操作系统实验4-进程管理与控制

合集下载

操作系统实验报告进程管理

操作系统实验报告进程管理

操作系统实验报告进程管理操作系统实验报告:进程管理引言操作系统是计算机系统中的核心软件,负责管理计算机的硬件资源和提供用户与计算机之间的接口。

进程管理是操作系统的重要功能之一,它负责对计算机中运行的各个进程进行管理和调度,以保证系统的高效运行。

本实验报告将介绍进程管理的基本概念、原理和实验结果。

一、进程管理的基本概念1. 进程与线程进程是计算机中正在运行的程序的实例,它拥有独立的内存空间和执行环境。

线程是进程中的一个执行单元,多个线程可以共享同一个进程的资源。

进程和线程是操作系统中最基本的执行单位。

2. 进程状态进程在运行过程中会经历不同的状态,常见的进程状态包括就绪、运行和阻塞。

就绪状态表示进程已经准备好执行,但还没有得到处理器的分配;运行状态表示进程正在执行;阻塞状态表示进程由于某些原因无法继续执行,需要等待某些事件的发生。

3. 进程调度进程调度是操作系统中的一个重要任务,它决定了哪个进程应该获得处理器的使用权。

常见的调度算法包括先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转等。

二、进程管理的原理1. 进程控制块(PCB)PCB是操作系统中用于管理进程的数据结构,它包含了进程的各种属性和状态信息,如进程标识符、程序计数器、寄存器值等。

通过PCB,操作系统可以对进程进行管理和控制。

2. 进程创建与撤销进程的创建是指操作系统根据用户的请求创建一个新的进程。

进程的撤销是指操作系统根据某种条件或用户的请求终止一个正在运行的进程。

进程的创建和撤销是操作系统中的基本操作之一。

3. 进程同步与通信多个进程之间可能需要进行同步和通信,以实现数据共享和协作。

常见的进程同步与通信机制包括互斥锁、信号量和管道等。

三、实验结果与分析在本次实验中,我们使用了一个简单的进程管理模拟程序,模拟了进程的创建、撤销和调度过程。

通过该程序,我们可以观察到不同调度算法对系统性能的影响。

实验结果显示,先来先服务(FCFS)调度算法在一些情况下可能导致长作业等待时间过长,影响系统的响应速度。

实验四 进程和计划任务管理

实验四 进程和计划任务管理

实验四进程和计划任务管理进程和计划任务管理是计算机操作系统的核心功能之一。

无论是操作系统还是应用软件,进程和计划任务的管理都至关重要。

进程是计算机中程序执行的基本单位,每个进程都有其独立的运行环境和数据空间。

而计划任务则是计算机根据用户设置和系统需求,自动执行特定任务的能力。

在本次实验中,我们将深入了解进程和计划任务管理的基本原理,掌握常用的进程管理命令,学习计划任务的创建、修改和删除等操作。

一、实验目的1.理解进程和计划任务的概念,掌握进程的基本管理命令。

2.学会创建、修改和删除计划任务,实现自动化管理。

3.提高计算机系统的运行效率,优化系统资源分配。

二、实验环境本次实验在Windows10操作系统上进行,要求学生熟悉实验环境,掌握基本的系统操作。

三、实验内容1.进程管理(1)查看进程我们要学会查看当前系统中运行的进程。

可以使用“任务管理器”命令来查看进程。

打开命令提示符,输入“taskmgr”并回车,弹出任务管理器界面。

在“进程”标签下,可以查看当前系统中所有的进程。

(2)结束进程当某个进程异常或需要终止时,我们可以使用“taskkill”命令来结束进程。

命令格式为:“taskkill/PIDprocess-id/F”。

其中,process-id为要结束的进程ID。

例如,要结束进程ID为的进程,可以输入命令:“taskkill/PID/F”并回车。

(3)启动进程有时,我们需要启动一个已经停止的进程。

可以使用“start”命令来启动进程。

命令格式为:“start/bmand”。

其中,mand为要启动的程序命令。

例如,要启动记事本程序,可以输入命令:“start/bnotepad”并回车。

2.计划任务管理(1)创建计划任务计划任务可以帮助我们自动执行一些重复性的工作。

在Windows 系统中,可以使用“任务计划程序”来创建计划任务。

打开“任务计划程序”,“创建基本任务”,填写任务名称、描述以及触发器(何时触发任务)。

操作系统实验报告----进程管理

操作系统实验报告----进程管理

实验内容:进程管理一、实验目的1、掌握Linux中进程的创建方法及执行情况;2、加深对进程、进程树等概念的理解;3、掌握Linux中如何加载子进程自己的程序;4、掌握父进程通过创建子进程完成某项任务的方法;5.、掌握系统调用exit()和_exit()调用的使用。

6、分析进程竞争资源的现象,学习解决进程互斥的方法;进一步认识并发执行的实质二、实验内容(一)进程的创建1、编写一段程序,使用系统调用fork( )创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符。

#include<stdio.h>main(){int p,x;p=fork();if(p>0){x=fork();if(x>0)printf("father\n");elseprintf("child2");}elseprintf("child1");}输出结果:child1child2father2、运行以下程序,分析程序执行过程中产生的进程情况。

#include <stdio.h>main(){int p,x;p=fork();if (p>0)fork();else{fork();fork();}sleep(15);}实验步骤:编译连接gcc –o forktree forktree.c后台运行./forktree &使用pstree –h 查看进程树运行结果:├─gnom e-terminal─┬─bash─┬─forktree─┬─forktree─┬─forkt ree───forktree││││└─forktree│││└─forktree││└─pstree 分析:程序运行,系统首先创建一个进程forktree,执行到p=fork()创建一个子进程forktree,子进程获得处理机优先执行,父进程等待;执行else,当执行到第一个fork()函数时,子进程创建了一个进程forktree,称之为孙进程,孙进程获得处理机往下执行,子进程等待;执行到第二个fork()函数时,孙进程又创建一个进程forktree,称之为重孙进程,重孙进程很快执行完,将处理机还给孙进程,孙进程很快执行完,将处理机还给子进程;子进程继续往下执行,执行到第二个fork()函数,又创建一个进程forktree,称之为第二孙进程,并获得处理机执行,此进程很快执行完,将处理机还给子进程,子进程也很快执行完,将处理机还给父进程,父进程P>0执行if语句,运行fork()函数,又创建一个进程forktree,称之为第二子进程,此进程获得处理机执行很快运行完,将处理机还给父进程,父进程运行sleep(15)语句,休眠15秒,用pstree命令查询进程树。

操作系统进程管理实验报告

操作系统进程管理实验报告

操作系统进程管理实验报告一、引言在现代计算机科学中,操作系统的进程管理是确保系统高效运行的关键环节。

本实验旨在通过观察和分析操作系统的进程管理行为,深入理解进程的创建、运行和终止过程,以及操作系统如何对进程进行调度和资源分配。

二、实验目标1、理解进程的基本概念、进程状态及转换。

2、掌握进程的创建、终止和调度方法。

3、观察和分析进程在运行过程中的资源消耗和调度行为。

4、分析操作系统对进程的资源分配和调度策略对系统性能的影响。

三、实验环境与工具本实验在Linux操作系统上进行,使用GNU/Linux环境下的工具进行进程的创建、监控和调度。

四、实验步骤与记录1、创建进程:使用shell命令“fork”创建一个新的进程。

记录下父进程和子进程的PID,以及它们在内存中的状态。

2、进程状态观察:使用“ps”命令查看当前运行进程的状态,包括进程的PID、运行时间、CPU使用率等。

同时,使用“top”命令实时监控系统的CPU、内存等资源的使用情况。

3、进程调度:在“crontab”中设置定时任务,观察系统如何根据预设的调度策略分配CPU资源给各个进程。

4、资源分配:通过修改进程的优先级(使用“nice”命令),观察系统如何调整资源分配策略。

5、终止进程:使用“kill”命令终止一个进程,并观察系统如何处理该进程占用的资源。

五、实验结果与分析1、创建进程:通过“fork”系统调用,成功创建了一个新的进程,并获取了父进程和子进程的PID。

在内存中,父进程和子进程的状态分别为“running”和“ready”。

2、进程状态观察:使用“ps”命令可以看到父进程和子进程的状态均为“running”,同时显示了它们的CPU使用率和运行时间等信息。

通过“top”命令,可以实时监控系统的CPU、内存等资源的使用情况,为进一步分析提供了数据支持。

3、进程调度:在“crontab”中设置定时任务后,系统会根据预设的调度策略以及各个进程的运行状态,动态地分配CPU资源给各个进程。

操作系统进程管理实验报告

操作系统进程管理实验报告

操作系统进程管理实验报告操作系统进程管理实验报告引言:操作系统是计算机系统中最核心的软件之一,它负责管理计算机硬件和软件资源,提供良好的用户体验和高效的计算服务。

其中,进程管理是操作系统的重要功能之一,它负责管理和调度计算机中的各个进程,确保它们能够有序地运行,并且能够合理地利用计算机资源。

本实验旨在通过实际操作,深入了解操作系统的进程管理机制,并通过编写简单的进程管理程序,加深对进程管理的理解。

一、实验目的本实验的主要目的是通过编写简单的进程管理程序,加深对操作系统进程管理机制的理解。

具体来说,我们将实现以下功能:1. 创建进程:能够创建新的进程,并为其分配资源。

2. 进程调度:能够根据进程的优先级和调度算法,合理地调度进程的执行顺序。

3. 进程同步:能够实现进程间的同步与互斥,避免资源竞争和死锁问题。

二、实验环境和工具本实验使用的实验环境和工具如下:1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验过程和结果1. 进程创建在实验中,我们首先实现了进程的创建功能。

通过调用操作系统提供的系统调用接口,我们能够创建新的进程,并为其分配资源。

具体的实现过程涉及到进程控制块(PCB)的创建和初始化,以及资源的分配和管理。

通过编写测试程序,我们成功创建了多个进程,并验证了进程创建功能的正确性。

2. 进程调度进程调度是操作系统中非常重要的功能之一,它决定了进程的执行顺序和时间片的分配。

在实验中,我们实现了简单的进程调度算法,采用了轮转调度算法。

通过设计合适的数据结构和算法,我们能够按照一定的优先级和时间片大小,合理地安排进程的执行顺序。

通过编写测试程序,我们验证了进程调度功能的正确性。

3. 进程同步在多进程环境下,进程间的同步与互斥是非常重要的问题。

在实验中,我们实现了进程同步功能,通过使用信号量和互斥锁,实现了进程间的同步与互斥。

通过编写测试程序,我们验证了进程同步功能的正确性,并且能够避免资源竞争和死锁问题。

操作系统原理实验4-进程控制

操作系统原理实验4-进程控制

《操作系统原理》实验报告
实验序号:4 实验项目名称:进程控制
一、实验目的及要求
1. 加深对进程信号量的理解。

2. 理解进程同步与互斥机制。

3. 掌握Linux操作系统下的进程控制编程。

二、实验设备(环境)及要求
1.虚拟机VMware Workstation、Ubuntu操作系统和C语言编程。

2.编写一段程序,使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按Ctrl C键),当捕捉到中断信号后,父进程调用kill()向两个子进程发出信号,子进程捕捉到信号后,分别输出下面信息后终止:
child process 1 is killed by parent!
child process 2 is killed by parent!
父进程等待两个子进程终止后,输出以下信息后终止:
parent process is killed!
三、实验内容与步骤
代码:
在终端上进行测试
四、实验结果与数据处理
五、分析与讨论
了解了计算机进程的管理以及signal()函数的作用。

六、教师评语成绩。

操作系统实验之进程管理实验报告

操作系统实验之进程管理实验报告

操作系统实验之进程管理实验报告一、实验目的本次操作系统实验的主要目的是深入理解进程管理的概念和原理,通过实际操作和观察,掌握进程的创建、调度、同步与互斥等关键机制。

二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019,编程语言为 C++。

三、实验内容1、进程创建使用系统提供的 API 函数创建新的进程。

观察新进程的资源使用情况和运行状态。

2、进程调度编写程序模拟不同的进程调度算法,如先来先服务(FCFS)、短作业优先(SJF)和时间片轮转(RR)。

比较不同调度算法下的平均周转时间、平均等待时间等性能指标。

3、进程同步与互斥利用信号量、互斥锁等机制实现进程之间的同步与互斥。

设计并发程序,解决生产者消费者问题、读写者问题等经典同步问题。

四、实验步骤1、进程创建实验首先,包含所需的头文件,如`<windowsh>`。

然后,定义创建进程的函数,使用`CreateProcess` 函数创建新进程,并获取进程的相关信息,如进程标识符、线程标识符等。

最后,通过查看任务管理器或其他系统工具,观察新创建进程的资源占用情况。

2、进程调度实验设计不同的调度算法函数,如`FCFSSchedule`、`SJFSchedule` 和`RRSchedule`。

在每个调度算法函数中,模拟进程的到达时间、服务时间等参数,并按照相应的算法进行进程调度。

计算每个进程的周转时间和等待时间,并求出平均周转时间和平均等待时间。

3、进程同步与互斥实验定义信号量或互斥锁变量。

在生产者消费者问题中,生产者在生产产品时获取互斥锁,生产完成后释放互斥锁并通知消费者;消费者在消费产品时获取互斥锁,消费完成后释放互斥锁。

在读写者问题中,读者在读取数据时获取共享锁,读完后释放共享锁;写者在写入数据时获取独占锁,写入完成后释放独占锁。

五、实验结果与分析1、进程创建实验结果成功创建新的进程,并能够获取到进程的相关信息。

实验进程管理实验报告

实验进程管理实验报告

一、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。

2. 进一步认识并发执行的实质,理解进程的创建、调度、同步与通信。

3. 学习使用Linux系统中的进程管理命令,掌握进程的监控、控制与优化。

二、实验环境操作系统:Linux Ubuntu 20.04实验工具:终端(Terminal)、shell命令三、实验内容1. 进程的基本概念与特性2. 进程的创建与调度3. 进程同步与通信4. 进程的监控与优化四、实验步骤1. 进程的基本概念与特性(1)通过阅读相关资料,了解进程的概念、特性和生命周期。

(2)使用shell命令查看当前系统中进程的状态,如ps、top、htop等。

2. 进程的创建与调度(1)使用fork()函数创建进程,观察父子进程之间的关系。

(2)使用exec()函数替换子进程的映像,实现进程的创建。

(3)使用wait()、waitpid()等函数等待子进程结束,控制进程执行顺序。

(4)通过修改进程优先级,观察进程调度策略的变化。

3. 进程同步与通信(1)使用互斥锁(mutex)实现进程同步,防止数据竞争。

(2)使用条件变量(condition variable)实现进程间的条件同步。

(3)使用信号量(semaphore)实现进程间的同步与通信。

(4)通过管道(pipe)、消息队列(message queue)、共享内存(shared memory)等机制实现进程间的通信。

4. 进程的监控与优化(1)使用ps、top、htop等命令监控进程的运行状态。

(2)通过调整进程优先级,优化进程的执行顺序。

(3)使用renice命令调整进程的实时性。

(4)使用nice命令调整进程的调度策略。

五、实验结果与分析1. 进程的基本概念与特性通过实验,我们了解到进程是具有一定独立功能的程序关于某个数据集合的一次运行活动,具有并发性、动态性、独立性、异步性和结构特征等特性。

2. 进程的创建与调度实验过程中,我们成功创建了多个进程,并通过修改进程优先级,观察到调度策略的变化。

操作系统实验---进程的创建与控制

操作系统实验---进程的创建与控制

实验报告实验题目姓名:学号:课程名称:操作系统实验所在学院:信息科学与工程学院专业班级:计算机任课教师:核心为fork( )完成以下操作:(1)为新进程分配一进程表项和进程标识符进入fork( )后,核心检查系统是否有足够的资源来建立一个新进程。

若资源不足,则fork( )系统调用失败;否则,核心为新进程分配一进程表项和唯一的进程标识符。

(2)检查同时运行的进程数目超过预先规定的最大数目时,fork( )系统调用失败。

(3)拷贝进程表项中的数据将父进程的当前目录和所有已打开的数据拷贝到子进程表项中,并置进程的状态为“创建”状态。

(4)子进程继承父进程的所有文件对父进程当前目录和所有已打开的文件表项中的引用计数加1。

(5)为子进程创建进程上、下文进程创建结束,设子进程状态为“内存中就绪”并返回子进程的标识符。

(6)子进程执行虽然父进程与子进程程序完全相同,但每个进程都有自己的程序计数器PC(注意子进程的注意子进程的PC 开始位置),然后根据pid 变量保存的fork( )返回值的不同,执行了不同的分支语句。

四、实验过程、步骤及内容1、编写一段程序,使用系统调用fork( )创建两个子进程。

当此程序运行时,在系统中有一个父进程和两个子进程活动。

让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。

试观察记录屏幕上的显示结果,并分析原因。

2、修改上述程序,每一个进程循环显示一句话。

子进程显示'daughter …'及'son ……',父进程显示'parent ……',观察结果,分析原因。

3、用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容4、用fork( )建立如下形式的进程树:A进程B进程C进程D进程各个进程中都打印出本身PID 和其父进程的PID,并用wait( )来控制进程执行顺序,打印出正确和期望的结果。

操作系统实验4-4实验报告

操作系统实验4-4实验报告

操作系统实验4-4实验报告一、实验目的本次操作系统实验 4-4 的目的是深入了解和掌握操作系统中进程管理的相关知识和技术,通过实际操作和观察,加深对进程调度算法、进程同步与互斥等概念的理解,并提高解决实际问题的能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。

三、实验内容1、进程调度算法的实现先来先服务(FCFS)算法短作业优先(SJF)算法时间片轮转(RR)算法优先级调度算法2、进程同步与互斥的实现使用信号量实现生产者消费者问题使用互斥锁实现哲学家进餐问题四、实验步骤1、进程调度算法的实现先来先服务(FCFS)算法设计数据结构来表示进程,包括进程ID、到达时间、服务时间等。

按照进程到达的先后顺序将它们放入就绪队列。

从就绪队列中选择第一个进程进行处理,计算其完成时间、周转时间和带权周转时间。

短作业优先(SJF)算法在设计的数据结构中增加作业长度的字段。

每次从就绪队列中选择服务时间最短的进程进行处理。

计算相关的时间指标。

时间片轮转(RR)算法设定时间片的大小。

将就绪进程按照到达时间的先后顺序放入队列。

每个进程每次获得一个时间片的执行时间,若未完成则重新放入队列末尾。

优先级调度算法为每个进程设置优先级。

按照优先级的高低从就绪队列中选择进程执行。

2、进程同步与互斥的实现生产者消费者问题创建一个共享缓冲区。

生产者进程负责向缓冲区中生产数据,消费者进程从缓冲区中消费数据。

使用信号量来控制缓冲区的满和空状态,实现进程的同步。

哲学家进餐问题模拟多个哲学家围绕一张圆桌进餐的场景。

每个哲学家需要同时获取左右两边的筷子才能进餐。

使用互斥锁来保证筷子的互斥访问,避免死锁的发生。

五、实验结果与分析1、进程调度算法的结果与分析先来先服务(FCFS)算法优点:实现简单,公平对待每个进程。

缺点:对短作业不利,平均周转时间可能较长。

短作业优先(SJF)算法优点:能有效降低平均周转时间,提高系统的吞吐量。

《操作系统原理》进程的创建与管理实验

《操作系统原理》进程的创建与管理实验

《操作系统原理》进程的创建与管理实验1.目的要求(1)加深对进程概念的理解,明确进程和程序的区别。

(2)深入了解系统如何组织进程、创建进程。

(3)进一步认识如何实现处理器调度。

2.实验内容编写程序完成单处理机系统中的进程调度,要求采用时间片轮转调度算法。

实验具体包括:首先确定进程控制块的内容,进程控制块的组成方式;然后完成进程创建原语和进程调度原语;最后编写主函数对所做工作进行测试。

3.所需实验设施设备PC、windows操作系统4.教学形式及过程演示、学生独立完成5.设计思路(1)该程序是一个简单的时间片轮转调度算法的实现。

(2)首先定义了一个进程控制块(PCB)的结构体,包含进程的名称、到达时间、需要的运行时间、剩余运行时间和当前状态等信息。

然后定义了一个创建新节点的函数createNode,用于动态分配内存并初始化节点的数据。

接着定义了一个向循环链表中插入新节点的函数insertNodes,根据用户的输入创建新节点并插入到链表末尾。

然后定义了一个打印链表的函数printList,用于输出链表中所有节点的信息。

(3)接下来是冒泡排序函数bubbleSort,按照到达时间对链表中的节点进行排序。

然后定义了一个运行函数run,根据时间片大小依次运行进程,直到所有进程都完成运行。

最后在主函数中读取用户输入的进程数量和时间片大小,创建链表并调用run函数进行进程调度。

(4)整体思路是:先创建一个空链表,然后根据用户输入的进程数量,逐个创建新节点并插入到链表末尾。

然后对链表中的节点按照到达时间进行排序。

接着按照时间片大小依次运行进程,直到所有进程都完成运行。

最后输出链表中所有节点的信息。

6.知识原理操作系统通过进程控制块(PCB)来组织和管理进程。

(1)首先,操作系统会为每个进程创建一个PCB,PCB中包含了进程的重要信息,如进程号、进程状态、程序计数器、寄存器值、内存分配情况、打开文件等。

(2)当一个进程被创建时,操作系统会为其分配一个唯一的进程号,并将进程的相关信息填充到PCB中。

操作系统实验报告4

操作系统实验报告4

操作系统实验报告4一、实验目的本次操作系统实验的目的在于深入了解和掌握操作系统中进程管理、内存管理、文件系统等核心概念和相关操作,通过实际的实验操作,增强对操作系统原理的理解和应用能力,提高解决实际问题的能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验内容与步骤(一)进程管理实验1、进程创建与终止使用 C++语言编写程序,创建多个进程,并在进程中执行不同的任务。

通过进程的标识符(PID)来监控进程的创建和终止过程。

2、进程同步与互斥设计一个生产者消费者问题的程序,使用信号量来实现进程之间的同步与互斥。

观察生产者和消费者进程在不同情况下的执行顺序和结果。

(二)内存管理实验1、内存分配与释放编写程序,使用动态内存分配函数(如`malloc` 和`free`)来分配和释放内存。

观察内存的使用情况和内存泄漏的检测。

2、内存页面置换算法实现几种常见的内存页面置换算法,如先进先出(FIFO)算法、最近最少使用(LRU)算法和最佳置换(OPT)算法。

通过模拟不同的页面访问序列,比较不同算法的性能。

(三)文件系统实验1、文件创建与读写使用 C++语言的文件操作函数,创建一个新文件,并向文件中写入数据。

从文件中读取数据,并进行数据的处理和显示。

2、文件目录操作实现对文件目录的创建、删除、遍历等操作。

观察文件目录结构的变化和文件的组织方式。

四、实验结果与分析(一)进程管理实验结果与分析1、进程创建与终止在实验中,成功创建了多个进程,并通过控制台输出观察到了每个进程的 PID 和执行状态。

可以看到,进程的创建和终止是按照程序的逻辑顺序进行的,操作系统能够有效地管理进程的生命周期。

2、进程同步与互斥在生产者消费者问题的实验中,通过信号量的控制,生产者和消费者进程能够正确地实现同步与互斥。

当缓冲区为空时,消费者进程等待;当缓冲区已满时,生产者进程等待。

进程控制实验报告

进程控制实验报告

进程控制实验报告进程控制实验报告一、实验目的本实验旨在通过实际操作,深入理解进程控制的概念、原理和实现方式,掌握进程控制的技巧和方法,提升解决实际问题的能力。

二、实验原理进程控制是操作系统内核的重要功能之一,它负责协调和管理系统中多个进程的执行顺序和资源分配。

进程控制的主要任务包括创建和终止进程、进程切换和进程同步等。

本实验将通过具体的操作,学习和体验进程控制的过程和细节。

三、实验步骤1.实验准备(1)了解和熟悉实验室环境,包括计算机硬件配置、操作系统版本等信息。

(2)准备实验材料,包括相关文档、软件工具等。

(3)明确实验任务和目的,制定实验计划。

2.创建进程(1)打开实验环境,启动操作系统。

(2)使用编程语言(如C语言)编写一个简单的程序,该程序将创建一个新的进程。

(3)编译并运行程序,观察和记录进程的创建过程。

3.进程切换(1)编写一个程序,该程序将在两个进程之间进行切换。

(2)运行程序,观察和记录进程切换的过程和效果。

4.进程同步(1)使用信号量或其他同步机制实现两个进程的同步。

(2)运行程序,观察和记录进程同步的过程和效果。

5.进程终止(1)编写一个程序,该程序将终止一个指定的进程。

(2)运行程序,观察和记录进程终止的过程和效果。

6.实验总结与报告编写(1)总结实验过程和结果,梳理实验中的问题和解决方法。

(2)编写实验报告,包括实验目的、原理、步骤、结果分析等。

四、实验结果与分析通过本次实验,我们成功地创建了一个新的进程,并实现了进程之间的切换、同步和终止。

在实验过程中,我们深入理解了进程控制的概念、原理和实现方式,掌握了进程控制的技巧和方法。

同时,我们也遇到了一些问题,如进程创建失败、进程切换不成功等,但通过仔细分析问题原因并采取相应的解决方法,最终成功解决了这些问题。

通过本次实验,我们不仅学到了专业知识,也提高了解决实际问题的能力。

五、实验结论与建议本次实验让我们更加深入地理解了进程控制的相关知识,并掌握了进程控制的基本操作方法。

进程的控制实验报告

进程的控制实验报告

课程名称:操作系统实验名称:进程的控制班级:092017姓名:江波同组人:___________________________指导教师评定:_____________________ 签名:__________________________一、实验目的:1.熟悉Linux环境2.知道如何在Linux环境下如何编写C语言程序3.知道如何在Linux环境下进程是如何被控制和管理的二、实验要求:在Linux环境下用记事本编写如下代码,并对其进行编译和运行,观察执行时屏幕上出现的现象,并分析其原因,然后再对代码进行适当的修改再观察执行时的现象并分析其原因。

#include <stdio.h>main (){int p1 , p2 , i;while ((p1= fork ()) < 0 ) ;if( p1 == 0 )for (i = 0 ; i< 50 ; i++)printf (“child %d\n” , i) ;else{ while (( p2 = fork ()) <0 ) ;if ( p 2 == 0 )for ( i= 0 ; i < 50 ;i++ )printf ( “son%d \n ”, I )elsefor ( i = 0 ;i < 50 ;i++ )printf (“daughter %d \n ”, i ) ;}}三、实验步骤:(1)登入Linux虚拟机。

(2)在虚拟机环境下用记事本编写上面代码,保存完之后在终端里面对它进行调试、编译和运行。

(3)观察运行结果,得出结论。

(4)再修改部分代码并调试、编译、运行观察结果。

四、实验结果:Child0Child1Child2Child4Child5Child6Child7Child8Child9...Son0Son1Son2Child3Son3Son5Son6Son7Son8Son9...Daughter0Daughter1Daughter2Son4Daughter3Daughter4Daughter5Daughter6Daughter7Daughter8Daughter9...五、实验感想:由于函数printf()输出的字符串之间不会被中断,因此,字符串内部的字符顺序输出时不变。

操作系统进程实验

操作系统进程实验

实验一、进程管理(3学时、必做)一、实验目的通过实验使学生进一步了解进程、进程状态、进程控制等基本概念。

基本能达到下列具体的目标:1、理解进程 PCB 的概念,以及 PCB 如何实现、如何组织以及管理。

2、复习数据结构中如何对链的操作,包括建链、删除、插入结点等,来实现进程的管理。

二、实验内容1、建立一个结点,即 PCB 块包括用户标识域、状态域(执行、等待、就绪)、 link 域。

2、建立三个队列(执行队列、就绪队列、等待队列)。

3、根据进程状态转换实现对三个队列的具体操作。

具体的驱动可以采用时间片算法或手动调度的形式完成三个状态之间的转换4、用 switch 选择语句选择状态。

5、按照自己的设定能完成所有的状态转换的运行(包括创建和运行结束)。

三、实验步骤1、复习进程管理三状态模型部分内容。

2、预习C++Builder或VC++、Delphi、JBuilder线程编程。

3、运行示例程序,进一步明确实验要求。

可以采用控制台模式或窗口模式。

4、上机编程、调试程序。

5、完成实验报告。

实验1的附加资料1、控制台模式进程管理的使用说明图1. 输入结束字符本程序是输入一个字符串,每个作为一个进程的名称,以指定的字符为结束字符,比较容易实现,其实可以在程序运行期间任意创建进程才是最好的。

图2. 输入进程名称一次性的创建了多个进程,进入三状态模型,按照要求进行状态之间的转移,只要输入1、2、3、4、5数字,按回车即可。

图3. 进程管理程序的主界面2、窗口模式的进程管理图4. 简单进程管理的主界面创建进程进入就绪队列,其排序可以按照FIFO的形式,也可以按照优先级的形式,为此需要在PCB节点中增加优先级数。

进程状态的转化在三个队列之间实现,输入进程的名称,选择合适的功能按钮。

如果不符合状态转换的规则,则弹出错误的对话框,说明原因。

3、基于时间片调度的进程管理图5. 基于时间片的进程管理主界面创建一个进程,给出工作量,每个进程所占的时间片大小为20个单位,实现就绪状态到执行状态之间的转化。

进程管理_实验报告

进程管理_实验报告

一、实验目的1. 理解Linux操作系统中进程的概念,明确进程与程序的区别。

2. 掌握Linux下进程的创建、调度、同步与通信等基本操作。

3. 学会使用Linux命令查看和管理进程。

二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:gcc、gdb三、实验内容1. 进程创建与调度2. 进程同步与互斥3. 进程通信4. 进程控制四、实验步骤1. 进程创建与调度(1)编写一个C程序,创建一个子进程,并在父进程中打印出子进程的进程标识符(PID)。

```c#include <stdio.h>#include <unistd.h>#include <sys/types.h>int main() {pid_t pid;pid = fork(); // 创建子进程if (pid == 0) { // 子进程printf("子进程的PID:%d\n", getpid());} else if (pid > 0) { // 父进程printf("父进程的PID:%d,子进程的PID:%d\n", getpid(), pid); } else {printf("创建子进程失败\n");}return 0;}```(2)编译并运行程序,观察结果。

2. 进程同步与互斥(1)编写一个C程序,使用互斥锁(mutex)实现两个进程的同步。

```c#include <stdio.h>#include <stdlib.h>#include <pthread.h>pthread_mutex_t mutex;void thread_func(void arg) {pthread_mutex_lock(&mutex); // 获取互斥锁printf("线程 %ld 获取了互斥锁\n", pthread_self());sleep(1);pthread_mutex_unlock(&mutex); // 释放互斥锁return NULL;}int main() {pthread_t thread1, thread2;pthread_mutex_init(&mutex, NULL); // 初始化互斥锁pthread_create(&thread1, NULL, thread_func, (void )1);pthread_create(&thread2, NULL, thread_func, (void )2);pthread_join(thread1, NULL);pthread_join(thread2, NULL);pthread_mutex_destroy(&mutex); // 销毁互斥锁return 0;}```(2)编译并运行程序,观察结果。

电大操作系统实验报告进程管理实验

电大操作系统实验报告进程管理实验

五、实验环境:(说明:列出本实验使用到的软件平台和工具,如Linux系统版本,shell类型,vi编辑工具等。

)在虚拟机中的Linux RedHat Linux 9六、实验步骤和结果:(说明:详细给出实验步骤和结果。

实验步骤不一定与《实验指南》中的完全一致。

对实验结果,除文字说明外,对一些关键结果,需要给出一些界面截图。

)1、输入ps 命令PS命令用来报告系统当前的进程状态。

2、输入ps –e命令可以显示系统中运行的所有进程,包括系统进程和用户进程。

3、输入ps –f命令可以得到进程详细信息。

4、输入ps –el 命令显示进程环境变量列出长表。

二、进程控制1、后台进程(1)$grep “注册用户名” /etc/passwd > /tmp/abc &(2)ps –p pid2、作业控制(1)进程休眠60秒Sleep 60 &(2)进程休眠30秒Sleep 30 &(3)查看进程状态Jobs(4)把睡眠30秒的sleep命令放在前台执行fg %2(5)当提示符出现后,再查看进程状态jobs三、发送中断信号(1)后台运行sleep命令$sleep 120 &(2)查看sleep进程的状态$ps –p pid(3)终止sleep命令$kill -9 pid(4)再查看sleep进程的状态$ps –p pid四、减轻系统负载【at命令】让一个命令在指定的时间运行,并把结果输出在一个文件中例:at time>date>who><ctrl>dat 命令会把已执行命令的标准输出发送到用户的邮箱,用cat命令查看邮箱内容,显示结果。

进程的管理和控制实验报告

进程的管理和控制实验报告

进程的管理和控制实验报告实验目的:本实验旨在了解进程的管理和控制,掌握进程的创建、终止和状态转换等操作,并通过实际的代码编写和运行实验,加深对进程管理的理解。

实验原理:在操作系统中,进程是执行中的程序的实例。

进程管理涉及到创建新进程、终止现有进程、管理进程的状态等操作。

进程的创建:进程的创建可以通过系统调用fork()来完成。

fork()系统调用会创建一个新的进程,称为子进程,子进程将继承父进程的代码、数据和资源。

通过fork()的返回值来区分父子进程,父进程返回子进程的进程ID,子进程返回0。

进程的终止:进程的终止可以通过系统调用exit()来完成。

exit()系统调用会终止当前进程的执行,并返回一个退出状态码。

一个进程的终止也可以由其他进程通过发送终止信号来实现。

进程的状态转换:进程在执行过程中会经历不同的状态,包括就绪态、运行态、阻塞态等。

进程的状态转换可以通过系统调用来实现。

例如,当进程被阻塞时,可以通过系统调用sleep()将其状态转换为阻塞态,当等待的事件发生时,再将其状态转换为就绪态。

实验步骤:1. 编写一个简单的程序,包含进程的创建、终止和状态转换等操作。

2. 使用fork()系统调用创建子进程,并在子进程中执行一段代码。

3. 在父进程中对子进程进行管理,包括等待子进程的终止和获取子进程的退出状态码。

4. 在子进程中通过exit()系统调用终止进程的执行。

5. 在父进程中通过wait()系统调用等待子进程的终止,并获取子进程的退出状态码。

6. 在子进程中通过系统调用sleep()将进程的状态转换为阻塞态。

7. 在父进程中发送终止信号给子进程,观察子进程的终止情况。

实验结果与分析:经过实验,我们成功地创建了子进程并在子进程中执行了一段代码。

父进程能够正确地等待子进程的终止并获取子进程的退出状态码。

在子进程中使用sleep()系统调用后,观察到子进程的状态转换为阻塞态。

当父进程发送终止信号给子进程时,子进程能够正确地终止执行。

操作系统进程控制实验报告

操作系统进程控制实验报告

操作系统进程控制实验报告一、实验目的操作系统进程控制是操作系统中的重要概念和核心功能之一。

本次实验的目的在于深入理解操作系统中进程的概念、状态及其转换,掌握进程创建、终止、阻塞和唤醒等操作的实现原理和方法,通过实际编程和调试,观察进程的行为和特性,从而提高对操作系统原理的理解和应用能力。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验原理(一)进程的概念进程是操作系统中进行资源分配和调度的基本单位,它包含了程序代码、数据、堆栈等资源。

进程具有独立性、动态性和并发性等特点。

(二)进程的状态进程的状态通常包括就绪态、运行态和阻塞态。

就绪态表示进程已具备运行条件,等待被调度;运行态表示进程正在 CPU 上执行;阻塞态表示进程因等待某个事件而暂停执行。

(三)进程控制的基本操作1、进程创建:通过系统调用创建新的进程,为其分配资源并初始化。

2、进程终止:当进程完成任务或出现异常时,结束其执行并回收资源。

3、进程阻塞:进程在等待某个事件时,主动进入阻塞态。

4、进程唤醒:当等待的事件发生时,将阻塞的进程唤醒,使其进入就绪态。

四、实验内容与步骤(一)进程创建1、编写 C++程序,使用系统提供的函数创建新的进程。

2、在新进程中执行特定的任务,例如打印输出信息。

```cppinclude <windowsh>include <iostream>int main(){STARTUPINFO si;PROCESS_INFORMATION pi;ZeroMemory(&si, sizeof(si));sicb = sizeof(si);ZeroMemory(&pi, sizeof(pi));//创建新进程if (!CreateProcess(NULL, //应用程序名称"C:\\Path\\To\\Your\\ChildProcessexe",//命令行参数NULL, NULL, FALSE, 0, NULL, NULL, &si, &pi)){std::cerr <<"CreateProcess failed Error code: "<<GetLastError()<< std::endl;return 1;}//等待子进程结束WaitForSingleObject(pihProcess, INFINITE);//关闭进程和线程句柄CloseHandle(pihProcess);CloseHandle(pihThread);return 0;}```(二)进程终止1、在创建的进程中设置条件,当满足条件时主动终止进程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章进程管理与控制一、Linux进程管理1、fork()创建一个新的子进程。

其子进程会复制父进程的数据与堆栈空间,并继承父进程的用户代码、组代码、环境变量、已打开的文件代码、工作目录和资源限制。

系统调用格式:int fork()如果Fork成功则在父进程会返回新建立的子进程代码(PID),而在新建立的子进程中则返回0。

如果fork失败则直接返回-1。

2、wait()等待子进程运行结束。

如果子进程没有完成,父进程一直等待。

wait( )将调用进程挂起,直至其子进程因暂停或终止而发来软中断信号为止。

如果在wait( )前已有子进程暂停或终止,则调用进程做适当处理后便返回。

系统调用格式:int wait(int *status)其中,status是用户空间的地址。

它的低8位反应子进程状态,为0表示子进程正常结束,非0则表示出现了各种各样的问题;高8位则带回了exit( )的返回值。

exit( )返回值由系统给出。

核心对wait( )作以下处理:(1)首先查找调用进程是否有子进程,若无,则返回出错码;(2)若找到一处于“僵死状态”的子进程,则将子进程的执行时间加到父进程的执行时间上,并释放子进程的进程表项;(3)若未找到处于“僵死状态”的子进程,则调用进程便在可被中断的优先级上睡眠,等待其子进程发来软中断信号时被唤醒。

3、exit( )终止进程的执行。

系统调用格式:void exit(int status)其中,status是返回给父进程的一个整数,以备查考。

为了及时回收进程所占用的资源并减少父进程的干预,UNIX/LINUX利用exit( )来实现进程的自我终止,通常父进程在创建子进程时,应在进程的末尾安排一条exit( ),使子进程自我终止。

exit(0)表示进程正常终止,exit(1)表示进程运行有错,异常终止。

如果调用进程在执行exit( )时,其父进程正在等待它的终止,则父进程可立即得到其返回的整数。

核心须为exit( )完成以下操作:(1)关闭软中断(2)回收资源(3)写记帐信息(4)置进程为“僵死状态”4、exec()函数族fork( )只是将父进程的用户级上下文拷贝到新进程中,而exec( )系列可以将一个可执行的二进制文件覆盖在新进程的用户级上下文的存储空间上,以更改新进程的用户级上下文。

exec( )系列中的系统调用都完成相同的功能,它们把一个新程序装入内存,来改变调用进程的执行代码,从而形成新进程。

如果exec( )调用成功,调用进程将被覆盖,然后从新程序的入口开始执行,这样就产生了一个新进程,新进程的进程标识符id 与调用进程相同。

exec( )没有建立一个与调用进程并发的子进程,而是用新进程取代了原来进程。

所以exec( )调用成功后,没有任何数据返回。

exec( )系列系统调用在UNIX 系统库unistd.h中,共有execl、execlp、execle、execv、execvp五个,其基本功能相同,只是以不同的方式来给出参数。

(1)execl( )int execl(char *path, char * arg0, char * arg1,... char *argn,0);种是直接给出参数的指针(2)execv( )int execv(char *path, char *argv);给出指向参数表的指针(3) execlp( )int execlp(const char * file,const char * arg,...,(char *)0);execlp()会从PATH 环境变量所指的目录中查找符合参数file的文件名,找到后便执行该文件,然后将第二个以后的参数当做该文件的argv[0]、argv[1]……,最后一个参数必须用空指针(NULL)作结束。

二、Linux信号机制(一)信号的基本概念每个信号都对应一个正整数常量(称为signal number,即信号编号。

定义在系统头文件<signal.h>中),代表同一用户的诸进程之间传送事先约定的信息的类型,用于通知某进程发生了某异常事件。

每个进程在运行时,都要通过信号机制来检查是否有信号到达。

若有,便中断正在执行的程序,转向与该信号相对应的处理程序,以完成对该事件的处理;处理结束后再返回到原来的断点继续执行。

实质上,信号机制是对中断机制的一种模拟,故在早期的UNIX版本中又把它称为软中断。

⑴信号与中断的相似点:①采用了相同的异步通信方式;②当检测出有信号或中断请求时,都暂停正在执行的程序而转去执行相应的处理程序;③都在处理完毕后返回到原来的断点;④对信号或中断都可进行屏蔽。

⑵信号与中断的区别:①中断有优先级,而信号没有优先级,所有的信号都是平等的;②信号处理程序是在用户态下运行的,而中断处理程序是在核心态下运行;③中断响应是及时的,而信号响应通常都有较大的时间延迟。

⑶信号机制具有以下三方面的功能:①发送信号。

发送信号的程序用系统调用kill( )实现;②预置对信号的处理方式。

接收信号的程序用signal( )来实现对处理方式的预置;③收受信号的进程按事先的规定完成对相应事件的处理。

2、信号的发送信号的发送,是指由发送进程把信号送到指定进程的信号域的某一位上。

如果目标进程正在一个可被中断的优先级上睡眠,核心便将它唤醒,发送进程就此结束。

一个进程可能在其信号域中有多个位被置位,代表有多种类型的信号到达,但对于一类信号,进程却只能记住其中的某一个。

进程用kill( )向一个进程或一组进程发送一个信号。

3、对信号的处理当一个进程要进入或退出一个低优先级睡眠状态时,或一个进程即将从核心态返回用户态时,核心都要检查该进程是否已收到软中断。

当进程处于核心态时,即使收到软中断也不予理睬;只有当它返回到用户态后,才处理软中断信号。

对软中断信号的处理分三种情况进行:①如果进程收到的软中断是一个已决定要忽略的信号(function=1),进程不做任何处理便立即返回;②进程收到软中断后便退出(function=0);③执行用户设置的软中断处理程序。

(二)所涉及的中断调用1、kill( )系统调用格式int kill(pid,sig)参数定义int pid,sig;其中,pid是一个或一组进程的标识符,参数sig是要发送的软中断信号。

(1)pid>0时,核心将信号发送给进程pid。

(2)pid=0时,核心将信号发送给与发送进程同组的所有进程。

(3)pid=-1时,核心将信号发送给所有用户标识符真正等于发送进程的有效用户标识号的进程。

2、signal( )预置对信号的处理方式,允许调用进程控制软中断信号。

系统调用格式:signal(int sig, void (*function) ( ))头文件为:#include <signal.h>参数定义sig:用于指定信号的类型,sig为0则表示没有收到任何信号,余者如下表:信号信号名信号意义缺省处理值01 SIGHUP 进程的控制终端和控制进程已结束终止进程02 SIGINT 用户键入了Ctrl-C键终止进程03 SIGQUIT 从键盘来的终止(Quit)信号终止进程、Core转储04 SIGILL 进程执行了非法指令和企图执行数据段终止进程、Core转储05 SIGTRAP 跟踪陷阱(trace trap),执行Trap执行跟踪代码终止进程、Core转储的执行06 SIGIOT 进程发生错误并调用abort 终止进程、Core转储07 SIGEMT 进程访问非法地址、地址对齐出错等终止进程、Core转储08 SIGFPE 浮点运算错误、溢出、除数为0等终止进程、Core转储09 SIGKILL 强制进程终止(此信号不能屏蔽)终止进程(不能忽视)10 SIGUSR1 保留给用户自行定义终止进程11 SIGSEGV 进程访问内存越界,和无权限访问终止进程、Core转储12 SIGUSR2 保留给用户自行定义信号终止进程13 SIGPIPE 进程向无读者的管道进行写操作终止进程14 SIGALRM 时钟定时信号。

当某进程希望在某时间后接收终止进程信号时发此信号15 SIGTERM 进程结束信号,由kill命令产生终止进程16 SIGSTKFLT 进程发现堆栈溢出错误终止进程、Core转储17 SIGCHLD 子进程终止信号忽视18 SIGCONT 让暂停的进程继续执行进程暂停时继续运行19 SIGSTOP 暂停(Stop)进程的执行暂停进程20 SIGTSTP 用户键入暂停(Ctrl-Z)暂停进程21 SIGTTIN 后台作业要从用户终端(stdin)读数据暂停进程22 SIGTTOU 后台作业要写用户终端暂停进程23 SIGURG 套接字(socket)有“紧急”数据到达忽视24 SIGXCPU 进程使用CPU超时终止进程、Core转储25 SIGXFSZ 进程处理文件超长终止进程、Core转储26 SIGV ALRM 虚拟时钟信号(计算进程占用CPU时间)终止进程27 SIGPROF 类似SIGALRM/SIGV ALRM(计算进程占用终止进程CPU世界以及系统调用的时间)28 SIGWINCH 窗口大小已改变忽视29 SIGIO I/O准备就绪,可以进行输入输出操作忽视30 SIGPWR 系统电源失效终止进程31 SIGUNUSED 终止进程function:在该进程中的一个函数地址,在核心返回用户态时,它以软中断信号的序号作为参数调用该函数,对除了信号SIGKILL,SIGTRAP和SIGPWR以外的信号,核心自动地重新设置软中断信号处理程序的值为SIG_DFL,一个进程不能捕获SIGKILL信号。

function 的解释如下:(1)function=1时,进程对sig类信号不予理睬,亦即屏蔽了该类信号;(2)function=0时,缺省值,进程在收到sig信号后应终止自己;(3)function为非0,非1类整数时,function的值即作为信号处理程序的指针。

三、Pthread线程管理与控制API(1) 线程创建和启动函数函数说明:#include <pthread.h>int pthread_create(pthread_t *thread, pthread_attr *attr,void *(*start_routine)(void *), void *arg);功能:创建线程和启动线程,与进程管理函数fork()的功能相似参数说明:thread:创建线程成功时,在该指针致祥的变量中写入新线程的线程标识符;attr: 线程属性参数指针,可以为NULL;start_routine:一个函数的地址指针,线程创建成功后,新线程执行该函数指针所指向的函数的代码;arg:传递给线程启动函数的参数。

相关文档
最新文档