安全性也较好,程序设计也不是十分复杂。

在硬件方面,本文着重对PLC、继电器、电动机等选型进行了设计,同时给出了各高级单元的使用及设定情况;在软件方面,提供了原理图、接线图和梯形图。

除此之外,也充分考虑了实际应用中的要求,设计时考虑到了成本、功耗、安全性、稳定性、等诸多问题,具有一定的合理性和可行性。

PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。

PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。

用 PLC输煤程控系统,不但实现了设备运行的自动化管理和监控,提高了系统的可靠性和安全性,而且改善了工作环境,提高了企业经济效益和工作效率。

因此PLC电气控制系统具有广泛的工程应用和推广价值。

锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备,它所产生的高压蒸汽,既可作为风机、压缩机、大型泵类的驱动的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。

PLC课程设计题目

PLC课程设计题目

PLC 课程设计题目1锅炉车间输煤机组控制系统设计2十字路口带倒计时显示交通信号灯的 PLC 控制3狭窄隧道汽车双向行的 PLC 控制4自动售货机 PLC 控制5病床紧急呼叫系统 PLC 控制6PLC 在组合机床控制中的应用7停车场车位 PLC 控制86 组抢答器控制9工件传送机械手的 PLC 控制10工作台自动往返循环控制11四层简易电梯的 PLC 控制12锯齿波发生器??13全自动洗衣机 PLC 控制14自动传送系统的 PLC 控制15根据压力上下限变化对 4 台水泵进行恒压供水控制16自动门控制装置17基于计算机链接通信的十字路口交通灯监控选题一、锅炉车间输煤机组控制系统设计1.输煤机组控制系统示意图图 1输煤机组控制系统示意图表 1输煤机组控制信号说明输入输出文字符号说明文字符号说明SA1-1输煤机组手动控制开关KM1给料器和磁选料器接触器SA1-2输煤机组自动控制开关KM21# 送煤机接触器SB1输煤机组自动开车按钮KM3破碎机接触器SB2输煤机组自动停车按钮KM4提升机接触器SB3输煤机组紧急停车按钮KM52# 送煤机接触器SB4给料器和磁选料器手动按钮KM6回收机接触器SB51#送煤机手动按钮HL7手动运行指示灯SB6破碎机手动按钮HL8紧急停车指示灯SB7提升机手动按钮HL9系统正常运行指示灯SB82#送煤机手动按钮HL10系统故障指示灯SB9回收机手动按钮HA报警电铃KM M1~ M6, YA 运行正常信号HL1~ 6输煤机组单机运行指示FR M1~ M6, YA 过载保护信号输煤机组的拖动系统由 6 台三相异步电动机M1 ~ M6 和一台磁选料器YA 组成。

SA1 为手动 /自动转换开关, SB1 和 SB2 为自动开车 /停车按钮, SB3 为事故紧急停车按钮,SB4~ SB9 为 6 个控制按钮,手动时单机操作使用。

HA 为开车 /停车时讯响器,提示在输煤机组附近的工作人员物煤机准备起动请注意安全。

锅炉控制方案

锅炉控制方案

锅炉控制方案为了确保锅炉运行的安全稳定以及提高能源利用效率,设计一个有效的锅炉控制方案是至关重要的。

本文将详细介绍一个可行的锅炉控制方案,从控制策略、传感器配置到控制系统的搭建,旨在实现锅炉的智能化控制。

1.控制策略在锅炉控制方案中,选择合适的控制策略是基础。

一种常用的控制策略是PID控制,其中P代表比例控制、I代表积分控制、D代表微分控制。

PID控制通过对锅炉的输出进行调整,使得温度、压力等参数能够稳定在设定值附近。

除了PID控制,还可以应用先进的模型预测控制(MPC)策略。

MPC利用数学模型预测未来的系统行为,并通过对控制输入进行优化,使得系统能够更准确地达到设定要求。

MPC相比于传统的PID控制,更加灵活且具有更好的响应速度和控制精度。

2.传感器配置为了实现对锅炉进行精确控制,适当配置传感器是必不可少的。

常用的锅炉传感器包括温度传感器、压力传感器和流量传感器。

温度传感器主要用于监测锅炉内的温度变化,确保锅炉工作在安全温度范围内。

压力传感器用于监测锅炉的压力变化,避免压力过高或过低对设备造成的损坏。

流量传感器则用于监测介质流量,调节锅炉的供给量。

此外,还可以增加其他特殊传感器,如氧气含量传感器、烟气成分传感器等,以全面了解和控制锅炉的工作状态。

3.控制系统搭建构建一个高效的锅炉控制系统需要结合控制算法和可靠的硬件实施。

控制器的选择应根据具体的需求和控制策略来决定,可以使用单片机、PLC(可编程逻辑控制器)或者DCS(分布式控制系统)。

在选择硬件时,要考虑控制系统的稳定性和可靠性。

控制系统应具备良好的抗干扰能力和实时性,以应对各种工况变化。

同时,还需要采用可靠的通信网络和数据存储设备,确保控制系统的数据传输和存储的安全性和稳定性。

4.远程监控与管理随着互联网技术的发展,远程监控和管理系统在锅炉控制中扮演着越来越重要的角色。

通过互联网连接,可以实现对锅炉的实时监控和远程操作。

远程监控和管理系统能够提供更加便捷和高效的运维方式。

锅炉集控系统设计方案

锅炉集控系统设计方案

锅炉集控系统设计方案一、概述整洁的控制室本系统为对整个供暖锅炉进行运行监控的计算机集中控制系统。

系统可对锅炉输煤系统、出渣系统、锅炉管路系统、锅炉燃烧系统进行集中或手动控制,并对锅炉温度、压力、流量等运行参数实时检测,现场数据由PLC、远程采集模块通过串行通讯方式,送至控制室的上位计算机,进行现场设备的实时监控和运行数据的显示、记录、分析。

上位机采用双机热备方式。

二、系统组成1、系统结构框图PLC柜2、锅炉运行控制系统该系统由OMRON 高可靠性、CJ1M1系列PLC作为控制单元,并配置在PLC柜上安装的触摸屏,使操作人员,在计算机停用时,仍可实现控制锅炉的现场设备的控制。

触摸屏作为人机界面,通过面板上安装的触摸屏,操作人员可非常的操作每一台设备,同时可观察设备的运行状态和运行参数,并可对系统的故障进行实时的监测,一旦故障发生,触摸屏上立即显示报警信息,同时进行存储,用户可通过故障查询菜单,查询浏览故障的发生时间、种类等。

PLC的输出均通过中间继电器隔离动作设备的启停,以提高系统的可靠性。

所有的中间继电器均选用ORMON 带LED显示型,操作人员可方便的了解PLC的工作状态,便于运行、检修及调试。

锅炉系统以RS485串行通讯方式,与位于锅炉控制室的上位计算机通讯,触摸屏上的所有操作和显示都可在上位机实现。

3、锅炉PLC控制系统除输煤外的其他锅炉设备(锅炉鼓引风机、管路系统、出渣系统)的控制的运行参数的采集,由锅炉PLC控制柜实现。

锅炉PLC也通过RS485的方式同上位机进行数据的交换。

实现上位计算机对锅炉系统的监控。

4、锅炉鼓引风变频调速系统锅炉的鼓引风机是锅炉运行的重要设备,同时也是锅炉系统的主要用电设备,鼓引风机的运行状态的好坏,直接关系到锅炉运行的供热质量和运行的经济性。

因此,锅炉鼓引风机采用了交流变频调速系统,并在炉前可调节鼓风机转速。

根据锅炉运行的实际情况,和多年来的工程经验,采用了鼓风机由手动电位器/计算机速度给定的开环运行方式,这种方式下,操作人员可根据气温、煤质、供热时间等复杂条件,随时调节鼓风的大小,及调节锅炉的火力的大小。

锅炉控制方案

锅炉控制方案

锅炉控制方案锅炉控制方案引言锅炉是工厂、发电站等各类工程中常见的设备之一,负责产生高温蒸汽或热水供应给其他设备使用。

为了确保锅炉的正常运行和安全性,需要配备一套适当的锅炉控制方案。

本文将介绍一种常见的锅炉控制方案,以保证锅炉的稳定运行。

1. 控制策略锅炉的控制策略应包括主要的控制过程和相应的辅助控制过程。

主要的控制过程包括水位控制、压力控制和温度控制,辅助控制过程包括燃料控制和排烟控制。

1.1 水位控制水位控制是锅炉控制中最重要的一环,主要通过控制给水泵的进水量来实现。

水位过低会导致锅炉运行不稳定,甚至发生爆炸等严重事故;水位过高则会浪费能源,增加锅炉压力。

使用比例控制、微分控制和积分控制的组合可以实现精确的水位控制。

1.2 压力控制锅炉的压力控制要求在一定范围内维持稳定。

压力过低会导致供应蒸汽或热水的能力不足,压力过高则可能导致系统泄漏或损坏。

通常使用PID控制器来控制锅炉的压力,通过控制给水泵的进水量来调节锅炉压力。

1.3 温度控制锅炉的温度控制要求能够稳定控制燃烧过程和蒸汽或热水的温度。

温度过低会影响锅炉的效率,温度过高则可能导致锅炉热损失、燃烧不完全等问题。

常见的温度控制策略包括PID控制和模糊控制等。

1.4 燃料控制燃料控制是锅炉控制中的一个重要环节,要求能够精确控制燃料的供应量。

过少的燃料供应会导致燃烧不完全,过多则会浪费能源。

常见的燃料控制策略包括比例控制和反馈控制等。

1.5 排烟控制排烟控制主要是通过控制锅炉的排烟风扇和燃烧器来调整锅炉排烟量。

排烟量的控制需要同时考虑环境保护和能源利用的因素。

2. 控制系统设计为了实现锅炉的稳定运行和高效控制,需要设计一个合理的控制系统。

一个典型的锅炉控制系统包括传感器、执行器和控制器等组成。

2.1 传感器传感器用于监测锅炉的运行状态和参数,如水位传感器、压力传感器和温度传感器等。

这些传感器将锅炉的实时数据反馈给控制器,以便进行相应的调节。

2.2 执行器执行器用于控制锅炉的不同操作,如给水泵、排烟风扇和燃烧器等。

锅炉控制方案

锅炉控制方案

锅炉控制方案[注意:以下文档仅供参考,具体的锅炉控制方案应根据实际情况进行调整和优化]引言在现代工业生产中,锅炉是不可或缺的热能设备之一。

它们广泛应用于发电、供暖、蒸汽生产等领域,对于保障生产过程和提供能源有着重要的作用。

为了确保锅炉的正常运行,提高燃烧效率和安全性能,一个合理的锅炉控制方案势在必行。

一、锅炉控制方案的目标1. 提高能源利用效率:通过优化燃烧过程和减少能源损失,实现锅炉的高效能源转换。

2. 提高安全性能:确保锅炉运行过程中各个参数处于安全范围内,有效预防事故发生。

3. 降低运行成本:通过合理的控制策略和技术手段,降低能源消耗、减少设备维修和更换成本。

二、控制策略1. 燃烧控制策略燃烧是锅炉运行的核心过程,正确的燃烧控制策略能够提高燃烧效率和安全性能。

常见的燃烧控制策略包括:(1) 氧量控制:通过监测炉膛排烟中的氧含量,调整空气进一步的多少,以保证燃烧反应的充分进行,避免过量的空气导致燃烧不完全。

(2) 烟气温度调节:根据需求调节烟气温度,降低烟气中的过量空气量,提高燃烧效率。

(3) 燃料供给控制:根据需求调整燃料供给量,保证燃料的稳定供应,避免过量或不足的供给导致燃烧不稳定。

2. 水位控制策略水位控制是确保锅炉安全运行的重要控制环节,合理的水位控制策略能够防止锅炉爆炸和水锈等问题的发生。

常见的水位控制策略包括:(1) 开关控制:设置上下限水位开关,在水位达到上限或下限时,自动控制给水泵的启停,以保持水位在安全范围内。

(2) 比例控制:根据锅炉负荷情况,调整给水泵的流量,保持水位在合适的范围内。

3. 压力控制策略锅炉的压力控制对于保证锅炉安全运行、避免压力过高或过低非常重要。

常见的压力控制策略包括:(1) 开关控制:按照设定压力上下限,自动控制给水泵的启停,以保持锅炉的压力在安全范围内。

(2) 比例控制:根据实际需求,调整给水泵的流量,控制锅炉的压力在合适的范围内。

三、控制方案的优化对于不同类型和规模的锅炉,控制方案的优化是必不可少的。

锅炉车间输煤机组控制的设计方案( word 可编辑版)

锅炉车间输煤机组控制的设计方案( word 可编辑版)

锅炉车间输煤机组控制的设计方案1.1锅炉系统概述锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备,它所产生的高压蒸汽,既可作为风机、压缩机、大型泵类的驱动的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。

随着工业生产规模的不断扩大、生产设备的不断革新,作为动力和热源的锅炉,亦向着大容量、高效率发展。

为了确保安全、稳定生产,锅炉设备的控制系统就显得更加重要。

输煤系统是整个系统的第一关。

燃料是工厂安全经济生产,全面完成任务的物质基础,没有了燃料,一切将无从谈起。

燃料费用占成本的75%左右,这就奠定了输煤系统是工厂经营管理的重要组成部分,也是安全生产管理的主要环节。

随着能源供需矛盾的发展变化,输煤系统的地位显得更加重要。

1.2锅炉输煤研究意义所谓锅炉输煤系统,是指从送煤开始,一直到将合格的煤块送到原煤仓的整个工艺过程,它包括以下几个主要环节:给煤生产线、选煤、皮带运输系统、破碎[2]与提升、回收系统以及一些辅助生产环节。

本设计中主要研究的是其中的输煤系统部分,即煤块从给煤机传输到原煤仓的过程。

传统的输煤系统是一种基于继电接触器和人工手动方式的半自动化系统。

由于输煤系统现场环境十分恶劣,不仅极大损害了工人的身体健康,而且由于输煤系统范围大,经常有皮带跑偏、皮带撕裂及落煤管堵塞等等麻烦,大大降低了发电厂的生产效率。

随着发电厂规模的扩大,对煤量的需求大大提高,传统的输煤系统已无法满足发电厂的需要。

随着生产过程的控制规模不断增大,运行参数越来越高,生产设备及其相应的热力设备和系统更加复杂。

输煤系统是热力系统的重要组成部分,是锅炉车间燃料供应的有力保证。

输煤机组工作效率的提高是整个工艺过程的关键因素,而整个输煤过程往往采用远程控制,这就对自动控制系统的设计提出了更高的要求,传统方法不能得到满意的测控效果。

因此,在输煤系统中往往选择比较有优势的PLC(可编程控制器)控制系统,使整个控制过程具有正常运行、事故处理、参数监测、故障报警、装置调控、危险保护等功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锅炉车间输煤机组控制的设计方案1.1锅炉系统概述锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备,它所产生的高压蒸汽,既可作为风机、压缩机、大型泵类的驱动的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。

随着工业生产规模的不断扩大、生产设备的不断革新,作为动力和热源的锅炉,亦向着大容量、高效率发展。

为了确保安全、稳定生产,锅炉设备的控制系统就显得更加重要。

输煤系统是整个系统的第一关。

燃料是工厂安全经济生产,全面完成任务的物质基础,没有了燃料,一切将无从谈起。

燃料费用占成本的75%左右,这就奠定了输煤系统是工厂经营管理的重要组成部分,也是安全生产管理的主要环节。

随着能源供需矛盾的发展变化,输煤系统的地位显得更加重要。

1.2锅炉输煤研究意义所谓锅炉输煤系统,是指从送煤开始,一直到将合格的煤块送到原煤仓的整个工艺过程,它包括以下几个主要环节:给煤生产线、选煤、皮带运输系统、破碎[2]与提升、回收系统以及一些辅助生产环节。

本设计中主要研究的是其中的输煤系统部分,即煤块从给煤机传输到原煤仓的过程。

传统的输煤系统是一种基于继电接触器和人工手动方式的半自动化系统。

由于输煤系统现场环境十分恶劣,不仅极大损害了工人的身体健康,而且由于输煤系统范围大,经常有皮带跑偏、皮带撕裂及落煤管堵塞等等麻烦,大大降低了发电厂的生产效率。

随着发电厂规模的扩大,对煤量的需求大大提高,传统的输煤系统已无法满足发电厂的需要。

随着生产过程的控制规模不断增大,运行参数越来越高,生产设备及其相应的热力设备和系统更加复杂。

输煤系统是热力系统的重要组成部分,是锅炉车间燃料供应的有力保证。

输煤机组工作效率的提高是整个工艺过程的关键因素,而整个输煤过程往往采用远程控制,这就对自动控制系统的设计提出了更高的要求,传统方法不能得到满意的测控效果。

因此,在输煤系统中往往选择比较有优势的PLC(可编程控制器)控制系统,使整个控制过程具有正常运行、事故处理、参数监测、故障报警、装置调控、危险保护等功能。

由于 PLC 控制器优越的控制性能和高度可靠。

通过对 PLC 的应用,对锅炉性,使得其在工业自动化生产领域的应用越来越广泛 [3]的配煤系统进行了设计,对原有的传统手动配煤方式进行了优化和改进。

本课题的 主要目标是改变以往配煤系统的传统手动配煤方式,提高运行人员工作效率,从煤 源上进行筛选比控制,解决锅炉的配煤问题,提高锅炉的燃煤效率和经济效益。

通 过利用 PLC 实现锅炉输煤机组的自动控制,可以提升输煤技术的自动化水平,尽[4]可能的降低煤损耗,提高煤的利用率,从而提高生产效益。

.第二章 系统方案设计2.1 设计内容及目标本项目要求输煤机组主要由6 台三相异步电动机 M1~ M 6 和一台磁选料器 YA 组成,最终实现对锅炉的输煤机组的运行控制,具备开车、停车的自动和手动控制功能,需具备提醒、保护和紧急停车功能。

此外要对供煤机组的运动过程实时监控, 在突发故障或意外情况是给予显示以便操作人员对系统故障能够及时排除,此次设 计基于以上控制目的。

此外在操作台还将有一台触摸屏来监控电控系统运行的各个 过程参数。

输煤机组控制系统示意图如图2-1 所示。

磁选料器输煤方向 煤送至卸煤仓Y A(15kV A)M 4(5k W)输煤方向给料器送煤机 P1提升机送煤机 P2M 1(3k W) M 2(3k W)M 5(75k W)回收机 P2M 6(3k W)煤回收方向图 2-1 输煤机组控制系统示意图锅炉车间输煤机组控制设计是根据工业锅炉供煤工艺 工业生产中的主要任务是:能够对电机进行启停,手 要求进行设计的,其在[5]/自动,紧急停车等基本控制 要求;能够对对电控系统的各个运行环节进行监控;能够对突发故障进行报警显示。

2.2 设计要求针对以上设计目标,为了保证输煤系统的正常、可靠运行,该系统应满足以下 具体要求:(1)供煤时,各设备的启动、停止必须遵循特定的顺序,即对各设备进行联锁控制;(2)各设备启动和停止过程中,要合理设置时间间隔(延时)启动,停车延时统一设定为10s。

启动延时是为保证无煤堆积以发生故障;停车延时是为保证停车时破碎机等为空载状态;(3)运行过程中,某一台设备发生故障时,应立即发出报警并自动停车,其整个输煤设备也立即停车,此外在现场也有控制系统装置运行的按钮;(4)系统运行后要有必要的保护,以防发生危险时事态进一步扩大,例如加入必要过载保护,紧急停车等。

2.3设计方案本控制系统是基于PLC控制的设计,并且输煤系统的故障判断是建立在实时监控的基础上的。

首先它的硬件部分属于电气控制,软件部分是利用对其进行控制,同时利用组态软件建立上位机监测画面,通过与[6]PLC的软件编程PLC的通信对运行系统进行实时监测和控制。

系统总体设计框图如图2-2所示。

手动控制接触器电机P自动控制L磁选料器C控紧急停车过载保护报警电铃上位机监控图2-2系统设计总体框图2.3.1设计信号说明输煤机组的拖动系统由6台三相异步电动机M1~M6和一台磁选料器YA组成。

SA1为手动/自动转换开关,SB1和SB2为自动开车/停车按钮,SB3为事故紧急停车按钮,SB4~S B9为6个控制按钮,手动时单机操作使用。

HA为开车/停车时讯响器,提示在输煤机组附近的工作人员,输煤机准备起动请注意安全。

HL1为手动运行指示,HL2为紧急停车指示,HL3为系统运行状态指示。

为保证输煤机组输煤顺畅,开车采用逆煤流方向启动,停车时按顺煤流方向停车。

输煤机组的控制信号说明见表2-1。

表2-1输煤机组控制信号说明给料器和磁选料器接触器1#送煤机接触器破碎机接触器FR M1~M6,Y A过载保护信号2.3.2输煤机组运行过程1.手动开车/停车功能SA1手柄指向左45时,接点SA1-1接通,通过SB4~S B9控制按钮,对输煤机/停车时都有音响提示,保证组单台设备独立调试与维护使用,任何一台单机开车检修和调试时人身和设备安全。

2.自动开车/停车功能SA1 手柄指向右 45 时,接点 SA1-2 接通,输煤机组自动运行。

(1) 正常开车按下自动开车按钮 SB1 ,音响提示 5s 后回收电动机 M6 起动运行; 10s 后送煤机 P2 电动机 M5 电动机起动运行; 10s 后提升电动机 M4 起动运行; 10s 后破碎电动机 M3 起动运行; 10s 后送煤机 P1 电动机 M2 起动运行; 10s 后给料 器电动机 M1 和磁选料器 YA 起动运行并; 10s 后,点亮 HL3 系统运行状态指示灯, 输煤机组正常运行。

(2) 正常停车按下自动开车按钮 SB2 ,音响提示 5s 后给料器电动机 M1 和磁选料器 YA 停车,同时,熄灭 HL3 系统运行状态指示灯; 10s 后送煤机 P2 电动机 M2 停车; 10s 后破碎电动机 M3 停车; 10s 后提升电动机 M4 停车; 10s 后送煤机 P1 电 动机 M5 电动机停车; 10s 后,回收电动机 M6 停车;至此输煤机组全部正常停车。

(3) 过载保护输煤机组有三相异步电动机 M1~ M 6 和磁选料器 YA 的过载保护装置热继电器,如果电动机、磁选料器在输煤生产中,发生过载故障需立即全线停 车并发出报警指示, HA 电铃断续报警 20s ,到事故处理完毕,继续正常开车,恢复 生产。

(4) 紧急停车输煤机组正常生产过程中,可能会突发各种事件,因此需要设置紧急停车按钮,实现紧急停车防止事故扩大。

紧急停车与正常停车不同,当按下 紧急停车按钮 SB3 时,输煤机组立即全线停车, HA 警报声持续 10s 停止,紧急停车 指示灯 HL2 连续闪亮 10s ,直到事故处理完毕,恢复正常生产。

(5) 系统正常运行指示输煤机组中,拖动电动机 M1~M6 和磁选料器 YA 按照程序全部正常起动运行后, HL3 指示灯点亮。

如果有一台电动机或选料器未能正常 起动运行,则视为故障,输煤机组停车。

2.3.3 程序流程图软件部分即程序的设计,程序设计要根据硬件电气的连接进行编程,来实现设计系统要完成的功能, 首先进行手动 /自动的选择,所以程序的主流程图如图2-3 所示。

I/O 地址的分配和要实现的功能结合PLC 进入运行状态后,NY自动控制图2-3控制程序主流程图当系统以手动方式运行时,是单个设备点动控制,较为简单,这里不再做程序流程图。

当系统以自动方式运行时,PLC运行的程序流程图如图2-4所示。

开始回收电机YM6启动送煤电机Y N提升电机Y NM4启动破碎电机Y NM3启动送煤电机Y NM2启动给料电机NY给料电机Y NN正常输煤N停车YY故障结束图2-4输煤机组程序设计流程图2.3.4上位机监控监控部分是利用组态软件建立监控画面,通过建立通道连接、动画连接和控制策略实现PLC与上位的行通信后的运行动画,对输煤系统的运行状态进行实时监控和故障报警。

[7]第三章下位机设计3.1硬件电路设计3.1.1系统控制主电路图设计按照设计方案,给料器M1、P1送煤机M2、破碎机M3、提升机M4、P2送煤机M5和回收电动机M6由6台三相异步电动机拖动。

磁选料器YA由两相电源提供。

负载M2-M6由接触器KM2-KM6控制,给料器M1和磁选料器YA共同由KM1控制。

由于破碎机M3功率为13KW和2#送煤机M5功率为75KW都比7.5KW大,在实际使用中要采用星—三角降压启动。

其余负载均采用直接启动方式,本设计考虑实验室PLC I/O 口数限制,只做直接启动。

主电路图见图3-1。

送煤机提升破碎机送煤机P2给料器及磁选料器电源回收机P1机图3-1输煤机控制主电路图(1)主回路中交流接触器KM1、KM2、KM3、KM4、KM5、KM6分别控制三相异步电动机M1给料电动机,M2送煤电动机,M3破碎电动机,M4提升电动机,M5送煤电动机,M6回收电动机。

(2)热继电器FR1、FR2、FR3、FR4、FR5、FR6的作用是对电动机M1、M2、M3、M4、M5、M6实现过载保护。

(3)熔断器FU1、FU2、FU3、FU4、FU5、FU6分别实现各负载回路的短路保护。

3.1.2 电器元件的选择设计该控制系统室考虑实验室调试方便,使用了最简的点数,输入点数有: 2 个输入开关分别控制手动/自动控制, 9 个输入按钮分别为SB1 和 SB2 为自动开车 /停车按钮, SB3 为事故紧急停车按钮,SB4 ~SB9 分为 6 个电动机控制按钮。

输出点数有:6个输出接触器KM1 、KM2 、KM3 、KM4 、KM5 、KM6 分别控制三相异步电动机M1 给料电动机, M2 送煤电动机, M3 破碎电动机, M4 提升电动机, 3 个输出指示灯其中 HL1 手动运行指示灯、 HL2 为紧急停车指示灯、 HL3 为系统运行状态指示灯和 1个输出 HA 电铃。

相关文档
最新文档