2017-2018学年河北省石家庄市长安区八年级(下)期末数学试卷(含解析)
2017-2018学年第二学期期末八年级数学试题(含答案)
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
河北省石家庄市八年级下学期期末考试数学试题
河北省石家庄市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分) (2017八下·潮阳期末) 下列计算错误的是()A . 3+2 =5B . ÷2=C . × =D . -=2. (2分) (2016九上·市中区期末) 如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A . 0.75B .C . 0.6D . 0.83. (2分) (2018七下·防城港期末) 在平面直角坐标系中,将点P(3,-2)向下平移4个单位长度,得到点P的坐标为()A . (-1,-2)B . (3,-6)C . (7,-2)D . (3,-2)4. (2分) (2018九上·东台月考) Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是()A .B .C .D .5. (2分) (2020八上·天桥期末) 关于正比例函数y=-3x,下列结论正确是()A . 图象不经过原点B . y的值随着x增大而增大C . 图象经过二、四象限D . 当x=1时,y=36. (2分) (2018八下·越秀期中) 在△ABC中,AC=6,AB=8,BC=10,则()A . ∠A=90°B . ∠B=90°C . ∠C=90°D . △ABC不是直角三角形7. (2分)已知函数和 ,它们在同一平面直角坐标系内的图象大致是().A .B .C .D .8. (2分) (2018八上·大田期中) 如图,射线l是下列哪个函数的图象A .B .C .D .9. (2分)正方形具有而菱形不一定具有的性质是()A . 对角线互相垂直B . 对角线互相平分C . 对角线相等D . 对角线平分一组对角10. (2分) (2019·嘉善模拟) 在平面直角坐标系中,已知点A(1,2)和点B(4,5),当直线y=kx﹣2k (k为常数)与线段AB有交点时,k的取值范围为()A . k≤﹣2或k≥B . ﹣2≤k≤C . ﹣2≤k≤0或0≤k≤D . ﹣2<k<0或0<k<二、填空题. (共6题;共6分)11. (1分) (2019八下·南浔期末) 若二次根式有意义,则x的取值范围是________.12. (1分) (2011八下·新昌竞赛) 已知,则一元二次方程的根的情况是________.13. (1分) (2017八下·新野期末) 如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH=________.14. (1分)若关于x的一元二次方程有实数根,则n的取值范围是________.15. (1分)已知,一组数据1,2,3,4,5的方差为2,则数据12,13,14,15,16的方差为________.16. (1分)下列两个条件:①y随x的增大而减小;②图象经过点(1,2).写出1个同时具备条件①、②的一个一次函数表达式________三、解答题 (共9题;共85分)17. (10分) (2017八下·黔东南期末) 计算:(1)﹣6 + ﹣| ﹣ |;(2)(2 ﹣1)(2 +1)﹣(1﹣2 )2.18. (5分)如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出当t为何值时,①PD=PQ,②DQ=PQ.19. (5分) (2016七上·县月考) 已知,求代数式的值.20. (15分) (2018八下·江门月考) 如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C ,经过点D(1,0)的直线DE平行于OA ,并与直线AB交于点E .(1)求直线AB的解析式;(2)求直线DE的解析式;(3)求△EDC的面积.21. (10分)(2020·南通模拟) 如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.22. (5分)《中国足球改革总体方案》提出足球要进校园,为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图;(1)一共调查了多少名学生,请补全条形统计图;(2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级,现在要从选择“一般”的同学中随机抽取两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.23. (5分)“*”是规定的一种运算法则:a*b=a2﹣b.①求5*(﹣1)的值;②若3*x=2,求x的值;③若(﹣4)*x=2+x,求x的值.24. (15分) (2017八上·宁波期中) 如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t 秒.(1)若AB//x轴,如图一,求t的值;(2)当t=3时,坐标平面内有一点M(不与A重合),使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为 ,连接,在点P运动的过程中,∠ 的度数是否会发生变化,若不变,请求出∠ 的度数,若改变,请说明理由。
2017-2018学年八年级(下)期末数学试卷(含答案)
2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A.B.C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG 10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED ≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为()A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD 的长为4.【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于4.【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3.【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x 轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP ∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE 时,EP+BP=8.【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5),B′(5,5),C′(7,3);(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C 的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.。
2017-2018年第二学期八年级数学期末试卷(参考答案)
∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF
DC AH
5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°
2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析
3 2017-2018 学年河北省八年级(下)期末数学试卷题及答案解析一、选择题(本大题共 16 小题,共 42.0 分)1.下列根式中是最简二次根式的是( )A. √ 2B. √3C. √9D. √122. 三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85, 其中能够构成直角三角形的有( )A. 1 个B. 2 个C. 3 个D. 4 个3.下列哪个点在一次函数1 y =2x +1的图象上( )A. (2,1)B. (2,0)C. (-2,1)D. (-2,0)4.一次函数 y =5x +3 的图象经过的象限是( ) A. 一、二、三 B. 二、三、四C. 一、二、四D. 一、三、四√3 5.下列计算正确的是( )A. √5-√3=√2B. 3√5×2 √3=6√15 C. (2√2)2=16D . 3=16.不能判定一个四边形是平行四边形的条件是( ) A. 两组对边分别平行 B. 一组对边平行另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等 7. 已知 A 样本的数据如下:72,73,76,76,77,78,78,B 样本的数据恰好是 A 样本数据每个都加 2,则 A ,B 两个样本的下列统计量对应相同的是( ) A. 平均数B. 方差C. 中位数D. 众数8. 若√x − 2y + 9与|x -y -3|互为相反数,则 x +y 的值为( ) A. 3B. 9C. 12D. 279.矩形具有而菱形不具有的性质是( ) A. 对角线互相平分 B. 对角线互相垂直 C. 对角线相等D. 对角线平分一组对角10.一支蜡烛长 20 厘米,点燃后每小时燃烧 5 厘米,燃烧时剩下的高度 h (厘米)与燃烧时间 t (时)的函数关系的图象是()A. B.C. D.11.如图,平行四边形ABCD 中,对角线AC、BD 交于点O,点E 是BC 的中点.若OE=3cm,则AB 的长为()A. 3cmB. 6cmC. 9cmD. 12cm12.直角三角形斜边上的高与中线分别为5cm 和6cm,则它的面积为()cm2.A. 30B. 60C. 45D. 1513.函数y=ax+b 与y=bx+a 的图象在同一坐标系内的大致位置正确的是()A. B.C. D.D. 9°14.已知:如图,在矩形 ABCD 中,E 、F 、G 、H 分别为边 AB 、BC 、CD 、DA 的中点.若 AB =2,AD =4,则图中阴影部分的面积为( )A. 8B. 6C. 4D. 315.如图,矩形 ABCD 中,DE ⊥AC 于 E ,且∠ADE :∠EDC =3:2, 则∠BDE 的度数为( ) A. 36°B. 18°C. 27°16.如图中的图象(折线 ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离 s (千米)和行驶时间 t (小时)之间的函数关系,根据图中提供的信息,给出下列说法: ①汽车共行驶了 120 千米; ②汽车在行驶途中停留了 0.5 小时;80③汽车在整个行驶过程中的平均速度为 3 千米/时; ④汽车自出发后 3 小时至 4.5 小时之间行驶的速度在逐渐减少. 其中正确的说法共有()√x+1 A. 1个 B. 2 个 C. 3 个 D. 4 个二、填空题(本大题共 4 小题,共12.0 分)17.函数y=1 中自变量x 的取值范围是.18.如图,矩形ABCD 的对角线AC=8cm,∠AOD=120°,则AB 的长为cm.19.已知点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,则a 与b 的大小关系是.20.已知:如图,正方形ABC D中,对角线AC 和BD相交于点O.E、F 分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF 的长为cm.3x 2−y2三、计算题(本大题共 2 小题,共 22.0 分)21.计算(1)√27-√12+√45;(2)√27×√1 -(√5+√3)(√5-√3).22. 已知 x =√3+1,y =√3-1,求x 2 −2xy +y 2的值.四、解答题(本大题共 4 小题,共 44.0 分)23.如图,四边形 ABC D 是菱形,对角线 AC =8cm ,BD =6cm , DH ⊥AB 于 H ,求:DH 的长.24.已知一次函数y=kx+b 的图象经过点(-1,-5),且与正比例函数于点(2,a),求(1)a 的值;(2)k,b 的值;(3)这两个函数图象与x 轴所围成的三角形的面积.1y=2x的图象相交25.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10 次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?26.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B 两仓库.已知甲库有粮食100 吨,乙库有粮食80 吨,而A 库的容量为70 吨,B 库的容量为110 吨.从甲、乙两库到A、B 两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送 1 千米所需人民币)(1)若甲库运往 A 库粮食x 吨,请写出将粮食运往A、B 两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B 两库多少吨粮食时,总运费最省,最省的总运费是多少?答案和解析1.【答案】B【解析】解:A、= ,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,故此选项错误;D、=2 ,故此选项错误;故选:B.直接利用最简二次根式的定义分析得出答案.此题主要考查了最简二次根式,正确把握定义是解题关键.2.【答案】C【解析】解:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;③、82+152=289=172,∴能构成直角三角形,故本小题正确;④、132+842=6973≠852,∴不能构成直角三角形,故本小题错误.故选:C.根据勾股定理的逆定理对四个答案进行逐一判断即可.本题考查的是勾股定理的逆定理,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.3.【答案】D【解析】解:A、把(2,1)代入得,×2+1=2≠1,故本题选项错误;B、把(2,0)代入得,×2+1=2≠0,故本选项错误;C、把(-2,1)代入得,×(-2)+1=0≠1,故本选项错误;D、把(-2,0)代入得,×(-2)+1=0,故本选项正确.故选:D.将四个点分别代入函数的解析式进行验证即可.此题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此一次函数的解析式.比较简单.4.【答案】A【解析】解:∵一次函数y=5x+3 中,k=5>0,b=3>0,∴该直线从左往右上升,与y 轴交于正半轴,∴图象经过的象限是:一、二、三.故选:A.直接利用一次函数y=5x+3 的性质得出其经过的象限.此题主要考查了一次函数的性质,解题时注意:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.当b>0 时,直线与y 轴交于正半轴;当b<0 时,直线与y 轴交于负半轴.5.【答案】B【解析】解:A、不能化简,所以此选项错误;B、3 ×=6,所以此选项正确;C、(2)2=4×2=8 ,所以此选项错误;D、= = ,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.6.【答案】B【解析】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A 不符合题意;B、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故 B 符合题意;C、一组对边平行且相等,可判定该四边形是平行四边形,故 C 不符合题意;D、两组对边分别相等,可判定该四边形是平行四边形,故D 不符合题意故选:B.根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.【答案】B【解析】解:设样本 A 中的数据为x i,则样本 B 中的数据为y i=x i+2,则样本数据B 中的众数和平均数以及中位数和A 中的众数,平均数,中位数相差2,只有方差没有发生变化;故选:B.根据样本A,B 中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论.此题主要考查统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.8.【答案】D【解析】解:∵与|x-y-3|互为相反数,∴+|x-y-3|=0,∴,②-①得,y=12,把y=12 代入②得,x-12-3=0,解得x=15,∴x+y=12+15=27.故选:D.根据互为相反数的和等于0 列式,再根据非负数的性质列出关于x、y 的二元一次方程组,求解得到x、y 的值,然后代入进行计算即可得解.本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0 时,必须满足其中的每一项都等于0.9.【答案】C【解析】解:A、对角线互相平分是菱形矩形都具有的性质,故A 选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B 选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C 选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D 选项错误;故选:C.根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.10.【答案】D【解析】解:设蜡烛点燃后剩下h 厘米时,燃烧了t 小时,则h 与t 的关系是为h=20-5t,是一次函数图象,即t 越大,h 越小,符合此条件的只有D.故选:D.随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.【答案】B【解析】解:∵四边形ABCD 是平行四边形,∴OA=OC;又∵点 E 是BC 的中点,∴BE=CE,∴AB=2OE=2×3=6 (cm)故选:B.因为四边形ABCD 是平行四边形,所以OA=OC;又因为点E 是BC 的中点,所以OE 是△ABC 的中位线,由OE=3cm,即可求得AB=6cm.此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.12.【答案】A【解析】解:解:∵直角三角形的斜边上的中线为6cm,∴斜边为2×6=12 (cm),∵直角三角形斜边上的高为5cm,∴此直角三角形的面积为×12×5=30 (cm2),故选:A.据直角三角形斜边上中线性质求出斜边长,再根据直角三角形的面积公式求出面积即可.本题考查了直角三角形斜边上中线性质的应用,注意:直角三角形斜边上中线等于斜边的一半.13.【答案】C【解析】解:分四种情况:①当a>0,b>0 时,y=ax+b 的图象经过第一、二、三象限,y=bx+a 的图象经过第一、二、三象限,无选项符合;②当a>0,b<0 时,y=ax+b 的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C 选项符合;③当a<0,b>0 时,y=ax+b 的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C 选项符合;④当a<0,b<0 时,y=ax+b 的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:C.根据a、b 的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.一次函数y=kx+b 的图象有四种情况:①当k>0,b>0,函数y=kx+b 的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b 的图象经过第一、三、四象限;③当k<0,b>0 时,函数y=kx+b 的图象经过第一、二、四象限;④当k<0,b<0 时,函数y=kx+b 的图象经过第二、三、四象限.14.【答案】C【解析】解:连接AC,BD,FH,EG,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴AH= AD,BF= BC,∵四边形ABCD 是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB 是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD 是矩形,∴AC=BD,∵E,F,G,H 分别为边AB,BC,CD,DA 的中点,∴HG∥AC,HG= AC,EF∥AC,EF= AC,EH= BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH 是平行四边形,∴平行四边形EFGH 是菱形,∴FH⊥EG,∴阴影部分EFGH 的面积是×HF×EG= ×2×4=4 ,故选:C.连接AC,BD,FH,EG,得出平行四边形ABFH,推出HF=AB=2,同理EG=AD=4,求出四边形EFGH 是菱形,根据菱形的面积等于×GH×HF ,代入求出即可.本题考查了矩形的性质,菱形的判定和性质,平行四边形的判定等知识点,关键是求出四边形EFGH 是菱形.15.【答案】B【解析】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°-36°=54°,根据矩形的性质可得∠DOC=180°-2×54°=72°所以∠BDE=180°-∠DOC-∠DEO=18°故选:B.本题首先根据∠ADE:∠EDC=3:2 可推出∠ADE 以及∠EDC 的度数,然后求出△ODC 各角的度数便可求出∠BDE.本题考查的是三角形内角和定理以及矩形的性质,难度一般.16.【答案】A【解析】解:由图象可知,汽车走到距离出发点120 千米的地方后又返回出发点,所以汽车共行驶了240 千米,①错;从 1.5 时开始到 2 时结束,时间在增多,而路程没有变化,说明此时在停留,停留了2-1.5=0.5 小时,②对;汽车用4.5 小时走了240 千米,平均速度为:240÷4.5=千米/时,③错.汽车自出发后3 小时至4.5 小时,图象是直线形式,说明是在匀速前进,④错.故选:A.根据图象上的特殊点的实际意义即可作出判断.本题考查由图象理解对应函数关系及其实际意义,注意总路程应包括往返路程,平均速度=总路程÷总时间.17.【答案】x>-1【解析】解:由题意得,x+1>0,解得x>-1.故答案为:x>-1.根据被开方数大于等于0,分母不等于0 列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18.【答案】4【解析】解:∵∠AOD=120°,∴∠AOB=60°,∵四边形ABCD 是矩形,∴AC=BD,AO=OC= cm,BO=OD,∴AO=BO=4cm,∴△ABO 是等边三角形,∴AB=AO=4cm,故答案为:4根据矩形的性质求出AO=BO=4cm,求出△AOB 是等边三角形,即可求出AB.本题考查了矩形的性质和等边三角形的性质和判定,能根据矩形的性质求出AO=BO 是解此题的关键.19.【答案】a>b【解析】解:∵点A(-1,a),B(2,b)在函数y=-3x+4 的图象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案为:a>b.分别把点A(-1,a),B(2,b)代入函数y=-3x+4,求出a、b 的值,并比较出其大小即可.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.【答案】5【解析】解:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=45°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到EF==5cm.故答案为5.3 连接 EF ,根据条件可以证明△OED ≌△OFC ,则 OE=OF ,CF=DE=3Ccm ,则AE=DF=4,根据勾股定理得到 EF==5cm .根据已知条件以及正方形的性质求证出两个全等三角形是解决本题的关键. 21.【答案】解:(1)√27-√12+√45=3√3 − 2√3 + 3√5=√3 + 3√5;(2)√27×√1-(√5+√3)(√5-√3)=√9 − (5 − 3)=3-2=1.【解析】(1) 根据二次根式的加减法可以解答本题;(2) 根据二次根式的乘法、平方差公式可以解答本题.= 22. = 本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法. 【答案】解:原式 (x−y )2 (x +y )(x−y )当 x =√3+1,y =√3-1 时, 原式=√3+1−√3+1=2 √3.x−y=x +y ,√3+1+√3−1 2√3 3【解析】先将分子、分母因式分解,再约分即可化简原式,继而将x 、y 的值代入计算可得.2 22 本题主要考查二次根式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及二次根式的混合运算.23. 【答案】解:∵四边形 ABCD 是菱形,AC =8cm ,BD =6cm ,∴AC ⊥BD ,OA =1AC =4cm,OB =1BD =3cm ,∴Rt △AOB 中,AB =√AO 2 + BO 2 =√32 + 42=5, ∵DH ⊥AB ,∵菱形 ABCD 的面积 1•BD =AB •DH ,S =2AC∴1×6×8=5 DH ,5 2 ∴DH =24. 【解析】先根据菱形对角线互相垂直平分得:OA= AC=4cm ,OB= BD=3cm ,根据勾股定理求得AB=5cm ,由菱形面积公式的两种求法列式可以求得高 DH 的长.本题考查了菱形的性质,熟练掌握菱形以下几个性质:①菱形的对角线互相 垂直平分,②菱形面积=两条对角线积的一半,③菱形面积=底边×高;本题利用了面积法求菱形的高线的长.24. 【答案】解:(1)由题知,把(2,a )代入 y =1 x , 解得 a =1;(2) 由题意知,把点(-1,-5)及点(2,a )代入一次函数解析式得:-k +b =-5,2k +b =a , 又由(1)知a =1,解方程组得:k =2,b =-3;(3) 由(2)知一次函数解析式为:y =2x -3,30)直线y=2x-3 与x轴交点坐标为(,233.∴所求三角形面积1=2×1×2=4【解析】(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a 的值.(2)把点(-1,-5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b 的值.(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x 轴的交点即可.本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,注意直线上任意一点的坐标都满足函数关系式y=kx+b.25.【答案】8;7.5【解析】解:(1)甲的平均数=故答案为:8;7.5;(2);…==8,乙的中位数是7.5;,= ,∵,∴乙运动员的射击成绩更稳定.(1)根据平均数和中位数的定义解答即可;(2)计算方差,并根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答.此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳70 − x ≥ 0 定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小, 即波动越小,数据越稳定.26.【答案】解:(1)依题意有:若甲库运往 A 库粮食 x 吨,则甲库运到 B 库(100-x ) 吨,乙库运往 A 库(70-x )吨,乙库运到 B 库(10+x )吨.x ≥ 0则{100 − x ≥ 0,解得:0≤x ≤70. 10 + x ≥y =12×20 x +10×25 (100-x )+12×15 (70-x )+8×20×[110 -(100-x )]=-30x +39200其中 0≤x ≤70(2)上述一次函数中 k =-30<0∴y 随 x 的增大而减小∴当 x =70 吨时,总运费最省最省的总运费为:-30×70+39200=37100 (元)答:从甲库运往 A 库 70 吨粮食,往 B 库运送 30 吨粮食,从乙库运往 A 库 0 吨粮食,从乙库运往 B 库 80 吨粮食时,总运费最省为 37100 元.【解析】弄清调动方向,再依据路程和运费列出 y (元)与 x (吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.。
2017---2018学年度第二学期冀教版八年级期末考试数学试卷
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2017---2018学年度第二学期 冀教版八年级期末考试数学试卷考时试间:100分钟;满分120分一、选择题(本大题共10小题,共30分)1. 青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?( )A. 100只B. 150只C. 180只D.200只2. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为20,那么第三组与第四组的频数之和与频率之和分别为( )A. 20;0.4B. 24;0.48C. 26;0.52D. 31;0.623. 在平面直角坐标系中,点P (-1,1)关于原点对称的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 如图,△ABO 关于x 轴对称,点A 的坐标为(1,-2),则点B 的坐标为( ).A. (-1,2)B. (-1,-2)C. (-2,1)D. (1,2)5. 某人骑自行车沿直线旅行,先前进了akm ,休息了一段时间后又按原路返回 bkm (b <a ),再前进ckm ,则此人离出发点的距离s 与时间t 的关系示意图是( )A. B.题号一二三总分得分初中数学试卷第2页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………C. D.6. 某天早上王文上学, 先步行一段路, 因时间紧,他又改乘出租车,结果到校时还是迟到了5分钟,其行程情况如下图,若他出门时直接乘出租车(车速不变),则他A. 仍会迟到2分钟到校B. 刚好按时到校C. 可以提前2分钟到校D. 可以提前5分钟到校 7. 如图,在直角梯形ABCD 中,AB=2,BC=4,AD=6,M 是CD 的中点,点P 在直角梯形的边上沿A→B→C→M 运动,则△APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示是( )A. B.C. D.8. 若是正比例函数,则m 的值为( )A. 2B. -2C. ±2D. 任意实数 9. 一个多边形的内角和是1980°,那么这个多边形的边数为 ( )A. 11B. 12C. 13D. 14……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………10. 如图,菱形ABCD 中,AB=2,△A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( )A. 1B. 3C. 2D. 3+1二、填空题(本大题共8小题,共24分)11. 在扇形统计图中, A 项目所占总体的份额是30%,则扇形统计图中 A 项目的扇形圆心角 等于 °.12. 小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表: 通话时间x/min0<x≤55<x≤10 10<x≤15 15<x≤20 频数(通话次数) 201695则通话时间超过15min 的频率为 ______ .13. 如图,临沧市位置点的坐标为(-1,0),昆明市点的坐标为(1,1),则香格里拉位置点的坐标为 ______ .14. 在平面直角坐标系中,已知一次函数y=2x+1的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1<x 2,则y 1 y 2.(填“>”“<”或“=”)15. 若一个多边形的每一个外角都等于20°,则它的内角和等于 ______ .16. 如图,一块长为a 米,宽为b 米的矩形土地被踩出两条小路(过A ,B 间任意一点作AD 的平行线,被每条小路截得的线段长都是2米).若小路①,②的面积分别为S 1,S 2,则S 1,S 2的大小关系是s 1 ______ s 2. 17. 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,△AOD=120°,AB=4cm .则AC= ______ .初中数学试卷第4页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………18. 如下图,在对角线长分别为12和16的菱形ABCD 中,E 、F 分别是边AB 、AD 的中点,P 是对角线BD 上任意一点,则PE+PF 的最小值是_________。
2017-2018学年第二学期期末调研考试八年级数学试题及答案(含评分标准与解析)
2017—2018学年度第二学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号 一 二 三20 21 22 23 24 25 26 得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.) 题号1 2 3 4 5 6 7 8 答案 题号 9 10 11 12 13 14 15 16 答案1. 下列根式中,不能与3合并的是………………………….……………………( )A .13 B .13C .23D .12 2.下表记录了甲、乙、丙、丁四名同学参加该市 “我们身边的感动”演讲比赛学校选拔赛,最近几次成绩的平均数与方差如下表:甲 乙 丙 丁 平均数(分) 90 80 85 80方差 2.4 3.6 5.4 2.4根据表中数据,要从中选择一名成绩好且发挥稳定的同学参加市级比赛,应该选择…( ) A .甲 B .乙 C .丙 D .丁3.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为…………………………………………………………………………( ) A .y=x+2 B .y=x 2+2 C .2y x =+ D .12y x =+ 4.下列计算正确的是…………………………………………………………………( ) A .4646⨯= B .4610+= C .()21515-=- D .40522÷=5.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是………( ) A .平均数 B .中位数 C .众数 D .方差 6.矩形ABCD 的对角线AC 、BD 交于点O ,以下结论不一定...成立的是……………( ) 总分 核分人A .∠BCD=90°B .AC ⊥BD C .AC=BD D .OA=OB7.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则这组数据的中位数是…( ) A .2 B .3 C .5 D .7 8.已知:2xy =,521x y -=-,则(x+1)(y ﹣1)的值为……………………( ) A .42- B .622- C .62 D .无法确定9.在四边形ABCD 中AC 、BD 相交于点O ,下列说法错误..的是……………………( ) A .AB ∥CD ,AD=BC ,则四边形ABCD 是平行四边形B .AO=CO ,BO=DO 且AC ⊥BD ,则四边形ABCD 是菱形 C .AO=OB=OC=OD ,则四边形ABCD 是矩形D .∠A=∠B=∠C=∠D 且AB=BC ,则则四边形ABCD 是正方形10.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC ,那么这四个三角形中,不是..直角三角形的是……………………………………………( ) A . B . C . D .11.关于函数y=﹣x ﹣2的图象,有如下说法:①图象过(0,﹣2)点;②图象与x 轴交点是(﹣2,0);③从图象知y 随x 增大而增大;④图象不过第一象限;⑤图象是与y=﹣x 平行的直线.其中正确说法有………( ) A .2个 B .3个 C .4个 D .5个 12.如图,在△ABC 中,∠ACB=90°,D 在BC 上,E 是AB 的中点,AD 、CE 相交于F ,且AD=DB .若∠B=20°,则∠DFE 等于……( ) A .30° B .40° C .50° D .60° 13.若式子()011k k -+-有意义,则一次函数y=(1﹣k )x+k ﹣1的图象可能是…( )A .B .C .D .14.平面直角坐标系中,O 是坐标原点,点A 的坐标是(4,0),点P 在直线y=﹣x+m 上,且AP=OP=4.则m 的值为……………………………………………………( ) A .223+或223- B .4或﹣4 C .23或23- D .423+或423-15.如图,在Rt△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从B点出发,沿B→C→A运动.如图(1)所示,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则图(2)中Q点的坐标是……………………………()A.(4,4)B.(4,3)C.(4,6)D.(4,12)16.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=25.以上结论中,你认为正确的是………………………………………………………()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图,函数y=ax+m和y=bx的图象相交于点A,则不等式bx≥ax+m的解集为.18.如图,平行四边形ABCD中,AE⊥BD于E,CF⊥BD于F,∠ABC=75°,∠DBC=30°,BC=2,则BD的长度为.19.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第3个等腰直角三角形A3B2B3顶点B3的横坐标为,第2018个等腰直角三角形A2018B2017B2018顶点B2018的横坐标为.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题共2小题,每小题4分,满分8分)(1)11484320.583⎛⎫⎛⎫---⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)()()()215225382-+--+⨯.21.(本题满分9分)有一块边长为40米的正方形绿地ABCD,如图所示,在绿地旁边E处有健身器材,BE=9米.由于居住在A 处的居民去健身践踏了绿地(图中AE),小明想在A处树立一个标牌“少走米,踏之何忍”.请你计算后帮小明在标牌的处填上适当的数.22.(本题满分9分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)这20名学生每人植树量的众数是,中位数是;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(本题满分9分)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为点E.连接DE,则线段DE与线段AC有怎样的数量关系?请证明你的结论.24.(本题满分10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的14时,求出这时点M的坐标.25.(本题满分11分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)。
2017-2018学八年级(下)期末数学试卷(解析版)
2017-2018学年八年级(下)期末数学试卷一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣22.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,43.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣15.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.58.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+259.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=610.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.511.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>615.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是.18.已知a=﹣,b=+,求a2+b2的值为.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每题3分,共45分)1.式子有意义的实数x的取值范围是()A.x≥0B.x>0C.x≥﹣2D.x>﹣2【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:式子有意义的实数x的取值范围是:x≥﹣2.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.2.下列各组数中,是勾股数的一组是()A.7,8,9B.8,15,17C.1.5,2,2.5D.3,4,4【分析】满足a2+b2=c2的三个正整数,称为勾股数,由此求解即可.【解答】解:A、∵72+82≠92,∴此选项不符合题意;B、∵82+152=172,∴此选项符合题意;C、∵1.52+22=2.52,但1.5,2.5不是整数,∴此选项不符合题意;D、∵42+32≠42,∴此选项不符合题意.故选:B.【点评】此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…3.为了帮扶本市一名特困儿童,某班有20名同学积极捐款,他们捐款的数额如下表:对于这20名同学的捐款,众数是()A.20元B.50元C.80元D.100元【分析】众数指一组数据中出现次数最多的数据,结合题意即可得出答案.【解答】解:由题意得,所给数据中,50元出现了7次,次数最多,即这组数据的众数为50元.故选:B.【点评】此题考查了众数的定义及求法,一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.4.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣1【分析】将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.【解答】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m﹣n=﹣1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要明确,一次函数图象上的点的坐标符合函数解析式.5.在正方形、矩形、菱形、平行四边形、一般四边形中,两条对角线一定相等的四边形个数为()A.1个B.2个C.3个D.4个【分析】根据菱形正方形、矩形、菱形、平行四边形、一般四边形的性质分析即可.【解答】解:由正方形、矩形、菱形、平行四边形、一般四边形的性质可知:正方形、矩形的两条对角线一定相等,而菱形的对角线只是垂直,平行四边形的对角线只是互相平分,一般四边形的对角线性质不确定,所以两条对角线一定相等的四边形个数为2个,故选:B.【点评】此题考查了正方形、矩形、菱形、平行四边形、一般四边的性质,需熟练掌握各特殊平行四边形的特点是解题关键.6.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5B.5.5C.6D.6.5【分析】根据直角三角形斜边上的中线求出AB长,根据勾股定理求出BE即可.【解答】解:∵BE⊥AC,∴∠BEA=90°,∵DE=5,D为AB中点,∴AB=2DE=10,∵AE=8,∴由勾股定理得:BE==6,故选:C.【点评】本题考查了直角三角形斜边上的中线和勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.8.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+25【分析】根据一次函数的图象平移的法则即可得出结论.【解答】解:直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是y=﹣7x+4﹣3=﹣7x+1.故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.9.下列计算正确的是()A.=±5B.4﹣=1C.÷=9D.×=6【分析】根据二次根式的性质、二次根式的混合运算法则进行计算,判断即可.【解答】解:=5,A错误;4﹣=4﹣3=,B错误;÷=3,C错误;×==6,D正确,故选:D.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.10.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是﹣1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.5【分析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【解答】解:连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC===13,∴AE=6.5,∵点A表示的数是﹣1,∴OA=1,∴OE=AE﹣OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选:A.【点评】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.11.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.【分析】由k+b=0且k≠0可知,y=kx+b的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.【点评】本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键.12.某班六个兴趣小组人数分别是5,7,5,3,4,6,则这组数据的方差是()A.B.10C.D.【分析】利用方差公式进而得出答案.【解答】解:这组数据的平均数为:这组数据的方差为:=,故选:D.【点评】此题主要考查了方差,正确记忆方差公式是解题关键.13.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故选:C.【点评】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.14.如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b<x的解集为()A.x<0B.0<x<3C.3<x<6D.x>6【分析】先把A、B点坐标代入y=kx+b计算出k、b,然后解不等式0<kx+b<x即可.【解答】解:把点A(3,1)和B(6,0)两点代入y=kx+b中,可得:,解得:,所以解析式为:y=﹣x+2,所以有,解得:3<x<6故选:C.【点评】本题考查了一次函数与不等式(组)的关系.解决此类问题关键是利用代入法解得k,b,求得一次函数解析式,然后转化为解不等式.15.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【解答】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选:D.【点评】本题考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.二、填空题.(每小题3分,共15分)16.已知函数y=(m﹣1)x|m|+3是一次函数,则m=﹣1.【分析】因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.【解答】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.则得到|m|=1,m=±1,∵m﹣1≠0,∴m≠1,m=﹣1.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.17.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是∠B=∠D =60°.【分析】由条件∠A=∠C=120°,再加上条件∠B=∠D=60°,可以根据两组对边分别平行的四边形是平行四边形得到四边形ABCD是平行四边形.【解答】解:添加条件∠B=∠D=60°,∵∠A=∠C=120°,∠B=∠D=60°,∴∠A+∠B=180°,∠C+∠D=180°∴AD∥CB,AB∥CD,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),故答案为:∠B=∠D=60°,【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.18.已知a=﹣,b=+,求a2+b2的值为10.【分析】把已知条件代入求值.【解答】解:原式=(﹣)2+(+)2=5﹣2+5+2=10.故本题答案为:10.【点评】此题直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.19.已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此点P的横坐标与纵坐标的值均符合方程组中两个方程的要求,因此方程组的解应该是.【解答】解:直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),即x=﹣5,y=﹣8满足两个解析式,则是即方程组的解.因此方程组的解是.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.20.已知一组数据x1,x2,x3,x4的平均数为6,则数据3x1+1,3x2+1,3x3+1,3x4+1的平均数为19.【分析】由原数据的平均数得出x1+x2+x3+x4=24,再根据平均数的计算公式可得.【解答】解:依题意,得=(x1+x2+x3+x4)=6,∴x1+x2+x3+x4=24,∴3x1+1,3x2+1,3x3+1,3x4+1的平均数为=[(3x1+1)+(3x2+1)+(3x3+1)+(3x4+1)]=×(3×24+1×4)=19,故答案为:19.【点评】此题考查平均数的意义,掌握平均数的计算方法是解决问题的关键.三、解答题.(8个小题,共60分)21.(6分)计算:(1)﹣+(2)×÷【分析】(1)首先化简二次根式进而利用二次根式加减运算法则计算得出答案;(2)首先化简二次根式进而利用二次根式乘除运算法则计算得出答案.【解答】解:(1)﹣+=3﹣2+=;(2)×÷=2××=8.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.22.(6分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,求AB及BC2各是多少?【分析】根据勾股定理解答即可.【解答】解:在Rt△ABC中,∠B=30°,∴AB=2AC=6,∴BC2=AB2﹣AC2=36﹣9=27.【点评】此题考查勾股定理.关键是根据勾股定理解答,23.(6分)如图,在四边形ABCD中,BC∥AD,AE∥DC,AB=DC.求证:∠B=∠C.【分析】根据平行四边形的判定和性质得出AE=DC,进而得出∠AEB=∠C,根据等腰三角形的性质得到∠B=∠AEB,进而得出∠B=∠C.【解答】证明:∵BC∥AD,AE∥DC,∴四边形AECD是平行四边形,∴AE=DC,AE∥DC,∴∠AEB=∠C,∵AB=CD,∴AB=AE,∴∠B=∠AEB,∴∠B=∠C.【点评】此题主要通过考查平行四边形判定和性质,关键是根据平行四边形的判定和性质得出AE=DC.24.(6分)某次歌咏比赛,前三名选手的成绩统计如下:(单位:分)将唱功、音乐常识综合知识三项测试成绩按6:3:1的加权平均分排出冠军、亚军季军,则冠军、亚军、季军各是谁?【分析】根据加权平均数的计算公式先分别求出三个人的最后得分,再进行比较即可.【解答】解:王晓丽的成绩是:(98×6+80×3+80)÷10=90.8(分);李真:(95×6+90×3+90)÷10=93(分);林飞杨:(80×6+100×3+100)÷10=88(分).∵93>90.8>88,∴冠军是李真、亚军是王晓丽、季军是林飞杨.【点评】本题主要考查了加权平均数,本题易出现的错误是求三个数的平均数,对平均数的理解不正确.25.(8分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式.(2)判定点C(4,﹣2)是否在该函数的图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.【分析】(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;(2)把C的坐标代入一次函数的解析式进行检验即可;(3)首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:(1)把x=1代入y=2x中,得y=2,所以点B的坐标为(1,2),设一次函数的解析式为y=kx+b,把A(0,3)和B(1,2)代入,得,解得,所以一次函数的解析式是y=﹣x+3;(2)点C(4,﹣2)不在该函数的图象上.理由:当x=4 时,y=﹣1≠﹣2,所以点C(4,﹣2)不在函数的图象上.(3)在y=﹣x+3中,令y=0,则0=﹣x+3,解得x=3,则D的坐标是(3,0),=×3×2=3.所以S△BOD【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.26.(8分)已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.【分析】(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由SAS证明△BCE≌△DCF即可;(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF 是正方形.【解答】(1)证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【点评】本题考查了正方形的判定、菱形的性质与判定、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和全等三角形的判定是解决问题的关键.27.(10分)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【分析】(1)由折线图中数据,根据中位数和加权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,乙组学生成绩的平均分b==7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【点评】本题主要考查折线统计图、加权平均数、中位数及方差,熟练掌握加权平均数、中位数及方差的定义是解题的关键.28.(10分)如图,线段AB,CD分别是一辆轿车的油箱剩余油量y1(升)与一辆客车的油箱剩余油量y2(升)关于行驶路程x(千米)的函数图象.(1)分别求y1,y2与x的函数解析式;(2)如果两车同时出发轿车的行驶速度为100千米/时,客车的行驶速度为80千米/时,当油箱的剩余油量相同时,两车行驶的时间相差多少分?【分析】(1)设出线段AB、CD所表示的函数解析式,由待定系数法结合图形可得出结论;(2)由(1)的结论算出当油箱的剩余油量相同时,跑的路程数,再由时间=路程÷速度,即可得出结论.【解答】解:(1)设AB、CD所表示的函数解析式分别为y1=k1x+50,y2=k2x+80.结合图形可知:,解得:.故y1=﹣0.1x+50(0≤x≤500),y2=﹣0.2x+80(0≤x≤400).(2)令y1=y2,则有﹣0.1x+50=﹣0.2x+80,解得:x=300.轿车行驶的时间为300÷100=3(小时);客车行驶的时间为300÷80=(小时),3﹣3=小时=45(分钟).答:当油箱的剩余油量相同时,两车行驶的时间相差45分钟.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.。
2017-2018学年 八年级(下)期末数学试卷(有答案和解析)
2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。
河北省石家庄市八年级下学期数学期末考试试卷
河北省石家庄市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017八下·秀屿期末) 已知平行四边形ABCD的周长为32,AB=4,则BC的长为()A . 4B . 12C . 24D . 282. (2分) (2019八下·北流期末) 如图,有一张长方形纸片,其中, .将纸片沿折叠,,若,折叠后重叠部分的面积为()A .B .C .D .3. (2分)如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为()A . 1:2B . 1:3C . 1:D . 1:4. (2分)如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的()A . 点CB . 点OC . 点ED . 点F5. (2分)在平面直角坐标系中,点M(6,﹣3)关于x轴对称的点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)(2017·松北模拟) 下列多边形中,内角和与外角和相等的是()A . 四边形B . 五边形C . 六边形D . 八边形7. (2分)如图,在△ABC中,D,E分别是AB和AC上的点,满足AD=3,AE=2,EC=1,DE∥BC,则AB=()A . 6B . 4.5C . 2D . 1.58. (2分)若a,b,c三个数满足a2+b2+c2=ab+bc+ac,则()A . a=b=cB . a,b,c不全相等C . a,b,c互不相等D . 无法确定a,b,c之间关系9. (2分) (2016八下·宜昌期中) 如果 =1﹣2a,则()A . a<B . a≤C . a>D . a≥10. (2分)(2018·东莞模拟) 下列哪一个是假命题()A . 五边形外角和为360°B . 切线垂直于经过切点的半径C . (3,﹣2)关于y轴的对称点为(﹣3,2)D . 抛物线y=x2﹣4x+2017对称轴为直线x=211. (2分)在□ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=A . 1:2B . 1:3C . 2:3D . 2:512. (2分)下列方程中有相等的实数根的是()A . x2+x+1=0B . x2+8x+1=0C . x2+x+2=0D . x2﹣2x+1=0二、填空题 (共4题;共4分)13. (1分) (2017八下·桐乡期中) 四边形ABCD中,∠A与∠C互补,∠B=80O,则∠D=________度.14. (1分)(2019·相城模拟) 如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是________.15. (1分) (2018九上·上杭期中) 已知m是关于x的方程的一个根,则=________.16. (1分) (2017八上·淅川期中) 如图,将矩形纸片沿DE折叠后,点C落到T点C’处,已知∠DEC=35 ,则∠ADC’= ________.三、解答题 (共4题;共32分)17. (5分) (2018九上·开封期中) 解方程:x2﹣2x﹣8=0.18. (7分) (2019九上·北京月考) 如图,在平面直角坐标系xOy中,点,,.(1)以点C为旋转中心,把逆时针旋转,画出旋转后的△ ;(2)在(1)的条件下,点A经过的路径的长度为________ 结果保留;点的坐标为________.19. (10分) (2019八下·诸暨期末) 如图,矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形.(2)若四边形AFCE是菱形,AB=8,AD=4,求菱形AFCE的周长.20. (10分) (2016八上·余杭期中) 如图,在中,是边上的高线,是边上的中线,于,.(1)写出与的数量关系,并说明理由.(2)若,,求:①点到线段的距离;② 的长(结果保留根号).参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共4题;共32分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、。
2017-2018学年八年级(下)期末数学试卷含答案
2017-2018学年八年级(下)期末数学试卷一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a33.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.164.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠15.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>27.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.409.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为度.12.当x=时,分式的值为零.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是.18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.共2个轴对称图案.故选B.2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.3.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.16【考点】方差.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2= [(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]= [4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.4.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【考点】分式有意义的条件;二次根式有意义的条件.【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.5.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .B .C .D .【考点】矩形的性质. 【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .6.一次函数y=kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >2【考点】一次函数的图象.【分析】根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+【考点】一次函数与二元一次方程(组).【分析】根据一共20个人,进球49个列出关于x、y的方程即可得到答案.【解答】解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为108度.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.【解答】解:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.故答案为:108.12.当x=2时,分式的值为零.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=3.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,求出四边形BEDF是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD﹣DE=BC﹣BF,∴AE=CF,∵AE=3,∴CF=3,故答案为:3.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.【考点】勾股定理;等腰三角形的性质.【分析】首先利用勾股定理求出AE的长,即可求出△ABC的面积,然后证明DE 是△ABC的中位线,进而求出△BDE的面积.【解答】解:∵△ABC中,AB=AC,AE平分∠BAC交BC于点E,∴AE⊥BC,且BE=CE,∴AE==8,=×BC×AE=×12×8=48,∴S△ABC∵点D为AB的中点,∴DE是△ABC的中位线,∴DE∥AC,且DE=AC,∴==,=S△ABC=×48=12.∴S△BDE故答案为:12.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为4cm.【考点】菱形的性质;线段垂直平分线的性质.【分析】首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=4cm,然后由勾股定理,求得OB的长,继而求得答案.【解答】解:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a>b.(填“>”“<”或“=”号)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出﹣5与4的大小即可解答.【解答】解:∵直线y=﹣3x+2中,k=﹣3<0,∴此函数是减函数,∵﹣5<4,∴a>b.故答案为:>.17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是甲.【考点】方差.【分析】由s甲2=0.002、s乙2=0.03,可得到s甲2<s乙2,根据方差的意义得到甲的波动小,比较稳定.【解答】:∵s甲2=0.002、s乙2=0.03,∴s甲2<s乙2,∴甲比乙的产量稳定.故答案为:甲18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.【考点】解分式方程;实数的运算;负整数指数幂.【分析】(1)l原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)方程两边同乘(x+2)(x﹣2)得x(x+2)﹣(x+2)(x﹣2)=8,解得:x=2,检验:当x=2时(x+2)(x﹣2)=0,则x=2不是原方程的解,原方程无解.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.【考点】作图—复杂作图;矩形的判定.【分析】(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;(2)利用直角三角形斜边与其边上中线的关系进而得出AM=MC=BM=DM,进而得出答案.【解答】解:(1)①如图所示:M点即为所求;②如图所示:四边形ABCD即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.【解答】解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.【解答】证明:连接EC.∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,∴∠GCF=∠CFE=∠CGE=90°,∴四边形EFCG为矩形.∴FG=CE.又BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.【考点】四边形综合题.【分析】(1)由△ABC和△DEF是两个边长为6cm的等边三角形,得出BC=DF,由∠ACD=∠FDE=60°,得出BC∥DE,证出四边形BCDE是平行四边形;(2)(a)根据有一组邻边相等的四边形是菱形即可得到结论;(b)根据有一个角是直角的平行四边形是矩形即可得到结论.【解答】(1)证明:∵△ABC和△DEF是两个边长为6cm的等边三角形,∴BC=DE,∠ABC=∠FDE=60°,∴BC∥DE,∴四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,∴CD=DE,∴▱ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠CDE=90°,如图所示:∴∠CDB=90°﹣60°=30°同理∠DCA=30°=∠CDB,∴AC=AD,同理FB=EF,∴F与B重合,∴t=(6+2)÷1=8秒,∴当t=8秒时,平行四边形BCDE是矩形.。
2017-2018学年八年级(下)期末数学试卷含答案
2017-2018学年八年级(下)期末数学试卷一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.505.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2. 5 B.3,4,5 C.5,12,13 D.20,30,406.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.97.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>38.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.510.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1y2(选择“>”、“<”、=”填空).13.(3分)一直角三角形两条边长分别是12和5,则第三边长为.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)17.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共10题,30分)1.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x>C.x≥D.x>【解答】解:根据题意得:2x﹣3≥0,解得x≥.故选:A.2.(3分)下列二次根式中,最简二次根式是()A.B. C.D.【解答】解:A、=,被开方数含分母,不是最简二次根式;B、满足最简二次根式的定义,是最简二次根式;C、,被开方数含能开得尽方的因数,不是最简二次根式;D、,被开方数含分母,不是最简二次根式,故选:B.3.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400;故选:A.4.(3分)在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为()A.105 B.90 C.140 D.50【解答】解:这组数据中105出现的次数最多,则众数为105.故选:A.5.(3分)下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选:D.6.(3分)已知一组数据x1,x2,x3,…,x n的方差是7,那么数据x1﹣5,x2﹣5,x3﹣5,…,x n﹣5的方差为()A.2 B.5 C.7 D.9【解答】解:由题意知,原数据的平均数为,新数据的每一个数都减去了5,则平均数变为﹣5,则原来的方差S12= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,现在的方差S22= [(x1﹣5﹣+5)2+(x2﹣5﹣+5)2+…+(x n﹣5﹣+5)2]= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=7,所以方差不变.故选:C.7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>3【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选:A.8.(3分)名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A.甲=乙,S>S B.甲=乙,S<SC.甲>乙,S>S D.甲<乙,S<S【解答】解:∵=(173+175+175+175+177)÷5=175(cm),=(170+171+175+179+180)÷5=175(cm),∴=,∵S2甲= [(173﹣175)2+3×(175﹣175)2+(175﹣177)2]=1.6,S2乙= [(170﹣175)2+(171﹣175)2+(175﹣175)2+(179﹣175)2+(180﹣175)2]=16.4,∴S2甲<S2乙,故选:B.9.(3分)如图,在Rt△ABC中,角A=90°,AB=3,AC=4,P是BC边上的一点,作PE垂直AB,PF垂直AC,垂足分别为E、F,则EF的最小值是()A.2 B.2.2 C.2.4 D.2.5【解答】解:连接AP,∵∠BAC=90°,PE⊥AB,PF⊥AC,∴∠BAC=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠BAC=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选:C.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【解答】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.二.填空(每题3分,共15分)11.(3分)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE=3.【解答】解:如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.12.(3分)若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1>y2(选择“>”、“<”、=”填空).【解答】解:∵k=﹣1<0,∴函数值y随x的增大而减小,∵1<2,∴y1>y2.故答案为:>.13.(3分)一直角三角形两条边长分别是12和5,则第三边长为13或.【解答】解:①12和5均为直角边,则第三边为=13.②12为斜边,5为直角边,则第三边为=.故答案为:13或.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是2.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.二.解答题(本大题共8个小题,满分75分)16.(8分)计算(1)(+3﹣2)×2(2)(﹣1)2+(+2)2﹣2(﹣1)(+2)【解答】(1)解:(+3﹣2)×2=(+)×2=6+6.(2)解:(﹣1)2+(+2)2﹣2(﹣1)(+2)=[(﹣1)﹣(+2)]2=917.(9分)如图,已知在四边形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD于E,CF⊥BD于F,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴AD=BC,∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形.18.(9分)现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是75g;乙厂抽取质量的众数是75g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样S乙2≈1.86.请你帮助计算出抽取甲厂的样本平均数及方本平均数乙=75,方差差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?【解答】解:(1)甲厂处在中间位置的数为第8个,为75克,故甲厂质量中位数为75克;乙厂75克出现了6次,故乙厂众数为75克.故答案为75,75.(2)根据=×[(73﹣75)2×2+(74﹣75)2×4+(75﹣75)2×4+(76﹣75)2×3+(77﹣75)2×1+(78﹣75)2×1)]≈1.87.∵>,∴快餐公司应选购甲加工厂的鸡腿.19.(9分)直线y=ax﹣1经过点(4,3),交y轴于点A.直线y=﹣0.5x+b交y 轴于点B(0,1),且与直线y=ax﹣1相交于点C.求△ABC的面积.【解答】解:∵直线y=ax﹣1经过点(4,3),∴4a﹣1=3,解得a=1,此直线解析式为y=x﹣1.∵直线y=﹣0.5x+b交y轴于点B(0,1),∴b=1,此直线解析式为y=﹣0.5x+1,∴,解得,∴点C(,),∴△ABC的面积=×(|1|+|﹣1|)×||=20.(9分)(1)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.【解答】证明:(1)∵AF⊥BE∴∠EAF+∠AEB=90°又∵正方形ABCD,∴∠ABE+∠AEB=90°,∴∠EAF=∠ABE,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴BE=AF,即AF=BE;(2)MP与NQ相等,理由:作AF∥PM,BE∥NQ,∵正方形ABCD,∴AM∥FP,BN∥EQ,∴四边形AMPF和四边形BNQE都是平行四边形,∴AF=MP,BE=NQ,又∵MP⊥QN,∴BE⊥AF,∵(1)结论知AF=BE,∴MP=NQ.21.(10分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE 沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.22.(10分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?【解答】解:(1)设购进甲种服装x件,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,方案1:当0<a<10时,10﹣a>0,w随x的增大而增大,所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10﹣a<0,w随x的增大而减少,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.23.(11分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD 的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE;。
2017-2018学年度第二学期冀教版八年级期末考试数学试卷
○………………○…………装……○………学校:___________姓名_______班级:_______………内……………装…………○…………订………………线…………○绝密★启用前2017-2018学年度第二学期 冀教版八年级期末考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷24题,答卷时间100分,满分120分 丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有30本,则丙类书的本数是()A. 90B. 144C. 200D. 80 2.(本题3分)如图,在直角坐标系中,△OBC 的顶点O (0,0),B (﹣6,0),且∠OCB=90°,OC=BC ,则点C 关于y 轴对称的点的坐标是( )A. (3,3)B. (﹣3,3)C. (﹣3,﹣3)D. (3,3)3.(本题3分)已知点A (4,2),B (-2,2),则直线AB ( )A. 平行于x 轴B. 平行于y 轴C. 经过原点D. 以上都有可能 4.(本题3分)如图所示,若点E 的坐标为(-2,1),点F 的坐标为(1,-1),则点G 的坐标为( )………外……○…………装……○………………线………※※请※※不※※※※装※※订※※线※※……………线…○…A. (1,2) B. (2,2) C. (2,1) D. (1,1)5.(本题3分)根据下图所示程序计算函数值,若输入的x 的值为25,则输出的函数值为( )A. 32B. 25C. 425D. 2546.(本题3分)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是( )A. 17B. 16C. 15D. 16或15或17 7.(本题3分)如果一个多边形的每一个外角都是60°,那么这个多边形是( )A. 四边形B. 五边形C. 六边形D. 八边形 8.(本题3分)如图,菱形ABCD 的两条对角线相交于点O ,若AC=6,BD=4,则菱形ABCD 的周长是 ( )A. 24B. 16C. 9.(本题3分)如图,在△ABC 中,∠ACB=90︒,∠A=30︒,BC=3cm ,点D 为AB 的中点,则CD 的值是( )A. 3cmB. 4cmC. 5cmD. 6cm 10.(本题3分)如图,在矩形ABCD 中,AB =10,BC =5.若点M 、N 分别是线段ACAB 上的两个动点,则BM +MN 的最小值为( )A. 10B. 8C. 5 3D. 6○…………外……○…………………○…………订……○…………线…学校:__________________班级:___________考号____………内…………○……………○…………订○…………线…………○…………○…………内…………○…二、填空题(计28分)某班50名同学人人拿出自己的零花钱,有捐5 元、10元、20元的,还有捐50元和100元的.如图所示的统计图反映了不同捐款数的人数比例,那么该班同学捐款人数中所占比例最大的是捐________元,捐款100元的同学有________人.12.(本题4分)若第四象限内的点P (x ,y )满足|x |=2,y 2=36,则点P 的坐标是________. 13.(本题4分)某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升________ 元.14.(本题4分)一食堂需要购买盒子存放食物,盒子有A ,B 两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A 型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为________元.15.(本题4分)如图,拖拉机工作时,油箱中的余油量Q (升)与工作时间t (小时)的关系可用406Q t =-来表示,当2t =时, Q =__________升.16.(本题4分)如图,已知点D 是△ABC 内一点,BD ⊥CD,AD=6,BD=4,CD=3,○…………外…………○…………装…………○…………线………○……※※请※※不※※要※※题※※ ………○…………○………17.(本题4分)如图,将正方形纸片ABCD 沿MN 折叠,使点D 落在边AB 上,对应点为D ′,点C 落在C ′处.若AB =6,AD ′=2,则折痕MN 的长为_______.三、解答题(计62分)2)班40个学生某次数学测验成绩如下: 63,84,91,53,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69, 89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77数学老师按10分的组距分段,算出每个分数段学生成绩出现的频数,填入频数分页表: (1)请把频数分布表、频数分布直方图补充完整并画出频数分布折线图; (2)请你帮老师统计一下这次数学考试的及格率(60分以上含60分为及格)及优秀率(90分以上含90分为优秀);(3)请说明哪个分数段的学生最多?哪个分数段的学生最少?19.(本题9分)王老汉为了与顾客签订购销合同,对自己鱼塘中鱼的总质量进行了估计,第一次捞出100条,称得质量为184千克.并将每条鱼做上记号后放入水中,当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有记号的鱼有20条,王老汉的鱼塘中估计有鱼多少条鱼?总质量为多少千克?20.(本题9分)已知一次函数的图象过M(1,3),N(-2,12)两点.(1)求函数的解析式;(2)试判断点P(2a,-6a+8)是否在函数的图象上,并说明理由.…外…………○…………※※※答※※题※※……○…… 21.(本题9分)如图是我国古代某种铜钱的平面示意图,该图形是在一个圆形的中间挖去一个正方形得到的.若圆的半径是3 cm,正方形的边长为x cm,设该图形的面积为y cm 2.(注:π取3)(1)写出y 与x 之间的解析式; (2)当x=1 cm 时,求y 的值. 22.(本题9分)已知一次函数y=-x+4的图象与x 轴、y 轴的交点分别为A 、B ,点P 在直线y=2x 上. (1)若点P 是一次函数y=-x+4的图象与直线y=2x 的交点,求△OBP 的面积; (2)若点P 的坐标为(3,6),求△ABP 的面积; (3)若△ABP 的面积为12时,求点P 的坐标.………○…………:___________…………○…………内……… 23.(本题9分)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y (元/千度))与电价x (元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x (元/千度)与每天用电量m (千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?…………线……○ 24.(本题9分)如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,连接DE 、BF 、BD .(1)求证:△ADE ≌△CBF ;(2)当AD ⊥BD 时,请你判断四边形BFDE 的形状,并说明理由.参考答案1.D【解析】试题解析:总数是:30÷15%=200(本), 丙类书的本数是:200×(1−15%−45%)=200×40%=80(本) 故选D. 2.A【解析】试题解析: 已知90,OCB OC BC ∠=︒=,∴OBC 为等腰直角三角形,又因为顶点()()00,60,O B -,, 过点C 作CD OB ⊥于点D ,则 3.OD DC ==所以C 点坐标为()33-,,点C 关于y 轴对称的点的坐标是()33., 故选A .点睛:关于y 轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数. 3.A【解析】A (4,2),B (-2,2)∴点A 到x 轴的距离为2,点B 到x 轴的距离为2 且A 、B 都在x 轴上方 ∴AB 平行于x 轴,故选A.点睛:此题是研究平面直角坐标系中,两个点所连线段与坐标轴的位置关系,需要对点到直线的距离有着明确地理解,而且此题属于较简单的判断线与坐标轴位置关系的一类问题。
2017—2018学年度第二学期期末考试初二数学试题及答案
2017—2018学年度第二学期期末考试初二数学试题题目一二三总分评卷人得分一、选择题(每小题3分,共30分)1.下列调查中,适合用普查方式的是()A.调査绥化市市民的吸烟情况B.调查绥化市电视台某节目的收视率C.调查绥化市市民家庭日常生活支出情况D.调査绥化市某校某班学生对“文明佛山”的知晓率2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三角形三个顶点的坐标分别是()A.(1,7)、(-2,2)、(3,4)B.(1,7)、(2,2)、(3,4)C.(1,7)、(2,-2)、(3,3)D.(1,7)、(2,2) 、( 3,4)3.已知直线a外有一点P,则点P到直线a的距离是()A.点P到直线的垂线的长度B.点P到直线的垂线段C.点P到直线的垂线段的长度D.点P到直线的垂线4.如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COE,∠2:∠1=4:1,则∠AOF的度数是()A.130°B.125°C.140°D.135°5.已知关于x的不等式(1-a)x>3的解集为x<31a-,则a的取值范围是()A.a>0 B.a<0 C.a<1 D.a>16.如果点P(5,y)在第四象限,那么y的取值范围是()A.y>0 B.y<0 C.y≤0D.y=07.下列说法正确的是()A.2π是分数B.2π是无理数C.如果a为实数,那么2a为正数D.如果a为实数,那么-a为负数7.若点A(a,4)和点B(3,b)关于y轴对称,则a,b的值分别是()A.3,4 B.2,-4 C.-3,4 D.-3,-49.有40个数据,共分成6组,第1~4组的频数分别是10,5,7,6,第5组的频率为0.10,则第6组的频率为()A.0.20 B.0.30 C.0.25 D.0.1510.已知4520430X Y ZX Y Z-+=⎧⎨+-=⎩(xyx≠0),则x:y:x的值是()A.2:1:3 B.1:2:3 C.3:2:1 D.不能确定二、填空题: (每题3分,共33分)11.如果点P(a+6,a-3)在x轴上,那么其坐标是。
冀教版 河北省石家庄市长安区2017-2018学年八年级(下)期末数学试卷(含解析)
河北省石家庄市长安区2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共16小题,共32.0分)1.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A. 选取一个班级的学生B. 选取50名男生C. 选取50名女生D. 在该校各年级中随机选取50名学生2.若点P(m,m+3)在第二象限,则m的值可能是()A. 1B. 0C.D.3.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.4.如图,小明为了体验四边形的不稳定性先用四根木条钉成一个矩形框架ABCD,又将一根橡皮筋拉直并连接在B,D两点之间,然后保持BC不动,将CD在BC上方绕点C顺时针旋转,观察所得四边形的变化,下列判断错误的()A. BD的长度增大B. 四边形ABCD的周长不变C. 四边形ABCD的面积不变D. 四边形ABCD由矩形变为平行四边形5.在平面直角坐标系中,一次函数y=1-x的图象是()A. B.C. D.6.如图,▱ABCD,BE平分∠ABC交AD于点E,∠AEB=25°,则∠C=()A. B. C. D.7.将点B(5,-1)向上平移3个单位长度得到点A(a+1,1-b),则()A. ,B. ,C. ,D. ,8.如图,是某班长绘制的5月份本班学生家庭用水量的统计图,由图可知该班学生家网5月份用水量所占比例最大的吨位是()A. 4吨B. 5吨C. 6吨D. 7吨9.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A. 减小2B. 增加2C. 减小4D. 增加410.如图,在平面直角坐标系中,直线m⊥n,若x轴∥m,y轴∥n,点A的标为(-4,2),点B的坐标为(2,-4),则坐标原点可能为()A.B.C.D.11.用一根长48cm的细铁丝围成一个等腰三角形,设三角形底边长为ycm,腰长为xcm,则y与x的函数关系式及x的取值范围是()A. B.C. D.12.如图,小明家相对于学校的位置下列描述最准确的是()A. 距离学校1200米处B. 北偏东方向上的1200米处C. 南偏西方向上的1200米处D. 南偏西方向上的1200米处13.若函数y=kx(k≠0)的图象过(2,-3),则关于此函数的叙述不正确的是()A. y随x的增大而增大B.C. 函数图象经过原点D. 函数图象过二、四象限14.某公司生产一种品牌的产品,近年的产销情况如图所示,直线l1和l2分别表示产量与年份、销量与年份的函数关系,则下列说法:①该产品产量与销售量均呈直线上升的趋势,应该按原计划继续生产;②该产品已经出现供大于求的趋势价格将趋跌;③该产品库存积压越来越大,应该压缩生产或设法促销;④该产品近年的产量一直大于销量,因此一直处于亏损状态.其中错误的是()A. B. C. D.15.数学课上探究“菱形的两条对角线互相垂直”时,甲乙两同学分别给出各自的证明:已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD则关于两人的证明过程,说法正确的是()A. 甲、乙两人都对B. 甲对,乙不对C. 乙对,甲不对D. 甲、乙两人都不对16.如图,等边△ABC中,A(1,0)B(2,0).将△ABC在x轴上按顺时针方向无滑动滚,翻滚1次后,C点落在点(3,0),则滚2018次后,△ABC的顶点中与点(2018,0)距离最近的是()A. 点AB. 点BC. 点CD. 不能确定二、填空题(本大题共4小题,共12.0分)17.根据如图的程序计算,当输出的结果y=5.5时,则输入x=______.18.如图,将一个n边形纸板,过相邻的两个顶点剪掉一个三角形,余下部分的角度和为:∠A1+∠A2+∠A3+…+∠A n-1+∠A n=2040°,若∠P=60°,则n的值为______.19.学习委员调查本班学生一周内课外阅读情况,按照课外阅读时间进行统计结果如下则表中的值是.20.一种大棚蔬菜处在0℃以下的气温条件下超过3.5小时,就会遭受冻害某日气象台发布了如下的降温预报:今日0时至次日5时气温将由3℃下降到-3℃;从次日5时至次日8时,气温又将由-3℃上升到5℃.若气温在上述两个时段内变化都是匀速的,那么0℃以下的气温条件将持续______时,你认为是否有必要对大棚蔬菜采取防冻措施?______(填“有”或“没有”)三、解答题(本大题共6小题,共56.0分)21.平面直角坐标系中,已知点A(-a,2a+3),B(1,a-2)(1)若点A在第一象限的角平分线上时,则a=______;(2)若点B到x轴的距离是到y轴的距离的2倍,则B点坐标为______;(3)若线段AB∥x轴,求点A,B的坐标及线段AB的长.22.如图1,在▱ABCD中,E,F分别为BC,AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)在(1)的基础上小明继续探究发现:如图2,连接BF,DE,分别交AE,CF于点G,H,得到的新四边形EHFG也是平行四边形.请补全小明的证明思路由(1)知:四边形AFCE是平行四边形,可得AE∥CF,要证明四边形EHFG为平行四边形,只要再证______由已知,BE=DF,又由______,所以四边形BEDF为平行四边形,进而可证得四边形EHFG为平行四边形.23.为节约用水,某市2017年对相关单位用水收费标准进行了调整,各单位每月应交的水费y(元)与当月用水量x(吨)之间关系如图所示.(1)若2月份用水量为40吨,则该月应交水费______元;(2)当x≥50时,求y与x的函数关系式;(3)政府为了节约用水,决定在2018年对每月用水量不超过150吨的单位给予一定的资金奖励,如果某单位要想获得奖励金,那么每月用于水费的支出最多为多少元?24.某商场今年前五个月销售总额共计600万元,如图1柱状图为该商场今年前五个月的月销售总额统计图(统计信息不全),折线图2表示该商场家电部各月销售额占商场当月销售额的百分比情况统计图.(1)请根据以上信息,将图1补充完整;(2)家电部5月份的销售额是______万元,小亮同学观察折线图后认为,家电部5月份的销售总额比4月份减少了,你同意他的看法吗?请说明理由;(3)在该商场家电部下设A,B,C,D,E五个卖区,如图3饼状图示在5月份,家电部各卖区销售额占5月份家电部销售额的百分比情况统计图,则______卖区销售额最高,该卖区占5月份商场销售总额的百分比是______,根据各卖区的销售信息,请你为商场的家电部提一条合理化建议.25.请根据学习函数的经验,对函数y=|x|+1的图象与性质进行探究.(1)在函数y=|x|+1中,自变量x的取值范围是______.(2)下表是x与y的对应值:①;②若A(n,10),B(9,10)为该函数图象上不同的两点,则n=______;(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为______;③结合函数图象,写出该函数除②外的一条性质;(4)如图,若直线l:y1=2x-1与函数y=|x|+1的图象有交点,请求出交点坐标,并直接写出当y1≥y时x的取值范围.26.如图1,在平面直角坐标系中,分别以△OAB的边OB,AB为边向外作正方形ABCD和正方形OBEF,作BB1⊥x轴于点B1,作FF1垂直于x轴于点F1,(1)若A(4,0)B(1,4),则①由△______≌△______,得点F的坐标为______;②求D点的坐标.(2)如图2,两正方形的中心分别是O1,O2,连接O1O2及FD,若A(4,0),B (m,n),且m>0,n>0(B点不在FD上),猜想O1O2与FD的关系,并给于证明;(3)如图3,取线段FD的中点M,若B(1,4),A(a,0),且满足2≤a≤8时,点M所经过的路径的长为______.答案和解析1.【答案】D【解析】解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.故选:D.根据调查数据要具有随机性,进而得出符合题意的答案.此题主要考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.2.【答案】C【解析】解:∵点P(m,m+3)在第二象限,可得:,解得:-3<m<0,所以m的值可能是-1.5,故选:C.点在第二象限的条件是:横坐标是负数,纵坐标是正数.此题考查点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.【答案】D【解析】解:A、B、C当x取值时,y有唯一的值对应,故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.此题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.【答案】C【解析】解:∵将CD在BC上方绕点C顺时针旋转,∴BD的长度增大,CD的长度不变,∵四边形ABCD的周长=2(BC+CD),且BC,CD的长度不变∴四边形ABCD的周长不变∵四边形ABCD的面积=×BC×(点D到BC的距离),且BC不变,点D到BC 的距离在旋转的过程中随点D的位置的变化而变化,∴四边形ABCD的面积是变化的∵旋转中,AB=CD,AD=BC∴四边形ABCD是平行四边形故选:C.由旋转的性质和平行四边形的性质可求解.本题考查了旋转的性质,平行四边形的判定等知识,熟练运用旋转的性质是本题的关键.5.【答案】A【解析】解:一次函数y=-x+1,其中k=-1,b=1,其图象为:,故选:A.观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.6.【答案】D【解析】解:∵BE平分∠ABC,∴∠ABC=2∠EBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠CBE=∠AEB=25°,∠ABC+∠C=180°,∴∠ABC=2∠CBE=50°,∴∠C=180°-50°=130°;故选:D.先根据角平分线的定义得到,∠ABC=2∠EBC,再根据平行四边形的性质得出AD∥BC,AB∥CD,即可得出∠CBE=∠AEB=25°,∠ABC+∠C=180°,得出∠ABC=2∠CBE=50°,即可得出∠C的度数.此题考查了平行四边形的性质、平行线的性质、角平分线的定义的运用,熟练掌握平行四边形的性质是关键.7.【答案】B【解析】解:由题意:,解得,故选:B.根据左减右加,上加下减的规律解决问题即可.本题考查坐标与图形变化-平移,解题的关键是熟练掌握平移的坐标变化的规律,属于中考常考题型.8.【答案】B【解析】解:由图知4吨和6吨对应的圆心角度数为90°,7吨对应的圆心角度数为60°,则5吨对应的圆心角度数为360°-(90°+90°+60°)=120°,故选:B.根据四个部分对应的圆心角度数和为360°求出5吨所对应的圆心角度数,从而得出答案.本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.9.【答案】D【解析】解:∵当x的值减小1,y的值就减小2,∴y-2=k(x-1)+b=kx-k+b,即y=kx-k+b+2.又∵y=kx+b,∴-k+b+2=b,即-k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,∴当x的值增加2时,y的值增加4.故选:D.先根据题意列出关于k的方程,求出k的值即可得出结论.本题考查的是一次函数的性质,先根据题意得出k的值是解答此题的关键.10.【答案】A【解析】解:设过A、B的直线解析式为y=kx+b,∵点A的坐标为(-4,2),点B的坐标为(2,-4),∴,解得:,∴直线AB为y=-x-2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知坐标轴位置,故将点A沿着x轴正方向平移4个单位,再沿y轴负方向平移2个单位,即可到达原点位置,则原点为点O1.故选:A.先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b决定了直线与y轴的交点位置.11.【答案】B【解析】解:∵三角形底边长为ycm,腰长为xcm,周长为48cm,∴2x+y=48 即y=48-2x由三角形三边关系可得:12<x<24故选:B.由三角形周长及三角形三边关系可求得.本题考察三角形三边的关系,为基础题型.12.【答案】C【解析】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.此题主要考查了方向角,关键是掌握方向角的描述方法.13.【答案】A【解析】解:把点(2,-3)代入y=kx(k≠0)得:2k=-3,解得:k=-,函数的解析式为:y=-x,A.k=-<0,y随着x的增大而减小,即A项不正确,B.k=-,即B项正确,C.该函数是正比例函数,图象经过原点,即C项正确,D.函数图象过二、四象限,即D项正确,故选:A.把点(2,-3)代入y=kx(k≠0)得到关于k的一元一次方程,解之,即可得到该函数的解析式,根据正比例函数的性质,依次分析各个选项,即可得到答案.本题考查了一次函数图象上点的坐标特征,正比例函数的性质,正确掌握代入法和正比例函数的性质是解题的关键.14.【答案】B【解析】解:由图象可得,该产品产量与销售量均呈直线上升的趋势,该产品库存积压越来越大,应该压缩生产或设法促销,故错误,正确,该产品已经出现供大于求的趋势价格将趋跌,故正确,由图象不能得到销售价格,故不能判断是否亏损,故错误,故选:B.根据函数图象和一次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】A【解析】解:甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.故选:A.甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.本题考查菱形的性质,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】C【解析】解:∵滚动第1次,落在x轴上的点C(3.0),即:C(1+2,0),滚动第2次,落在x轴上的点A(4.0),即:A(2+2,0),滚动第3次,落在x轴上的点B(5.0),即:B(3+2,0),滚动第4次,落在x轴上的点C(6.0),即:C(4+2,0),滚动第5次,落在x轴上的点A(7.0),即:A(5+2,0),∴滚动n次,落在x轴上的点,(n+2,0),∴(2018-2)÷3=672,∴经过(2018,0)的点是等边三角形ABC顶点中的C,故选:C.先找出点A,B,C落在x轴上横坐标的特点,找出规律,再确定出滚动次数进行计算.此题是等边三角形的性质,主要考查了从滚动中找出规律,根据规律确定坐标对应点是解本题的关键.17.【答案】0.5【解析】解:y=5.5时,x+5=5.5,解得x=0.5,-x+5=5.5,解得x=-0.5(舍去).故答案为:0.5.分别把y=5.5代入代数式,计算即可.本题考查的是求函数值.当已知函数解析式时,求函数值就是求代数式的值.18.【答案】14【解析】解:(2040°+180°-60°)=(n-2)×180°所以n=14,故答案为14.减去一个三角形,去掉180°,∠P=60°,所以原多边形内角和是2040°+120°=2160°,再根据内角和求解.本题考查了多边形的内角和定理,关键是确定n边形的内角和.19.【答案】15【解析】解:∵b+c=1-30%=70%,∴被调查的总人数为(10+25)÷70%=50(人),则a=50×30%=15(人),故答案为:15.先根据百分比之和为1求得b+c的值,再用第1、2组的人数和除以其所占百分比求得总人数,最后用总人数乘以第3组的百分比可得答案.本题主要考查统计表,解题的关键是掌握各分组的百分比之和为1,并根据小组人数及其对应百分比求得总人数.20.【答案】有【解析】解:∵0时至次日5时气温变化速度为=℃/h,∴0℃下降到-3℃所需时间为:(0-3)÷=h,∵次日5时至次日8时气温变化速度为=℃/h,∴气温又将由-3℃上升到0℃所需要的时间为:[0-(-3)]÷=∴0℃以下的气温条件将持续时间为:+=h>3.5,故需要对大棚蔬菜采取防冻措施.故答案为:,有.根据题意列算式即可求出答案.本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则以及根据题意列出算式,本题属于中等题题型21.【答案】-1 (1,2)【解析】解:(1)∵点A在第一象限的角平分线上,∴-a=2a+3,解得:a=-1,故答案为:-1;(2)∵点B到x轴的距离是到y轴的距离的2倍,∴a-2=2,解得:a=4,∴点B的坐标为(1,2),故答案为:(1,2);(3)∵线段AB∥x轴,∴2a+3=a-2,解得:a=-5,∴点A(5,-7),B(1,-7),则AC=5-1=4.(1)根据第一象限的角平分线上点的横纵坐标相等得出关于a的方程,解之可得;(2)根据点B到x轴的距离是到y轴的距离的2倍得出关于a的方程,解之可得;(3)由AB∥x轴知纵坐标相等求出a的值,从而得出a的值,再得出点A,B的坐标,从而求得AB的长度.本题主要考查坐标与图形的性质,重点在于理解点到坐标轴的距离与点坐标之间的关系,关系清晰,则本题很容易求解.22.【答案】四边形BEDF为平行四边形BE∥DF【解析】(1)证明:∵四边形ABCD是平行四边形;∴AD=BC,AD∥BC,∴AF∥CE,∵BE=DF,∴AF=CE,∴四边形AECF是平行四边形;(2)解:由(1)知:四边形AFCE是平行四边形,可得AE∥CF,∵BE=DF,BE∥DF,∴四边形BEDF为平行四边形,∴BF∥DE,∴四边形EHFG为平行四边形.故答案为:四边形BEDF为平行四边形,BE∥DF.(1)由平行四边形的性质得出AD=BC,AD∥BC,AF∥CE,求出AF=CE,即可得出结论;(2)由(1)知:四边形AFCE是平行四边形,可得AE∥CF,再证出四边形BEDF 为平行四边形,得出BF∥DE,即可得出结论.本题考查了平行四边形的判定与性质;熟记一组对边平行且相等的四边形是平行四边形是解题关键.23.【答案】160【解析】解:(1)由图可知,当x≤50时,每吨的价格为:200÷50=4元/吨,则2月份用水量为40吨,则该月应交水费:40×4=160(元),故答案为:160;(2)当x≥50时,设y与x的函数关系式y=kx+b,,得,即当x≥50时,y与x的函数关系式是y=6x-100;(3)将x=150代入y=6x-100,得y=6×150-100=800,答:每月用于水费的支出最多为800元.(1)根据函数图象中的数据可以求得x≤50时,每吨水的价格,从而可以求得2月份用水量为40吨应交的水费;(2)根据函数图象中的数据可以求得当x≥50时,y与x的函数关系式;(3)根据题意和(2)中的函数解析式可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】36 B8.4%【解析】解:(1)5月份的销售额=600-180-90-115-95=120(万元),统计图如图所示:(2)5月份家电销售额120×30%=36(万元),四月份家电的销售额=95×32%=30.4(万元),家电部5月份的销售总额比4月份多了,不同意他的看法.故答案为36.(3)B卖区销售额最高,=8.4%.D卖区销售额最差,应该加强管理.故答案为:B,8.4%.(1)根据总体等于个体之和即可解决问题.(2)分别求出4月份,5月份的家电销售额,即可判断.(3)利用扇形图3,即可判断.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【答案】全体实数 4 -9 1【解析】解:(1)全体实数;(2)4和-9;(3)图象如右图所示.1,函数关于y轴对称;(4)由两函数解析式组成方程组得:,解得:,∴两个函数图象有公共交点,其交点坐标为(2,3),由函数图象可知:当y1≥y时x的取值范围是x≥2.由图象和表格可知函数y=|x|+1的图象关于y轴对称,拐点坐标为(0,),本题考查了原函数图象和性质,又学习新函数的创新题,综合二元一次方程组求交点坐标和两函数值大小比较求自变量的范围,来研究两函数关系.26.【答案】OFF1BOB1(-4,1)3【解析】解:(1)如图1中,∵FF1⊥x轴,BB1⊥x轴,四边形EBOF是正方形,∴∠OFF1=∠OB1B=∠BOF=90°,∴∠FOF1+∠BOB1=90°,∠BOB1+∠OBB1=90°,∴∠FOF1=∠OBB1,∵OF=OB,∴△OFF1≌△BOB1(AAS),∴FF1=OB1=1,OF1=BB1=4,∴F(-4,1),故答案为OFF1,BOB1,(-4,1).作DH⊥OA于H.∵A(4,0)B(1,4),∴OA=4,BB1=4,OB1=1,AB1=3,同法可证△ABB1≌△DAH(AAS),∴AH=BB1=4,DH=AB1=3,∴OH=8,∴D(8,3),故答案为(8,3).(2)结论:O1O2∥DF,O1O2=DF.理由:如图2中,连接BF,BD.∵O1,O2是两正方形的中心,∴点O1在线段BF上,点O2在线段BD上,∵BO1=O1F,BO2=O2D,∴O1O2∥DF,O1O2=DF.(3)如图3中,作DH⊥OA于H.同法可证:△ABB1≌△DAH,可得D(a+4,a-1),∵F(-4,1),FM=DM,∴M(,),∵点A的运动轨迹是线段,∴点M的运动轨迹也是线段,当a=2时,M(1,1),当a=8时,M(4,4),∴点M的运动路径的长==3.故答案为3.(1)证明△OFF1≌△BOB1(AAS)即可解决问题.作DH⊥OA于H.理由全等三角形的性质解决问题即可.(2)结论:O1O2∥DF,O1O2=DF.如图2中,连接BF,BD.利用三角形的中位线定理解决问题即可.(3)如图3中,作DH⊥OA于H.利用a表示点M的坐标,判断出点M的运动轨迹是线段,求出线段的端点坐标即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会探究规律寻找点的运动轨迹,属于中考压轴题.。
河北省石家庄市2中南校2017-2018第二学期八年级下期末考试Word版+答案
石家庄二中2017-2018学年第二学期期末质量检测八年级数学(考试时间90分钟总分100分)卷Ⅰ(选择题共32分)一.选择题(本题共16小题,每题2,共计32分。
在每题所给的4个选项中,只有一项是符合题意的,把所选项前的字母代号填在题后的括号内)1.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.为了了解2017年石家庄市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩,下列说法正确的是()A.2017年石家庄市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是10003.将△ABC的三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将△ABC向右平移了1个单位4.若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.15.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解集为()A.x= B.x=3 C.x=﹣ D.x=﹣36.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO7.关于平行四边形ABCD的叙述,正确的是()A.若AB⊥BC,则平行四边形ABCD是菱形B.若AC⊥BD,则平行四边形ABCD是正方形C.若AC=BD,则平行四边形ABCD是矩形D.若AB=AD,则平行四边形ABCD是正方形8.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,则原多边形的边数为()A.14 B.15 C.16 D.179.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A .B .C .D .10.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()x(kg)0 1 2 3 4y(cm) 5 7 9 11 13A.152y x=+B.12y x= C.25y x=+D.15y x=-11.如图,D是△ABC内一点,BD⊥CD,AD=12,BD=8,CD=6,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.14 B.18 C.20 D.2212.如图,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥CD B.AB=CD C.AC⊥BD D.AC=BD13.已知菱形的周长为4,两条对角线的和为6,则菱形的面积为()A.2 B.C.3 D.413.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°15.如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD 于点F,∠BED=120°,则∠EFD的度数为()A.135° B. 115° C. 105° D. 120°16.如图(1),在 Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,沿B→C→A 运动,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则AC的长为()A.14 B.7 C.4 D.2卷Ⅱ(非选择题共68分)二.填空(每小题3分,共12分)17.函数y=中,自变量x 的取值范围是.18.已知直线y=kx+b如图所示,当y<0时,x的取值范围是.19.如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是米.20.如图,直线AB的解析式为y=2x+5,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF 的最小值为.三.解答题(共6小题,共56分)21.(本小题满分6分)如图,△ABO中,A(﹣2,-3),B(2,﹣1),△A′B′O′是△ABO平移之后得到的图象,并且O的对应点O′的坐标为(4,3)(1)求三角形△ABO的面积;(2)作出△ABO平移之后的图形△A′B′O′,并写出A′,B′两点的坐标。
2017---2018学年度第二学期末考试八年级数学试卷(答案)
2017~2018学年度第二学期期末考试八年级数学答案1.B 2. D 3. D 4. C 5. C 6.D 7 .A 8.B 9.B 10.A11.x≥512.26 13.5, 18 14.3 215.216.y x a=-,-3≤a≤117.解:(1)设一次函数的解析式y=kx+b, ……………………………………………………………1分∵经过点(1,3)与(﹣1,﹣1),∴31k bk b+=⎧⎨-+=-⎩……………………………………………………………3分∴解得:k=2;b=1……5分∴直线的解析式为y=2x+1……………6分(2)∵在y=2x+1中,当x=12-时,y=0 ∴一次函数的图象是经过点12-(,)…8分18. 证明:∵□ABCD,∴AD=CB,AD∥CB ∴∠ADE=∠CBF又∵AE⊥BD,CF⊥BD ∴∠AED=∠CFB=90°∴△AED≌△CFB(AAS)……………………………………………………………………………5分∴AE=CF∵AE⊥BD,CF⊥BD ∴∠AEF=∠CFE=90°AE∥CF∴四边形AFCE是平行四边形…………………………………………………………………………8分19.解:(1)方式一:y=0.3x+30方式二:y=0.4x………………………………………………………………………………………4分(2) ∵0.3x+30=0.4x ∴x=300答:通话300分钟时,两种计费方式费用相等…………………………………………………………8分20. (1) 12 图略(2) 72°(3) 中位数是2 ……………………………………………………6分(4) (1102203124652)50 2.4⨯+⨯+⨯+⨯+⨯÷=…………………………………………8分21.解:(1)∵80x+60(100-x)≤7500 ∴x≤75……………………………….……………………………2分y=40x+30(100-x)=10x+3000 (65≤x≤75)……………………….……………………………………5分(2)∵y =(40-a)x+30(100-x)=(10-a)x+3000 ……………………….…………………………………………………….…………6分方案1:当0<a<10时,10-a>0,y随x的增大而增大所以当x=75时,y有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,w随x的增大而减小所以当x=65时,y有最大值,则购进甲种服装65件,乙种服装35件..……………………….….….8分22.解:(1)B (2,0),A (0,4) …………….……………………………………………….3分 (2)∵直线y =2x ﹣2k 经过A (0,4) ∴k=﹣2………….…………………………………………………………4分 作CF ⊥x 轴于点F, 证△AOB ≌△BFC(AAS) ………….………………………………………………………5分 CF=BO=2, BF=AO=4,∴OF=6 ,∴OF=6 ∴C (6,2)………………………………………………6分 ∵DC ∥AB ,设DC :y =﹣2x +b ∵直线y =﹣2x +b 经过C (6,2) ∴b=14∴直线DC 的解析式为y =﹣2x +14………….………………………………………………………………………7分 (3) ﹣3<x <0或x >3 …….……………………………………………………………………………………10分23.(1)∵正方形ABCD 中 BA=AD=CD, ∠BAE =D=90° 又DE=CF ∴AE=DF∴△BAE ≌△ADF(SAS) …………………………….………………………………………………………………1分 ∴BE=AF …………………………….………………………………………………………………2分 ∠1=∠2∴∠1+∠BAG=∠2+∠BAG=90° ∴∠BGA=90°即BE ⊥AF……………………………………………………………………………………………………………3分 (2)过点D 作DN ⊥AF 于N,DM ⊥BE 交BE 延长线于M 在Rt △ADF 中,∵1122ADF S AD FD AF DN =⋅=⋅△∴DN =分 ∵△BAE ≌△ADF(已证)∴BAE S △=ADF S △ ,BE=AF ∴AG=DN又∵△AEG ≌△DEM(AAS) ∴AG=DM……………………………………………………………………………5分 ∴DN=DM ∴GD 平分∠MGN ∴∠DGN=12∠MGN=45°…………………………………………………………………………………………6分 ∴有等腰直角△DGNGD==…………………………………………………………………………………………………7分 (3)FQ 分24. (1)令x=0,则 y=6,∴A (0,6)………………………………………….…………………………1分令y=0,则3064x =-+,解得x=8, ∴D (8,0)………………………………………………2分∴AC=AO=6,OD=8=10 ∴CD=AD-AC=4设BC=BO=x ,则BD=8-x,CD=4 在Rt △BCD 中,222BC CD BD += ∴2224(8x)x +=-,解得x=3∴点B 的坐标为(3,0) ……………………………………………………………………………4分(2)设直线AB 的解析式为y=kx+6 ∵点B 的坐标为(3,0) ∴0=3k+6 解得:k= -2∴直线AB 的解析式为y=-2x+6……………………………………………………………………5分 过点G 、F 作GM ⊥x 轴于M ,FN ⊥x 轴于N ∵△DFG 为等腰直角三角形∴DG=FD ∠1=∠2, ∠DMG =∠FND,∴△DMG ≌△FND (AAS )………………………………………………………………………6分 ∴设GM=DN=m ,DM=FN=n 求出G(8-n , m), F(8-m , -n) ∵点G 、F 在直线AB 上 ∴2(8n)62(8)6m n m =--+⎧⎨-=--+⎩ 解得 m=2,n=6∴点G 的坐标为(2,2) ……………………………………8分(3)如图, 设点3(,6)4Q a a -+,∵PQ ∥x 轴,且点P 在直线26y x =-+上∴点P 坐标为33(,6)84P a a -+…………………………………9分∴PQ=58a = DQ作QH ⊥x 轴于点H,∴DH=a -8, QH=364a -∴34QH DH = 由勾股定理可知 QH :DH :DQ= 3:4:5 …………………………………………10分 ∴QH=35DQ =38a即38a = 364a -,解得a=16∴点Q 、P 的坐标为 (16,6)Q - (6,6)P -∵ED ∥PQ ,ED=PQ D(8,0)∴E(2,0)-…………………………………………………………………………………………12分。
2017-2018学年八年级(下)期末数学试卷含答案解析
2017-2018学年八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm3.(3分)图中,不是函数图象的是()A.B.C.D.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或47.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+18.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,309.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<510.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为米.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1中国国际航空根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC 的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是;(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列关于x的函数中,是正比例函数的为()A.y=x2 B.y= C.y= D.y=【解答】解:A、是二次函数,故此选项错误;B、是反比例函数,故此选项错误;C、是正比例函数,故此选项正确;D、是一次函数,故此选项错误;故选:C.2.(3分)下列四组线段中,不能作为直角三角形三条边的是()A.3cm,4cm,5cm B.2cm,2cm,2cmC.2cm,5cm,6cm D.5cm,12cm,13cm【解答】解:A、32+42=52,能构成直角三角形,不符合题意;B、22+22=(2)2,能构成直角三角形,不符合题意;C、22+52≠62,不能构成直角三角形,符合题意;D、52+122=132,能构成直角三角形,不符合题意.故选:C.3.(3分)图中,不是函数图象的是()A.B.C.D.【解答】解:由函数的定义可知,对于每一个自变量的x的取值,都有唯一的y 值与其对应,选项A中当x=1时,有两个y值与其对应,故选项A中的图象不是函数图象,故选:A.4.(3分)平行四边形所具有的性质是()A.对角线相等B.邻边互相垂直C.每条对角线平分一组对角D.两组对边分别相等【解答】解:平行四边形的对角相等,对角线互相平分,对边平行且相等.故选:D.5.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.6.(3分)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.1或﹣4 B.﹣1或﹣4 C.﹣1或4 D.1或4【解答】解:∵x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,∴(﹣2)2+a×(﹣2)﹣a2=0,即a2+3a﹣4=0,整理,得(a+4)(a﹣1)=0,解得a1=﹣4,a2=1.即a的值是1或﹣4.故选:A.7.(3分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是()A.y=2x﹣1 B.y=2x+2 C.y=2x﹣2 D.y=2x+1【解答】解:将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是y=2x﹣2.故选:C.8.(3分)在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图.师生捐款金额的平均数和众数分别是()A.20,20 B.32.4,30 C.32.4,20 D.20,30【解答】解:由图可知,平均数是(6×10+13×20+20×30+8×50+3×100)÷50=32.4(元).捐款30元的有20人,人数最多,故众数是30元.故选:B.9.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5 B.k≤5,且k≠1 C.k<5,且k≠1 D.k<5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.10.(3分)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映S与x之间的函数关系式的是()A.B.C.D.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0),∴S==2y=2(6﹣x)=﹣2x+12,x>0且x<6,∴0<S<12,故选:B.二、填空题(本题共24分,每小题3分)11.(3分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式y=﹣x+1.【解答】解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为:y=﹣x+1.12.(3分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B 之间的距离应为32米.【解答】解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且AB=2DE,∵DE=16米,∴AB=32米.故答案为:32.13.(3分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是x<3.【解答】解:当x<3时,kx+6>x+b,即不等式kx+6>x+b的解集为x<3.故答案为:x<3.14.(3分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是8.【解答】解:如图所示:∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB,故△ABD是等边三角形,则AB=AD=4,故BO=DO=2,则AO==2,故AC=4,则菱形ABCD的面积是:×4×4=8.故答案为:8.15.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为x2=(x﹣4)2+(x ﹣2)2.【解答】解:根据勾股定理可得:x2=(x﹣4)2+(x﹣2)2,即x2=x2﹣8x+16+x2﹣4x+4,解得:x1=2(不合题意舍去),x2=10,10﹣2=8(尺),10﹣4=6(尺).答:门高8尺,门宽6尺,对角线长10尺.故答案为:x2=(x﹣4)2+(x﹣2)2.16.(3分)方程x2﹣8x+15=0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是或.【解答】解:解方程x2﹣8x+15=0得:x=3或5,即直角三角形的两边为3或5,当5为直角边时,第三边为:=;当5为斜边时,第三边为:=4;故答案为:4或.17.(3分)已知直线y=2x+2与x轴、y轴分别交于点A,B.若将直线y=x向上平移n个单位长度与线段AB有公共点,则n的取值范围是.【解答】解:∵直线y=2x+2与x轴、y轴分别交于点A,B,∴A(﹣1,0),B(0,2),将直线y=x向上平移n个单位长度后得到:直线y=x+n,当直线y=x+n经过点A时,0=﹣+n,即n=,当直线y=x+n经过点B时,2=0+n,即n=2,又∵直线y=x+n与线段AB有公共点,∴n的取值范围是.故答案为:.18.(3分)在一节数学课上,老师布置了一个任务:已知,如图1,在Rt△ABC中,∠B=90°,用尺规作图作矩形ABCD.同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:①分别以点A,C为圆心,大于AC长为半径画弧,两弧分别交于点E,F,连接EF交AC于点O;②作射线BO,在BO上取点D,使OD=OB;③连接AD,CD.则四边形ABCD就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解答】解:作①的理由:到线段两端距离相等的点在线段的垂直平分线上,作②的理由:对角线互相平分的四边形是平行四边形,作③的理由:有一个角是直角的平行四边形是矩形.故答案为:到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形三、解答题(本题共46分,第19-21,24题,每小题4分,第22,23,25-28题,每小题4分)19.(4分)用配方法解方程:x2﹣6x=1.【解答】解:配方,得x2﹣6x+9=1+9整理,得(x﹣3)2=10,解得x 1=3﹣,x2=3+.20.(4分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.【解答】解:∵BC=9,BE:EC=2:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC2+CH2=EH2.即32+x2=(9﹣x)2,解得x=4,∴CH=4.21.(4分)已知关于x的一元二次方程(m﹣1)x2﹣(m+1)x+2=0,其中m≠1.(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值.【解答】(1)证明:在方程(m﹣1)x2﹣(m+1)x+2=0中,△=[﹣(m+1)]2﹣4×2(m﹣1)=m2﹣6m+9=(m﹣3)2,∵(m﹣3)2≥0恒成立,∴方程(m﹣1)x2﹣(m+1)x+2=0总有实根;…(2分)(2)解:(m﹣1)x2﹣(m+1)x+2=(x﹣1)[(m﹣1)x﹣2]=0,=1,x2=.解得:x∵方程(m﹣1)x2﹣(m+1)x+2=0的两根均为正整数,且m是整数,∴m﹣1=1或m﹣1=2,∴m=2或m=3.22.(5分)2017年5月5日,国产大飞机C919首飞圆满成功.C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑.目前,C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表2【解答】解:表2补充如下:20个数据从小到大排列后,第10、11个数据都是20,所以中位数是(20+20)÷2=20,数据20出现了10次,次数最多,所以众数是20.23.(5分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.【解答】(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=60.24.(4分)有这样一个问题:探究函数y=+1的图象与性质.小明根据学习一次函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质该函数没有最大值或该函数没有最小值.【解答】解:(1)x≠0;故答案是:x≠0.(2)令,∴;(3)如图;(4)答案不唯一,可参考以下的角度:①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性.25.(5分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.【解答】(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.∴CD=5.又∵,∴.在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.26.(5分)如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,﹣1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形.请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)【解答】解:(1)∵B(0,3),C(0,﹣1).∴BC=4;(2)∵DB=DC,∴点D在线段BC的垂直平分线上,∵B(0,3),C(0,﹣1),∴线段BC的中点为(0,1),∴D点纵坐标为1,∵点D在直线AC上,∴1=﹣x﹣1,解得x=﹣2,∴D点坐标为(﹣2,1);(3)∵B(0,3),D(﹣2,1),∴可设直线BD解析式为y=mx+3,∴1=﹣2m+3,解得m=,∴直线BD解析式为y=x+3,∴可设P点坐标为(t,t+3),∵A(﹣,0),B(0,3),∴BP==|t|,AP==2,AB=2,当以A、B、P三点为顶点的三角形是等腰三角形时,有BP=AP、BP=AB和AP=AB 三种情况,①当BP=AP时,则有|t|=2,解得t=﹣,此时P点坐标为(﹣,2);②当BP=AB时,则有|t|=2,解得t=3或t=﹣3,此时P点坐标为(3,+3)或(﹣3,3﹣);③当AP=AB时,则有2=2,解得t=0(此时与B点重合,舍去)或t=﹣3,此时P点坐标为(﹣3,0);综上可知存在满足条件的点P,其坐标为(﹣,2)或(3,+3)或(﹣3,3﹣)或(﹣3,0).27.(5分)如图,在△ABD中,AB=AD,将△ABD沿BD翻折,使点A翻折到点C.E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.【解答】解:(1)如图所示:(2)判断:∠DFC=∠BAE.证明:∵将△ABD沿BD翻折,使点A翻折到点C.∴BC=BA=DA=CD.∴四边形ABCD为菱形.∴∠ABD=∠CBD,AD∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE.(3)如图,连接CG,AC.由轴对称的性质可知,EA=EC,∴EA+EG=EC+EG,根据EC+EG≥CG可知,CG长就是EA+EG的最小值.∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.又∵G为AD的中点,∴DG=1,∴Rt△CDG中,由勾股定理可得CG=,∴EA+EG的最小值为.28.(5分)在平面直角坐标系xOy中,已知点M(a,b)及两个图形W1和W2,若对于图形W1上任意一点P(x,y),在图形W2上总存在点P'(x',y'),使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形W2是图形W 1关于点M的关联图形,此时三个点的坐标满足x'=,y'=.(1)点P'(﹣2,2)是点P关于原点O的关联点,则点P的坐标是(﹣4,4);(2)已知,点A(﹣4,1),B(﹣2,1),C(﹣2,﹣1),D(﹣4,﹣1)以及点M(3,0)①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.【解答】解:(1)∵点P'(﹣2,2)是点P关于原点O的关联点,∴点P'是线段PO的中点,∴点P的坐标是(﹣4,4);故答案为:(﹣4,4);(2)①如图1,连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.②如图2,设N(0,n).∵正方形ABCD关于点N的关联图形恰好被直线y=﹣x分成面积相等的两部分,∴关联图形的中心Q落在直线y=﹣x上,∵正方形ABCD的中心为E(﹣3,0),∴Q(,),∴代入得:=﹣,解得:n=3.。
石家庄市八年级下学期期末考试数学试卷
石家庄市八年级下学期期末考试数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)分解因式2x2 − 4x + 2的最终结果是()A . 2x(x − 2)B . 2(x2 − 2x +1)C . 2(x − 1)2D . (2x − 2)22. (2分) (2018八下·邯郸开学考) 已知a , b , c是△ABC的三条边长,则(a﹣b)2﹣c2的值是()A . 正数B . 负数C . 0D . 无法确定3. (2分)下列说法正确的是()A . 最小的有理数是0B . 射线OM的长度是5cmC . 两数相加,和一定大于任何一个加数D . 两点确定一条直线4. (2分) (2019八下·高阳期中) 如图所示,在数轴上点A所表示的数为,则的值为()A .B .C .D .5. (2分)下列命题是真命题的是()A . 若ac>bc,则a>bB . 4的平方根是2C . 一组对边平行,另一组对边相等的四边形是平行四边形D . 顺次连接任意四边形各边中点所得的四边形是平行四边形6. (2分) (2020七下·云梦期中) 下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A . 2个B . 3个C . 4个D . 5个7. (2分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…,按这样的规律进行下去,第2013个正方形的面积为()A .B .C .D .8. (2分) (2017八下·西华期末) 甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表所示:选手甲乙丙丁方差0.0350.0360.0280.015则这四人中成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁9. (2分) (2017八下·西华期末) 某交通管理人员星期天在市中心的某十字路口对7:00~12:00各时间段闯红灯的人数进行了统计,制作如下表格:时间段7~88~99~1010~1111~12人数2015101540则各时间段闯红灯人数的众数和中位数分别为()A . 10人,15人B . 15人,15人C . 15人,20人D . 10人,20人10. (2分) (2017八下·西华期末) 如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF ,连接DE、DF、EF ,在此运动变化的过程中,有下列结论:①∠DEF是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生改变;④点C到线段EF的最大距离为.其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共5题;共9分)11. (1分) (2019七下·峄城月考) 如果10m=2,10n=3,那么103m+2n=________.12. (1分) (2020七下·成都期中) 已知长方形,,,将两张边长分别为a 和b()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1 ,图2中阴影部分的面积为S2 .当时,AB=________.13. (1分)(2017·苏州模拟) 在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,3).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1…,按这样的规律进行下去,第4个正方形的边长为________.14. (5分)点P(-2,m)在第二象限的角平分线上,则m=____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年河北省石家庄市长安区八年级(下)期末数学试卷一、选择题(本大题共16个小题,每小题2分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.在该校各年级中随机选取50名学生2.(2分)若点P(m,m+3)在第二象限,则m的值可能是()A.1B.0C.﹣1.5D.﹣33.(2分)下列关于变量x,y的关系,其中y不是x的函数的是()A.B.C.D.4.(2分)如图,小明为了体验四边形的不稳定性先用四根木条钉成一个矩形框架ABCD,又将一根橡皮筋拉直并连接在B,D两点之间,然后保持BC不动,将CD在BC上方绕点C顺时针旋转,观察所得四边形的变化,下列判断错误的()A.BD的长度增大B.四边形ABCD的周长不变C.四边形ABCD的面积不变D.四边形ABCD由矩形变为平行四边形5.(2分)在平面直角坐标系中,一次函数y=1﹣x的图象是()A.B.C.D.6.(2分)如图,▱ABCD,BE平分∠ABC交AD于点E,∠AEB=25°,则∠C=()A.50°B.60°C.120°D.130°7.(2分)将点B(5,﹣1)向上平移3个单位长度得到点A(a+1,1﹣b),则()A.a=5,b=2B.a=4,b=﹣1C.a=4,b=5D.a=7,b=28.(2分)如图,是某班长绘制的5月份本班学生家庭用水量的统计图,由图可知该班学生家网5月份用水量所占比例最大的吨位是()A.4吨B.5吨C.6吨D.7吨9.(2分)若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A.减小2B.增加2C.减小4D.增加410.(2分)如图,在平面直角坐标系中,直线m⊥n,若x轴∥m,y轴∥n,点A的标为(﹣4,2),点B 的坐标为(2,﹣4),则坐标原点可能为()A.O1B.O2C.O3D.O411.(2分)用一根长48cm的细铁丝围成一个等腰三角形,设三角形底边长为ycm,腰长为xcm,则y与x 的函数关系式及x的取值范围是()A.y=48﹣2x(0<x<24)B.y=48﹣2x(12<x<24)C.y=24﹣x(0<x<48)D.y=24﹣0.5x(0<x<24)12.(2分)如图,小明家相对于学校的位置下列描述最准确的是()A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处13.(2分)若函数y=kx(k≠0)的图象过(2,﹣3),则关于此函数的叙述不正确的是()A.y随x的增大而增大B.k=﹣C.函数图象经过原点D.函数图象过二、四象限14.(2分)某公司生产一种品牌的产品,近年的产销情况如图所示,直线l1和l2分别表示产量与年份、销量与年份的函数关系,则下列说法:①该产品产量与销售量均呈直线上升的趋势,应该按原计划继续生产;②该产品已经出现供大于求的趋势价格将趋跌;③该产品库存积压越来越大,应该压缩生产或设法促销;④该产品近年的产量一直大于销量,因此一直处于亏损状态.其中错误的是()A.①②B.①④C.②③D.③④15.(2分)数学课上探究“菱形的两条对角线互相垂直”时,甲乙两同学分别给出各自的证明:已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BDA.甲、乙两人都对B.甲对,乙不对C.乙对,甲不对D.甲、乙两人都不对16.(2分)如图,等边△ABC中,A(1,0)B(2,0).将△ABC在x轴上按顺时针方向无滑动滚,翻滚1次后,C点落在点(3,0),则滚2018次后,△ABC的顶点中与点(2018,0)距离最近的是()A.点A B.点B C.点C D.不能确定二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.(3分)根据如图的程序计算,当输出的结果y=5.5时,则输入x=.18.(3分)如图,将一个n边形纸板,过相邻的两个顶点剪掉一个三角形,余下部分的角度和为:∠A1+∠A2+∠A3+…+∠A n﹣1+∠A n=2040°,若∠P=60°,则n的值为.19.(3分)学习委员调查本班学生一周内课外阅读情况,按照课外阅读时间进行统计结果如下表:则表中a的值是.20.(3分)一种大棚蔬菜处在0℃以下的气温条件下超过3.5小时,就会遭受冻害某日气象台发布了如下的降温预报:今日0时至次日5时气温将由3℃下降到﹣3℃;从次日5时至次日8时,气温又将由﹣3℃上升到5℃.若气温在上述两个时段内变化都是匀速的,那么0℃以下的气温条件将持续时,你认为是否有必要对大棚蔬菜采取防冻措施?(填“有”或“没有”)21.(8分)平面直角坐标系中,已知点A(﹣a,2a+3),B(1,a﹣2)(1)若点A在第一象限的角平分线上时,则a=;(2)若点B到x轴的距离是到y轴的距离的2倍,则B点坐标为;(3)若线段AB∥x轴,求点A,B的坐标及线段AB的长.22.(8分)如图1,在▱ABCD中,E,F分别为BC,AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)在(1)的基础上小明继续探究发现:如图2,连接BF,DE,分别交AE,CF于点G,H,得到的新四边形EHFG也是平行四边形.请补全小明的证明思路由(1)知:四边形AFCE是平行四边形,可得AE∥CF,要证明四边形EHFG为平行四边形,只要再证由已知,BE=DF,又由,所以四边形BEDF为平行四边形,进而可证得四边形EHFG为平行四边形.23.(9分)为节约用水,某市2017年对相关单位用水收费标准进行了调整,各单位每月应交的水费y(元)与当月用水量x(吨)之间关系如图所示.(1)若2月份用水量为40吨,则该月应交水费元;(2)当x≥50时,求y与x的函数关系式;(3)政府为了节约用水,决定在2018年对每月用水量不超过150吨的单位给予一定的资金奖励,如果某单位要想获得奖励金,那么每月用于水费的支出最多为多少元?24.(10分)某商场今年前五个月销售总额共计600万元,如图1柱状图为该商场今年前五个月的月销售总额统计图(统计信息不全),折线图2表示该商场家电部各月销售额占商场当月销售额的百分比情况统计图.(1)请根据以上信息,将图1补充完整;(2)家电部5月份的销售额是万元,小亮同学观察折线图后认为,家电部5月份的销售总额比4月份减少了,你同意他的看法吗?请说明理由;(3)在该商场家电部下设A,B,C,D,E五个卖区,如图3饼状图示在5月份,家电部各卖区销售额占5月份家电部销售额的百分比情况统计图,则卖区销售额最高,该卖区占5月份商场销售总额的百分比是,根据各卖区的销售信息,请你为商场的家电部提一条合理化建议.25.(10分)请根据学习函数的经验,对函数y=|x|+1的图象与性质进行探究.(1)在函数y=|x|+1中,自变量x的取值范围是.(2)下表是x与y的对应值:①m=;②若A(n,10),B(9,10)为该函数图象上不同的两点,则n=;(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为;③结合函数图象,写出该函数除②外的一条性质;(4)如图,若直线l:y1=2x﹣1与函数y=|x|+1的图象有交点,请求出交点坐标,并直接写出当y1≥y 时x的取值范围.26.(11分)如图1,在平面直角坐标系中,分别以△OAB的边OB,AB为边向外作正方形ABCD和正方形OBEF,作BB1⊥x轴于点B1,作FF1垂直于x轴于点F1,(1)若A(4,0)B(1,4),则①由△≌△,得点F的坐标为;②求D点的坐标.(2)如图2,两正方形的中心分别是O1,O2,连接O1O2及FD,若A(4,0),B(m,n),且m>0,n>0(B点不在FD上),猜想O1O2与FD的关系,并给于证明;(3)如图3,取线段FD的中点M,若B(1,4),A(a,0),且满足2≤a≤8时,点M所经过的路径的长为.2017-2018学年河北省石家庄市长安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题,每小题2分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.在该校各年级中随机选取50名学生【分析】根据调查数据要具有随机性,进而得出符合题意的答案.【解答】解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.故选:D.2.(2分)若点P(m,m+3)在第二象限,则m的值可能是()A.1B.0C.﹣1.5D.﹣3【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数.【解答】解:∵点P(m,m+3)在第二象限,可得:,解得:﹣3<m<0,所以m的值可能是﹣1.5,故选:C.3.(2分)下列关于变量x,y的关系,其中y不是x的函数的是()A.B.C.D.可确定函数的个数.【解答】解:A、B、C当x取值时,y有唯一的值对应,故选:D.4.(2分)如图,小明为了体验四边形的不稳定性先用四根木条钉成一个矩形框架ABCD,又将一根橡皮筋拉直并连接在B,D两点之间,然后保持BC不动,将CD在BC上方绕点C顺时针旋转,观察所得四边形的变化,下列判断错误的()A.BD的长度增大B.四边形ABCD的周长不变C.四边形ABCD的面积不变D.四边形ABCD由矩形变为平行四边形【分析】由旋转的性质和平行四边形的性质可求解.【解答】解:∵将CD在BC上方绕点C顺时针旋转,∴BD的长度增大,CD的长度不变,∵四边形ABCD的周长=2(BC+CD),且BC,CD的长度不变∴四边形ABCD的周长不变∵四边形ABCD的面积=×BC×(点D到BC的距离),且BC不变,点D到BC的距离在旋转的过程中随点D的位置的变化而变化,∴四边形ABCD的面积是变化的∵旋转中,AB=CD,AD=BC∴四边形ABCD是平行四边形故选:C.5.(2分)在平面直角坐标系中,一次函数y=1﹣x的图象是()A.B.C.D.【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【解答】解:一次函数y=﹣x+1,其中k=﹣1,b=1,其图象为:,故选:A.6.(2分)如图,▱ABCD,BE平分∠ABC交AD于点E,∠AEB=25°,则∠C=()A.50°B.60°C.120°D.130°【分析】先根据角平分线的定义得到,∠ABC=2∠EBC,再根据平行四边形的性质得出AD∥BC,AB ∥CD,即可得出∠CBE=∠AEB=25°,∠ABC+∠C=180°,得出∠ABC=2∠CBE=50°,即可得出∠C的度数.【解答】解:∵BE平分∠ABC,∴∠ABC=2∠EBC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠CBE=∠AEB=25°,∠ABC+∠C=180°,∴∠ABC=2∠CBE=50°,∴∠C=180°﹣50°=130°;故选:D.7.(2分)将点B(5,﹣1)向上平移3个单位长度得到点A(a+1,1﹣b),则()A.a=5,b=2B.a=4,b=﹣1C.a=4,b=5D.a=7,b=2【分析】根据左减右加,上加下减的规律解决问题即可.【解答】解:由题意:,解得,故选:B.8.(2分)如图,是某班长绘制的5月份本班学生家庭用水量的统计图,由图可知该班学生家网5月份用水量所占比例最大的吨位是()A.4吨B.5吨C.6吨D.7吨【分析】根据四个部分对应的圆心角度数和为360°求出5吨所对应的圆心角度数,从而得出答案.【解答】解:由图知4吨和6吨对应的圆心角度数为90°,7吨对应的圆心角度数为60°,则5吨对应的圆心角度数为360°﹣(90°+90°+60°)=120°,故选:B.9.(2分)若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A.减小2B.增加2C.减小4D.增加4【分析】先根据题意列出关于k的方程,求出k的值即可得出结论.【解答】解:∵当x的值减小1,y的值就减小2,∴y﹣2=k(x﹣1)+b=kx﹣k+b,即y=kx﹣k+b+2.又∵y=kx+b,∴﹣k+b+2=b,即﹣k+2=0,∴k=2.当x的值增加2时,∴y=(x+2)k+b=kx+b+2k=kx+b+4,∴当x的值增加2时,y的值增加4.故选:D.10.(2分)如图,在平面直角坐标系中,直线m⊥n,若x轴∥m,y轴∥n,点A的标为(﹣4,2),点B 的坐标为(2,﹣4),则坐标原点可能为()A.O1B.O2C.O3D.O4【分析】先根据点A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.【解答】解:设过A、B的直线解析式为y=kx+b,∵点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),∴,解得:,∴直线AB为y=﹣x﹣2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知坐标轴位置,故将点A沿着x轴正方向平移4个单位,再沿y轴负方向平移2个单位,即可到达原点位置,则原点为点O1.故选:A.11.(2分)用一根长48cm的细铁丝围成一个等腰三角形,设三角形底边长为ycm,腰长为xcm,则y与x 的函数关系式及x的取值范围是()A.y=48﹣2x(0<x<24)B.y=48﹣2x(12<x<24)C.y=24﹣x(0<x<48)D.y=24﹣0.5x(0<x<24)【分析】由三角形周长及三角形三边关系可求得.【解答】解:∵三角形底边长为ycm,腰长为xcm,周长为48cm,∴2x+y=48 即y=48﹣2x由三角形三边关系可得:12<x<24故选:B.12.(2分)如图,小明家相对于学校的位置下列描述最准确的是()A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处【分析】根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.【解答】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.13.(2分)若函数y=kx(k≠0)的图象过(2,﹣3),则关于此函数的叙述不正确的是()A.y随x的增大而增大B.k=﹣C.函数图象经过原点D.函数图象过二、四象限【分析】把点(2,﹣3)代入y=kx(k≠0)得到关于k的一元一次方程,解之,即可得到该函数的解析式,根据正比例函数的性质,依次分析各个选项,即可得到答案.【解答】解:把点(2,﹣3)代入y=kx(k≠0)得:2k=﹣3,解得:k=﹣,函数的解析式为:y=﹣x,A.k=﹣<0,y随着x的增大而减小,即A项不正确,B.k=﹣,即B项正确,C.该函数是正比例函数,图象经过原点,即C项正确,D.函数图象过二、四象限,即D项正确,故选:A.14.(2分)某公司生产一种品牌的产品,近年的产销情况如图所示,直线l1和l2分别表示产量与年份、销量与年份的函数关系,则下列说法:①该产品产量与销售量均呈直线上升的趋势,应该按原计划继续生产;②该产品已经出现供大于求的趋势价格将趋跌;③该产品库存积压越来越大,应该压缩生产或设法促销;④该产品近年的产量一直大于销量,因此一直处于亏损状态.其中错误的是()A.①②B.①④C.②③D.③④【分析】根据函数图象和一次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,该产品产量与销售量均呈直线上升的趋势,该产品库存积压越来越大,应该压缩生产或设法促销,故①错误,③正确,该产品已经出现供大于求的趋势价格将趋跌,故②正确,由图象不能得到销售价格,故不能判断是否亏损,故④错误,故选:B.15.(2分)数学课上探究“菱形的两条对角线互相垂直”时,甲乙两同学分别给出各自的证明:已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD则关于两人的证明过程,说法正确的是()A.甲、乙两人都对B.甲对,乙不对C.乙对,甲不对D.甲、乙两人都不对【分析】甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD =90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.【解答】解:甲乙两同学分别给出各自的证明都是正确的,甲是利用全等三角形的性质证明∠AOB=∠AOD=90°的.乙是利用等腰三角形的三线合一的性质证明AC⊥BD的.故选:A.16.(2分)如图,等边△ABC中,A(1,0)B(2,0).将△ABC在x轴上按顺时针方向无滑动滚,翻滚1次后,C点落在点(3,0),则滚2018次后,△ABC的顶点中与点(2018,0)距离最近的是()A.点A B.点B C.点C D.不能确定【分析】先找出点A,B,C落在x轴上横坐标的特点,找出规律,再确定出滚动次数进行计算.【解答】解:∵滚动第1次,落在x轴上的点C(3.0),即:C(1+2,0),滚动第2次,落在x轴上的点A(4.0),即:A(2+2,0),滚动第3次,落在x轴上的点B(5.0),即:B(3+2,0),滚动第4次,落在x轴上的点C(6.0),即:C(4+2,0),滚动第5次,落在x轴上的点A(7.0),即:A(5+2,0),∴滚动n次,落在x轴上的点,(n+2,0),∴(2018﹣2)÷3=672,∴经过(2018,0)的点是等边三角形ABC顶点中的C,故选:C.二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.(3分)根据如图的程序计算,当输出的结果y=5.5时,则输入x=0.5.【分析】分别把y=5.5代入代数式,计算即可.【解答】解:y=5.5时,x+5=5.5,解得x=0.5,﹣x+5=5.5,解得x=﹣0.5(舍去).故答案为:0.5.18.(3分)如图,将一个n边形纸板,过相邻的两个顶点剪掉一个三角形,余下部分的角度和为:∠A1+∠A2+∠A3+…+∠A n﹣1+∠A n=2040°,若∠P=60°,则n的值为14.【分析】减去一个三角形,去掉180°,∠P=60°,所以原多边形内角和是2040°+120°=2160°,再根据内角和求解.【解答】解:(2040°+180°﹣60°)=(n﹣2)×180°所以n=14,故答案为14.19.(3分)学习委员调查本班学生一周内课外阅读情况,按照课外阅读时间进行统计结果如下表:则表中a的值是15.【分析】先根据百分比之和为1求得b+c的值,再用第1、2组的人数和除以其所占百分比求得总人数,最后用总人数乘以第3组的百分比可得答案.【解答】解:∵b+c=1﹣30%=70%,∴被调查的总人数为(10+25)÷70%=50(人),则a=50×30%=15(人),故答案为:15.20.(3分)一种大棚蔬菜处在0℃以下的气温条件下超过3.5小时,就会遭受冻害某日气象台发布了如下的降温预报:今日0时至次日5时气温将由3℃下降到﹣3℃;从次日5时至次日8时,气温又将由﹣3℃上升到5℃.若气温在上述两个时段内变化都是匀速的,那么0℃以下的气温条件将持续时,你认为是否有必要对大棚蔬菜采取防冻措施?有(填“有”或“没有”)【分析】根据题意列算式即可求出答案.【解答】解:∵0时至次日5时气温变化速度为=℃/h,∴0℃下降到﹣3℃所需时间为:(0﹣3)÷=h,∵次日5时至次日8时气温变化速度为=℃/h,∴气温又将由﹣3℃上升到0℃所需要的时间为:[0﹣(﹣3)]÷=∴0℃以下的气温条件将持续时间为:+=h>3.5,故需要对大棚蔬菜采取防冻措施.故答案为:,有.三、解答题(本大题共6个小题,共56分.解答应写出相应的文字说明或解题步骤)21.(8分)平面直角坐标系中,已知点A(﹣a,2a+3),B(1,a﹣2)(1)若点A在第一象限的角平分线上时,则a=﹣1;(2)若点B到x轴的距离是到y轴的距离的2倍,则B点坐标为(1,2);(3)若线段AB∥x轴,求点A,B的坐标及线段AB的长.【分析】(1)根据第一象限的角平分线上点的横纵坐标相等得出关于a的方程,解之可得;(2)根据点B到x轴的距离是到y轴的距离的2倍得出关于a的方程,解之可得;(3)由AB∥x轴知纵坐标相等求出a的值,从而得出a的值,再得出点A,B的坐标,从而求得AB 的长度.【解答】解:(1)∵点A在第一象限的角平分线上,∴﹣a=2a+3,解得:a=﹣1,故答案为:﹣1;(2)∵点B到x轴的距离是到y轴的距离的2倍,∴a﹣2=2,解得:a=4,∴点B的坐标为(1,2),故答案为:(1,2);(3)∵线段AB∥x轴,∴2a+3=a﹣2,解得:a=﹣5,∴点A(5,﹣7),B(1,﹣7),则AC=5﹣1=4.22.(8分)如图1,在▱ABCD中,E,F分别为BC,AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)在(1)的基础上小明继续探究发现:如图2,连接BF,DE,分别交AE,CF于点G,H,得到的新四边形EHFG也是平行四边形.请补全小明的证明思路由(1)知:四边形AFCE是平行四边形,可得AE∥CF,要证明四边形EHFG为平行四边形,只要再证四边形BEDF为平行四边形由已知,BE=DF,又由BE∥DF,所以四边形BEDF为平行四边形,进而可证得四边形EHFG为平行四边形.【分析】(1)由平行四边形的性质得出AD=BC,AD∥BC,AF∥CE,求出AF=CE,即可得出结论;(2)由(1)知:四边形AFCE是平行四边形,可得AE∥CF,再证出四边形BEDF为平行四边形,得出BF∥DE,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形;∴AD=BC,AD∥BC,∴AF∥CE,∵BE=DF,∴AF=CE,∴四边形AECF是平行四边形;(2)解:由(1)知:四边形AFCE是平行四边形,可得AE∥CF,∵BE=DF,BE∥DF,∴四边形BEDF为平行四边形,∴BF∥DE,∴四边形EHFG为平行四边形.故答案为:四边形BEDF为平行四边形,BE∥DF.23.(9分)为节约用水,某市2017年对相关单位用水收费标准进行了调整,各单位每月应交的水费y(元)与当月用水量x(吨)之间关系如图所示.(1)若2月份用水量为40吨,则该月应交水费160元;(2)当x≥50时,求y与x的函数关系式;(3)政府为了节约用水,决定在2018年对每月用水量不超过150吨的单位给予一定的资金奖励,如果某单位要想获得奖励金,那么每月用于水费的支出最多为多少元?【分析】(1)根据函数图象中的数据可以求得x≤50时,每吨水的价格,从而可以求得2月份用水量为40吨应交的水费;(2)根据函数图象中的数据可以求得当x≥50时,y与x的函数关系式;(3)根据题意和(2)中的函数解析式可以解答本题.【解答】解:(1)由图可知,当x≤50时,每吨的价格为:200÷50=4元/吨,则2月份用水量为40吨,则该月应交水费:40×4=160(元),故答案为:160;(2)当x≥50时,设y与x的函数关系式y=kx+b,,得,即当x≥50时,y与x的函数关系式是y=6x﹣100;(3)将x=150代入y=6x﹣100,得y=6×150﹣100=800,答:每月用于水费的支出最多为800元.24.(10分)某商场今年前五个月销售总额共计600万元,如图1柱状图为该商场今年前五个月的月销售总额统计图(统计信息不全),折线图2表示该商场家电部各月销售额占商场当月销售额的百分比情况统计图.(1)请根据以上信息,将图1补充完整;(2)家电部5月份的销售额是36万元,小亮同学观察折线图后认为,家电部5月份的销售总额比4月份减少了,你同意他的看法吗?请说明理由;(3)在该商场家电部下设A,B,C,D,E五个卖区,如图3饼状图示在5月份,家电部各卖区销售额占5月份家电部销售额的百分比情况统计图,则B卖区销售额最高,该卖区占5月份商场销售总额的百分比是8.4%,根据各卖区的销售信息,请你为商场的家电部提一条合理化建议.【分析】(1)根据总体等于个体之和即可解决问题.(2)分别求出4月份,5月份的家电销售额,即可判断.(3)利用扇形图3,即可判断.【解答】解:(1)5月份的销售额=600﹣180﹣90﹣115﹣95=120(万元),统计图如图所示:(2)5月份家电销售额120×30%=36(万元),四月份家电的销售额=95×32%=30.4(万元),家电部5月份的销售总额比4月份多了,不同意他的看法.故答案为36.(3)B 卖区销售额最高,=8.4%.D卖区销售额最差,应该加强管理.故答案为:B,8.4%.25.(10分)请根据学习函数的经验,对函数y=|x|+1的图象与性质进行探究.(1)在函数y=|x|+1中,自变量x的取值范围是全体实数.(2)下表是x与y的对应值:①m=4;②若A(n,10),B(9,10)为该函数图象上不同的两点,则n=﹣9;(3)在如图的直角坐标系中:①描出上表中各对对应值的坐标的点,并根据描出的各点,画出该函数的大致图象;②根据函数图象可得,该函数的最小值为1;③结合函数图象,写出该函数除②外的一条性质;(4)如图,若直线l:y1=2x﹣1与函数y=|x|+1的图象有交点,请求出交点坐标,并直接写出当y1≥y 时x的取值范围.【分析】由图象和表格可知函数y=|x|+1的图象关于y轴对称,拐点坐标为(0,),【解答】解:(1)全体实数;(2)4和﹣9;(3)①图象如右图所示.②1,③函数关于y轴对称;(4)由两函数解析式组成方程组得:,解得:,∴两个函数图象有公共交点,其交点坐标为(2,3),由函数图象可知:当y1≥y时x的取值范围是x≥2.26.(11分)如图1,在平面直角坐标系中,分别以△OAB的边OB,AB为边向外作正方形ABCD和正方形OBEF,作BB1⊥x轴于点B1,作FF1垂直于x轴于点F1,(1)若A(4,0)B(1,4),则①由△OFF1≌△BOB1,得点F的坐标为(﹣4,1);②求D点的坐标.(2)如图2,两正方形的中心分别是O1,O2,连接O1O2及FD,若A(4,0),B(m,n),且m>0,n>0(B点不在FD上),猜想O1O2与FD的关系,并给于证明;(3)如图3,取线段FD的中点M,若B(1,4),A(a,0),且满足2≤a≤8时,点M所经过的路径的长为3.【分析】(1)①证明△OFF1≌△BOB1(AAS)即可解决问题.②作DH⊥OA于H.理由全等三角形的性质解决问题即可.(2)结论:O1O2∥DF,O1O2=DF.如图2中,连接BF,BD.利用三角形的中位线定理解决问题即可.(3)如图3中,作DH⊥OA于H.利用a表示点M的坐标,判断出点M的运动轨迹是线段,求出线段的端点坐标即可.【解答】解:(1)①如图1中,∵FF1⊥x轴,BB1⊥x轴,四边形EBOF是正方形,∴∠OFF1=∠OB1B=∠BOF=90°,∴∠FOF1+∠BOB1=90°,∠BOB1+∠OBB1=90°,∴∠FOF1=∠OBB1,∵OF=OB,∴△OFF1≌△BOB1(AAS),∴FF1=OB1=1,OF1=BB1=4,∴F(﹣4,1),故答案为OFF1,BOB1,(﹣4,1).②作DH⊥OA于H.∵A(4,0)B(1,4),∴OA=4,BB1=4,OB1=1,AB1=3,同法可证△ABB1≌△DAH(AAS),∴AH=BB1=4,DH=AB1=3,∴OH=8,∴D(8,3),故答案为(8,3).(2)结论:O1O2∥DF,O1O2=DF.理由:如图2中,连接BF,BD.∵O1,O2是两正方形的中心,∴点O1在线段BF上,点O2在线段BD上,∵BO1=O1F,BO2=O2D,∴O1O2∥DF,O1O2=DF.(3)如图3中,作DH⊥OA于H.同法可证:△ABB1≌△DAH,可得D(a+4,a﹣1),∵F(﹣4,1),FM=DM,∴M(,),∵点A的运动轨迹是线段,∴点M的运动轨迹也是线段,当a=2时,M(1,1),当a=8时,M(4,4),∴点M的运动路径的长==3.故答案为3.。