高考数学答题纸
2017年上海高考数学真题试卷(word解析版)
绝密★启用前2017年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)1、考生注意2、1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.3、2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.4、3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.5、4.用2B 铅笔作答选择题目,用黑色字迹钢笔、水笔或圆珠笔作答非选择题目.一.填空题目(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知集合{1,2,3,4}A ,集合{3,4,5}B ,则A B ∩2.若排列数6654m P ,则m3.不等式11x x 的解集为4.已知球的体积为36 ,则该球主视图的面积等于5.已知复数z 满足30z z,则||z6.设双曲线22219x y b(0)b 的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF ,则2||PF7.如图,以长方体1111ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC的坐标为8.定义在(0,) 上的函数()y f x 的反函数为1()y f x ,若31,0()(),0x x g x f x x为奇函数,则1()2f x 的解为9.已知四个函数:①y x ;②1y x;③3y x ;④12y x .从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10.已知数列{}n a 和{}n b ,其中2n a n ,*n N ,{}n b的项是互不相等的正整数,若对于任意*n N ,{}n b 的第na 项等于{}n a 的第nb 项,则149161234lg()lg()b b b b b b b b11.设1a 、2a R ,且121122sin 2sin(2) ,则12|10| 的最小值等于12.如图,用35个单位正方形拼成一个矩形,点1P、2P 、3P 、4P 以及四个标记为“”的点在正方形的顶点处,设集合1234{,,,}P P P P ,点P ,过P 作直线P l ,使得不在P l 上的“”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()()P P D l D l ,则 中所有这样的P 为二.选择题目(本大题共4题,每题5分,共20分)13.关于x 、y 的二元一次方程组50234x y x y的系数行列式D 为()A.0543 B.1024 C.1523 D.605414.在数列{}n a 中,1(2nn a ,*n N ,则lim n n a ()A.等于12B.等于0C.等于12D.不存在15.已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c ,*n N ,则“存在*k N ,使得100kx 、200kx 、300kx 成等差数列”的一个必要条件是()A.0aB.0b C.0c D.20a b c 16.在平面直角坐标系xOy 中,已知椭圆221:1364x y C 和222:19y C x .P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ的最大值.记{(,)|P Q P 在1C 上,Q 在2C 上,且}OP OQ w,则 中元素个数为()A.2个B.4个C.8个D.无穷个三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,直三棱柱111ABC A B C 的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C 的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18.已知函数221()cos sin 2f x x x,(0,)x .(1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A所对边a ,角B 所对边5b ,若()0f A ,求△ABC 的面积.19.根据预测,某地第n *()n N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n,5n b n ,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.在平面直角坐标系xOy 中,已知椭圆22:14x y ,A 为 的上顶点,P 为 上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P在第一象限,且||OP ,求P的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP ,直线AQ 与 交于另一点C ,且2AQ AC ,4PQ PM ,求直线AQ 的方程.21.设定义在R 上的函数()f x 满足:对于任意的1x 、2x R ,当12x x 时,都有12()()f x f x .(1)若3()1f x ax ,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x .证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年普通高等学校招生全国统一考试上海--数学试卷考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题目,用黑色字迹钢笔、水笔或圆珠笔作答非选择题目.一、填空题目(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合1,2,3,4,3,4,5A B ,则A B ∩.【解析】本题考查集合的运算,交集,属于基础题【答案】3,42.若排列数6P 654m ,则m .【解析】本题考查排列的计算,属于基础题【答案】33.不等式11x x 的解集为.【解析】本题考查分式不等式的解法,属于基础题【答案】,0 4.已知球的体积为36 ,则该球主视图的面积等于.【解析】本题考查球的体积公式和三视图的概念,343633R R ,所以29S R ,属于基础题【答案】95.已知复数z 满足30z z,则z .【解析】本题考查复数的四则运算和复数的模,2303z z z设z a bi ,则22230,a b abi a b,z【答案】6.设双曲线 222109x y b b 的焦点为12F F 、,P为该双曲线上的一点.若15PF ,则2PF.【解析】本题考查双曲线的定义和性质,1226PF PF a (舍),2122611PF PF a PF 【答案】117.如图,以长方体1111ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系.若1DB 的坐标为(4,3,2),则1AC的坐标是.【解析】本题考查空间向量,可得11(400)(03,2)(432)A C AC,,,,,,,属于基础题【答案】(432) ,,8.定义在(0,) 上的函数()y f x 的反函数-1()y f x .若31,0,()(),0x x g x f x x 为奇函数,则-1()=2f x 的解为.【解析】本题考查函数基本性质和互为反函数的两个函数之间的关系,属于中档题10,0,()31()()13x x x x g x g x g x,所以1()13x f x,当2x 时,8()9f x,所以18(29f【答案】9x9.已知四个函数:①y x ;②1y x;③3y x ;④12y x .从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为.【解析】本题考查事件的概率,幂函数的图像画法和特征,属于基础题总的情况有:42C 6种,符合题意的就两种:①和③,①和④【答案】1310.已知数列na 和 nb ,其中2,N na n n , nb 的项是互不相等的正整数.若对于任意N n n b ,中的第n a 项等于 n a 中的第n b 项,则149161234lg lg b b b b b b b b.【解析】本题考查数列概念的理解,对数的运算,属于中档题由题意可得:222222114293164(),,,n n a b n n b a b b b b b b b b b b ,所以214916123412341234lg lg =2lg lg b b b b b b b b b b b b b b b b 【答案】211.设12R ,,且121122sin 2sin(2) ,则1210 的最小值等于.【解析】考查三角函数的性质和值域,121111,1,12sin 32sin(2)3,,要使121122sin 2sin(2) ,则111122221=122sin 2,,1=12sin(2)4k k k Z k1212min min31010(2)44k k,当122=11k k 时成立【答案】412.如图,用35个单位正方形拼成一个矩形,点1234,,,P P P P 以及四个标记为“▲”的点在正方形的顶点处.设集合1234=,,,P P P P ,点P .过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()=()P P D l D l ,则 中所有这样的P 为.【解析】本题考查有向距离,以左下角的顶点为原点建立直角坐标系。
2023新高考数学答题卡样式
2023新高考数学答题卡样式随着教育改革的不断深入,2023年起的新高考改革已经引起了广泛关注。
在这次改革中,数学科目的答题方式也发生了巨大的变化。
其中,数学答题卡的样式的改变更是一大亮点。
下面我们就2023新高考数学答题卡样式做一个详细的介绍。
一、样式整体设计2023新高考数学答题卡的设计师为了使考生更方便、更快捷地完成答题,对答题卡的整体设计做出了许多细致的考量。
1.1 纸张材质新的数学答题卡采用了更厚、更光滑的纸张材质,使得考生在作答时更加顺手、更加舒适。
1.2 尺寸大小答题卡的尺寸更大,将答题的空间进一步扩大,考生在填写数学解答过程中可以更加清晰明了。
1.3 边框设计在答题卡的边框部分,增加了一些简单易懂的提示和规范,让考生在填写答案时更加便捷。
二、题目呈现方式2023新高考数学答题卡的题目呈现方式也经过了重新设计,增强了答题的清晰度和条理性。
2.1 题目编号每道题目都有独立的编号,方便考生快速定位、准确作答。
2.2 题目排版答题卡的题目排版更加清晰,字体更加醒目,部分重点难点题目采用了加粗、加大的形式,帮助考生更快速地找到关键信息。
2.3 空白填充在每道题目之间留有足够的空白填充,方便考生进行草稿和核对答案。
三、填涂方式填涂方式是数学答题卡中重要的一部分,影响着答题的准确性和效率。
3.1 填涂位置在答题卡的填涂位置进行了调整,更加符合人体工程学,填涂更加容易准确。
3.2 填涂规范答题卡填涂规范更加明确,注重细节的填涂要求将有助于考生准确填写答案。
3.3 涂改方式答题卡对于填涂错误后的涂改方式也有了新的规定,使得考生可以更容易地修改填涂错误而不至于影响答题结果。
四、其他细节处理除了以上重点设计,2023新高考数学答题卡还有许多其他细节处理,都是为了让考生在答题过程中更加顺利、更加舒适。
4.1 防伪设计为了保障答题卡的安全性,答题卡上加入了一些防伪设计,防止出现作弊等情况。
4.2 考生信息考生信息的填写方式也得到了一定的调整,更加简单明了,避免填写错误。
全国普通高等学校招生统一考试2024学年高三5月领军考试数学试题
全国普通高等学校招生统一考试2024学年高三5月领军考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数2()ln(1)f xx x-=+-,则函数(1)=-y f x的图象大致为()A.B.C.D.2.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种3.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.1112B.6 C.112D.2234.过双曲线()2222:10,0x y C a b a b-=>>左焦点F 的直线l 交C 的左支于,A B 两点,直线AO (O 是坐标原点)交C 的右支于点D ,若DF AB ⊥,且BF DF =,则C 的离心率是( ) AB .2 CD5.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( )A .4B .8C .16D .2 6.已知数列1a ,21a a ,32a a ,…,1n n a a -是首项为8,公比为12得等比数列,则3a 等于( ) A .64 B .32 C .2 D .47.设集合A ={y |y =2x ﹣1,x ∈R },B ={x |﹣2≤x ≤3,x ∈Z },则A ∩B =( )A .(﹣1,3]B .[﹣1,3]C .{0,1,2,3}D .{﹣1,0,1,2,3}8.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB = A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7 9.在声学中,声强级L (单位:dB )由公式1210110I L g -⎛⎫= ⎪⎝⎭给出,其中I 为声强(单位:2W/m ).160dB L =,275dB L =,那么12I I =( ) A .4510 B .4510- C .32- D .3210- 10.函数()sin()f x x π=-223的图象为C ,以下结论中正确的是( ) ①图象C 关于直线512x π=对称; ②图象C 关于点(,0)3π-对称;③由y =2sin 2x 的图象向右平移3π个单位长度可以得到图象C . A .①B .①②C .②③D .①②③ 11.已知下列命题: ①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题;③“2019a >”是“2020a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题.其中真命题的序号为( )A .③④B .①②C .①③D .②④12.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A 33263cmB 36463cmC 33223cmD 36423cm 二、填空题:本题共4小题,每小题5分,共20分。
2022年高考数学试卷(浙江)(解析卷)
2022年普通高等学校招生全国统一考试(浙江卷)数学姓名________准考证号_________________本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至3页;非选择题部分3至4页.满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.参考公式:如果事件A ,B 互斥,则柱体的体积公式()()()P A B P A P B +=+V Sh=如果事件A ,B 相互独立,则其中S 表示柱体的底面积,h 表示柱体的高()()()P AB P A P B =×锥体的体积公式若事件A 在一次试验中发生的概率是p ,则n 次 13V Sh =独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积,h 表示锥体的高()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=L球的表面积公式台体的体积公式24S R p =()1213V S S h =++ 球的体积公式其中12,S S 表示台体的上、下底面积, 343V R p =h 表示台体的高其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,2},{2,4,6}A B ==,则A B È=( )A. {2} B. {1,2}C. {2,4,6}D. {1,2,4,6}【答案】D 【解析】【分析】利用并集的定义可得正确的选项.【详解】{}1,2,4,6A B =U ,故选:D.2. 已知,,3i (i)i a b a b Î+=+R (i 为虚数单位),则( )A. 1,3a b ==- B. 1,3a b =-= C. 1,3a b =-=- D. 1,3a b ==【答案】B 【解析】【分析】利用复数相等的条件可求,a b .【详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.3. 若实数x ,y 满足约束条件20,270,20,x x y x y -³ìï+-£íï--£î则34z x y =+的最大值是( )A. 20B. 18C. 13D. 6【答案】B 【解析】【分析】在平面直角坐标系中画出可行域,平移动直线34z x y =+后可求最大值.【详解】不等式组对应的可行域如图所示:当动直线340x y z +-=过A 时z 有最大值.由2270x x y =ìí+-=î可得23x y =ìí=î,故()2,3A ,故max 324318z =´+´=,故选:B.4. 设x ÎR ,则“sin 1x =”是“cos 0x =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为22sin cos 1x x +=可得:当sin 1x =时,cos 0x =,充分性成立;当cos 0x =时,sin 1x =±,必要性不成立;所以当x ÎR ,sin 1x =是cos 0x =的充分不必要条件.故选:A.5. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A. 22πB. 8πC.22π3D.16π3【答案】C 【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =´´+´´+´´´+´+=3cm .故选:C .6. 为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x æö=+ç÷èø图象上所有的点( )A. 向左平移π5个单位长度 B. 向右平移π5个单位长度C. 向左平移π15个单位长度 D. 向右平移π15个单位长度【答案】D 【解析】【分析】根据三角函数图象的变换法则即可求出.【详解】因为ππ2sin 32sin 3155y x x éùæö==-+ç÷êúèøëû,所以把函数π2sin 35y x æö=+ç÷èø图象上的所有点向右平移π15个单位长度即可得到函数2sin 3y x =的图象.故选:D.7. 已知825,log 3ab ==,则34a b -=( )A. 25 B. 5C.259D.53【答案】C 【解析】【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为25a=,821log 3log 33b ==,即323b=,所以()()22323232452544392a aa b b b -====.故选:C.8. 如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为a ,EF 与平面ABC 所成的角为b ,二面角F BC A --的平面角为g ,则( )A.a b g££ B.b a g ££ C. b g a££ D.a g b££【答案】A 【解析】【分析】先用几何法表示出a b g ,,,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP AC ^于P ,过P 作PM BC ^于M ,连接PE ,则EFP a =Ð,FEP b =Ð,FMP g =,tan 1PE PE FP AB a ==£,tan 1FP AB PE PE b ==³,tan tan FP FPPM PEg b =³=,所以a b g££,故选:A .9. 已知,a b ÎR ,若对任意,|||4||25|0x a x b x x Î-+---³R ,则( )A 1,3a b £³ B. 1,3a b ££ C. 1,3a b ³³ D. 1,3a b ³£【答案】D.【解析】【分析】将问题转换为|||25||4|a x b x x -³---,再结合画图求解.【详解】由题意有:对任意的x ÎR ,有|||25||4|a x b x x -³---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ì-£ïïï=---=-<<íï-³ïïî,即()f x 的图象恒在()g x 的上方(可重合),如下图所示:由图可知,3a ³,13b ££,或13a £<,3143b a££-£,故选:D .10. 已知数列{}n a 满足()21111,3n n n a a a a n *+==-ÎN ,则( )A. 100521002a << B.100510032a << C. 100731002a <<D.100710042a <<【答案】B 【解析】【分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +æö-=<=+ç÷-+èø-+,累加可求出()111111113323n n a n æö-<-++++ç÷èøL ,再次放缩可得出10051002a >.【详解】∵11a =,易得()220,13a =Î,依次类推可得()0,1n a Î由题意,1113n n n a a a +æö=-ç÷èø,即()1131133n n n n n a a a a a +==+--,∴1111133n n n a a a +-=>-,即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->³,累加可得()11113n n a ->-,即11(2),(2)3n n n a >+³,∴()3,22n a n n <³+,即100134a <,100100100334a <<,又11111111,(2)333132n n n n a a a n n +æö-=<=+³ç÷-+èø-+,∴211111132a a æö-=+ç÷èø,321111133a a æö-<+ç÷èø,431111134a a æö-<+ç÷èø,…,111111,(3)3n n n a a n -æö-<+³ç÷èø,累加可得()11111111,(3)3323n n n a n æö-<-++++³ç÷èøL ,∴10011111111133334943932399326a æöæö-<++++<+´+´<ç÷ç÷èøèøL ,即100140a <,∴100140a >,即10051002a >;综上:100510032a <<.故选:B .【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11. 我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =,其中a ,b ,c 是三角形的三边,S是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.【解析】【分析】根据题中所给的公式代值解出.【详解】因为S =,所以S ==12. 已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.【答案】 ①. 8②. 2-【解析】【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令0x =求出0a ,再令1x =即可得出答案.【详解】含2x 项为:()()3232222244C 12C 14128x x x x x x ×××-+×××-=-+=,故28a =;令0x =,即02a =,令1x =,即0123450a a a a a a =+++++,∴123452a a a a a ++++=-,的故答案为:8;2-.13.若3sin sin 2pa b a b -=+=,则sin a =__________,cos 2b =_________.【答案】 ①.②.45【解析】【分析】先通过诱导公式变形,得到a 的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出a ,接下来再求b .【详解】2pa b +=,∴sin cos b a =,即3sin cos a a -=a a ö=÷÷øsin q =,cos q =,()a q -=,∴22k k Z pa q p -=+Î,,即22k pa q p =++,∴sin sin 2cos 2k pa q p q æö=++==ç÷èø,则224cos 22cos12sin 15b b a =-=-=.;45.14. 已知函数()22,1,11,1,x x f x x x x ì-+£ï=í+->ïî则12f f æöæö=ç÷ç÷èøèø________;若当[,]xa b Î时,1()3fx ££,则b a -的最大值是_________.【答案】 ①.3728②. 3+【解析】【分析】结合分段函数的解析式求函数值,由条件求出a 的最小值,b 的最大值即可.【详解】由已知2117()2224f æö=-+=ç÷èø,77437(144728f =+-=,所以137(228f f éù=êúëû,当1x £时,由1()3f x ££可得2123x £-+£,所以11x -££,当1x >时,由1()3f x ££可得1113x x£+-£,所以12x <£+1()3f x ££等价于12x -££+,所以[,][1,2a b Í-,所以b a -的最大值为3故答案为:3728,3+.15. 现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为x ,则(2)P x ==__________,()E x =_________.【答案】 ①.1635, ②. 127##517【解析】【分析】利用古典概型概率公式求(2)P x =,由条件求x 分布列,再由期望公式求其期望.【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P x +===,由已知可得x 的取值有1,2,3,4,2637C 15(1)C 35P x ===,16(2)35P x ==,,()()233377C 31134C 35C 35P P x x ======,所以15163112()1234353535357E x =´+´+´+´=,故答案为:1635,127.16. 已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【解析】【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4b a的直线:()4b AB y x c a =+,渐近线2:bl y x a =,联立()4b y x c ab y xa ì=+ïïíï=ïî,得,33c bc B a æöç÷èø,由||3||FB FA =,得5,,99c bc A a æö-ç÷èø而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e =.17. 设点P 在单位圆的内接正八边形128A A A L 的边12A A 上,则222182PA PA PA +++uu u r uu L ur uu u r 的取值范围是_______.【答案】[12+【解析】【分析】根据正八边形的结构特征,分别以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设(,)P x y ,再根据平面向量模的坐标计算公式即可得到()2222212888PA PA PA x y +++=++uuu r uuu r uuu r L ,然后利用cos 22.5||1OP ££o 即可解出.【详解】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y轴建立平面直角坐标系,如图所示:则1345726(0,1),,(1,0),,(0,1),,(1,0)A A A A A A A æ--ççè,8A æççè,设(,)P x y ,于是()2222212888PA PA PA x y +++=++uuu r uuu r uuu r L ,因为cos 22.5||1OP ££o,所以221cos 4512x y +£+£o ,故222128PA PA PA +++uuu r uuu r uuu r L 的取值范围是[12+.故答案为:[12+.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18. 在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 的面积.【答案】(1; (2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【小问1详解】由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin A C ==【小问2详解】因为4a =,由余弦定理,得2222221612111355cos 22225a a a a b c C ab a a +--+-====,即26550a a +-=,解得5a =,而4sin 5C =,11b =,所以ABC V 的面积114sin 51122225S ab C ==´´´=.19. 如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE Ð=Ð=°,二面角F DC B --的平面角为60°.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ^;(2)求直线BM 与平面ADE 所成角的正弦值.【答案】(1)证明见解析; (2.【解析】【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC BC =,再根据二面角的定义可知,60BCF Ð=o ,由此可知,FN BC ^,FN CD ^,从而可证得FN ^平面ABCD ,即得FN AD ^;(2)由(1)可知FN ^平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,求出平面ADE 的一个法向量,以及BM uuuu r,即可利用线面角的向量公式解出.【小问1详解】过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE Ð=Ð=°,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==Ð=Ð=Ð=Ð=°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD V 和Rt DHA V,EG DH ==∵,DC CF DC CB ^^,且CF CB C Ç=,∴DC ^平面,BCF BCF Ð是二面角F DC B --的平面角,则60BCF Ð=o ,∴BCF △是正三角形,由DC Ì平面ABCD ,得平面ABCD ^平面BCF ,∵N 是BC 的中点,\FN BC ^,又DC ^平面BCF ,FN Ì平面BCF ,可得FN CD ^,而BC CD C Ç=,∴FN ^平面ABCD ,而AD Ì平面ABCD FN AD \^.【小问2详解】因为FN ^平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,设(3,(1,0,3)A B D E,则32M æöç÷ç÷èø,33,,(2,(2BM AD DE æö\==--=-ç÷ç÷èøuuuu r uuu ruuu r 设平面ADE 的法向量为,)n y z r由00n AD n DE ì×=í×=îuuu v r uuu v r,得20230x x z ì--=ïí-++=ïî,取n =-r,设直线BM与平面ADE 所成角为q∴||sin cos ,|||n BM n BM n BM q ×=áñ===×uuuu r r uuuu r r uuuu r r20. 已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *ÎN .(1)若423260S a a -+=,求n S ;(2)若对于每个n *ÎN ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 取值范围.【答案】(1)235(N )2n n nS n *-=Î(2)12d <£【解析】【分析】(1)利用等差数列通项公式及前n 项和公式化简条件,求出d ,再求n S ;(2)由等比数列定义列方程,结合一元二次方程有解的条件求d 的范围.【小问1详解】因为42312601S a a a -+==-,,所以()()46211260d d d -+--+-++=,所以230d d -=,又1d >,所以3d =,所以34n a n =-,所以()213522n na a n n n S +-==,【小问2详解】因为n n a c +,14n n a c ++,215n n a c ++成等比数列,所以()()()212415n n n n n n a c a c a c +++=++,的()()()2141115n n n nd c nd d c nd d c -+=-+-+-+++,22(1488)0n n c d nd c d +-++=,由已知方程22(1488)0n n c d nd c d +-++=的判别式大于等于0,所以()22148840d nd d D =-+-³,所以()()168812880d nd d nd -+-+³对于任意的n *ÎN 恒成立,所以()()212320n d n d ----³éùéùëûëû对于任意的n *ÎN 恒成立,当1n =时,()()()()21232120n d n d d d ----=++³éùéùëûëû,当2n =时,由()()2214320d d d d ----³,可得2£d 当3n ³时,()()21232(3)(25)0n d n d n n ---->--³éùéùëûëû,又1d >所以12d <£21. 如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q æöç÷èø在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.【答案】(1(2.【解析】【分析】(1)设,sin )Q q q 是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2A B y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可【小问1详解】设,sin )Q q q 是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ q q q q q æö=+-=--=-+£ø+ç÷è,当且仅当1sin 11q =-时取等号,故||PQ【小问2详解】设直线1:2A B y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx æö++-=ç÷èø,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ì+=-ï+ïïíï=-æöï+ç÷ïèøî,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1x CD k x =--+-==当且仅当316k =时取等号,故CD的最小值为.【点睛】本题主要考查最值计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.22. 设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828=L 是自然对数的底数)【答案】(1)()f x 的减区间为e 02æöç÷èø,,增区间为e ,2æö+¥ç÷èø. (2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.【小问1详解】()22e 12e 22xf x x x x -¢=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02æöç÷èø,,()f x 的增区间为e ,2æö+¥ç÷èø.的的【小问2详解】(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a ¢-=-,故方程()()()f x b f x x a ¢-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x æö----+=ç÷èø,设()()21e e ln 22g x x a x b x x x æö=----+ç÷èø,则()()22321e 1e 1e 22g x x a x x x x x xæö¢=-+-+--+ç÷èø()()31e x x a x=---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +¥上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b æö----+<ç÷èø且()21e e ln 022a a a b a a a æö----+>ç÷èø,整理得到:12e a b <+且()eln 2b a f a a>+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a aæöæö---<+-+-+=--ç÷ç÷èøèø,设()3e ln 22u a a a =--,则()2e-202au a a ¢=<,故()u a 为()e,+¥上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a æö<-<-ç÷èø.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +¥上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b æö----+>ç÷èø且()21e e ln 022a a a b a a a æö----+<ç÷èø,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =Î,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2e a a t t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea a t t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --æöæö+-+-+<ç÷ç÷èøèø,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02m m t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-´-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--´<-+,第21页 | 共22页 即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k j +=>-,则()()2112ln 01k k k k k j æö¢=-->ç÷èø-,设()12ln u k k k k =--,则()2122210u k k k k k¢=+->-=即()0k j ¢>,故()k j 在()1,+¥上为增函数,故()()k m j j >,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m w ---+=+<<+,则()()()()()()()2232322132049721330721721m m m m m m m m m m m w ---+-+¢=>>++,所以()m w 在()0,1为增函数,故()()10m w w <=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.第22页| 共22页。
2021年浙江省高考数学试题及答案
绝密★启用前2021年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+如果事件A ,B 相互独立,那么()()()P AB P A P B =如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=台体的体积公式121()3V S S h=+其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh=其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh=其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径一、选择题1.设集合{}1A x x =≥,{}12B x x =-<<,则A B = ()A.{}1x x >- B.{}1x x ≥ C.{}11x x -<< D.{}12x x ≤<【答案】D 【解析】【分析】由题意结合交集的定义可得结果.【详解】由交集的定义结合题意可得:{}|12A B x x =≤< .故选:D.2.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =()A.1-B.1C.3- D.3【答案】C 【解析】【分析】首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数a 的值.【详解】()213ai i i ai i a a i i +=-=-+=++=,利用复数相等的充分必要条件可得:3,3a a -=∴=-.故选:C.3.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B 【解析】【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====- ,当AB OC ⊥时,a b - 与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b = 时,0a b -= ,∴()00a b c c -⋅=⋅=r r r r r ,∴成立,∴是a b =的必要条件,综上,“”是“”的必要不充分条件故选:B.4.某几何体的三视图如图所示,则该几何体的体积是()A.32B.3C.322D.32【答案】A 【解析】【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,2,下底为221,故梯形的高为12122-=,故11111232221222ABCD A B C D V -=⨯+⨯⨯=,故选:A.5.若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y =-的最小值是()A.2-B.32-C.12-D.110【答案】B 【解析】【分析】画出满足条件的可行域,目标函数化为22y x z =-,求出过可行域点,且斜率为2的直线在y 轴上截距的最大值即可.【详解】画出满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩的可行域,如下图所示:目标函数12z x y =-化为22y x z =-,由12310x x y =-⎧⎨+-=⎩,解得11x y =-⎧⎨=⎩,设(1,1)A -,当直线22y x z =-过A 点时,12z x y =-取得最小值为32-.故选:B.6.如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC.直线1A D 与直线1D B 相交,直线//MN 平面ABCDD.直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A 【解析】【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【详解】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项C 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.7.已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是()A.1()()4y f x g x =+- B.1()()4y f x g x =--C.()()y f x g x = D.()()g x y f x =【答案】D 【解析】【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,210221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C.故选:D.8.已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是()A.0B.1C.2D.3【答案】C 【解析】【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值.【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 424242αββγγα=<=>=>,故三式中大于12的个数的最大值为2,故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<,由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 424242αββγγα=<=>=>,故三式中大于12的个数的最大值为2,故选:C.【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向.9.已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦,对其进行整理变形:()()()22222222as at ast b as at ast b as b +-++++=+,()()222222(2)0as at b ast as b++--+=,()2222222240asat b at a s t ++-=,222242220a s t a t abt -++=,所以22220as at b -++=或0t =,其中2212s t b ba a-=为双曲线,0t =为直线.故选:C.【点睛】关键点点睛:本题考查轨迹方程,关键之处在于由题意对所得的等式进行恒等变形,提现了核心素养中的逻辑推理素养和数学运算素养,属于中等题.10.已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A.100321S << B.10034S << C.100942S <<D.100952S <<【答案】A 【解析】【分析】显然可知,10012S >,利用倒数法得到21111124n n a a +⎛⎫=+=-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=局部放缩可得113n na n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【详解】因为)111,N n a a n *+==∈,所以0n a >,10012S >.由211111124n n n a a a ++⎛⎫==+-⎪⎪⎭2111122n a +⎛⎫∴<⇒⎪⎪⎭12<11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=<⎪ ⎪⎝⎭⎝⎭,即100321S <<.故选:A .24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.二、填空题11.我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为1S ,小正方形的面积为2S ,则11S S =___________.【答案】25【解析】【分析】分别求得大正方形的面积和小正方形的面积,然后计算其比值即可.【详解】由题意可得,大正方形的边长为:5a ==,则其面积为:21525S ==,小正方形的面积:212543412S ⎛⎫=-⨯⨯⨯=⎪⎝⎭,从而2125251S S ==.故答案为:25.12.已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f⎡⎤=⎣⎦,则a =___________.【答案】2【解析】【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【详解】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2.13.已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.【答案】(1).5;(2).10.【解析】【分析】根据二项展开式定理,分别求出43,(1(4))x x -+的展开式,即可得出结论.【详解】332(1)331x x x x -=-+-,4432(1)4641x x x x x +=++++,所以12145,363a a =+==-+=,34347,110a a =+==-+=,所以23410a a a ++=.故答案为:5,10.14.在ABC 中,60,2B AB ∠=︒=,M 是BC 的中点,AM =AC =___________,cos MAC ∠=___________.【答案】(1).(2).13【解析】【分析】由题意结合余弦定理可得=8BC ,进而可得AC ,再由余弦定理可得cos MAC ∠.【详解】由题意作出图形,如图,在ABM 中,由余弦定理得2222cos AM AB BM BM BA B =+-⋅⋅,即21124222BM BM =+-⨯⨯,解得=4BM (负值舍去),所以=2=2=8BC BM CM ,在ABC 中,由余弦定理得22212cos 464228522AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以13AC =在AMC 中,由余弦定理得222521216239cos 213223213AC AM MC MAC AM AC +-∠==⋅⨯⨯.故答案为:213;3913.15.袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.【答案】(1).1(2).89【解析】【分析】根据古典概型的概率公式即可列式求得,m n 的值,再根据随机变量ξ的分布列即可求出()E ξ.【详解】2244224461(2)366m n m n m n C P C C C ξ++++++====⇒=,所以49m n ++=,()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=,所以2n =,则1m n -=.由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯==========155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为:1;89.16.已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(,0)F c (0)c >,若过1F 的直线和圆22212x c y c ⎛⎫-+=⎪⎝⎭相切,与椭圆在第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是___________,椭圆的离心率是___________.【答案】(1).(2).【解析】【分析】不妨假设2c =,根据图形可知,122sin 3PF F ∠=,再根据同角三角函数基本关系即可求出12tan k PF F =∠=;再根据椭圆的定义求出a ,即可求得离心率.【详解】如图所示:不妨假设2c =,设切点为B ,12112sin sin 3AB PF F BF A F A∠=∠==,12tan PF F ∠==所以255k =,由21212,24PF k F F c F F ===,所以2855PF =,21121=sin 5PF PF PF F ⨯=∠,于是122PF a PF +==,即a =,所以5c e a ===.故答案为:255;55.17.已知平面向量,,,(0)a b c c ≠ 满足()1,2,0,0a b a b a b c ==⋅=-⋅= .记向量d 在,a b方向上的投影分别为x ,y ,d a - 在c方向上的投影为z ,则222x y z ++的最小值为___________.【答案】25【解析】【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得22x y +=,再结合柯西不等式即可得解.【详解】由题意,设(1,0),(02),(,)a b c m n === ,,则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b方向上的投影分别为x ,y ,所以(),d x y = ,所以d a - 在c 方向上的投影()||d a c z c -+-⋅===,即22x y +=,所以(()()222222222211221210105x y z x y z x y ⎡⎤++=++++≥+=⎢⎥⎣⎦ ,当且仅当2122x y x y ⎧==⎪⎨⎪+=⎩ 即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【点睛】关键点点睛:解决本题的关键是由平面向量的知识转化出,,x y z 之间的等量关系,再结合柯西不等式变形即可求得最小值.三、解答题18.设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)π;(2)12+.【解析】【分析】(1)由题意结合三角恒等变换可得1sin 2y x =-,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得sin 242y x π⎛⎫=-+ ⎪⎝⎭,再由三角函数的图象与性质即可得解.【详解】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+⎪⎝⎭,则2223332sin 1cos 21sin 22442y fx x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫ ⎪⎭⎦⎝,所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+⋅=+ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222sin sin cos cos22x x x x x x ⎛⎫=⋅+=+ ⎪ ⎪⎝⎭1cos 2222sin 22222242x x x x x π-⎛⎫=+=-+=-+⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值212+.19.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===,M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.【答案】(1)证明见解析;(2)156.【解析】【分析】(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN和平面PDM 的一个法向量,即可根据线面角的向量公式求出.【详解】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得DM =,所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD,因为AM =,所以PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(2,0),(0,0,A P D,(0,0,0),1,0)M C -又N 为PC中点,所以31335,,,2222N AN ⎛⎛-=- ⎝⎭⎝⎭.由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin 6||AN n AN n θ⋅===‖.【点睛】本题第一问主要考查线面垂直的相互转化,要证明AB PM ⊥,可以考虑DC PM ⊥,题中与DC 有垂直关系的直线较多,易证DC ⊥平面PDM ,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出.20.已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33(4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解.【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-,当2n ≥时,由1439n n S S +=-①,得1439n n S S -=-②,①-②得143n na a +=122730,0,164n n n a a a a +=-≠∴≠∴=,又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933(3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-,所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭ ,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n n T n +=-⋅,由n n T b λ≤得1334((4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤;4n >时,312344n n n λ≥-=----,得3λ≥-;所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.21.如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RNPN QN =⋅,求直线l 在x 轴上截距的范围.【答案】(1)24y x =;(2)()(),74373,11,⎡-∞---++∞⎣ .【解析】【分析】(1)求出p 的值后可求抛物线的方程.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,联立直线AB 的方程和抛物线的方程后可得12124,4y y y y t =-+=,求出直线,MA MB 的方程,联立各直线方程可求出,,P Q R y y y ,根据题设条件可得()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,从而可求n 的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,所以直线:2y l x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故21111+1+1+444R P Q y ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n ⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦,整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭,()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+≤<或1n >.【点睛】方法点睛:直线与抛物线中的位置关系中的最值问题,往往需要根据问题的特征合理假设直线方程的形式,从而便于代数量的计算,对于构建出的函数关系式,注意利用换元法等把复杂函数的范围问题转化为常见函数的范围问题.22.设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点12,x x ,满足2212ln 2b b e x x e b >+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)【答案】(1)0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln a b a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭;(2)(21,e ⎤⎦;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a 的取值范围;(3)结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【详解】(1)2(),()ln x x f x b f a x e a x a b '==+--,①若0b ≤,则()ln 0x f x a a b '=-≥,所以()f x 在R 上单调递增;②若0b >,当,log ln a b x a ⎛⎫∈-∞ ⎪⎝⎭时,()()'0,f x f x <单调递减,当log ,ln a b x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0,f x f x >单调递增.综上可得,0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln a b a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭.(2)()f x 有2个不同零点20x a bx e ⇔-+=有2个不同解ln 20x a e bx e ⇔-+=有2个不同的解,令ln t x a =,则220,0ln ln t tb b e e e e t a a t t +-+=⇒=>,记()22222(1)(),()t t t t e t e e e e e t e g t g t t t t '⋅-++--===,记2()(1),()(1)10t t t t h t e t e h t e t e e t '=--=-+⋅=⋅>,又(2)0h =,所以(0,2)t ∈时,()0,(2,)h t t <∈+∞时,()0h t >,则()g t 在(0,2)单调递减,(2,)+∞单调递增,22(2),ln ln b b g e a a e ∴>=∴<,22222,ln ,21b b e a a e e>∴>∴≤⇒<≤ .即实数a 的取值范围是(21,e ⎤⎦.(3)2,()x a e f x e bx e ==-+有2个不同零点,则2x e e bx +=,故函数的零点一定为正数.由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ++==>,注意到函数2x e e y x+=在区间()0,2上单调递减,在区间()2,+∞上单调递增,故122x x <<,又由5245e e e +<知25x >,122211122x e e e e b x x x b+=<⇒<,要证2212ln 2b b e x x e b >+,只需22ln e x b b>+,222222x x e e e b x x +=<且关于b 的函数()2ln e g b b b=+在4b e >上单调递增,所以只需证()22222222ln 52x x e x e x x x e>+>,只需证2222222ln ln 02x x x e x e e x e -->,只需证2ln ln 202x e x x e-->,242e < ,只需证4()ln ln 2x x h x x e =--在5x >时为正,由于()11()44410x x x h x xe e e x x x '---+-+-==>,故函数()h x 单调递增,又54520(5)ln 5l 20n 2ln 02h e e =--=->,故4()ln ln 2x x h x x e =--在5x >时为正,从而题中的不等式得证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.。
全国高考数学试卷答题纸
【注意事项】1. 本试卷分为选择题和非选择题两部分,满分150分。
2. 本试卷共分为三页,请将答案填写在相应的答题区域。
3. 答题前,请将答案条形码粘贴在答题卡上。
4. 答题时,请使用黑色签字笔,字迹工整,严禁使用涂改液。
5. 选择题每题只有一个正确答案,非选择题答案必须写在答题卡上对应的答题区域。
6. 本试卷考试时间为120分钟。
【选择题部分(共50分)】一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^3 - 3x + 2,则f'(1)的值为()A. 0B. 1C. -1D. 22. 若复数z满足|z - 1| = |z + 1|,则复数z的实部为()A. 0B. 1C. -1D. 23. 已知等差数列{an}的前三项分别为1,2,3,则第10项a10的值为()A. 27B. 28C. 29D. 304. 下列函数中,定义域为实数集的有()A. f(x) = √(x - 1)B. f(x) = |x| + 1C. f(x) = x^2 + 1D. f(x) = 1/x5. 已知函数f(x) = ax^2 + bx + c在x = 1时取得极小值,则a、b、c之间的关系为()A. a > 0,b = 0,c > 0B. a < 0,b = 0,c < 0C. a > 0,b ≠ 0,c ≠ 0D. a < 0,b ≠ 0,c ≠ 0三角形ABC是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形7. 下列不等式中,恒成立的有()A. x^2 + y^2 ≥ 2xyB. x^2 + y^2 ≤ 2xyC. x^2 - y^2 ≥ 0D. x^2 - y^2 ≤ 08. 下列各式中,表示圆的方程的有()A. x^2 + y^2 = 1B. x^2 + y^2 = 4C. x^2 + y^2 = 0D. x^2 + y^2 = 99. 若复数z满足|z - 1| = |z + 1|,则复数z在复平面上的轨迹为()A. 线段B. 圆C. 双曲线D. 抛物线10. 下列函数中,单调递减的有()A. f(x) = 2^xB. f(x) = x^2C. f(x) = 1/xD. f(x) = log2(x)【非选择题部分(共100分)】二、填空题(本大题共10小题,每小题5分,共50分。
2023年高考数学上海卷+答案
2023年上海高考数学卷考生注意:1.本试卷共5页,21道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面消楚地填写姓名、准考证号,并将核对后的条形码炶在指定位置上,在答题纸反面清超地填写姓名.一、填空题(本大题共有12题,满分54分,第1∼6题每题4分,第7∼12题每题5分)考生应在答题纸的相应位置填写结果.1.不等式|x−2|<1的解集为___________________________;2.已知a⃗=(−2,3),b⃗⃗=(1,2),求a⃗⋅b⃗⃗=__________________________;3.已知{a n}为等比数列,且a1=3,q=2,求s6=__________________________;4.已知tanα=3,求tan2α=__________________________;5.已知f(x)={2x,x>01,x≤0,则f(x)的值域是__________________________;6.已知当z=1+i,则|1−i⋅z|=__________________________;7.已知x2+y2−4y−m=0的面积为π,求m=__________________________;8.在△ABC中,a=4,b=5,c=6,求sinA=__________________________;9.国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总額为__________________________;10.已知(1+2023x)100+(2023−x)100=a0+a1x+a2x2+⋯+a100x100,其中a6,a1,a2⋯a100∈ℝ,若0≤k≤100且k∈ℕ,当a k<0时,k的最大值是__________________________;11.公园修建斜坡,假设斜坡起点在水平面上,斜坡与水平面的夹角为θ,斜坡终点距离水平面的垂直高度为4米,游客每走一米消耗的体能为(1.025−cosθ),要使游客从斜坡底走到斜坡顶端所消耗的总体能最少,则θ=________________________;12.空间内存在三点A、B、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A、B、C可以组成正四棱锥,求方案数为__________________;二、选择题(本题共有4题,满分18分,13、14每题4分,15、16题每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知P={1,2},Q={2,3},若M={x∣x∈P且x∉Q},则M=( ).A.{1}B.{2}C.{1,2}D.{1,2,3}14.根据身高和体重散点图,下列说法正确的是().A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关15.设a>0,函数y=sinx在区间[a,2a]上的最小值为s a,在[2a,3a]上的最小值为t a,当a变化时,以下不可能的情形是().A.sθ>0且tσ>0B.s q<0且t a<0C.s q>0且t a<0D.s q<0且t q>016.在平面上,若曲线Γ具有如下性质:存在点M,使得对于任意点P∈Γ,都有Q∈Γ使得|PM|⋅|QM|=1.则称这条曲线为"自相关曲线".判断下列两个命题的真假().(1)所有椭圆都是“自相关曲线".(2)存在是“自相关曲线”的双曲线.A.(1)假命题;(2)真命题B.(1)真命题;(2)假命题C.(1)真命题;(2)真命题D.(1)假命题;(2)假命题三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小邀满分6分,第2小题满分8分.直四棱柱ABCD−A1B1C1D1,AB∥DC,AB⊥AD,AB=2,AD=3,DC=4.(1)求证:A1B⊥面DCC1D(2)若四棱柱体积为36,求二面角A1−BD−A的大小函数f(x)=x 2+(3a+1)x+cx+a(a,c∈R)(1)当a=0是,是否存在实数c,使得f(x)为奇函数(2)函数f(x)的图像过点(1,3),且f(x)的图像x轴负半轴有两个交点求实数a的取值范围3小题满分8分.21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到的模型为红色外观,事件B取到模型有棕色内饰求P(B)、P(B/A),并据此判断事件A和事件B是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:1、拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及仅外观或仅内饰同色;2、按结果的可能性大小,概率越小奖项越高;(3)奖金额为一等奖600元,二等奖300元,三等奖150元,请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望3小题满分6分.曲线Γ:y2=4x,第一象限内点A在Γ上,A的纵坐标是a.(1)若A到准线距离为3,求a;(2)若a=4,B在x轴上,AB中点在Γ上,求点B坐标和坐标原点O到AB距离;(3)直线l:x=−3,令P是第一象限Γ上异于A的一点,直线PA交l于Q,H是P在l上的投影,若点A满足“对于任意P都有|HQ|>4"求a的取值范围.小题满分8分.令f(x)=lnx,取点(a1f(a1))过其曲线y=f(x)做切线交y轴于(0,a2),取点(a2f(a2))过其做切线交y轴于(0,a3),若a3<0则停止,以此类推,得到数列{a n}.(1)若正整数m≥2,证明a m=lna m−1−1;(2)若正整数m≥2,试比较a m与a m−1−2大小;(3)若正整数k≥3,是否存在k使得a1,a2⋯a k依次成等差数列?若存在,求出k的所有取值,若不存在,试说明理由.2023年上海高考数学卷参考答案。
新课标卷高考数学答题卡完整版
20.
21.
18.
请在各题目的答题区域内作答 答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的 答案无效
第Ⅰ卷 一、选择题效(。 共 60 分)
1A B C D 2A B C D
3A B C D
4.保持卡面清洁,不要折叠、不要弄破。
5A B C D
9A B C D
6A B C D
10 A B C D
7A B C D
11 A B C D
第4 ⅡA 卷B C 二D、填空题(8共A 20B 分C) D
12 A B C D
新课标卷高考数学答题 卡
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
2018 年普通高等
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的 答案无效
学校招生全国统一
考
试
数学试题答题卡
姓名 ________________________ 准考 证号
考生条形码粘贴处
考生禁 缺考考生由监考员填涂
填:
右边的缺考标记.
正确填涂
填 涂
错误填涂
样√ × ○
例●
注 意 事 项
1.答题前,考生先将自己的姓名、准考证号填写清楚, 并认真检查监考员所粘贴的条形码;
2.选择题必须用 2B 铅笔填涂,解答题必须用毫米黑色签 字笔书写,字体工整,笔迹清楚;
3.请按照题号顺序在各题目的答题区域内作答,超出答 题区域书写的答案无效;在草稿纸、试题卷上答题无
13、______ ___ __ ___
14、_______
_______
1三骤157、、). _解(__答共__题7_0(分解_)_答应_写__出__文_超出黑色矩形边框限定区域的 请答在案各无题效目的答题区域内作答,超出黑色矩形边框限定区域的 答请案在无各效题目的答题区域内作答,超出黑色矩形边框限定区域的 答请案在无各效题目的答题区域内作答,超出黑色矩形边框限定区域的 答请案在无各效题目的答题区域内作答,超出黑色矩形边框限定区域的
2024年山东高考数学真题及答案
2024年山东高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m5.()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >> B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5.()A. B. C. D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()2021e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7.当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=-⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >>D.(2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC.10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数()f x 在()1,3上的值域即可判断C;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A:设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于24x +=,而2x >-,()24x +=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C:由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D:当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .【答案】(1)π3B =(2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而2sin 2C ==,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.【小问2详解】由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a cbc +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得23338c =,所以c =16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,2AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则5352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,5=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【答案】(1)证明见解析【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即42sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,42DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析(3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
2023年上海高考试卷真题数学卷
2023年上海高考数学卷考生注意:1.本试卷共5页,21道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面消楚地填写姓名、准考证号,并将核对后的条形码炶在指定位置上,在答题纸反面清超地填写姓名.一、填空题(本大题共有12题,满分54分,第1∼6题每题4分,第7∼12题每题5分)考生应在答题纸的相应位置填写结果.1.不等式|x−2|<1的解集为;2.已知a⃗=(−2,3),b⃗⃗=(1,2),求a⃗⋅b⃗⃗=;3.已知{a n}为等比数列,且a1=3,q=2,求s6=;4.已知tanα=3,求tan2α=;5.已知f(x)={2x,x>01,x≤0,则f(x)的值域是;6.已知当z=1+i,则|1−i⋅z|=;7.已知x2+y2−4y−m=0的面积为π,求m=;8.在△ABC中,a=4,b=5,c=6,求sinA=;9.国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总額为;10.已知(1+2023x)100+(2023−x)100=a0+a1x+a2x2+⋯+a100x100,其中a6,a1,a2⋯a100∈ℝ,若0≤k≤100且k∈ℕ,当a k<0时,k的最大值是;11.公园修建斜坡,假设斜坡起点在水平面上,斜坡与水平面的夹角为θ,斜坡终点距离水平面的垂直高度为4米,游客每走一米消耗的体能为(1.025−cosθ),要使游客从斜坡底走到斜坡顶端所消耗的总体能最少,则θ=;12.空间内存在三点A、B、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A、B、C可以组成正四棱锥,求方案数为;二、选择题(本题共有4题,满分18分,13、14每题4分,15、16题每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知P={1,2},Q={2,3},若M={x∣x∈P且x∉Q},则M=( ).A.{1}B.{2}C.{1,2}D.{1,2,3}14.根据身高和体重散点图,下列说法正确的是().A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关15.设a>0,函数y=sinx在区间[a,2a]上的最小值为s a,在[2a,3a]上的最小值为t a,当a变化时,以下不可能的情形是().A.sθ>0且tσ>0B.s q<0且t a<0C.s q >0且t a <0D.s q <0且t q >016.在平面上,若曲线Γ具有如下性质:存在点M ,使得对于任意点P ∈Γ,都有Q ∈Γ使得|PM |⋅|QM |=1.则称这条曲线为"自相关曲线".判断下列两个命题的真假().(1)所有椭圆都是“自相关曲线".(2)存在是“自相关曲线”的双曲线.A.(1)假命题;(2)真命题B.(1)真命题;(2)假命题C.(1)真命题;(2)真命题D.(1)假命题;(2)假命题三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小邀满分6分,第2小题满分8分. 直四棱柱ABCD −A 1B 1C 1D 1,AB ∥DC,AB ⊥AD,AB =2,AD =3,DC =4.(1)求证:A 1B ⊥面DCC 1D(2)若四棱柱体积为36,求二面角A 1−BD −A 的大小18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 函数f (x )=x 2+(3a+1)x+c x+a (a,c ∈R )(1)当a =0是,是否存在实数c ,使得f (x )为奇函数(2)函数f (x )的图像过点(1,3),且f (x )的图像x 轴负半轴有两个交点求实数a 的取值范围19. (本题满分14分)本题共有2个小题,第1小题满分2分,第2小題满分6分,第3小题满分8分.21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到的模型为红色外观,事件B取到模型有棕色内饰求P(B)、P(B/A),并据此判断事件A和事件B是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:1、拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及仅外观或仅内饰同色;2、按结果的可能性大小,概率越小奖项越高;(3)奖金额为一等奖600元,二等奖300元,三等奖150元,请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.曲线Γ:y2=4x,第一象限内点A在Γ上,A的纵坐标是a.(1)若A到准线距离为3,求a;(2)若a=4,B在x轴上,AB中点在Γ上,求点B坐标和坐标原点O到AB距离;(3)直线l:x=−3,令P是第一象限Γ上异于A的一点,直线PA交l于Q,H是P在l上的投影,若点A满足“对于任意P都有|HQ|>4"求a的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.令f(x)=lnx,取点(a1f(a1))过其曲线y=f(x)做切线交y轴于(0,a2),取点(a2f(a2))过其做切线交y轴于(0,a3),若a3<0则停止,以此类推,得到数列{a n}.(1)若正整数m≥2,证明a m=lna m−1−1;(2)若正整数m≥2,试比较a m与a m−1−2大小;(3)若正整数k≥3,是否存在k使得a1,a2⋯a k依次成等差数列?若存在,求出k的所有取值,若不存在,试说明理由.。
【高考冲刺】普通高等学校招生全国统一考试高考模拟卷(三)-理科数学(附答案及答题卡)
上有
且仅有"个零点$则符合条件的正整数 的值为!!!!!! 三解答题共7$分解答应写出文字说明证明过程或演算步骤
一必考题共6$分
!7!本小题满分!#分
如图所示$在平面四边形 "$)+ 中$+"*"$$)+)"5)
#5+)#$+"+))#'$+$5))'$+)5+)!
!!"求:4;的值-
.!"
/!#
0!"#
3!"(
!!!在长方体 "$)+*"!$!)!+! 中"$)#$))""!)槡#点 , 为"$! 的 中 点点 ( 为 对 角 线 ")! 上 的 动 点点 0 为 底 面 "$)+ 上的动点点(0 可以重合则 ,(1(0 的最小值为
.!!
/!槡#6
0!'(槡#
'&回答第卷时$将答案写在答题卡上$写在本试卷上无效# (&考试结束后$将本试卷和答题卡一并交回#
第卷
一选择题本题共小题每小题分共分在每小题给出的四个选项中只有一
项是符合题目要求的
!!已知全集为实数集 $集合")&# ##*###$'$$)&# +,-##$$'$则!%""&$)
! " 因为函数1!%"在 #&" 上有且仅有'个零点&
! " 所以%/()
/
( &"/
2023年上海高考数学真题及参考答案
2023年上海高考数学真题及参考答案一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果.1.不等式12<-x 的解集为.2.已知()3,2-=a ,()2,1=b ,求=⋅b a .3.已知{}n a 为等比数列,且31=a ,2=q ,求=6S .4.已知3tan =α,求=α2tan .5.已知()⎩⎨⎧≤>=0,10,2x x x f x ,则()x f 的值域是.6.已知当i z +=1,则=⋅-z i 1.7.已知0422=--+m y y x 的面积为π,求=m .8.在ABC ∆中,6,5,4===c b a ,求=A sin .9.国内生产总值(GDP )是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP 稳步增长,第一季度和第四季度的GDP 分别为231和242,且四个季度GDP 的中位数与平均数相等,则2020年GDP 总额为.10.已知()()1001002210100100202320231x a x a x a a x x ++++=-++ ,其中R a a a ∈10021, ,若1000≤≤k 且N k ∈,当0<k a 时,k 的最大值时.11.公园修建斜坡,假设斜坡起点在水平面上,斜坡与水平面的夹角为θ,斜坡终点距离水平水平面的垂直高度为4米,游客每走一米消耗的体能为()θcos 025.1-,要使游客从斜坡底走到斜坡顶端所消耗的总体能最少,则=θ.12.空间内存在三点C B A 、、,满足1===BC AC AB ,在空间内取不同两点(不计顺序),使得这两点与C B A 、、可以组成正四棱锥,求方案数为.二、选择题(本题共4题,满分18分,13、14每题4分,15、16每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知{}{}32,21,,==Q P ,若{}Q x P x x M ∉∈=且,则=M ()A .{}1B .{}2C .{}21,D .{}321,,14.根据身高和体重散点图,下列说法正确的是()A .身高越高,体重越重B .身高越高,体重越轻C .身高与体重成正相关D .身高与体重成负相关15.设0>a ,函数x y sin =在区间[]a a 2,上的最小值为s ,在[]a a 3,2上的最小值为t ,当a 变化时,下列不可能的是()A .0>s 且0>tB .0>s 且0<tC .0<s 且0<t D .0<s 且0>t 16.在平面上,若曲线Γ具有下列性质:存在点M ,使得对于任意点Γ∈P ,都有Γ∈Q 使得1=⋅QM PM .则称曲线Γ为“自相关曲线”.现有如下两个命题:(1)任意椭圆都是“自相关曲线”.(2)存在双曲线是“自相关曲线”.则下列正确的是()A .(1)成立,(2)成立B .(1)成立,(2)不成立C .(1)不成立,(2)成立D .(1)不成立,(2)不成立三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.直四棱柱1111D C B A ABCD -,CD AB ∥,AD AB ⊥,2=AB ,3=AD ,4=DC .(1)求证:111D DCC B A 面⊥(2)若四棱柱1111D C B A ABCD -体积为36,求二面角A BD A --1的大小.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.函数()()()R c a ax cx a x x f ∈++++=,132.(1)当0=a 时,是否存在实数c ,使得()x f 为奇函数(2)函数()x f 的图象过点()3,1,且()x f 的图象与x 轴负半轴有两个不同交点,求实数c 的值及实数a 的取值范围.19.(本题满分14分)本题共有3个小题,第1小题满分2分,第2小题满分6分,第3小题满分8分.21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A 为小明取到的模型为红色外观,事件B 取到模型有棕色内饰.求:()B P 、()A B P /,并据此判断事件A 和事件B 是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及外观或内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:奖金额为一等奖600元,二等奖300元,三等奖150元;请你分析奖项对应的结果,设X 为奖金额,写出X 的分布列并求出X 的数学期望.红色外观蓝色外观棕色内饰128米色内饰2320.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知抛物线x y 42=Γ:,A 为第一象限内Γ上的一点,设A 的纵坐为a (0>a ).(1)若A 到Γ的准线距离为3,求a 的值;(2)若4=a ,B 为x 轴上的一点,且线段AB 的中点在Γ上,求点B 坐标和坐标原点O到AB 的距离;(3)直线3-=x l :,P 是第一象限Γ上异于A 的动点,直线P A 交l 于Q ,点H 为点P 在l 上的投影,若点A 满足性质“当点P 变化时,4>HQ 恒成立”,求a 的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()x x f ln =,过函数上的点()()11,a f a 作()x f y =的切线交y 轴于()20a ,,02>a ,过函数上的点()()22,a f a 作()x f y =的切线交y 轴于()30a ,,以此类推,直至0≤m a 时则停止操作,得到数列{}n a ,*∈N n m ,,m n ≤<1.(1)证明:1ln 1-=+n n a a ;(2)试比较1+n a 与2-n a 的大小;(3)若正整数3≥k ,是否存在k 使得k a a a ,,21依次成等差数列?若存在,求出k 的所有取值;若不存在,试说明理由.参考答案一、填空题1.()3,1;解析:3112112<<-⇒<-<-⇒<-x x x2.4;解析:已知42312=⨯+⨯-=⋅b a 3.189;解析:18996482412636=+++++=S 4.43-;解析:43916tan 1tan 22tan 2-=-=-=ααα5.[)∞+,1;解析:当0>x 时,12>=xy ,当0≤x 时,1=y ,故值域为[)∞+,16.5;解析:()i i i z i -=+⨯-=⋅-2111,521=-=⋅-i z i 7.3-;解析:()4222+=-+m y x ,由题意14=+m ,解得3-=m 8.47;解析:436521636252cos 222=⨯⨯-+=-+=bc a c b A ,∴47sin =A 9.946;解析:d c b a <<<,232=a ,241=d ,473=+=+c b d a ,∴946=+++d c b a 10.49;解析:()0202312023100100100<-+=-kkkkkk C C a ,依题意k 为奇数,∴kk -<10020232023,k k -<100,解得50<k ,∴49max =k 11.4140arccos;解析:所消耗的总体力()θθθθsin cos 41.4sin cos 025.14-=-=y ,()0sin cos 1.44sin cos cos 41.4sin 4222=-=--='θθθθθθy ,解得4140cos =θ,∴4140arccos=θ12.9;解析:以A 为尖,若ABC 为正四棱锥的侧面,有两种情况,若ABC 为正四棱锥的对角面,有一种情况,共三种情况;同理,以C B ,为尖,也各有三种情况,∴共9种二、选择题15.解析:1=a 时,A 可能;5.1=a 时,B 可能;2=a 时,C 可能;D 选项,若0<S ,则π>a 2,若0>t ,则[]a a 3,2的区间长度π<a ,同时02sin >a 且03sin >a ,所以()π,02∈a 且()π,03∈a ,与前面的π>a 2矛盾,故D 不可能.16.解析:(1)∵椭圆是封闭的,∴总可以找到满足题意的M 点;(2)∵点P 的任意性,∴+∞→maxPM,∵minQM是固定的,∴无法对任意的Γ∈P ,都存在Γ∈Q 使得1=⋅QM PM .三、解答题17.解:(1)取CD 中点E ,连接E D 1,E D B A 11∥,∴111D DCC B A 平面∥;(2)由题意可得,底面积为9,∴1341==BD AA ,,A 到BD 的距离1361332=⨯=d ,3132tan 1==d AA θ,∴3132arctan =θ,即二面角C BD A --1的大小为3132arctan.18.解:(1)当0=a 时,()12++=++=x cx x c x x x f ,∵x c x y +=为奇函数,∴()1++=xcx x f 不为奇函数,故不存在实数c ,使得()x f 为奇函数(2)()31231=+++=aca f ,∴1=c ,则()()01132=++++=ax x a x x f 即()01132=+++x a x ,∴()04132>-+=∆a 且两根之和()013<+-a ,∴31>a ,若0=+a x 即a x -=是方程()01132=+++x a x 的解,得21=a 或1-=a ,故实数a 的取值范围为31>a 且21≠a .13141516ACDB19.解:(1)()512532=+=B P ,()()()51282=+=⋂=A P B A P A B P ,()522528=+=A P ,()()()B P A P B A P ⋅==⋂252,∴事件A 和事件B 独立.(2)外观和内饰均为同色的概率15049225232221228=+++C C C C C ,外观和内饰都异色的概率25415024225121121318==+C C C C C ,仅外观或仅内饰同色的概率15077225131211218131121218=+++C C C C C C C C C .∴X 的分布列为⎪⎪⎪⎭⎫⎝⎛1507715049254150300600,期望为2711507715015049300254600=⨯+⨯+⨯(元)20.解:(1)准线为1-=x ,∴2=A x ,∴22==A y a ;(2)()4,4A ,设()0,b B ,线段AB 的中点为⎪⎭⎫⎝⎛+2,24b ,∴()b +=424,解得2-=b ,即()0,2-B ,∴直线AB 为0432=+-y x ,原点O 到AB 的距离13134134==d .(3)设⎪⎪⎭⎫ ⎝⎛p p P ,42,∵⎪⎪⎭⎫⎝⎛a a A ,42,∴直线()04=++-ap y p a x AP :∴()p H p a ap Q ,3,123-⎪⎪⎭⎫ ⎝⎛+--,,∴412122>++=-+-=p a p p p a ap HQ ,即()()2422->-a p 对()()+∞⋃∈,,0a a p 恒成立,当2=a 时,2≠p ,()()2422->-a p 成立;当02<-a 即2<a 时,()()2422->-a p 此时20<<a ∴a 的取值范围是(]2,0.21.解:(1)()xx f 1=',在()()n n a f a ,处的切线方程为,当0=x 时,1ln -=n a y ,即1ln 1-=+n n a a ;()n nn a x a a y -=-1ln (2)作差法:()1ln 21+-=--+n n n n a a a a ,设()1ln +-=x x x g ,则()11-='xx g 令()011=-='xx g ,解得1=x ;()100<<⇒>'x x g ;()10>⇒<'x x g ,∴()()01max ==g x g ,∴()0≤x g ,即21-≤+n n a a 当1=n a 时等号成立;(3)公差1ln 111--=-=---k k k k a a a a d ,设()1ln --=x x x h ,则()11-='xx h 令()011=-='xx h ,解得1=x ;()100<<⇒>'x x h ,此时()x h 单调递增;()10>⇒<'x x h ,此时()x h 单调递减,∴()()21max -==h x h ,即()2-≤x h ,∴2-≤d ,数列递减,∵0→x 时,()-∞→x h ,+∞→x 时,()-∞→x h ,∴1ln 11--=--k k a a d 最多两解,此时2-<d ,即最多三项成等差数列,3=k .。
2022年浙江省高考数学试题及答案
【答案】B
【解析】
【分析】在平面直角坐标系中画出可行域,平移动直线 后可求最大值.
【详解】不等式组对应得可行域如图所示:
当动直线 过 時 有最大值.
由 可得 ,故 ,
故 ,
故选:B.
4. 设 ,则“ ”昰“ ”得()
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
18. 在 中,角A,B,C所对得边分别为a,b,c.已知 .
(1)求 得值;
(2)若 ,求 得面积.
19. 如图,已知 和 都昰直角梯形, , , , , , ,二面角 得平面角为 .设M,N分别为 得中点.
(1)证明: ;
(2)求直线 与平面 所成角得正弦值.
20. 已知等差数列 首项 ,公差 .记 得前n项和为 .
故选:D.
7. 已知 ,则 ()
A.25B.5C. D.
【答案】C
【解析】
【分析】根据指数式与对数式 互化,幂得运算性质以及对数得运算性质即可解出.
【详解】因为 , ,即 ,所以 .
故选:C.
8. 如图,已知正三棱柱 ,E,F分别昰棱 上得点.记 与 所成得角为 , 与平面 所成得角为 ,二面角 得平面角为 ,则()
16. 已知双曲线 左焦点为F,过F且斜率为 得直线交双曲线于点 ,交双曲线得渐近线于点 且 .若 ,则双曲线得离心率昰_________.
17. 设点P在单位圆得内接正八边形 得边 上,则 得取值范围昰_______.
三、 解答题:本大题共5小题,共74分.解答应写出文字说明、 证明过程或演算步骤.
故选:C.
6. 为了 得到函数 得图象,只要把函数 图象上所有得点()
2024年上海高考真题数学(含解析)
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
2024新高考I卷数学真题详细解析(含选填)
2024 年普通高等学校招生全国统一考试(新课标 I 卷)数学参考答案与解析本参考答案与解析共 7 页, 19 小题, 满分 150 分.注意事项:1. 答题前, 先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上, 并将准考证号条形码粘贴在答题卡上的指定位置。
考试结束后, 请将本试卷和答题卡一并上交。
2. 选择题的作答: 每小题选出答案后, 用2 B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3. 填空题和解答题的作答: 用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
一、选择题: 本题共 8 小题, 每小题 5 分, 共 40 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1. 已知集合A={x∣−5<x3<5},B={−3,−1,0,2,3} ,则A∩B=()A. {−1,0}B. {2,3}C. {−3,−1,0}D. {−1,0,2}【答案】A.【解析】−5<x3<5⇒−513<x<513 ,而1<513<2 ,因此A∩B={−1,0} . 故答案为 A. 2. 若zz−1=1+i ,则z=()A. −1−iB. −1+iC. 1−iD. 1+i【答案】C.【解析】两边同时减 1 得: 1z−1=i ,进而z=1+1i=1−i .故答案为C .3. 已知向量a=(0,1),b=(2,x) . 若b⊥(b−4a) ,则x=()A. -2B. -1C. 1D. 2【答案】D.【解析】即b⋅(b−4a)=0 . 代入得4+x(x−4)=0 ,即x=2 . 故答案为 D.4. 已知cos(α+β)=m,tanαtanβ=2 ,则cos(α−β)=()A. −3mB. −m 3C. m3D. 3m【答案】A.【解析】通分 sinαsinβ=2cosαcosβ . 积化和差 12(cos (α−β)−cos (α+β))=2⋅12(cos(α− β)+cos (α+β)) . 即 cos (α−β)=−3cos (α+β)=−3m . 故选 A.5. 已知圆柱和圆锥的底面半径相等,侧面积相等,且他们的高均为 √3 ,则圆锥的体积为( ) A. 2√3π B. 3√3π C. 6√3π D. 9√3π 【答案】 B.【解析】设二者底面半径为 r ,由侧面积相等有 πr√r 2+3=2πr ⋅√3 ,解得 r =3 . 故 V =13⋅πr 2⋅√3=√33π×9=3√3π.故答案为 B.6. 已知函数为 f (x )={−x 2−2ax −a,x <0e x +ln (x +1),x ≥0 在 R 上单调递增,则 a 的取值范围是( )A. (−∞,0]B. [−1,0]C. [−1,1]D. [0,+∞) 【答案】B.【解析】 x ≥0 时, f ′(x )=e x +11+x >0 ,故 f (x ) 在 [0,+∞) 上单调递增. 而 y = −x 2−2zx −a 的对称轴为直线 x =−a ,故由 f (x ) 在 (−∞,0) 上单调递增可知 −a ≥0⇒a ≤0 . 在 x =0 时应有 −x 2−2ax −a ≤e x +ln (x +1) ,解得 a ≥−1 ,故 −1≤a ≤0 . 故答案为 B. 7. 当 x ∈[0,2π] 时,曲线 y =sinx 与 y =2sin (3x −π6) 的交点个数为( )A. 3B. 4C. 6D. 8 【答案】C.【解析】五点作图法画图易得应有 6 个交点.故答案为C .8. 已知函数f(x)的定义域为R,f(x)>f(x−1)+f(x−2) ,且当x<3时f(x)=x ,则下列结论中一定正确的是()A. f(10)>100B. f(20)>1000C. f(10)<1000D. f(20)<10000【答案】B.【解析】f(1)=1,f(2)=2⇒f(3)>3⇒f(4)>5⇒f(5)>8⇒f(6)>13⇒⋯⇒f(11)> 143⇒f(12)>232⇒f(13)>300⇒f(14)>500⇒f(15)>800⇒f(16)>1000⇒⋯⇒f(20)>1000故答案为 B.二、选择题: 本题共 3 小题, 每小题 6 分, 共 18 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 6 分, 部分选对的得部分分, 有选错的得 0 分.9. 为了解推动出口后的亩收入 (单位: 万元) 情况, 从种植区抽取样本, 得到推动出口后亩收入的样本均值为x‾=2.1 ,样本方差s2=0.01 . 已知该种植区以往的亩收入x服从正态分布M(1.8,0.12) ,假设推动出口后的亩收入Y服从正态分布N(x‾,s2) ,则(若随机变量Z服从正态分布N(μ,σ2) , P(Z<μ+σ)≈0.8413 )则下列说法正确的是()A. P(X>2)>0.2B. P(X>2)<0.5C. P(Y>2)>0.5D. P(Y>2)<0.8【答案】BC.【解析】由所给材料知两正态分布均有σ=0.1及正态分布的对称性得:P(X>2)<P(X>1.9)=1−P(X<1.9)=1−0.8413<0.2, A错误; P(X>2)<P(X> 1.8) =0.5, B正确;P(Y>2)>P(Y>2.1)=0.5,C正确;P(Y>2)=P(Y<2.2)=0.8413>0.8,D错误.故答案为BC .10. 设函数f(x)=(x−1)2(x−4) ,则()A. x=3是f(x)的极小值点B. 当0<x<1时, f(x)<f(x2)C. 当1<x<2时, −4<f(2x−1)<0D. 当−1<x<0时, f(2−x)>f(x)【答案】ACD.【解析】计算知f′(x)=3(x−1)(x−3) . 故x∈(1,3)时f(x)单调减,其余部分单调增. 由此知x=3为f(x)极小值点,A 正确;由上知x∈(0,1)时f(x)单调增,又此时x>x2 ,故f(x)>f(x2),B错误;此时2x−1∈(1,3) ,故f(2x−1)∈(f(3),f(1))=(−4,0),C正确;由f(2−x)=(x−1)2(−x−2) ,故f(2−x)−f(x)=2(1−x)3>0,D正确.故答案为 ACD.11.造型∝可以看作图中的曲线C的一部分. 已知C过坐标原点O ,且C上的点满足横坐标大于 -2 ; 到点F(2,0)的距离与到定直线x=a(a<0)的距离之积为 4,则()A. a=−2B. 点(2√2,0)在C上C. C在第一象限的点的纵坐标的最大值为 1D. 当点(x0,y0)在C上时, y0≤4x0+2【答案】ABD.【解析】由原点O在曲线C上且|OF|=2知O到直线x=a距离为 2,由a<0知a=−2, A 正确;由x>−2知C上点满足(x+2)√(x−2)2+y2=4 ,代(2√2,0)知B正确;解出y2=16(x+2)2−(x−2)2 ,将左边设为f(x) ,则f′(2)=−0.5<0 . 又有f(2)=1 ,故存x0∈(0,1)使f(x0)>1 . 此时y>1且在第一象限, C错误;又y2=16(x+2)2−(x−2)2<16(x+2)2,故y0<4(x0+2),D 正确.故答案为 ABD.三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分.12. 设双曲线C:x2a2−y2b2=1(a>0,b>0)的左右焦点分别为F1,F2 ,过F2做平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为___【答案】32.【解析】根据对称性|F2A|=|AB|2=5 ,则2a=|F1A|−|F2A|=8 ,得到a=4 . 另外根据勾股定理2c=|F1F2|=12 ,得到c=6 ,所以离心率e=ca =32.13. 若曲线y=e x+x在点(0,1)处的切线也是曲线y=ln(x+1)+a的切线,则a= ▴ .. 【答案】ln2 .【解析】设曲线分别为y1,y2 ,那么y1′=e x+1 ,得到切线方程y−1=2x ,根据y2′=1x+1得到切点横坐标为−12,代入y2得到a=ln2 .14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7 , 乙的卡片上分别标有数字2,4,6,8 . 两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张, 并比较所选卡片上数字的大小, 数字大的人得 1 分, 数字小的人得 0 分, 然后各自弃置此轮所选的卡片 (弃置的卡片在此后的轮次中不能使用). 则四轮比赛后, 甲的总得分不小于 2 的概率为___【答案】12.【解析】. 由对称性,不妨固定乙出卡片顺序依次为(2,4,6,8) ,为了简便,设甲依次出(a,b,c,d),{a,b,c,d}∈{1,3,5,7} . 首先注意到 8 是最大的,故甲不可能得四分. 若甲得三分,则从c到a均要求得分,比较得必有c=7,b=5,a=3,d=1共一种情况; 若甲得两分,则讨论在何处得分: 若在b,c处,则同样c=7,b=5 ,进而a=1,d=3 ,共一种; 若在a,c处,则必有c= 7,a≠1,b≠5 ,在b=1时有全部两种,在d=1时仅一种,共三种; 若在a,b处,则b∈{5,7},a≠1,c≠7 . 当a=5时,由上述限制, c=1时有两种, d=1时仅一种; 当a=7时, a,c,d全排列六种中仅a=1的两种不行,故有四种,此情形共八种. 故共有1+3+8=12种, 又总数为4!=24 ,故所求为1−1224=12.四、解答题: 本题共 5 小题, 共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. (13 分)记△ABC的内角A,B,C的对边分别为a,b,c ,已知sinC=√2cosB,a2+b2−c2=√2ab . (1) 求B ;(2)若△ABC的面积为3+√3 ,求c .【解析】(1)根据余弦定理a2+b2−c2=2abcosC=√2ab ,那么cosC=√22,又因为C∈(0,π) , 得到C=π4 ,此时cosB=12,得到B=π3.(2) 根据正弦定理 b =csinB sinC=√62c ,并且 sinA =sin (B +C )=sinBcosC +cosBsinC =√6+√24,那么 S =12bcsinA =3+√3 ,解得 c =2√2 . 16. (15 分)已知 A (0,3) 和 P (3,32) 为椭圆 C:x 2a 2+y 2b 2=1(a >b >0) 上两点.(1) 求 C 的离心率;(2)若过 P 的直线 l 交 C 于另一点 B ,且 △ABP 的面积为 9,求 l 的方程. 【解析】(1)直接代入后解方程,得到 a 2=12,b 2=9,c 2=3 ,所以 e 2=14,离心率 e =12.(2)设 B (x 0,y 0) ,则 AB ⃗⃗⃗⃗⃗ =(x 0−3,y 0−32),AP ⃗⃗⃗⃗⃗ =(3,−32) . 得到 9=S =12|−32(x 0−3)−3(y 0−32)| ,或者 x 0+2y 0=−6 ,与椭圆方程联立,得到B 1(−3,−15),B 2(0,−3) , 对应的直线方程 y =12x 或者 y =32x −3 .17. (15 分)如图,四棱锥 P −ABCD 中, PA ⊥ 底面 ABCD,PA =AC =2,BC =1,AB =√3 . (1)若 AD ⊥AB ,证明: AD// 平面 PBC ;(2)若 AD ⊥DC ,且二面角 A −CP −D 的正弦值为√427,求 AD .【解析】(1) 由 PA ⊥ 面 ABCD 知 PA ⊥AD ,又 AD ⊥PB ,故 AD ⊥ 面 PAB . 故 AD ⊥AB ,又 由勾股定理知 AB ⊥BC ,故 AD//BC ,进而 AD// 面 PBC . (2)法1:由 PA ⊥ 面 ABCD . PA ⊥AC,PC =2√2 ,设 AD =t ,则 PD =√4+t 2 , CD =√4−t 2 ,由勾股定理知 PD ⊥CD . 则 S △PCD =12√16−t 4,S △ACD =12t√4−t 2 ,设 A 到 PCD 距离为 ℎ . 由等体积, S △PCD ⋅ℎ=S △ACD ⋅PA . 代入解出 ℎ=√4+t 2. 考虑 A向 CP 作垂线 AM ,二面角设为 θ 则 ℎ=AMsinθ=2√217. 由此解出 t =√3 .法2:过 D 点作 Dz//PA .分别以 DA,DC,Dz 为 x,y,z 轴,建立空间直角坐标系,设 AD =a ,则 DC =√4−a 2∴D (0,0,0), A (a,0,0), C(0,√4−a 2,0), P (a,0,2)∴DC ⃗⃗⃗⃗⃗ =(0,√4−a 2,0),DP ⃗⃗⃗⃗⃗ =(a,0,2) 设面 DCP 的一个法向量 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1)∴{√4−a 2⋅y 1=0ax 1+2z 1=0取 x 1=2∴n 1⃗⃗⃗⃗ =(2,0,−a )∴AP ⃗⃗⃗⃗⃗ =(0,0,2),AC ⃗⃗⃗⃗⃗ =(−a,√4−a 2,0)设面 ACP 的一个法向量 n 2⃗⃗⃗⃗ =(x 2,y 2,z 2)∴{2z 2=0−ax 2+√4−a 2y 2=0∴n 2⃗⃗⃗⃗ =(√4−a 2,a,0) ∵ 二面角 A −CP −D 的正弦值为 √427 ∴ √7 .∴cosθ=√7=|n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ ||=2√4−a 2√4+a 2⋅2∴a 2=3∴a =√3∴AD =√3 .18. (17 分)已知函数 f (x )=ln x2−x +ax +b (x −1)3 . (1) 若 b =0 ,且 f ′(x )≥0 ,求 a 的最小值; (2)证明:曲线 y =f (x ) 是中心对称图形;(3)若f(x)>−2当且仅当1<x<2 ,求b的取值范围. 【解析】函数定义域(0,2) .(1) 当b=0时, f′(x)=1x +12−x+a=2x(2−x)+a≥0恒成立. 令x=1得a≥−2 . 当a=−2时,f′(x)=2(x−1)2x(2−x)≥0 ,从而a的最小值为 -2 .(2) f(x)+f(2−x)=ln x2−x +ax+b(x−1)3+ln2−xx+a(2−x)+b(1−x)3=2a=2f(1) ,且定义域也关于 1 对称,因此y=f(x)是关于(1,a)的中心对称图形.(3) 先证明a=−2 . 由题意, a=f(1)≤−2 . 假设a<−2 ,由f(2e |b|+11+e|b|+1)>|b|+1−|b|=1 ,应用零点存在定理知存在x1∈(1,2e|b|+11+e|b|+1),f(x1)=0 ,矛盾. 故a=−2 . 此时, f′(x)=(x−1)2 x(2−x)[3bx(2−x)+2] . 当b≥−23,f′(x)≥(x−1)2x(2−x)(2−4x+2x2)≥0 ,且不恒为 0,故f(x)在(0,2)递增. f(x)>−2=f(1)当且仅当1<x<2 ,此时结论成立. 当b<−23,令x0=3b−√9b2−6b3b∈(0,1),f′(x0)=0 ,且f′(x)<0 ,当x∈(x0,1) ,因此f(x)在(x0,1)递减,从而f(x0)>f(1)=−2 ,而x0∉(1,2)此时结论不成立. 综上, b的取值范围是[−23,+∞) .19. (17 分)设m为正整数,数列a1,a2,⋯a4m+2是公差不为 0 的等差数列,若从中删去两项a i和a j(i<j)后剩余的4m项可被平均分为m组,且每组的 4 个数都能构成等差数列,则称数列a1,a2,⋯a4m+2是(i,j)−可分数列.(1) 写出所有的(i,j),1≤i≤j≤6 ,使数列a1,a2,⋯a6是(i,j)−可分数列;(2) 当m≥3时,证明: 数列a1,a2,⋯a4m+2是(2,13)−可分数列;(3)从1,2,⋯4m+2中一次任取两个数i和j(i<j) ,记数列a1,a2,⋯a4m+2是(i,j)−可分数列的概率为P m ,证明P m>18.【解析】记{a n}的公差为d .(1) 从a1,a2,⋯,a6中去掉两项后剩下 4 项,恰构成等差数列,公差必为d ,否则原数列至少有 7 项. 因此剩下的数列只可能为a1,a2,a3,a4,a2,a3,a4,a5,a3,a4,a5,a6三种可能,对应的(i,j)分别为(5,6),(1,6),(1,2) .(2) 考虑分组(a1,a4,a7,a10),(a3,a6,a9,a12),(a5,a8,a11,a14),(a4k−1,a4k,a4k+1,a4k+2)(4≤k≤m) ,(当m=3时只需考虑前三组即可) 即知结论成立.(3) 一方面,任取两个i,j(i<j)共有C4m+22种可能. 另一方面,再考虑一种较为平凡的情况: i−1,j−i−1均可被 4 整除,此时,只要依次将剩下的4m项按原顺序从头到尾排一列,每四个截取一段,得到m组公差为d的数列,则满足题意,故此时确实是(i,j)−可分的. 接着计算此时的方法数. 设i=4k+1(0≤k≤m) ,对于每个k,j有(4m+2)−(4k+1)−14+1=m−k+1 (种), 因此方法数为∑(m−k+1) mk=1=(m+1)(m+2)2.当m=1,2 ,已经有(m+1)(m+2)2/C4m+22>18. 下面考虑m≥3 . 我们证明: 当i−2,j−i+1被 4整除,且j−i+1>4时,数列是(i,j)−可分的. 首先我们将a1,a2,⋯,a i−2 ,及a j+2,a j+3,⋯,a4m+2顺序排成一列,每 4 个排成一段,得到一些公差为d的四元数组,因此我们只需考虑a i−1,a i+1,a i+2,⋯,a j−1,a j+1这j−i+1个数即可. 为书写方便,我们记j−i=4t−1(t>1) ,并记b n=a n+i−2 ,即证b1,b3,b4,⋯,b4t,b4t+2可被划分成若干组.引理: 设j−1能被 4 整除. 若b1,b2,⋯,b j+1是(2,j)−可分的,则b1,b2,⋯,b j+9是(2,j+8)−可分的.引理证明: 将b1,b2,⋯,b j+1去掉b2,b j后的j−14组四元组再并上(b j,b j+2,b j+4,bj+6) ,(b j+3,b j+5,b j+7,b j+9)即证.回原题. 由(2),b1,⋯,b14是(2,13)−可分数列,且(b1,b3,b5,b7)和(b4,b6,b8,b10)知b1,⋯,b10是(2,9)−可分数列,因而结合引理知b1,b3,b4,⋯,b4t,b4t+2可被划分成若干组,由此结论成立.计算此时的方法数. 设i=4k+2(0≤k≤m−1) ,则此时j有(4m+2)−(4k+2)4−1=m−k−1种,因此方法数为∑(m−k−1) m−1k=0=m(m−1)2.因此我们有p m≥m(m−1)+(m+1)(m+2)2C m+12>18.。
2024年高考数学试卷(新课标Ⅰ卷)(解析)
2024年普通高等学校招生全国统一考试(新课标I 卷)数学本试卷共10页,19小题,满分150分. 注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =−<<=−−∣,则A B =( )A. {1,0}−B. {2,3}C. {3,1,0}−−D. {1,0,2}−【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=−−,且注意到12<<,从而AB ={}1,0−.故选:A. 2. 若1i 1zz =+−,则z =( ) A. 1i −− B. 1i −+C. 1i −D. 1i +【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解. 【详解】因为11111i 111z z z z z −+==+=+−−−,所以111i i z =+=−.故选:C.3. 已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥−,则x =( ) A. 2− B. 1− C. 1 D. 2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值. 【详解】因为()4b b a ⊥−,所以()40b b a ⋅−=, 所以240b a b −⋅=即2440x x +−=,故2x =, 故选:D.4. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ−=( ) A. 3m − B. 3m −C.3m D. 3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ−的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ−=, 而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=, 故cos cos 2cos cos m αβαβ−=即cos cos m αβ=−, 从而sin sin 2m αβ=−,故()cos 3m αβ−=−, 故选:A.5. )A. B.C.D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6. 已知函数为22,0()e ln(1),0xx ax a xf xx x⎧−−−<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A. (,0]−∞ B. [1,0]− C. [1,1]− D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa−⎧−≥⎪⨯−⎨⎪−≤+⎩,解得10a−≤≤,即a的范围是[1,0]−.故选:B.7. 当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=−⎪⎝⎭的交点个数为()A. 3B. 4C. 6D. 8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=−⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx∈上函数π2sin36y x⎛⎫=−⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点. 故选:C8. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >−+−,且当3x <时()f x x =,则下列结论中一定正确的是( ) A. (10)100f > B. (20)1000f > C. (10)1000f < D. (20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断. 【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==, 又因为()(1)(2)f x f x f x >−+−,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >−+−,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >>D. (2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出. 【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1YN ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>−=<+≈>,C 正确,D 错误; 因为()1.8,0.1XN ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈−=<, 而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误, 故选:BC .10. 设函数2()(1)(4)f x x x =−−,则( ) A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x −<−<D. 当10x −<<时,(2)()f x f x −>【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =−−+−=−−',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈−或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞−上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x −=−>,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <−<,而由上可知,函数()f x 在()1,3上单调递减, 所以()()()1213f f x f >−>,即()4210f x −<−<,正确; 对D ,当10x −<<时,()()()()()()222(2)()12141220f x f x x x x x x x −−=−−−−−−=−−>,所以(2)()f x f x −>,正确; 故选:ACD.11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2−,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =−B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+ 【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误. 【详解】对于A :设曲线上的动点(),P x y ,则2x >−4x a −=,04a −=,解得2a=−,故A 正确.对于B24x +=,而2x >−,()24x +=.当0x y ==()2844+=−=,故()在曲线上,故B 正确. 对于C :由曲线的方程可得()()2221622y x x =−−+,取32x =,则2641494y =−,而64164525624510494494494−−−=−=>⨯,故此时21y >, 故C 在第一象限内点的纵坐标的最大值大于1,故C 错误. 对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =−−≤++,故0004422y x x −≤≤++,故D 正确. 故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b −=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B两点,若1||13,||10F A AB ==,则C 的离心率为___________. 【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b−=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==, 又122AF AF a −=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===. 故答案为:3213. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________. 【答案】ln 2 【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=, 故曲线e x y x =+在()0,1处的切线方程为21y x =+; 由()ln 1y x a =++得11y x '=+, 设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++, 由两曲线有公切线得0121y x '==+,解得012x =−,则切点为11,ln 22a ⎛⎫−+ ⎪⎝⎭, 切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++− ⎪⎝⎭, 根据两切线重合,所以ln 20a −=,解得ln 2a =. 故答案为:ln 214. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5 【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可. 【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==. 从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑. 记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==; 如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==. 而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==. 所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=. 所以甲总得分不小于2的概率为2312p p +=. 故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +−=(1)求B ;(2)若ABC的面积为3+,求c .的【答案】(1)π3B = (2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C,最后结合已知sin C B =得cos B值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解. 【小问1详解】由余弦定理有2222cos a b c ab C +−=,对比已知222a b c +−=,可得222cos 222a b c C ab ab +−===, 因为()0,πC ∈,所以sin 0C >,从而sin 2C ===,又因为sin C B =,即1cos 2B =, 注意到()0,πB ∈, 所以π3B =. 小问2详解】由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =−−=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯+⨯=⎪ ⎪⎝⎭⎝⎭, 由正弦定理有5πππsin sin sin 1234a b c==,从而1,4222a cbc +====, 由三角形面积公式可知,ABC 的面积可表示为的【21113sin 222228ABCSab C c c c +==⋅⋅⋅=, 由已知ABC面积为3+,可得2338c +=+所以c =16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b +=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程. 【答案】(1)12(2)直线l 的方程为3260x y −−=或20x y −=. 【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x −=−,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可. 【小问1详解】由题意得2239941b a b=⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】的法一:3312032APk −==−−,则直线AP 的方程为132y x =−+,即260x y +−=,2AP ==,由(1)知22:1129x y C +=, 设点B 到直线AP 的距离为d,则52d ==, 则将直线AP 沿着与AP 垂直的方向平移5单位即可, 此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,5=,解得6C =或18C =−, 当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=−⎩或332x y =−⎧⎪⎨=−⎪⎩,即()0,3B −或33,2⎛⎫−−⎪⎝⎭, 当()0,3B −时,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=,当33,2B ⎛⎫−−⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y −=, 当18C =−时,联立2211292180x y x y ⎧+=⎪⎨⎪+−=⎩得22271170y y −+=,227421172070∆=−⨯⨯=−<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y −−=或20x y −=. 法二:同法一得到直线AP 的方程为260x y +−=,点B到直线AP 的距离5d =,设()00,B x y,则220051129x y =⎪+=⎪⎩,解得00332x y =−⎧⎪⎨=−⎪⎩或0003x y =⎧⎨=−⎩, 即()0,3B −或33,2⎛⎫−−⎪⎝⎭,以下同法一. 法三:同法一得到直线AP 的方程为260x y +−=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π5=, 联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=−⎪⎪⎨⎪=−⎪⎩或cos 0sin 1θθ=⎧⎨=−⎩,即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B −,16392PABS=⨯⨯=,符合题意,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠−,解得0x =或22443kx k −=+,0k ≠,12k ≠−, 令22443k x k −=+,则2212943k y k −+=+,则22224129,4343k k B k k ⎛⎫−−+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +−=,点B 到直线AP的距离5d =,5=,解得32k =,此时33,2B ⎛⎫−−⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y −=, 综上直线l 的方程为3260x y −−=或20x y −=. 法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =, 此时1933922ABPS=⨯⨯=≠不满足条件. 当l 的斜率存在时,设3:(3)2PB y k x −=−,令()()1122,,,P x y B x y , 223(3)21129y k x x y ⎧=−+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +−−+−−=, ()()()2222Δ24124433636270k kk k k =−−+−−>,且AP k k ≠,即12k ≠−,21222122241243,36362743k k x x k PB k k x x k ⎧−+=⎪⎪+==⎨−−⎪=⎪+⎩,A 到直线PB距离192PABd S===, 12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =−,即3260x y −−=或20x y −=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =, 此时1933922ABPS=⨯⨯=≠不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =−+, 设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫−+⎪⎝⎭, 联立223323436y kx k x y ⎧=−+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=−−+−−> ⎪⎝⎭,且12k ≠−,则2222363627121293,3434B B k k k k x x k k−−−−==++, 则211312183922234P B k S AQ x x k k +=−=+=+,解的12k =或32k =,经代入判别式验证均满足题意. 则直线l 为12y x =或332y x =−,即3260x y −−=或20x y −=.17. 如图,四棱锥P ABCD −中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D −−的正弦值为7,求AD . 【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而 //AD BC ,再根据线面平行的判定定理即可证出; (2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D −−的平面角,即可求得tan DFE ∠=再分别用AD 的长度表示出,DE EF ,即可解方程求出AD . 【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥, 又AD PB ⊥,PBPA P =,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC , 又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC . 【小问2详解】 如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF , 根据二面角的定义可知,DFE ∠即为二面角A CP D −−的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =2DE =,又242xCE −==,而EFC 为等腰直角三角形,所以2EF =,故22tan DFE∠==x=,即AD=.18. 已知函数3()ln(1)2xf x ax b xx=++−−(1)若0b=,且()0f x'≥,求a的最小值;(2)证明:曲线()y f x=是中心对称图形;(3)若()2f x>−当且仅当12x<<,求b的取值范围.【答案】(1)2−(2)证明见解析(3)23b≥−【解析】【分析】(1)求出()min2f x a'=+后根据()0f x'≥可求a的最小值;(2)设(),P m n为()y f x=图象上任意一点,可证(),P m n关于()1,a的对称点为()2,2Q m a n−−也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f=−即2a=−,再根据()2f x>−在()1,2上恒成立可求得23b≥−.【小问1详解】b=时,()ln2xf x axx=+−,其中()0,2x∈,则()()()112,0,222f x a xx x x x=+=+∈−−',因为()22212x xx x−+⎛⎫−≤=⎪⎝⎭,当且仅当1x=时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥−, 所以a 的最小值为2−., 【小问2详解】()()3ln12x f x ax b x x=++−−的定义域为()0,2, 设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n −−,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++−−, 而()()()()3322ln221ln 122m m f m a m b m am b m a m m −⎡⎤−=+−+−−=−++−+⎢⎥−⎣⎦, 2n a =−+,所以()2,2Q m a n −−也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a . 【小问3详解】因为()2f x >−当且仅当12x <<,故1x =为()2f x =−的一个解, 所以()12f =−即2a =−,先考虑12x <<时,()2f x >−恒成立.此时()2f x >−即为()()3ln21102x x b x x +−+−>−在()1,2上恒成立, 设()10,1t x =−∈,则31ln 201t t bt t+−+>−在()0,1上恒成立, 设()()31ln 2,0,11t g t t bt t t+=−+∈−, 则()()2222232322311t bt b g t bt t t−++=−+=−'−, 当0b ≥,232332320bt b b b −++≥−++=>, 故()0g t '>恒成立,故()g t 在()0,1上为增函数, 故()()00g t g >=即()2f x >−在()1,2上恒成立. 当203b −≤<时,2323230bt b b −++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数, 故()()00g t g >=即()2f x >−在()1,2上恒成立.当23b <−,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍; 综上,()2f x >−在()1,2上恒成立时23b ≥−. 而当23b ≥−时, 而23b ≥−时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1, 即()2f x >−的解为()1,2. 综上,23b ≥−. 【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j −可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j −可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13−可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j −可分数列的概率为m P ,证明:18m P >. 【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析 【解析】【分析】(1)直接根据(),i j −可分数列的定义即可;(2)根据(),i j −可分数列的定义即可验证结论;(3)证明使得原数列是(),i j −可分数列的(),i j 至少有()21m m +−个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d−=+=+', 得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可. 换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列. 那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6. 所以所有可能的(),i j 就是()()()1,2,1,6,5,6. 【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m −++,共3m −组. (如果30m −=,则忽略②)故数列1,2,...,42m +是()2,13−可分数列. 【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立, 则数列1,2,...,42m +一定是(),i j −可分数列: 命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i −≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i −≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k −>−,故21k k ≥. 此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k −−−,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++−−+,共21k k −组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++−++,共2m k −组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j −可分数列.第二种情况:如果,i B j A ∈∈,且3j i −≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k −>,故21k k >. 由于3j i −≠,故()()2141423k k +−+≠,从而211k k −≠,这就意味着212k k −≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k −−−,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =−,共212k k −−组; ④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++−++,共2m k −组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k −−个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数. 这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j −可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j −可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个; 而如果3j i −=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +−+=. 但这导致2112k k −=,矛盾,所以,i B j A ∈∈. 设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +−+=,即211k k −=. 所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m −,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m −+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个. .这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +−. 当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j −可分数列的(),i j 至少有()21m m +−个.所以数列1242,,...,m a a a +是(),i j −可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+−++⎝⎭≥=>==++++++++. 这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
2023年上海高考数学真题及参考答案
2023年上海高考数学真题及参考答案一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果.1.不等式12<-x 的解集为.2.已知()3,2-=a ,()2,1=b ,求=⋅b a .3.已知{}n a 为等比数列,且31=a ,2=q ,求=6S .4.已知3tan =α,求=α2tan .5.已知()⎩⎨⎧≤>=0,10,2x x x f x ,则()x f 的值域是.6.已知当i z +=1,则=⋅-z i 1.7.已知0422=--+m y y x 的面积为π,求=m .8.在ABC ∆中,6,5,4===c b a ,求=A sin .9.国内生产总值(GDP )是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP 稳步增长,第一季度和第四季度的GDP 分别为231和242,且四个季度GDP 的中位数与平均数相等,则2020年GDP 总额为.10.已知()()1001002210100100202320231x a x a x a a x x ++++=-++ ,其中R a a a ∈10021, ,若1000≤≤k 且N k ∈,当0<k a 时,k 的最大值时.11.公园修建斜坡,假设斜坡起点在水平面上,斜坡与水平面的夹角为θ,斜坡终点距离水平水平面的垂直高度为4米,游客每走一米消耗的体能为()θcos 025.1-,要使游客从斜坡底走到斜坡顶端所消耗的总体能最少,则=θ.12.空间内存在三点C B A 、、,满足1===BC AC AB ,在空间内取不同两点(不计顺序),使得这两点与C B A 、、可以组成正四棱锥,求方案数为.二、选择题(本题共4题,满分18分,13、14每题4分,15、16每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知{}{}32,21,,==Q P ,若{}Q x P x x M ∉∈=且,则=M ()A .{}1B .{}2C .{}21,D .{}321,,14.根据身高和体重散点图,下列说法正确的是()A .身高越高,体重越重B .身高越高,体重越轻C .身高与体重成正相关D .身高与体重成负相关15.设0>a ,函数x y sin =在区间[]a a 2,上的最小值为s ,在[]a a 3,2上的最小值为t ,当a 变化时,下列不可能的是()A .0>s 且0>tB .0>s 且0<tC .0<s 且0<t D .0<s 且0>t 16.在平面上,若曲线Γ具有下列性质:存在点M ,使得对于任意点Γ∈P ,都有Γ∈Q 使得1=⋅QM PM .则称曲线Γ为“自相关曲线”.现有如下两个命题:(1)任意椭圆都是“自相关曲线”.(2)存在双曲线是“自相关曲线”.则下列正确的是()A .(1)成立,(2)成立B .(1)成立,(2)不成立C .(1)不成立,(2)成立D .(1)不成立,(2)不成立三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.直四棱柱1111D C B A ABCD -,CD AB ∥,AD AB ⊥,2=AB ,3=AD ,4=DC .(1)求证:111D DCC B A 面⊥(2)若四棱柱1111D C B A ABCD -体积为36,求二面角A BD A --1的大小.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.函数()()()R c a ax cx a x x f ∈++++=,132.(1)当0=a 时,是否存在实数c ,使得()x f 为奇函数(2)函数()x f 的图象过点()3,1,且()x f 的图象与x 轴负半轴有两个不同交点,求实数c 的值及实数a 的取值范围.19.(本题满分14分)本题共有3个小题,第1小题满分2分,第2小题满分6分,第3小题满分8分.21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A 为小明取到的模型为红色外观,事件B 取到模型有棕色内饰.求:()B P 、()A B P /,并据此判断事件A 和事件B 是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及外观或内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:奖金额为一等奖600元,二等奖300元,三等奖150元;请你分析奖项对应的结果,设X 为奖金额,写出X 的分布列并求出X 的数学期望.红色外观蓝色外观棕色内饰128米色内饰2320.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知抛物线x y 42=Γ:,A 为第一象限内Γ上的一点,设A 的纵坐为a (0>a ).(1)若A 到Γ的准线距离为3,求a 的值;(2)若4=a ,B 为x 轴上的一点,且线段AB 的中点在Γ上,求点B 坐标和坐标原点O到AB 的距离;(3)直线3-=x l :,P 是第一象限Γ上异于A 的动点,直线P A 交l 于Q ,点H 为点P 在l 上的投影,若点A 满足性质“当点P 变化时,4>HQ 恒成立”,求a 的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()x x f ln =,过函数上的点()()11,a f a 作()x f y =的切线交y 轴于()20a ,,02>a ,过函数上的点()()22,a f a 作()x f y =的切线交y 轴于()30a ,,以此类推,直至0≤m a 时则停止操作,得到数列{}n a ,*∈N n m ,,m n ≤<1.(1)证明:1ln 1-=+n n a a ;(2)试比较1+n a 与2-n a 的大小;(3)若正整数3≥k ,是否存在k 使得k a a a ,,21依次成等差数列?若存在,求出k 的所有取值;若不存在,试说明理由.参考答案一、填空题1.()3,1;解析:3112112<<-⇒<-<-⇒<-x x x2.4;解析:已知42312=⨯+⨯-=⋅b a 3.189;解析:18996482412636=+++++=S 4.43-;解析:43916tan 1tan 22tan 2-=-=-=ααα5.[)∞+,1;解析:当0>x 时,12>=xy ,当0≤x 时,1=y ,故值域为[)∞+,16.5;解析:()i i i z i -=+⨯-=⋅-2111,521=-=⋅-i z i 7.3-;解析:()4222+=-+m y x ,由题意14=+m ,解得3-=m 8.47;解析:436521636252cos 222=⨯⨯-+=-+=bc a c b A ,∴47sin =A 9.946;解析:d c b a <<<,232=a ,241=d ,473=+=+c b d a ,∴946=+++d c b a 10.49;解析:()0202312023100100100<-+=-kkkkkk C C a ,依题意k 为奇数,∴kk -<10020232023,k k -<100,解得50<k ,∴49max =k 11.4140arccos;解析:所消耗的总体力()θθθθsin cos 41.4sin cos 025.14-=-=y ,()0sin cos 1.44sin cos cos 41.4sin 4222=-=--='θθθθθθy ,解得4140cos =θ,∴4140arccos=θ12.9;解析:以A 为尖,若ABC 为正四棱锥的侧面,有两种情况,若ABC 为正四棱锥的对角面,有一种情况,共三种情况;同理,以C B ,为尖,也各有三种情况,∴共9种二、选择题15.解析:1=a 时,A 可能;5.1=a 时,B 可能;2=a 时,C 可能;D 选项,若0<S ,则π>a 2,若0>t ,则[]a a 3,2的区间长度π<a ,同时02sin >a 且03sin >a ,所以()π,02∈a 且()π,03∈a ,与前面的π>a 2矛盾,故D 不可能.16.解析:(1)∵椭圆是封闭的,∴总可以找到满足题意的M 点;(2)∵点P 的任意性,∴+∞→maxPM,∵minQM是固定的,∴无法对任意的Γ∈P ,都存在Γ∈Q 使得1=⋅QM PM .三、解答题17.解:(1)取CD 中点E ,连接E D 1,E D B A 11∥,∴111D DCC B A 平面∥;(2)由题意可得,底面积为9,∴1341==BD AA ,,A 到BD 的距离1361332=⨯=d ,3132tan 1==d AA θ,∴3132arctan =θ,即二面角C BD A --1的大小为3132arctan.18.解:(1)当0=a 时,()12++=++=x cx x c x x x f ,∵x c x y +=为奇函数,∴()1++=xcx x f 不为奇函数,故不存在实数c ,使得()x f 为奇函数(2)()31231=+++=aca f ,∴1=c ,则()()01132=++++=ax x a x x f 即()01132=+++x a x ,∴()04132>-+=∆a 且两根之和()013<+-a ,∴31>a ,若0=+a x 即a x -=是方程()01132=+++x a x 的解,得21=a 或1-=a ,故实数a 的取值范围为31>a 且21≠a .13141516ACDB19.解:(1)()512532=+=B P ,()()()51282=+=⋂=A P B A P A B P ,()522528=+=A P ,()()()B P A P B A P ⋅==⋂252,∴事件A 和事件B 独立.(2)外观和内饰均为同色的概率15049225232221228=+++C C C C C ,外观和内饰都异色的概率25415024225121121318==+C C C C C ,仅外观或仅内饰同色的概率15077225131211218131121218=+++C C C C C C C C C .∴X 的分布列为⎪⎪⎪⎭⎫⎝⎛1507715049254150300600,期望为2711507715015049300254600=⨯+⨯+⨯(元)20.解:(1)准线为1-=x ,∴2=A x ,∴22==A y a ;(2)()4,4A ,设()0,b B ,线段AB 的中点为⎪⎭⎫⎝⎛+2,24b ,∴()b +=424,解得2-=b ,即()0,2-B ,∴直线AB 为0432=+-y x ,原点O 到AB 的距离13134134==d .(3)设⎪⎪⎭⎫ ⎝⎛p p P ,42,∵⎪⎪⎭⎫⎝⎛a a A ,42,∴直线()04=++-ap y p a x AP :∴()p H p a ap Q ,3,123-⎪⎪⎭⎫ ⎝⎛+--,,∴412122>++=-+-=p a p p p a ap HQ ,即()()2422->-a p 对()()+∞⋃∈,,0a a p 恒成立,当2=a 时,2≠p ,()()2422->-a p 成立;当02<-a 即2<a 时,()()2422->-a p 此时20<<a ∴a 的取值范围是(]2,0.21.解:(1)()xx f 1=',在()()n n a f a ,处的切线方程为,当0=x 时,1ln -=n a y ,即1ln 1-=+n n a a ;()n nn a x a a y -=-1ln (2)作差法:()1ln 21+-=--+n n n n a a a a ,设()1ln +-=x x x g ,则()11-='xx g 令()011=-='xx g ,解得1=x ;()100<<⇒>'x x g ;()10>⇒<'x x g ,∴()()01max ==g x g ,∴()0≤x g ,即21-≤+n n a a 当1=n a 时等号成立;(3)公差1ln 111--=-=---k k k k a a a a d ,设()1ln --=x x x h ,则()11-='xx h 令()011=-='xx h ,解得1=x ;()100<<⇒>'x x h ,此时()x h 单调递增;()10>⇒<'x x h ,此时()x h 单调递减,∴()()21max -==h x h ,即()2-≤x h ,∴2-≤d ,数列递减,∵0→x 时,()-∞→x h ,+∞→x 时,()-∞→x h ,∴1ln 11--=--k k a a d 最多两解,此时2-<d ,即最多三项成等差数列,3=k .。