七年级数学上追及问题与相遇问题
追击相遇问题
例2、车从静止开始以1m/s2的加速度前进, 车后相距x0为25m处,某人同时开始以 6m/s的速度匀速追车,能否追上?如追不 上,求人、车间的最小距离。
解析:依题意,人与车运动的时间相等,设为t,
当人追上车时,两者之间的位移关系为:
x人-x0=x车
即:
v人t-x0=at2/2
由此方程求解t,若有解,则可追上;若无解,则
不能追上。
代入数据并整理得:
t2-12t+50=0
Δ=b2-4ac=122-4×50=-56<0
所以,人追不上车。
在刚开始追车时,由于人的速度大于车的速度, 因此人车间的距离逐渐减小;当车速大于人的 速度时,人车间的距离逐渐增大。因此,当人 车速度相等时,两者间距离最小。
at'=6 t'=6s 在这段时间里,人、车的位移分别为:
⑶若追上时,追者速度仍大于被追者的速 度,(若不出现碰撞)则先前的被追者还 有一次追上先前的追者的机会,其间速度 相等时,两者相距最远。
例2、甲车在后以15 m/s的速度匀速行驶,乙 车在前以9 m/s的速度匀速行驶。为了避免碰撞, 甲车开始刹车,加速度大小为1m/s2。问为了避 免碰撞甲刹车时距离乙最近为多少?
(2)常用方法 1、解析法 2、临界状态分析法 3、图像法 4、相对运动法
甲乙两车同时同向从同一地点出发,甲车以v1= 16m/s的初速度,a1=-2m/s2的加速度作匀减速直 线运动,乙车以v2=4m/s的速度,a2=1m/s2的加速 度作匀加速直线运动,求两车相遇前两车相距最大
距离和相遇时两车运动的时间。
Δx=12×4-3×42/2=24m
当两车相遇时,Δx=0,即12t-3t2/2=0
∴
t=8s 或 t=0(舍去)
四种数学方法分析追及和相遇问题
四种数学方法分析追及和相遇问题例1 在水平道路上有两辆汽车A 和B 相距x ,A 车在后面做初速度为v 0、加速度大小为2a 的匀减速直线运动,而B 车同时做初速度为零、加速度为a 的匀加速直线运动,两车运动方向相同,如图1所示.要使两车不相撞,求A 车的初速度v 0满足什么条件.图1解析 解法一:解方程法A 、B 两车的运动过程如图所示.对A 车,有x A =v 0t -12×2at 2,v A =v 0-2at 对B 车,有x B =12at 2,v B =at . 两车恰好不相撞的条件是:当x =x A -x B 时,v A =v B ,联立以上各式解得v 0=6ax ,故要使两车不相撞,A 车的初速度v 0应满足的条件是v 0≤6ax . 解法二:判别式法设A 车经过时间t 恰好追上B 车,两车的位移关系为x A =x +x B ,即v 0t -12×2at 2=x +12at 2,整理得3at 2-2v 0t +2x =0,这是一个关于时间t 的一元二次方程,当判别式Δ=(-2v 0)2-4·3a ·2x ≤0时,t 无实数解或只有一个解,即两车不相撞,所以要使两车不相撞,A 车的初速度v 0应满足的条件是v 0≤6ax .解法三:图象法先作出A 、B 两车的v -t 图象,如图所示.设经过时间t 两车刚好不相撞,则:对A 车,有v A =v =v 0-2at ;对B 车,有v B =v =at ,解得t =v 03a. 两车相遇时的位移差等于x ,它可用图中的阴影面积表示,由图象可知x =12v 0t =v 026a,所以要使两车不相撞,A车的初速度v0≤6ax.解法四:相对运动法以B车为参考系,A车的初速度为v0,加速度为a′=-2a-a=-3a,A车追上B车且刚好不相撞的条件是v t=0,这一过程A车相对于B车的位移为x,由运动学公式得-v02=2×(-3a)x,所以v0=6ax,即要使两车不相撞,A车的初速度v0应满足的条件是v0≤6ax.答案v0≤6ax。
追及与相遇问题
见全品练习册,20页的13题
方法一:设:经过时间t,人与车速度相等,
因
人追不上车。人车间的最小距离为
方法二:设:经过时间t,人与车相距S,
则S= S0+S车 - S人=25 + 0.5 t2 - 6 t 令S=0,既假设人能追上车,0.5 t2 - 6 t+25=0 因b2-4ac = (-6)2 -4×0.5×25=-14<0,方程无 解,故人追不上车 当t=人车间的最小距离为 s =25 + 0.5×62 - 6× 6=7m 时,s有最小值
追及与相遇问题
一、追及问题:二者速度相等时相距最远 (或者最近) 1、后面加速,前面匀速,二者相距x 。一定 能追上,二者速度相等时相距最远 。
2、后面匀速,前面从静止加速,二者相距x 。 不一定能追上,二者速度相等时相距最远近。
2 例6、车从静止开始以1m/s 的加
速度前进,车后相距s0为25m处, 某人同时开始以6m/s的速度匀速 追车,能否追上?若追不上,求 人、车间的最小距离。
初一数学行程问题公式
初一数学行程问题公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和1、相遇问题:1)直线:甲的路程+乙的路程=总路程2)环形:甲的路程 +乙的路程=环形周长2、追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差1)直线:距离差=追者路程-被追者路程=速度差X追及时间2)环形:快的路程-慢的路程=曲线的周长3、流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷21、甲乙齐自行车同时从相距80千米的两地相向而行,2小时相遇,甲比乙每小时多骑2.5千米,求乙的速度。
18.752、A、B两地相距230千米,甲队从A地出发,两小时后,乙队从B地出发与甲相向而行,乙队出发20小时后相遇,已知乙的速度比甲的速度每小时快1千米,求甲、乙的速度各是多少?5,63、甲、乙两车自西向东行驶,甲车速度是每小时48千米,乙车速度是每小时72千米,甲车开25分钟后乙车开出,吻几小时后乙车追上甲车。
5/64、甲乙两位同学练习赛跑,甲每秒跑7米,乙每秒跑6.5米(1)如果甲让乙先跑5米,几秒后可追上乙?10(2)如果加让一先跑1秒钟后,几秒钟后甲可以追上乙?13三辆汽车A、B、C各以不变的速度从甲地开往乙地.已知:B比C迟5分钟出发,出发后20分钟追上C;A比B迟10分钟,出发后50分钟追上C。
那么A出发多长时间追上B?解:设A,B,C三车速度分别为x,y,z由条件:(5+20)*z=20*y(10+5+50)*z=50*x设追上时间为t,则:(t+10)*y=t*x解之得:t=250有一项工程,甲单独做45天完成,乙单独做30天完成,乙先做25天,在合作完成。
(完整版)相遇问题与追及问题
相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。
初一数学相遇与追及问题公式
初一数学相遇与追及问题公式(一)相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
(二)追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
扩展资料:
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。
相遇问题是研究速度,时间和路程三者数量之间的关系。
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。
相遇问题是研究速度,时间和路
程三者数量之间关系的问题。
它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。
相遇问题的关系式是:速度和×相遇时间=路程;路程÷速度和=
相遇时间;路程÷相遇时间=速度和。
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
追及和相遇问题
例3:一辆轿车违章超车,以108km/h的速度驶入 左侧逆行道时,猛然发现正前方80m处一辆卡车 正以72km/h的速度迎面驶来,两车司机同时刹 车,刹车加速度大小都是10m/s2,两司机的的反 应时间(即司机发现险情到实施刹车所经历的时 间)都是△t,试问△t是何数值 ,才能保证两车不相 撞?
例 4:一辆轿车的最大速度为30m/s,要想从静止开 始用4分钟追上前面1000m处以25m/s匀速同向 行驶的货车,轿车至少要以多大的加速度起速运动的物体甲追 赶同方向匀加速运动的物体乙。(v甲﹥ v0乙)
v甲 S0 v0乙 a
A、当v乙= v甲时:S甲=S0+S乙,甲恰好追上乙 B、当v乙= v甲时: S甲<S0+S乙,甲永远追不上乙, 此时两者有最小间距⊿Smin C、当v乙< v甲时: S甲>S0+S乙,甲追上了乙,由 乙作匀加速运动,以后v乙> v甲,则乙还有一次 追 上甲的机会,其间两者速度相等时两者距离 v 有一个较大值。 v
追及和相遇问题
追及问题:追和被追的两物体同向运动,往 往当两者速度相等是能否追上或者两者距离有最 大值、最小值的临界条件。追及问题常见情形有 三种: ①同时同地出发:初速为零的匀加速直线运动物体 甲追匀速运动的物体乙:一定能追上,当v甲= v乙 时,两者之间有△xmax v(m/s) v0甲=0 v0乙 a o 甲
(2)相遇问题:相遇问题分为追及相遇和相向相 遇问题,上面三种常见问题属于追及相遇问题, 至于相向相遇问题,我们通过例题来进行说明, 本节课重点解决追及相遇问题。 对于追及相遇问题我们解题过程中要弄清 物体的运动过程,挖掘题中隐含的临界条件,在 解题方法上常常用到解析法、数学法、图象法、 相对运动法等等。
例1:火车以速度v1匀速行驶,司机发现前方同轨 道上相距S处有另一火车沿同方向以速度v2(对 地,且v1> v2)做匀速运动,司机立即以加速度 大小为a紧急刹车,要使两车不相撞, a应满足 什么条件?
初中七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题追及问题:(相向而行):追及路程/追及速度和=追及时间(同向而行):追及路程/追及速度差=追及时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题追及问题:(相向而行):追及路程/追及速度与=追及时间(同向而行):追及路程/追及速度差=追及时间基本概念:行程问题就是研究物体运动的,它研究的就是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度与×相遇时间=相遇路程(请写出其她公式)追击问题:追击时间=路程差÷速度差(写出其她公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键就是确定物体所运动的速度,参照以上公式。
过桥问题:关键就是确定物体所运动的路程,参照以上公式。
【与差问题公式】(与+差)÷2=较大数;(与-差)÷2=较小数。
【与倍问题公式】与÷(倍数+1)=一倍数;一倍数×倍数=另一数,或与-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】二人从两地出发,相向而行)与“相离问反向行程问题可以分为“相遇问题”(题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度与)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度与)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度与。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
初一数学追及和相遇问题列方程的技巧指导
初一数学追及和相遇问题列方程的技巧指导?行程问题
在行车、走路等类似运动时,其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做〝行程问题〞。
此类问题一般分为四类:【一】相遇问题;【二】追及问题;【三】相离问题;【四】过桥问题等。
行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。
相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,那么为相遇(相离)问题,如果他们的运动方向相同,那么为追及问题。
相遇问题
两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。
这类问题即为相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:
A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间
基本公式有:
两地距离=速度和×相遇时间
相遇时间=两地距离÷速度和
速度和=两地距离÷相遇时间
二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A 地后返回,第二次在D地相遇。
那么有:
第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是〝速度和〞问题。
利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
追及与相遇问题(20张PPT)
• 追及与相遇问题概述 • 追及问题的解决方法 • 相遇问题的解决方法 • 追及与相遇问题的实际应用 • 练习题与解析
目录
Part
01
追及与相遇问题概述
定义与特点
定义
追及与相遇问题是一种常见的数学问题,主要研究两个或多个运动物体在同一直线上或 在不同路径上运动,其中一个物体追赶另一个物体或两者相遇的问题。
01
02
03
确定追及条件
当两物体速度相等时,是 追及的临界条件。
建立数学模型
根据题意,列出两物体的 位移方程,并找出时间关 系。
求解方程
解方程求出两物体的位移 和时间,判断是否追上。
Part
03
相遇问题的解决方法
直线上的相遇问题
确定参考系
选择一个合适的参考系,以便简 化问题。
检验解的合理性
根据实际情况检验解的合理性, 确保答案符合实际情况。
特点
这类问题通常涉及到速度、时间、距离等基本概念,需要运用数学模型和公式进行求解。
问题背景与重要性
问题背景
追及与相遇问题在日常生活和实际工程中有着广泛的应用,如交通、物流、航 天等领域。这类问题的解决有助于提高对物体运动规律的认识,为实际问题的 解决提供理论支持。
重要性
追及与相遇问题在数学教育和科学教育中也占有重要地位,是培养学生逻辑思 维和数学应用能力的重要素材。
行星运动中的追及与相遇
卫星轨道
天体碰撞
人造卫星在地球轨道上运行时,需要 考虑其他卫星或物体的影响,避免追 及和碰撞。
在宇宙中,天体之间的碰撞是相对罕 见的,但仍然需要关注小行星、彗星 等对地球的潜在威胁。
行星探测器
探测器在飞往行星的过程中,需要进 行精确的轨道设计和计算,确保能够 成功追及目标行星。
七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题追及问题:(相向而行):追及路程/追及速度和=追及时间(同向而行):追及路程/追及速度差=追及时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题
在七年级数学中,追及问题是一个重要的话题。
其中,相向而行的追及问题可以用追及路程除以追及速度和来计算追及时间;同向而行的追及问题可以用追及路程除以追及速度差来计算追及时间。
这些问题研究的是物体速度、时间和行程之间的关系,其中路程等于速度乘以时间,速度等于路程除以时间,时间等于路程除以速度。
除了追及问题外,相遇问题也是一个常见的数学问题。
其中,速度和乘以相遇时间等于相遇路程是一个基本公式。
对于追击问题,追击时间等于路程差除以速度差。
在流水问题中,顺水速度等于船速加上水速,逆水速度等于船速减去水速,静水速度等于顺水速度和逆水速度的平均值,水速等于顺水速度减去逆水速度的一半。
对于过桥问题,关键在于确定物体所运动的路程,可以参照以上公式。
而和差问题、和倍问题、差倍问题和平均数问题都有相应的公式可以使用。
一般行程问题可以用平均速度乘以时间等于路程,路程除以时间等于平均速度,路程除以平均速
度等于时间来计算。
反向行程问题可以分为相遇问题和相离问题,可以用速度和乘以相遇(离)时间等于相遇(离)路程,相遇(离)路程除以速度和等于相遇(离)时间,相遇(离)路程除以相遇(离)时间等于速度和来解答。
同向行程问题也有相应的公式可用。
初一数学相遇和追及问题解析
初一数学相遇和追及问题解析一、相遇问题的基本概念相遇问题是指在两个或多个物体或人在同一直线上运动,并在某个时间点相遇的问题。
在数学中,我们通常用速度、时间、距离等变量来描述相遇问题。
二、追及问题的基本概念追及问题是指两个或多个物体或人在同一直线上运动,其中一人或物体追赶另一个物体或人,并最终追上的问题。
在数学中,我们通常用速度、时间、距离等变量来描述追及问题。
三、相遇问题的解决方法解决相遇问题的关键是找到相遇时各个物体或人行驶的距离总和等于两物体或人的初始距离。
具体解决方法如下:1. 找到两物体或人的初始距离。
2. 计算两物体或人相遇时各自行驶的距离。
3. 计算两物体或人相遇时的总距离。
4. 根据总距离和初始距离的关系,确定相遇时各个物体或人的速度、时间等变量。
四、追及问题的解决方法解决追及问题的关键是找到追及时各个物体或人行驶的距离差等于两物体或人的初始距离。
具体解决方法如下:1. 找到两物体或人的初始距离。
2. 计算追及时各个物体或人行驶的距离差。
3. 根据初始距离和行驶的距离差的关系,确定追及时各个物体或人的速度、时间等变量。
五、相遇和追及问题的应用实例相遇和追及问题在现实生活中很常见,比如两个人同时从两地出发相向而行,或者一个人从后面追赶另一个人等。
这些问题的解决方法都可以从初一数学的角度来解析。
六、相遇和追及问题的常见陷阱在解决相遇和追及问题时,学生容易犯的错误主要有以下几个方面:1. 没有考虑到相遇或追及的时刻是否已经过去,导致计算错误。
2. 没有考虑到物体的速度是否相同或相等,导致计算错误。
3. 没有考虑到物体的初始位置是否相同,导致计算错误。
4. 没有考虑到物体的行驶方向是否相同或相反,导致计算错误。
七、如何提高解决相遇和追及问题的能力为了提高解决相遇和追及问题的能力,学生可以采取以下措施:1. 熟悉相遇和追及问题的基本概念和解决方法,掌握相关的数学知识和技能。
2. 多做练习题,通过反复练习加深对知识的理解和掌握程度。
初一追及问题六大公式
初一追及问题六大公式导言初中数学中的追及问题是一类常见的物理运动问题,也是数学中的经典题型。
通过学习追及问题,我们不仅可以提高对物理运动的理解,还可以培养解决问题的能力和思维逻辑。
本文将介绍初一阶段常见的追及问题,并总结出六大解题公式,帮助同学们更好地掌握和应用这类题型。
一、两物相向而行问题某一时刻,两物体相隔一定距离,同时朝着对方方向开始运动,速度分别为v1和v2。
求它们相遇需要多少时间。
解题方法:1.建立关系式:时间t乘以v1,等于时间t乘以v2;2.解方程:根据关系式得到方程t*v1=t*v2,化简并解方程求得t。
公式一:两物相向而行问题公式dt=--------v1-v2二、两物先后出发问题某一时刻,物体A以速度v1出发,过了一段时间后,物体B以速度v2出发。
求物体B追上物体A需要多少时间。
解题方法:1.建立关系式:时间t加上A先行的时间,等于B行程的时间;2.解方程:根据关系式得到方程t+(t*v1)=t*v2,化简并解方程求得t。
公式二:两物先后出发问题公式dt=---------v2-v1三、正向相遇问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,在距离x处相遇。
求A出发后多长时间会与B相遇。
解题方法:1.建立关系式:时间t加上x除以速度v1,等于时间t乘以速度v2;2.解方程:根据关系式得到方程t+(x/v1)=t*v2,化简并解方程求得t。
公式三:正向相遇问题公式xt=---------v2-v1四、追上问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,求A多长时间能追上B。
解题方法:1.建立关系式:时间t乘以速度v1,等于时间t加上t乘以速度v2;2.解方程:根据关系式得到方程t*v1=t+(t*v2),化简并解方程求得t。
公式四:追上问题公式tv1=-----1-v2五、反向相遇问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,它们相遇后,A往回走,B继续向前,求B追上A需要多长时间。
追及和相遇问题
x人=v人t=6×6=36m
x车=at′2/2=1×62/2=18m
△x=x0+x车-x人=25+18-36=7m
结论:速度大者减速追赶速度小者,追上前在两 个物体速度相等时,有最小距离.即必须在此之前
追上,否则就不能追上.
解析:作汽车与人的运动草图如下图甲和v-t图象如下图乙所 示.因v-t图象不能看出物体运动的初位置,故在图乙中标上两 物体的前、后.由图乙可知:在0~6 s时间内后面的人速度大, 运动得快;前面的汽车运动得慢.即0~6 s内两者间距越来越 近.因而速度相等时两者的位置关系,是判断人能否追上汽车
临界条件。
若无解,则不能追上。
代入数据并整理得:t2-12t+50=0 △=b2-4ac=122-4×50×1=-56<0
所以,人追不上车。
在刚开始追车时,由于人的速度大于车的速度, 因此人车间的距离逐渐减小;当车速大于人的 速度时,人车间的距离逐渐增大。因此,当人 车速度相等时,两者间距离最小。
at′= v人 t′=6s
的两个关系:
1.两个物体运动的时间关系; 2.两个物体相遇时必须处于同一位置。
即:两个物体的位移关系
③匀减速直线运动的物体追赶同向匀速(或匀加速)直线运动的 物体时,恰好追上(或恰好追不上)的临界条件为:即追尾时, 追及者速度等于被追及者速度.当追及者速度大于被追及者速度,
例题3:经检测汽车A的制动性能:以标准速度20m/s 在平直公路上行使时,制动后40s停下来。现A在平直 公路上以20m/s的速度行使发现前方180m处有一货车 B以6m/s的速度同向匀速行使,司机立即制动,能否
∵△x=x1-x2=v自t - at(2/2位移关系)
(完整)初一数学追及问题和相遇问题列方程的技巧
初一数学追及问题和相遇问题列方程的技巧行程问题在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。
此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。
行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。
相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。
这类问题即为相遇问题。
相遇问题的模型为:甲从 A 地到 B 地,乙从 B 地到A 地,然后甲,乙在途中相遇,实质上是两人共同走了A、B 之间这段路程,如果两人同时出发,那么:A,B 两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从 A 地出发,乙从 B 地出发相向而行,两人在 C 地相遇,相遇后甲继续走到B 地后返回,乙继续走到A 地后返回,第二次在D 地相遇。
则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是“速度和”问题。
利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
相离问题两个运动着的动体,从同一地点相背而行。
若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。
它与相遇问题类似,只是运动的方向有所改变。
解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。
追及与相遇问题知识详解及典型例题
追及与相遇问题知识详解及典型例题知识要点追及和相遇问题主要涉及在同一直线上运动的两个物体的运动关系,所应用的规律是匀变速直线运动的相关规律。
追及、相遇问题常常涉及到临界问题,分析临界状态,找出临界条件是解决这类问题的关键。
速度相等是物体恰能追上或恰不相碰、或间距最大或最小的临界条件。
在两物体沿同一直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系解出。
解答追及、相遇问题时要特别注意明确两物体的位移关系、时间关系、速度关系,这些关系是我们根据相关运动学公式列方程的依据。
1. 追及追和被追的两者的速度相等常是能追上、追不上、二者距离有极值的临界条件。
如匀减速运动的物体追从不同地点出发同向的匀速运动的物体时,若二者速度相等了,还没有追上,则永远追不上,此时二者间有最小距离。
若二者相遇时(追上了),追者速度等于被追者的速度,则恰能追上,也是二者避免碰撞的临界条件;若二者相遇时追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时二者的距离有一个较大值。
再如初速度为零的匀加速运动的物体追从同一地点出发同向匀速运动的物体时,当二者速度相等时二者有最大距离,位移相等即追上。
“追上”的主要条件是两个物体在追赶过程中处在同一位置,常见的情形有三种:一是初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙时,一定能追上,在追上之前两者有最大距离的条件是两物体速度相等,即v甲=v乙;二是匀速运动的物体甲追赶同方向做匀加速运动的物体乙时,存在一个恰好追上或恰好追不上的临界条件:两物体速度相等,即v甲>v乙,此临界条件给出了一个判断此种追赶情形能否追上的方法,即可通过比较两物体处在同一位置时的速度大小来分析,具体方法是:假定在追赶过程中两者能处在同一位置,比较此时的速度大小,若v甲>v乙,则能追上去,若v甲<v乙,则追不上,如果始终追不上,当两物体速度相等时,两物体的间距最小;三是匀减速运动的物体追赶同方向的匀速运动的物体时,情形跟第二种相类似。
初一数学相遇与追及问题公式
初一数学相遇与追及问题公式相遇与追及问题是数学中的一个经典问题类型,通常涉及到两个物体在空间中的运动关系。
这类问题可以用代数方法求解,也可以用图形方法求解。
在初一阶段,学生通常对于这类问题还不太熟悉,需要通过实际情景的描述和图示来帮助他们理解并解决这类问题。
首先,我们来看一下相遇与追及问题的基本概念。
相遇与追及问题通常描述的是两个物体在空间中的运动情况。
当两个物体在某一时刻重合在一点时,我们称它们相遇;当一个物体从后面赶上另一个物体时,我们称它们发生追及。
相遇与追及问题涉及到的基本量一般有:距离、速度、时间等。
假设有两个物体A和B在空间中做匀速运动。
设物体A的速度为va,物体B的速度为vb,物体A与物体B的初始距离为d。
我们可以通过以下公式来解决相遇和追及问题:1.相遇问题的解决步骤:-确定两个物体的速度和初始距离;-根据两个物体的速度和初始距离,求出它们相遇的时间点;-根据相遇的时间点,可以求出相遇时两个物体所在的位置。
2.追及问题的解决步骤:-确定两个物体的速度和初始距离;-根据两个物体的速度和初始距离,求出它们发生追及的时间点;-根据追及的时间点,可以求出追及时追赶者所在的位置。
下面我们通过一些实际情景来具体介绍相遇和追及问题的解决方法。
情景一:两辆车相向而行假设有两辆车A和B在直线公路上相对向而行。
车A的速度为60km/h,车B的速度为40km/h。
两辆车相遇的时间点是在它们出发后2小时相遇的,求出两辆车相遇时所在的位置。
首先,我们可以列方程解决这个问题。
设相遇时两辆车行驶的时间为t小时,则车A行驶的距离为60t,车B行驶的距离为40t,根据题意可得方程60t+40t=200,解得t=2。
所以,两辆车在出发后2小时相遇,相遇时车A行驶的距离为60*2=120km,车B行驶的距离为40*2=80km。
那么两辆车相遇时所在的位置就分别是120km和80km处。
情景二:一个人骑自行车追赶另一个人假设有一个人A骑自行车以20km/h的速度向东行驶,另一个人B以15km/h的速度向北行驶,A出发后1小时B出发,求出A追及B的时间点和地点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上追及问题
与相遇问题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
七年级数学上追及问题与相遇问题
追及问题:
(相向而行):追及路程/追及速度和=追及时间
(同向而行):追及路程/追及速度差=追及时间
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【和差问题公式】
(和+差)÷2=较大数;
(和-差)÷2=较小数。
【和倍问题公式】
和÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或和-一倍数=另一数。
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或较小数+差=较大数。
【平均数问题公式】
总数量÷总份数=平均数。
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
相遇问题
A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间。