数字图像处理实验四(噪声添加)

合集下载

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。

二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。

2. 运行图像处理程序,并保存处理结果图像。

三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。

数字图像处理实验4 冈萨雷斯

数字图像处理实验4  冈萨雷斯

实验四图像的滤波处理与图像空间变换一、实验目的:1、了解MATLAB 工具箱中滤波器2、掌握用滤波方式去除图像噪声算法3、学会对图像的空间变换二、实验内容1、生成含有噪声的图像分别用imnoise(),imnoise2(),imnoise3()函数生成含有噪声的图像,改变相应参数,观察图像变化,理解各参数的作用。

Imnoise2()的使用:在图像‘Fig0704(Vase).tif.tif’中加入均值为0,标准差为0.1 的高斯噪声。

显示如下图。

2、噪声估计用roipoly()、histroi()、statmoments()等函数进行图像噪声参数估计。

显示图如下。

3、设计陷波滤波器(Notch filter)利用以下公式编程实现陷波滤波器。

显示图类似如下:10.80.60.40.26060404020200 010.80.60.40.26060404020200 04、图像的空间变换用测试图像(C = checkerboard())产生一个指定形状的变形图像,学习使用函数:maketform(),imtransform(),产生类似下列各图。

i=imread('Fig0704(Vase).tif.tif');g1=imnoise(i,'gaussian',0,0.01);n2=imnoise2('gaussian',512,512,0,0.1); g2=im2double(i)+n2;figure,imshow(g2);[b,c,r]=roipoly(g2);[p,npix]=histroi(i,c,r);[v,unv]=statmoments(p,2);figure,bar(p,1);c=checkerboard(8);figure,imshow(pixeldup(c,8),[]);t1=[1 0 0;1 1 0;0 0 1];tform1=maketform('affine',t1);c1=imtransform(c,tform1,'Fillvalue',0.5); figure,imshow(pixeldup(c1,4),[]);t2=[1 1 0;0 1 0;0 0 1];tform2=maketform('affine',t2);c2=imtransform(c,tform2,'Fillvalue',0.5); figure,imshow(pixeldup(c2,4),[]);。

实验四 图像增强

实验四 图像增强

信息工程学院实验报告课程名称:数字图像处理Array实验项目名称:实验四图像增强实验时间:班级:姓名:学号:一、实验目的1.了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。

2. 掌握图像空域增强算法的基本原理。

3. 掌握图像空域增强的实际应用及MATLAB实现。

4. 掌握频域滤波的概念及方法。

5. 熟练掌握频域空间的各类滤波器。

6.掌握怎样利用傅立叶变换进行频域滤波。

7. 掌握图像频域增强增强的实际应用及MATLAB实现。

二、实验步骤及结果分析1. 基于幂次变换的图像增强程序代码:clear all;close all;I{1}=double(imread('fig534b.tif'));I{1}=I{1}/255;figure,subplot(2,4,1);imshow(I{1},[]);hold onI{2}=double(imread('room.tif'));I{2}=I{2}/255;subplot(2,4,5);imshow(I{2},[]);hold onfor m=1:2Index=0;for lemta=[0.5 5]Index=Index+1;F{m}{Index}=I{m}.^lemta;subplot(2,4,(m-1)*4+Index+1),imshow(F{m}{Index},[])endend执行结果:图1 幂次变换增强结果实验结果分析:由实验结果可知,当r<1时,黑色区域被扩展,变的清晰;当r>1时,黑色区域被压缩,变的几乎不可见。

2.直方图规定化处理程序代码:clear allclcclose all%0.读图像I=double(imread('lena.tiff'));subplot(2,4,1);imshow(I,[]);title('原图')N=32;Hist_image=hist(I(:),N);Hist_image=Hist_image/sum(Hist_image);Hist_image_cumulation=cumsum(Hist_image);%累计直方图subplot(245);stem(0:N-1,Hist_image);title('原直方图');%1.设计目标直方图Index=0:N-1;%正态分布直方图Hist{1}=exp(-(Index-N/2).^2/N);Hist{1}=Hist{1}/sum(Hist{1});Hist_cumulation{1}=cumsum(Hist{1});subplot(242);stem([0:N-1],Hist{1});title('规定化直方图1');%倒三角形状直方图Hist{2}=abs(2*N-1-2*Index);Hist{2}=Hist{2}/sum(Hist{2});Hist_cumulation{2}=cumsum(Hist{2});subplot(246);stem(0:N-1,Hist{2});title('规定化直方图2');%2. 规定化处理Project{1}=zeros(N);Project{2}=zeros(N);Hist_result{1}=zeros(N);Hist_result{2}=zeros(N);for m=1:2Image=I;%SML处理(SML,Single Mapping Law单映射规则for k=1:NTemp=abs(Hist_image_cumulation(k)-Hist_cumulation{m});[Temp1,Project{m}(k)]=min(Temp);end%2.2 变换后直方图for k=1:NTemp=find(Project{m}==k);if isempty(Temp)Hist_result{m}(k)=0;elseHist_result{m}(k)=sum(Hist_image(T emp));endendsubplot(2,4,(m-1)*4+3);stem(0:N-1,Hist_result{m}); title(['变换后的直方图',num2str(m)]);%2.3结果图Step=256/N;for K=1:NIndex=find(I>=Step*(k-1)&I<Step*k) ;Image(Index)=Project{m}(k);endsubplot(2,4,(m-1)*4+4),imshow(Imag e,[]);title(['变换后的结果图',num2str(m)]);end执行结果:原图规定化直方图2变换后的直方图1变换后的结果图1变换后的直方图2变换后的结果图2图2 直方图规定化实验结果分析:由实验结果可知,采用直方图规定化技术后,原图的直方图逼近规定化的直方图,从而有相应的变换后的结果图1和变换后的结果图2。

数字图像处理第四章作业

数字图像处理第四章作业

第四章图像增强1.简述直方图均衡化处理的原理和目的。

拍摄一幅较暗的图像,用直方图均衡化方法处理,分析结果。

原理:直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

也就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

把给定图像的直方图分布改变成“均匀”分布直方图分布目的:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

它通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过直方图均衡化,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

Matlab程序如下:clc;RGB=imread('wxf.jpg'); %输入彩色图像,得到三维数组R=RGB(:,:,1); %分别取三维数组的一维,得到红绿蓝三个分量G=RGB(:,:,2); %为R G B。

B=RGB(:,:,3);figure(1)imshow(RGB); %绘制各分量的图像及其直方图title('原始真彩色图像');figure(2)subplot(3,2,1),imshow(R);title('真彩色图像的红色分量');subplot(3,2,2), imhist(R);title('真彩色图像的红色分量直方图');subplot(3,2,3),imshow(G);title('真彩色图像的绿色分量');subplot(3,2,4), imhist(G);title(' 的绿色分量直方图');subplot(3,2,5),imshow(B);title('真彩色图像的蓝色分量');subplot(3,2,6), imhist(B);title('真彩色图像的蓝色分量直方图');r=histeq(R); %对个分量直方图均衡化,得到个分量均衡化图像g=histeq(G);b=histeq(B);figure(3),subplot(3,2,1),imshow(r);title('红色分量均衡化后图像');subplot(3,2,2), imhist(r);title('红色分量均衡化后图像直方图');subplot(3,2,3),imshow(g);title('绿色分量均衡化后图像');subplot(3,2,4), imhist(g);title('绿色分量均衡化后图像直方图');subplot(3,2,5), imshow(b);title('蓝色分量均衡化后图像');subplot(3,2,6), imhist(b);title('蓝色分量均衡化后图像直方图');figure(4), %通过均衡化后的图像还原输出原图像newimg = cat(3,r,g,b); %imshow(newimg,[]);title('均衡化后分量图像还原输出原图');程序运行结果:原始真彩色图像均衡化后分量图像还原输出原图图1.1 原始图像与均衡化后还原输出图像对比通过matlab仿真,由图1.1比较均衡化后的还原图像与输入原始真彩色图像,输出图像轮廓更清晰,亮度明显增强。

加噪去噪的方法与引用场景

加噪去噪的方法与引用场景

加噪去噪的方法与引用场景
加噪和去噪是数字图像处理中的重要概念。

以下是几种加噪和去噪的方法,以及它们的引用场景:
加噪的方法:
1. 添加高斯噪声:在图像中添加高斯噪声可以模拟图像在传输或记录过程中受到的随机误差。

高斯噪声是一种以正态分布形式出现的随机噪声。

2. 添加椒盐噪声:椒盐噪声是一种由图像传感器、传输信道等引起的随机误差,表现为图像中突然出现的白点或黑点。

添加椒盐噪声可以模拟这种情况。

去噪的方法:
1. 中值滤波:中值滤波器是一种非线性滤波器,可以将图像中的噪声去除。

中值滤波器对某个区域内的所有像素值进行排序,并将中值作为输出,对于去除椒盐噪声特别有效。

2. 高斯滤波:高斯滤波器是一种线性滤波器,通过将每个像素的值替换为其邻域内像素的加权平均值来去除噪声。

高斯滤波适用于去除高斯噪声。

3. 傅里叶变换:傅里叶变换可以将图像从空间域转换到频率域,通过在频率域中进行滤波操作,再反变换回空间域,可以达到去除噪声的效果。

傅里叶变换可以用于去除各种类型的噪声。

引用场景:
1. 医学图像处理:在医学领域,图像处理技术广泛应用于诊断、治疗和手术导航等方面。

去噪算法可以用于提高医学图像的清晰度和可读性,帮助医生更准确地诊断病情。

2. 遥感图像处理:遥感图像经常受到噪声的干扰,影响其质量和解译效果。

去噪算法可以提高遥感图像的信噪比,从而提高遥感数据的可利用性和可靠性。

3. 通信系统:在通信系统中,噪声是影响信号传输质量的重要因素之一。

通过去噪算法可以降低噪声对信号的影响,提高通信系统的性能和可靠性。

数字图像处理图像增强实验报告

数字图像处理图像增强实验报告

实验报告班级:08108班姓名:王胤鑫 09号学号:08210224一、实验内容给出噪声图像Girl_noise.jpg,请选择合适的图像增强算法,给出你认为最优的增强后的图像。

可以使用Matlab - Image Processing Toolbox 中的处理函数。

原始图像如下:二、算法分析对于给出的图像中有灰色的噪声,因此首先处理灰色的线条,根据其方差的大小来判断其所在行。

对于两条白色的噪声,根据与前后两行的对比来判断其所在位置。

程序中设定灰色线条处理的均方差门限为0.1,白线处理的标准为与前后两行的差值超过0.2(转换为double型)。

滤除噪声之后再通过中值滤波、拉普拉斯图像增强等方式对图像进行处理。

三、matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2)count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');四、图像处理结果五、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。

图像的噪声处理

图像的噪声处理

实验名称:图像的噪声处理一、实验目的1、用中值滤波法对图像进行处理2、通过对算法和代码的修改,从而用另一种方法——噪声消除法对图像进行处理二、基本原理1、中值滤波:是对一个滑动窗口(模板)内的诸像素灰度值排序,然后用中间的一个值来代替窗口中心像素的原来的灰度值。

2、噪声消除法:顺序检测每一个像素,如果一个像素的幅度大于或小于起领域平均值,且达到一定的程度,即一个像素的幅度和其领域平均值的差值的绝对值达到一定的程度,则判定该像素为噪声,继而用其领域平均值来代替该像素。

数学表达三、实验步骤1、打开Matlab,在工作区中敲入如下的代码:代码解释:>>clear;clc; 清空工作区>> A=imread('pout.tif'); 打开图片>> B=imnoise(A,'salt & pepper',0.25); 加入噪声>> C=B;>> [height,width]=size(C); 对工作区的高宽进行定义>> for j=2:height-1 因为图像的边缘不用处理,所以从第二行的第二个像素点开始进行处理for i=2:width-1 同上一样,从第二列的第二个像素点开始m=1;n=1;for yy=j-1:j+1 这几行是利用循环制造出一个for xx=i-1:i+1 3*3的矩阵出来,并利用循环对block(m,n)=B(yy,xx); 图像中的所有像素点进行处理n=n+1;endm=m+1;n=1;endOne=reshape(block,9,1); 将表格中9个像素值列出来sequece=sort(One); 对9个像素值从小到大进行排序media=sequece(5); 取中间的一个像素值赋给mediaC(j,i)=media; 在将media的值赋予表格中间的一个值endendfigure(1); 控制出现一个窗口subplot(1,3,1); 设置子图,表示有1行3列共3个子图,正在绘制第1个imshow(A); 显示A所表示的图axis('square');title('原始图像'); 标题“原始图像”subplot(1,3,2); 设置子图,表示有1行3列共3个子图,正在绘制第2个imshow(B); 显示B所表示的图axis('square');title('加入噪声后的图像'); 标题“加入噪声后的图像”subplot(1,3,3); 设置子图,表示有1行3列共3个子图,正在绘制第3个imshow(C); 显示C所表示的图axis('square');title('中值滤波后的图像'); 标题“中值滤波后的图像”2、对上述代码的第18到21行进入如下的修改:将原代码替换成如下的代码即可:avg=mean(mean(block)); 求表格中9个像素值的平均值dif=avg-C(j,i); 求某个像素值和其领域像素平均值的差值dif=abs(dif); 求差值的绝对值if dif>T 进行判断,如果差值的绝对值大于所设定的C(j,i)=avg; T值,就将领域的平均值赋予这个像素值。

数字图像处理实验报告(输入与输出颜色分量、直方图与噪声平滑实验

数字图像处理实验报告(输入与输出颜色分量、直方图与噪声平滑实验
二、实验原理简介
利用MATLAB图像处理工具箱中的函数,在MATLAB编程环境下,1)实现图像的灰度变换与直方图运算;2)实现图像的噪声平滑。
三、实验内容和数据记录
(一)实验内容
1.开启计算机,运行MATLAB集成开发环境。
2.读入一幅灰度图像,用MATLAB编程实现该灰度图像的直方图绘制,图像的灰度级调整,图像的直方图均衡化等;
B=imnoise(I, 'gaussian');
subplot(2,2,1);imshow(B);title('高斯噪声图象');
C=imnoise(I, 'salt & pepper');
subplot(2,2,2);imshow(C);title('椒盐噪声图象');
h=fspecial('average' ); K=imfilter(B, h);
学生实验报告
课程名称
《数字图像处理实验》
实验名称
基础实验一
(输入输出与颜色分量实验)
班级,姓名
10电信B,
实验时间
2013年5月23日
学号
指导教师
报告内容
一、实验目的和任务
熟悉由图像输入设备、图像处理设备及图像输出设备组成的数字图像处理系统,熟悉MATLAB软件开发环境。学习MATLAB编程环境下对图像的输入输出操作、颜色分量的理解、格式转换操作以及对图像的像素级运算操作。
subplot(2,2,3);imshow(K);title('均值滤波');
L=medfilt2(C);
subplot(2,2,4);imshow(L);title('中值滤波');

《数字图像处理》实验教案

《数字图像处理》实验教案

《数字图像处理》实验教案一、实验目的与要求1. 实验目的(1)理解数字图像处理的基本概念和原理;(2)掌握常用的数字图像处理方法和技术;(3)提高实际操作能力和解决问题的能力。

2. 实验要求(1)熟悉实验环境和相关软件;(2)认真阅读实验教材和参考资料;二、实验内容与步骤1. 实验内容(1)图像读取与显示;(2)图像基本运算;(3)图像滤波;(4)图像增强;(5)图像边缘检测。

2. 实验步骤(1)打开实验软件,导入图像;(2)进行图像基本运算,如加、减、乘、除等;(3)应用图像滤波算法,如低通滤波、高通滤波等;(4)采用图像增强技术,如直方图均衡化、对比度增强等;(5)利用图像边缘检测算法,如Sobel算子、Canny算子等。

三、实验注意事项1. 实验环境要求:确保实验环境稳定,网络畅通,软件安装正确;2. 实验数据要求:使用规定的图像数据进行实验,确保数据质量;3. 实验操作要求:严格按照实验步骤进行操作,注意调整参数;四、实验评价与评分标准1. 实验结果评价:根据实验要求,评估实验结果的正确性和效果;2. 实验报告评价:评估实验报告的完整性、逻辑性和表达能力;3. 实验操作评价:评估实验操作的规范性和熟练程度。

五、实验拓展与建议1. 实验拓展:尝试研究其他数字图像处理技术和算法;2. 学习建议:深入学习数字图像处理的基本理论和应用领域;3. 实践建议:多进行实际操作,参加相关竞赛或项目,提高综合能力。

六、实验一:图像读取与显示1. 实验目的(1)掌握图像读取和显示的基本方法;(2)熟悉实验软件的操作界面。

2. 实验内容(1)打开实验软件,导入图像;(2)显示原图像;(3)进行图像的放大、缩小、旋转等操作;(4)保存实验结果。

3. 实验步骤(1)打开实验软件,选择图像文件;(2)导入图像,观察原图像;(3)利用软件工具对图像进行放大、缩小、旋转等操作;(4)保存实验结果,关闭软件。

七、实验二:图像基本运算1. 实验目的(1)掌握图像加、减、乘、除等基本运算方法;(2)了解图像运算的原理和应用。

数字图像处理实验四

数字图像处理实验四

福建农林大学计算机与信息学院实验报告
系:计算机与信息学院专业:电子信息工程年级:2014级
:吕志缘学号:3146004063 实验室号__明南附203 计算机号
实验时间:20170507 指导教师签字:成绩:
报告退发(订正、重做)
实验四频率域滤波
1.实验目的和要求
掌握二维离散傅立叶变换的计算;
掌握频率域图像的平滑和锐化方法;
2.实验内容和原理
✧根据二维离散傅立叶变换公式计算傅立叶谱,并显示相应的傅立叶谱图
像。

✧利用matlab工具包,实现高斯低通滤波和高通滤波。

3.实验环境
硬件:一般PC机
操作系统:WindowsXP
编程平台:MATLAB 或高级语言
4.算法描述及实验步骤
实验结果
5.
6. 总结
傅立叶变换是线性系统分析的一个有力工具,它能够定量分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪声等的作用。

通过实验培养这项技能,将有助于解决大多数图像处理问题。

对任何想在工作中有效应用数字图像处理技术的人来说,学习好傅立叶变换很有必要。

其公式如下:。

数字图像处理中的去噪与增强技术探究

数字图像处理中的去噪与增强技术探究

数字图像处理中的去噪与增强技术探究数字图像处理是计算机科学领域中的一个重要研究方向,其涉及诸多技术,其中包括去噪与增强技术。

在数字图像处理中,去噪与增强是两个相互关联但又有不同目标的任务。

去噪的目的是消除图像中的噪声,使图像更加清晰和可观察,而图像增强的目的是提高图像的视觉效果,以更好地展示图像的细节和特征。

本文将探究数字图像处理中的去噪与增强技术。

对于数字图像处理中的去噪技术,常见的方法包括平均、中值滤波和小波变换。

平均滤波是一种简单且广泛应用的方法,它通过计算邻域像素的平均值来减少噪声。

这种方法适用于基本的噪声类型,例如加性高斯噪声。

中值滤波则通过将像素值替换为其邻域像素值的中值来去除图像中的异常噪声。

相比于平均滤波,中值滤波能够更好地保留图像的细节。

小波变换是另一种常用的去噪方法,它基于频域分析,能够对不同频率的噪声进行分离和消除。

小波变换的优势在于其可调控的阈值方法,可以根据具体图像的特性进行去噪处理。

在数字图像处理中,增强技术的目标是提高图像的视觉效果和观察性,以更好地展示图像中的特征和细节。

常见的图像增强方法包括直方图均衡化、灰度拉伸和滤波处理。

直方图均衡化方法通过调整图像的像素值分布,增强图像的对比度和亮度。

这种方法对于图像的整体增强效果较好,但可能会导致图像的细节丢失。

灰度拉伸则是通过重新映射图像的灰度级别,将像素值在新的灰度范围内进行重新分布,从而增强图像的对比度。

滤波处理方法则采用各种滤波器对图像进行处理,例如边缘增强、锐化和模糊等,以突出或平滑图像中的特定特征。

除了传统的去噪和增强技术,近年来深度学习的兴起也为数字图像处理带来了新的思路和方法。

通过卷积神经网络(CNN)和生成对抗网络(GAN)等深度学习模型,研究者们在图像去噪和增强任务上取得了显著的成果。

深度学习可以通过大量的数据训练来学习图像中的噪声和特征模式,并在测试阶段对图像进行矫正和增强。

这种基于数据驱动的方法能够在一定程度上提高图像处理的准确性和效果。

数字图像处理实验大纲

数字图像处理实验大纲

《数字图像处理》实验教学大纲课程编号:课程名称:数字图像处理实验总学时数:8学时适应专业:电子信息工程、信息工程承担实验室:信息工程学院实验室一、实验教学的目的和任务1.目的掌握数字图像处理的基本理论及分析方法,掌握数字图像加减及逻辑运算、图像变换、图像增强、二进制图像操作处理及滤波等原理。

2.任务能够熟练地用Matlab语言编写数字图像处理的各种应用程序,计算图像统计参数,对数字图像进行二维离散Fourier变换,掌握图像边缘检测、图象去噪及各种高通、低通滤波的程序实现方法,并能解决实际中的问题。

二、实验项目及学时分配三、每项实验的内容和要求实验一:数字图像文件基本类型的转换1.实验目的、意义1)了解Matlab支持4种图像类型:灰度图像、二值图像、索引图像和RGB图像。

2)学会运用RGB颜色空间与灰度图像类型的转换3)分析灰度图像与二值图像的变换关系。

2.实验内容1)灰度图像与索引图像的相互转换2)RGB 图像与索引图像的相互转换3)将灰度图像转换为二值化图像3.实验要求1)实验之前要预习,简述图像文件基本类型的转换原理和方法;2)写出实验报告。

报告要求:有实验目的,实验内容,实验过程,实验小结。

实验二:数字图像FFT变换1.实验目的、意义1)掌握二维Fourier变换的基本定义以及快速Fourier变换的方法;2)学会运用zeros; fft2;ifft2; fftshift等函数3)分析二维离散Fourier变换的基本特点。

2.实验内容1)创建一副图像,大小为128*128,背景为黑色,中间开出一个8×8白色的窗口;2)运用ff2函数,对上面产生的图像做二维离散傅立叶变换;3)把低频分量移到图像中心,而把高频分量移到四个角上。

采用两种方法:a)在FFT以前对测试图像逐点加权;b)利用FFTSHIFT函数4) 利用图像增强中动态范围压缩的方法增强傅立叶变换并在频域中显示变换结果。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告第一章总论数字图像处理是计算机图形学、数字信号处理等学科交叉的一门学科。

它是基于数字计算机对图像信号进行数字处理的一种方法。

数字图像处理技术已广泛应用于医学影像诊断、遥感图像处理、图像识别、安防监控等领域,在当今社会中具有不可替代的重要作用。

本次实验主要介绍了数字图像处理的基本方法,包括图像采集、图像增强、图像恢复、图像分割、图像压缩等几个方面。

在实验过程中,我们采用了一些常用的数字图像处理方法,并通过 Matlab 图像处理工具箱进行实现和验证。

第二章实验过程2.1 图像采集在数字图像处理中,图像采集是一个重要的步骤。

采集到的图像质量直接影响到后续处理结果的准确性。

本次实验使用的图像是一张 TIF 格式的彩色图像,通过 Matlab 读取图像文件并显示,代码如下:```Matlabim = imread('test.tif');imshow(im);```执行代码后,可以得到如下图所示的图像:![image_1.png](./images/image_1.png)2.2 图像增强图像增强是指利用某些方法使图像具有更好的视觉效果或者变得更适合某种应用。

本次实验我们主要采用直方图均衡化、灰度变换等方法进行图像增强。

2.2.1 直方图均衡化直方图均衡化是一种常用的增强方法,它可以增加图像的对比度和亮度,使图像更加清晰。

代码实现如下:```Matlabim_eq = histeq(im);imshow(im_eq);```执行代码后,会得到直方图均衡化后的图像,如下图所示:![image_2.png](./images/image_2.png)可以看出,经过直方图均衡化处理后,图像的对比度和亮度得到了明显提高。

2.2.2 灰度变换灰度变换是一种用于调整图像灰度级别的方法。

通过变换某些像素的灰度级别,可以增强图像的视觉效果。

本次实验我们采用对数变换和幂函数变换两种方法进行灰度变换。

数字图像处理实验报告

数字图像处理实验报告

目录实验一:数字图像的基本处理操作 (2)1。

1:实验目的 (2)1。

2:实验任务和要求 (2)1.3:实验步骤和结果 (2)1。

4:结果分析 (6)实验二:图像的灰度变换和直方图变换 (7)2.1:实验目的 (7)2.2:实验任务和要求 (7)2。

3:实验步骤和结果 (7)2。

4:结果分析 (11)实验三:图像的平滑处理 (12)3.1:实验目的 (12)3。

2:实验任务和要求 (12)3。

3:实验步骤和结果 (12)3。

4:结果分析 (16)实验四:图像的锐化处理 (17)4.1:实验目的 (17)4.2:实验任务和要求 (17)4。

3:实验步骤和结果 (17)4.4:结果分析 (19)实验一:数字图像的基本处理操作1.1:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。

3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。

1。

2:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。

2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题.3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。

4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。

1.3:实验步骤和结果1.对实验任务1的实现代码如下:a=imread(’d:\tp.jpg’);i=rgb2gray(a);I=im2bw(a,0。

5);subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title(’灰度图像’);subplot(1,3,3);imshow(I);title('二值图像’);subplot(1,3,1);imshow(a);title('原图像');结果如图1。

数字图像处理实验四

数字图像处理实验四

数字图像处理实验四图像复原一、实验目的了解matlab有关图像复原的操作,如图像的读写,显示,加噪声,去噪声等。

二、实验要求1、使用不同模糊化方法对图像Lena进行模糊处理,对原图像及模糊化图像进行比较(注明模糊化的类型),并保存模糊图像。

(此题中所用的图像和保存的图像在Images文件夹中)I = imread('lena.tif'); %读入图像subplot(221);imshow(I);title('原始图像');H=fspecial('motion',30,45); %运动模糊PSFMotionBlur=imfilter(I,H); %卷积imwrite(MotionBlur,'运动模糊.tif'); %保存运动模糊图像subplot(222);imshow(MotionBlur);title('运动模糊图像');H=fspecial('disk',10); %圆盘状模糊PSFbulrred=imfilter(I,H);imwrite(bulrred,'圆盘状模糊.tif'); %保存圆盘状模糊图像subplot(223);imshow(bulrred);title('圆盘状模糊图像');H=fspecial('unsharp'); %钝化模糊PSFSharpened=imfilter(I,H);imwrite(Sharpened,'钝化模糊.tif'); %保存钝化模糊图像subplot(224);imshow(Sharpened);title('钝化模糊图像');原始图像运动模糊图像圆盘状模糊图像钝化模糊图像2、对图像Lena添加不同类型的噪声,对原图像及噪声图像进行比较(注明加入噪声的类型,及噪声参数),并保存噪声图像。

数字图像的加噪方法与模糊方法

数字图像的加噪方法与模糊方法

实验5图像复原专业:信计1401班学号:140806010一、实验目的(1 )掌握数字图像的加噪方法与模糊方法(2)掌握含噪图像的去噪方法(3)掌握数字图像的复原方法二、实验容(1)掌握数字图像的加噪方法(2)掌握含噪图像的去噪方法(3)掌握数字图像的模糊方法(4)应用复原函数进行图像的复原三、核心代码数字图像的加噪方法给图像添加噪声l=imread('rice.p ng');Noisy 1=im noise(l,'speckle',0.1);no ise=0.1*ra ndn( size(I));Noisy2=imadd(l,im2ui nt8( noise)); figure,subplot(2,2,1),imshow(l),title('原图像'); subplot(2,2,2),imshow(Noisy1),title('speckle随机噪声图像'); subplot(2,2,3),imshow(Noisy2),title(自定义随机噪声图像');%生成盐噪声矩阵,即有些随机像素的值为255,其余为0salt=255*(fix(0.01+ra nd(size(I))));Noisy3=imadd(I,im2ui nt8(salt)); subplot(2,2,4),imshow(Noisy3),title(自定义随机噪声图像');含噪图像的去噪方法l=imread('rice.p ng');%噪声生成器no isy=imno ise(l,'gaussia n',0.1);%滤波器模板生成ave_h=fspecial('disk',3);%图像滤波函数den oisy1=imfilter( noisy,ave_h);de noisy2=medfilt2( noisy,[3,3]); figure,subplot(2,2,1),imshow(l),title('原图像'); subplot(2,2,2),imshow(noisy),title(含高斯噪声图像');subplot(2,2,3),imshow(denoisy1),title(均值滤波图像');subplot(2,2,4),imshow(denoisy2),title(中值滤波图像');对rice.png创建运动模糊、高斯模糊、均值模糊的滤波器,并对图像进行模糊处理,对比不同方法的模糊效果l=imread('rice.p ng');1=1(1:120,1:100); %l=rgb2gray(l);PSF=fspecial('motio n',31,11);J=imfilter(l,PSF,'co nv'); figure,subplot(2,2,1),imshow(l);title('源图像')subplot(2,2,2),imshow(J),title(运动模糊图像')PSF=fspecial('disk',5);J=imfilter(I,PSF,'co nv'); subplot(2,2,3),imshow(J),title(均值模糊图像')PSF=fspecial('gaussia n' ,31,3);J=imfilter(I,PSF,'co nv'); subplot(2,2,4),imshow(J),title(高斯模糊图像')对一幅含噪的模糊图像进行纳滤波复原l=imread(rice.p ng');psf=fspecial(motio n' ,31,11);blurred=imfilter(l,psf,'full');wn r=dec onvwn r(blurred,psf); figure,subplot(2,2,1),imshow(l),title(原图像') subplot(2,2,2),imshow(blurred),title(运动模糊图像') subplot(2,2,3),imshow(wnr),title('纳滤波复原图像') psf2=fspecial(motio n' ,20,11);wn r2=deco nvwn r(blurred,psf2);subplot(2,2,4),imshow(wnr2),title('使用较短的PSF复原图像')对一幅图像分别加入噪声并模糊,用不同大小的PSF进行复原,对比复原l=imread('rice.p ng');psf=fspecial('motio n',21,11);blurred=imfilter(l,psf,'full');noise=0.1*ra ndn (size(blurred));%生成随机噪声矩阵bn=imadd(blurred,im2ui nt8( noise));%bn 为含噪的模糊图像nsr=sum( noise(:).A2)/sum(im2double(l(:))42);%计算信噪比wn r=dec onvwnr(bn, psf);wn r1=deco nvwnr(bn ,psf, nsr);NP=abs(fft n(n oise)A2);%+算噪声图像的能量IP=abs(fftn(im2double(l))A2);%计算噪声图像的能量,可以用含噪的模糊图像代替原图像NCORR=fftshift(real(ifft n(NP)));%计算噪声图像的相关系数ICORR=fftshift(real(ifft n(IP)));%计算原图像的相关系数wn r2=deco nvwn r(b n,psf,NCORR,ICORR); figure,subplot(2,3,1),imshow(l),title('原图像') subplot(2,3,2),imshow(blurred),title('运动模糊图像') subplot(2,3,3),imshow(bn),title('含噪的运动模糊图像')subplot(2,3,4),imshow(wnr),title('不考虑噪声的复原图像')subplot(2,3,5),imshow(wnr1),title('已知信噪比的复原图像')subplot(2,3,6),imshow(wnr2),title('已知NCORR和ICORF复原图像')。

图像处理之图像加噪

图像处理之图像加噪

图像处理之图像加噪图像噪声源于现实世界中数字信号总会受到各种各样的⼲扰,最终接受的图像和源于的数字信号之间总是存在⼀定的差异,对于图像噪声,使⽤均值滤波和中值滤波来消除图像噪声的做法已经是很常见的图像消噪⼿段。

⼀:图像加噪原理1. 椒盐噪声(Salt And Pepper Noise)椒盐噪声是⼀种因为信号脉冲强度引起的噪声,信噪⽐(Signal NoiseRate)是衡量图像噪声的⼀个数字指标。

给⼀副数字图像加上椒盐噪声的处理顺序应该如下:1. 指定信噪⽐ SNR 其取值范围在[0, 1]之间2. 计算总像素数⽬ SP, 得到要加噪的像素数⽬ NP = SP * (1-SNR)3. 随机获取要加噪的每个像素位置P(i, j)4. 指定像素值为255或者0。

5. 重复c, d两个步骤完成所有像素的NP个像素6. 输出加噪以后的图像2. ⾼斯噪声(Gaussian Noise)⾼斯噪声的密度取决于公式G(x, sigma) 其中X是代表平均值,sigma代表的标准⽅差,每个输⼊像素 Pin,⼀个正常的⾼斯采样分布公式G(d), 得到输出像素Pout.Pout = Pin + XMeans + sigma *G(d)其中d为⼀个线性的随机数,G(d)是随机数的⾼斯分布随机值。

给⼀副数字图像加上⾼斯噪声的处理顺序如下:a. 输⼊参数sigam 和 X meanb. 以系统时间为种⼦产⽣⼀个伪随机数c. 将伪随机数带⼊G(d)得到⾼斯随机数d. 根据输⼊像素计算出输出像素e. 重新将像素值防缩在[0 ~ 255]之间f. 循环所有像素g. 输出图像⼆:关键程序解析1. 椒盐噪声根据信噪⽐,获取要加⼊椒盐噪声的像素数⽬int size= (int)(inPixels.length * (1-SNR));随机得到像素,完成椒盐噪声的加⼊for(int i=0; i<size; i++) {int row = (int)(Math.random()* (double)height);int col = (int)(Math.random()* (double)width);index= row * width + col;inPixels[index]= (255 << 24) | (255 << 16) | (255 << 8) | 255;}2. ⾼斯噪声根据标准⽅差,和伪随机数的范围,⾸先计算出⼀个伪随机数d ,根据d得到⾼斯分布的随机数值,整个代码如下: float d = (float)Math.random()*RANDOM_SCOPE - RANDOM_SCOPE/2;float sigma2 = sigma*sigma*2;float PI2 = (float)Math.PI * 2;float sigmaPI2 = (float)Math.sqrt(PI2*sigma);float result = (float)Math.exp(-d/sigma2)/sigmaPI2;伪随机数的范围为[-127~ 127]之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理实验四
实验地点计算机学院实验室
内容一:
继续上次实验三的内容:邻域平均和中值滤波程序的编写和实验。

内容二:
如果完成实验三,并且按照模板写好实验三的实验报告。

请各位同学于12月底前将实验报告提交。

内容三(可选):
如果完成上述实验后,时间还有剩余:请尝试给test.bmp图像增添椒盐噪声,内容如下:
给图像增加椒盐噪声
加入噪声(盐)
255
加入噪声(椒)
未加噪声的图像图像:test.bmp加噪过程结果图像
实验内容:随机的在图像上选取一定数量的像素点,将这些点的灰度值取为255 或者0。

实验的图像部分结果参考如下:
加入盐噪声的图像加入椒噪声的图像加入椒盐噪声的图像。

相关文档
最新文档